Tailoring Classical Conditioning Behavior in TiO2 Nanowires: ZnO QDs-Based Optoelectronic Memristors for Neuromorphic Hardware
Corresponding Author: Nam‑Young Kim
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 133
Abstract
Neuromorphic hardware equipped with associative learning capabilities presents fascinating applications in the next generation of artificial intelligence. However, research into synaptic devices exhibiting complex associative learning behaviors is still nascent. Here, an optoelectronic memristor based on Ag/TiO2 Nanowires: ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors. Effective implementation of synaptic behaviors, including long and short-term plasticity, and learning-forgetting-relearning behaviors, were achieved in the device through the application of light and electrical stimuli. Leveraging the optoelectronic co-modulated characteristics, a simulation of neuromorphic computing was conducted, resulting in a handwriting digit recognition accuracy of 88.9%. Furthermore, a 3 × 7 memristor array was constructed, confirming its application in artificial visual memory. Most importantly, complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli, respectively. After training through associative pairs, reflexes could be triggered solely using light stimuli. Comprehensively, under specific optoelectronic signal applications, the four features of classical conditioning, namely acquisition, extinction, recovery, and generalization, were elegantly emulated. This work provides an optoelectronic memristor with associative behavior capabilities, offering a pathway for advancing brain-machine interfaces, autonomous robots, and machine self-learning in the future.
Highlights:
1 An optoelectronic memristor with bioinspired neuromorphic behavior was proposed based on Ag/TiO2 Nanowires: ZnO QDs/FTO.
2 The proposed device establishes superior long/short-term synaptic plasticity in response to electrical and light stimuli, and a neuromorphic computing task is effectively implemented based on its optoelectronic performance.
3 The device emulated complex biological associative learning behaviors, including the four features of acquisition, extinction, restoration, and generalization.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Li, D. Belkin, Y. Li, P. Yan, M. Hu et al., Efficient and self-adaptive in situ learning in multilayer memristor neural networks. Nat. Commun. 9, 2385 (2018). https://doi.org/10.1038/s41467-018-04484-2
- J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang et al., Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572, 106–111 (2019). https://doi.org/10.1038/s41586-019-1424-8
- C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang et al., Artificial sensory memory. Adv. Mater. 32, e1902434 (2020). https://doi.org/10.1002/adma.201902434
- C. Li, Z. Wang, M. Rao, D. Belkin, W. Song et al., Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 1, 49–57 (2019). https://doi.org/10.1038/s42256-018-0001-4
- J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov et al., Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). https://doi.org/10.1038/s41586-021-03819-2
- G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017). https://doi.org/10.1126/science.aag2302
- Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya et al., Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018). https://doi.org/10.1038/s41928-018-0023-2
- E. Peterson, A. Lavin, Physical computing for materials acceleration platforms. Matter 5, 3586–3596 (2022). https://doi.org/10.1016/j.matt.2022.09.022
- K. Hippalgaonkar, Q. Li, X. Wang, J.W. Fisher III., J. Kirkpatrick et al., Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics. Nat. Rev. Mater. 8, 241–260 (2023). https://doi.org/10.1038/s41578-022-00513-1
- Y. Lee, H.-L. Park, Y. Kim, T.-W. Lee, Organic electronic synapses with low energy consumption. Joule 5, 794–810 (2021). https://doi.org/10.1016/j.joule.2021.01.005
- J.-Q. Yang, R. Wang, Y. Ren, J.-Y. Mao, Z.-P. Wang et al., Neuromorphic engineering: from biological to spike-based hardware nervous systems. Adv. Mater. 32, e2003610 (2020). https://doi.org/10.1002/adma.202003610
- C. Eckel, J. Lenz, A. Melianas, A. Salleo, R.T. Weitz, Nanoscopic electrolyte-gated vertical organic transistors with low operation voltage and five orders of magnitude switching range for neuromorphic systems. Nano Lett. 22, 973–978 (2022). https://doi.org/10.1021/acs.nanolett.1c03832
- B.J. Shastri, A.N. Tait, T. Ferreira de Lima, W.H.P. Pernice, H. Bhaskaran et al., Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021). https://doi.org/10.1038/s41566-020-00754-y
- Z. Lv, Y. Wang, J. Chen, J. Wang, Y. Zhou et al., Semiconductor quantum dots for memories and neuromorphic computing systems. Chem. Rev. 120, 3941–4006 (2020). https://doi.org/10.1021/acs.chemrev.9b00730
- J. Zeng, J. Zhao, T. Bu, G. Liu, Y. Qi et al., A flexible tribotronic artificial synapse with bioinspired neurosensory behavior. Nano-Micro Lett. 15, 18 (2022). https://doi.org/10.1007/s40820-022-00989-0
- S. Najmaei, A.L. Glasmann, M.A. Schroeder, W.L. Sarney, M.L. Chin et al., Advancements in materials, devices, and integration schemes for a new generation of neuromorphic computers. Mater. Today 59, 80–106 (2022). https://doi.org/10.1016/j.mattod.2022.08.017
- S.H. Sung, T.J. Kim, H. Shin, T.H. Im, K.J. Lee, Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse. Nat. Commun. 13, 2811 (2022). https://doi.org/10.1038/s41467-022-30432-2
- L. Wang, W. Liao, S.L. Wong, Z.G. Yu, S. Li et al., Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv. Funct. Mater. 29, 1901106 (2019). https://doi.org/10.1002/adfm.201901106
- M. Seo, M.-H. Kang, S.-B. Jeon, H. Bae, J. Hur et al., First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications. IEEE Electron Device Lett. 39, 1445–1448 (2018). https://doi.org/10.1109/LED.2018.2852698
- Y.-C. Chiang, C.-C. Hung, Y.-C. Lin, Y.-C. Chiu, T. Isono et al., High-performance nonvolatile organic photonic transistor memory devices using conjugated rod-coil materials as a floating gate. Adv. Mater. 32, e2002638 (2020). https://doi.org/10.1002/adma.202002638
- J. Hochstetter, R. Zhu, A. Loeffler, A. Diaz-Alvarez, T. Nakayama et al., Avalanches and edge-of-chaos learning in neuromorphic nanowire networks. Nat. Commun. 12, 4008 (2021). https://doi.org/10.1038/s41467-021-24260-z
- W. Schultz, A. Dickinson, Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000). https://doi.org/10.1146/annurev.neuro.23.1.473
- R.A. Poldrack, J. Clark, E.J. Paré-Blagoev, D. Shohamy, J. Creso Moyano et al., Interactive memory systems in the human brain. Nature 414, 546–550 (2001). https://doi.org/10.1038/35107080
- H. Zhang, H. Zeng, A. Priimagi, O. Ikkala, Viewpoint: Pavlovian materials—functional biomimetics inspired by classical conditioning. Adv. Mater. 32, 1906619 (2020). https://doi.org/10.1002/adma.201906619
- Z. Wang, C. Li, W. Song, M. Rao, D. Belkin et al., Reinforcement learning with analogue memristor arrays. Nat. Electron. 2, 115–124 (2019). https://doi.org/10.1038/s41928-019-0221-6
- J.H. Baek, K.J. Kwak, S.J. Kim, J. Kim, J.Y. Kim et al., Two-terminal lithium-mediated artificial synapses with enhanced weight modulation for feasible hardware neural networks. Nano-Micro Lett. 15, 69 (2023). https://doi.org/10.1007/s40820-023-01035-3
- K. He, Y. Liu, J. Yu, X. Guo, M. Wang et al., Artificial neural pathway based on a memristor synapse for optically mediated motion learning. ACS Nano 16, 9691–9700 (2022). https://doi.org/10.1021/acsnano.2c03100
- J. Sun, G. Han, Z. Zeng, Y. Wang, Memristor-based neural network circuit of full-function Pavlov associative memory with time delay and variable learning rate. IEEE Trans. Cybern. 50, 2935–2945 (2020). https://doi.org/10.1109/TCYB.2019.2951520
- A. Rao, P. Plank, A. Wild, W. Maass, A long short-term memory for AI applications in spike-based neuromorphic hardware. Nat. Mach. Intell. 4, 467–479 (2022). https://doi.org/10.1038/s42256-022-00480-w
- Q. Liu, S. Gao, L. Xu, W. Yue, C. Zhang et al., Nanostructured perovskites for nonvolatile memory devices. Chem. Soc. Rev. 51, 3341–3379 (2022). https://doi.org/10.1039/d1cs00886b
- D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008). https://doi.org/10.1038/nature06932
- S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010). https://doi.org/10.1021/nl904092h
- M. Chen, M. Sun, H. Bao, Y. Hu, B. Bao, Flux–charge analysis of two-memristor-based chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Electron. 67, 2197–2206 (2020). https://doi.org/10.1109/TIE.2019.2907444
- C. Wu, T.W. Kim, T. Guo, F. Li, D.U. Lee et al., Mimicking classical conditioning based on a single flexible memristor. Adv. Mater. 29, 1602890 (2017). https://doi.org/10.1002/adma.201602890
- S. Wang, D.W. Zhang, P. Zhou, Two-dimensional materials for synaptic electronics and neuromorphic systems. Sci. Bull. 64, 1056–1066 (2019). https://doi.org/10.1016/j.scib.2019.01.016
- M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch et al., An electronic version of pavlov’s dog. Adv. Funct. Mater. 22, 2744–2749 (2012). https://doi.org/10.1002/adfm.201200244
- W. Wang, S. Gao, Y. Li, W. Yue, H. Kan et al., Artificial optoelectronic synapses based on TiNxO2–x/MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 31, 2170247 (2021). https://doi.org/10.1002/adfm.202170247
- K. Wang, J. Chen, X. Yan, MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy 79, 105453 (2021). https://doi.org/10.1016/j.nanoen.2020.105453
- W. Wang, S. Gao, Y. Wang, Y. Li, W. Yue et al., Advances in emerging photonic memristive and memristive-like devices. Adv. Sci. 9, e2105577 (2022). https://doi.org/10.1002/advs.202105577
- M. Spagnolo, J. Morris, S. Piacentini, M. Antesberger, F. Massa et al., Experimental photonic quantum memristor. Nat. Photonics 16, 318–323 (2022). https://doi.org/10.1038/s41566-022-00973-5
- K. Liu, T. Zhang, B. Dang, L. Bao, L. Xu et al., An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5, 761–773 (2022). https://doi.org/10.1038/s41928-022-00847-2
- S. Gao, G. Liu, H. Yang, C. Hu, Q. Chen et al., An oxide Schottky junction artificial optoelectronic synapse. ACS Nano 13, 2634–2642 (2019). https://doi.org/10.1021/acsnano.9b00340
- D. Kumar, A. Saleem, L.B. Keong, Y.H. Wang, T.-Y. Tseng, Light induced RESET phenomenon in invisible memristor for photo sensing. IEEE Electron Device Lett. 43, 1069–1072 (2022). https://doi.org/10.1109/LED.2022.3172866
- Y. Pei, L. Yan, Z. Wu, J. Lu, J. Zhao et al., Artificial visual perception nervous system based on low-dimensional material photoelectric memristors. ACS Nano 15, 17319–17326 (2021). https://doi.org/10.1021/acsnano.1c04676
- W. Wang, Y. Li, W. Yue, S. Gao, C. Zhang et al., Study on multilevel resistive switching behavior with tunable ON/OFF ratio capability in forming-free ZnO QDs-based RRAM. IEEE Trans. Electron Devices 67, 4884–4890 (2020). https://doi.org/10.1109/TED.2020.3022005
- T.J. Jacobsson, S. Viarbitskaya, E. Mukhtar, T. Edvinsson, A size dependent discontinuous decay rate for the exciton emission in ZnO quantum dots. Phys. Chem. Chem. Phys. 16, 13849–13857 (2014). https://doi.org/10.1039/c4cp00254g
- B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985–3990 (2009). https://doi.org/10.1021/ja8078972
- Z. Pan, H. Rao, I. Mora-Seró, J. Bisquert, X. Zhong, Quantum dot-sensitized solar cells. Chem. Soc. Rev. 47, 7659–7702 (2018). https://doi.org/10.1039/c8cs00431e
- M. Rajabi, S. Shogh, A. Iraji zad, Defect study of TiO2 nanorods grown by a hydrothermal method through photoluminescence spectroscopy. J. Lumin. 157, 235–242 (2015). https://doi.org/10.1016/j.jlumin.2014.08.035
- S. Liu, M.-Y. Li, D. Su, M. Yu, H. Kan et al., Broad-band high-sensitivity ZnO colloidal quantum dots/self-assembled Au nanoantennas heterostructures photodetectors. ACS Appl. Mater. Interfaces 10, 32516–32525 (2018). https://doi.org/10.1021/acsami.8b09442
- Y. Wang, Y. Gong, L. Yang, Z. Xiong, Z. Lv et al., MXene-ZnO memristor for multimodal In-sensor computing. Adv. Funct. Mater. 31, 2100144 (2021). https://doi.org/10.1002/adfm.202100144
- M. Xiao, K.P. Musselman, W.W. Duley, N.Y. Zhou, Resistive switching memory of TiO2 nanowire networks grown on Ti foil by a single hydrothermal method. Nano-Micro Lett. 9, 15 (2016). https://doi.org/10.1007/s40820-016-0116-2
- W. Liu, Y. Yun, M. Li, J. Mao, C. Li et al., Preparation of hollow ceramic photocatalytic membrane grafted with silicon-doped TiO2 nanorods and conversion of high-concentration NO. Chem. Eng. J. 437, 135261 (2022). https://doi.org/10.1016/j.cej.2022.135261
- M.S. Irshad, A. Abbas, H.H. Qazi, M.H. Aziz, M. Shah et al., Role of point defects in hybrid phase TiO2 for resistive random-access memory (RRAM). Mater. Res. Express 6, 076311 (2019). https://doi.org/10.1088/2053-1591/ab17b5
- P. Russo, M. Xiao, R. Liang, N.Y. Zhou, UV-induced multilevel current amplification memory effect in zinc oxide rods resistive switching devices. Adv. Funct. Mater. 28, 1706230 (2018). https://doi.org/10.1002/adfm.201706230
- W. Wang, R. Wang, T. Shi, J. Wei, R. Cao et al., A self-rectification and quasi-linear analogue memristor for artificial neural networks. IEEE Electron Device Lett. 40, 1407–1410 (2019). https://doi.org/10.1109/LED.2019.2929240
- J.-T. Yang, C. Ge, J.-Y. Du, H.-Y. Huang, M. He et al., Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. (2018). https://doi.org/10.1002/adma.201801548
- S.J. Kim, T.H. Lee, J.-M. Yang, J.W. Yang, Y.J. Lee et al., Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater. Today 52, 19–30 (2022). https://doi.org/10.1016/j.mattod.2021.10.035
- Y. Lin, J. Liu, J. Shi, T. Zeng, X. Shan et al., Nitrogen-induced ultralow power switching in flexible ZnO-based memristor for artificial synaptic learning. Appl. Phys. Lett. 118, 103502 (2021). https://doi.org/10.1063/5.0036667
- K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
- T. Chang, S.-H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5, 7669–7676 (2011). https://doi.org/10.1021/nn202983n
- P. Zhang, M. Xia, F. Zhuge, Y. Zhou, Z. Wang et al., Nanochannel-based transport in an interfacial memristor can emulate the analog weight modulation of synapses. Nano Lett. 19, 4279–4286 (2019). https://doi.org/10.1021/acs.nanolett.9b00525
- Q. Liu, S. Gao, Y. Li, W. Yue, C. Zhang et al., HfO2/WO3 heterojunction structured memristor for high-density storage and neuromorphic computing. Adv. Mater. Technol. 8, 2201143 (2023). https://doi.org/10.1002/admt.202201143
References
C. Li, D. Belkin, Y. Li, P. Yan, M. Hu et al., Efficient and self-adaptive in situ learning in multilayer memristor neural networks. Nat. Commun. 9, 2385 (2018). https://doi.org/10.1038/s41467-018-04484-2
J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang et al., Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572, 106–111 (2019). https://doi.org/10.1038/s41586-019-1424-8
C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang et al., Artificial sensory memory. Adv. Mater. 32, e1902434 (2020). https://doi.org/10.1002/adma.201902434
C. Li, Z. Wang, M. Rao, D. Belkin, W. Song et al., Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 1, 49–57 (2019). https://doi.org/10.1038/s42256-018-0001-4
J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov et al., Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). https://doi.org/10.1038/s41586-021-03819-2
G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017). https://doi.org/10.1126/science.aag2302
Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya et al., Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018). https://doi.org/10.1038/s41928-018-0023-2
E. Peterson, A. Lavin, Physical computing for materials acceleration platforms. Matter 5, 3586–3596 (2022). https://doi.org/10.1016/j.matt.2022.09.022
K. Hippalgaonkar, Q. Li, X. Wang, J.W. Fisher III., J. Kirkpatrick et al., Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics. Nat. Rev. Mater. 8, 241–260 (2023). https://doi.org/10.1038/s41578-022-00513-1
Y. Lee, H.-L. Park, Y. Kim, T.-W. Lee, Organic electronic synapses with low energy consumption. Joule 5, 794–810 (2021). https://doi.org/10.1016/j.joule.2021.01.005
J.-Q. Yang, R. Wang, Y. Ren, J.-Y. Mao, Z.-P. Wang et al., Neuromorphic engineering: from biological to spike-based hardware nervous systems. Adv. Mater. 32, e2003610 (2020). https://doi.org/10.1002/adma.202003610
C. Eckel, J. Lenz, A. Melianas, A. Salleo, R.T. Weitz, Nanoscopic electrolyte-gated vertical organic transistors with low operation voltage and five orders of magnitude switching range for neuromorphic systems. Nano Lett. 22, 973–978 (2022). https://doi.org/10.1021/acs.nanolett.1c03832
B.J. Shastri, A.N. Tait, T. Ferreira de Lima, W.H.P. Pernice, H. Bhaskaran et al., Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021). https://doi.org/10.1038/s41566-020-00754-y
Z. Lv, Y. Wang, J. Chen, J. Wang, Y. Zhou et al., Semiconductor quantum dots for memories and neuromorphic computing systems. Chem. Rev. 120, 3941–4006 (2020). https://doi.org/10.1021/acs.chemrev.9b00730
J. Zeng, J. Zhao, T. Bu, G. Liu, Y. Qi et al., A flexible tribotronic artificial synapse with bioinspired neurosensory behavior. Nano-Micro Lett. 15, 18 (2022). https://doi.org/10.1007/s40820-022-00989-0
S. Najmaei, A.L. Glasmann, M.A. Schroeder, W.L. Sarney, M.L. Chin et al., Advancements in materials, devices, and integration schemes for a new generation of neuromorphic computers. Mater. Today 59, 80–106 (2022). https://doi.org/10.1016/j.mattod.2022.08.017
S.H. Sung, T.J. Kim, H. Shin, T.H. Im, K.J. Lee, Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse. Nat. Commun. 13, 2811 (2022). https://doi.org/10.1038/s41467-022-30432-2
L. Wang, W. Liao, S.L. Wong, Z.G. Yu, S. Li et al., Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv. Funct. Mater. 29, 1901106 (2019). https://doi.org/10.1002/adfm.201901106
M. Seo, M.-H. Kang, S.-B. Jeon, H. Bae, J. Hur et al., First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications. IEEE Electron Device Lett. 39, 1445–1448 (2018). https://doi.org/10.1109/LED.2018.2852698
Y.-C. Chiang, C.-C. Hung, Y.-C. Lin, Y.-C. Chiu, T. Isono et al., High-performance nonvolatile organic photonic transistor memory devices using conjugated rod-coil materials as a floating gate. Adv. Mater. 32, e2002638 (2020). https://doi.org/10.1002/adma.202002638
J. Hochstetter, R. Zhu, A. Loeffler, A. Diaz-Alvarez, T. Nakayama et al., Avalanches and edge-of-chaos learning in neuromorphic nanowire networks. Nat. Commun. 12, 4008 (2021). https://doi.org/10.1038/s41467-021-24260-z
W. Schultz, A. Dickinson, Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000). https://doi.org/10.1146/annurev.neuro.23.1.473
R.A. Poldrack, J. Clark, E.J. Paré-Blagoev, D. Shohamy, J. Creso Moyano et al., Interactive memory systems in the human brain. Nature 414, 546–550 (2001). https://doi.org/10.1038/35107080
H. Zhang, H. Zeng, A. Priimagi, O. Ikkala, Viewpoint: Pavlovian materials—functional biomimetics inspired by classical conditioning. Adv. Mater. 32, 1906619 (2020). https://doi.org/10.1002/adma.201906619
Z. Wang, C. Li, W. Song, M. Rao, D. Belkin et al., Reinforcement learning with analogue memristor arrays. Nat. Electron. 2, 115–124 (2019). https://doi.org/10.1038/s41928-019-0221-6
J.H. Baek, K.J. Kwak, S.J. Kim, J. Kim, J.Y. Kim et al., Two-terminal lithium-mediated artificial synapses with enhanced weight modulation for feasible hardware neural networks. Nano-Micro Lett. 15, 69 (2023). https://doi.org/10.1007/s40820-023-01035-3
K. He, Y. Liu, J. Yu, X. Guo, M. Wang et al., Artificial neural pathway based on a memristor synapse for optically mediated motion learning. ACS Nano 16, 9691–9700 (2022). https://doi.org/10.1021/acsnano.2c03100
J. Sun, G. Han, Z. Zeng, Y. Wang, Memristor-based neural network circuit of full-function Pavlov associative memory with time delay and variable learning rate. IEEE Trans. Cybern. 50, 2935–2945 (2020). https://doi.org/10.1109/TCYB.2019.2951520
A. Rao, P. Plank, A. Wild, W. Maass, A long short-term memory for AI applications in spike-based neuromorphic hardware. Nat. Mach. Intell. 4, 467–479 (2022). https://doi.org/10.1038/s42256-022-00480-w
Q. Liu, S. Gao, L. Xu, W. Yue, C. Zhang et al., Nanostructured perovskites for nonvolatile memory devices. Chem. Soc. Rev. 51, 3341–3379 (2022). https://doi.org/10.1039/d1cs00886b
D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008). https://doi.org/10.1038/nature06932
S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010). https://doi.org/10.1021/nl904092h
M. Chen, M. Sun, H. Bao, Y. Hu, B. Bao, Flux–charge analysis of two-memristor-based chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Electron. 67, 2197–2206 (2020). https://doi.org/10.1109/TIE.2019.2907444
C. Wu, T.W. Kim, T. Guo, F. Li, D.U. Lee et al., Mimicking classical conditioning based on a single flexible memristor. Adv. Mater. 29, 1602890 (2017). https://doi.org/10.1002/adma.201602890
S. Wang, D.W. Zhang, P. Zhou, Two-dimensional materials for synaptic electronics and neuromorphic systems. Sci. Bull. 64, 1056–1066 (2019). https://doi.org/10.1016/j.scib.2019.01.016
M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch et al., An electronic version of pavlov’s dog. Adv. Funct. Mater. 22, 2744–2749 (2012). https://doi.org/10.1002/adfm.201200244
W. Wang, S. Gao, Y. Li, W. Yue, H. Kan et al., Artificial optoelectronic synapses based on TiNxO2–x/MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 31, 2170247 (2021). https://doi.org/10.1002/adfm.202170247
K. Wang, J. Chen, X. Yan, MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy 79, 105453 (2021). https://doi.org/10.1016/j.nanoen.2020.105453
W. Wang, S. Gao, Y. Wang, Y. Li, W. Yue et al., Advances in emerging photonic memristive and memristive-like devices. Adv. Sci. 9, e2105577 (2022). https://doi.org/10.1002/advs.202105577
M. Spagnolo, J. Morris, S. Piacentini, M. Antesberger, F. Massa et al., Experimental photonic quantum memristor. Nat. Photonics 16, 318–323 (2022). https://doi.org/10.1038/s41566-022-00973-5
K. Liu, T. Zhang, B. Dang, L. Bao, L. Xu et al., An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5, 761–773 (2022). https://doi.org/10.1038/s41928-022-00847-2
S. Gao, G. Liu, H. Yang, C. Hu, Q. Chen et al., An oxide Schottky junction artificial optoelectronic synapse. ACS Nano 13, 2634–2642 (2019). https://doi.org/10.1021/acsnano.9b00340
D. Kumar, A. Saleem, L.B. Keong, Y.H. Wang, T.-Y. Tseng, Light induced RESET phenomenon in invisible memristor for photo sensing. IEEE Electron Device Lett. 43, 1069–1072 (2022). https://doi.org/10.1109/LED.2022.3172866
Y. Pei, L. Yan, Z. Wu, J. Lu, J. Zhao et al., Artificial visual perception nervous system based on low-dimensional material photoelectric memristors. ACS Nano 15, 17319–17326 (2021). https://doi.org/10.1021/acsnano.1c04676
W. Wang, Y. Li, W. Yue, S. Gao, C. Zhang et al., Study on multilevel resistive switching behavior with tunable ON/OFF ratio capability in forming-free ZnO QDs-based RRAM. IEEE Trans. Electron Devices 67, 4884–4890 (2020). https://doi.org/10.1109/TED.2020.3022005
T.J. Jacobsson, S. Viarbitskaya, E. Mukhtar, T. Edvinsson, A size dependent discontinuous decay rate for the exciton emission in ZnO quantum dots. Phys. Chem. Chem. Phys. 16, 13849–13857 (2014). https://doi.org/10.1039/c4cp00254g
B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985–3990 (2009). https://doi.org/10.1021/ja8078972
Z. Pan, H. Rao, I. Mora-Seró, J. Bisquert, X. Zhong, Quantum dot-sensitized solar cells. Chem. Soc. Rev. 47, 7659–7702 (2018). https://doi.org/10.1039/c8cs00431e
M. Rajabi, S. Shogh, A. Iraji zad, Defect study of TiO2 nanorods grown by a hydrothermal method through photoluminescence spectroscopy. J. Lumin. 157, 235–242 (2015). https://doi.org/10.1016/j.jlumin.2014.08.035
S. Liu, M.-Y. Li, D. Su, M. Yu, H. Kan et al., Broad-band high-sensitivity ZnO colloidal quantum dots/self-assembled Au nanoantennas heterostructures photodetectors. ACS Appl. Mater. Interfaces 10, 32516–32525 (2018). https://doi.org/10.1021/acsami.8b09442
Y. Wang, Y. Gong, L. Yang, Z. Xiong, Z. Lv et al., MXene-ZnO memristor for multimodal In-sensor computing. Adv. Funct. Mater. 31, 2100144 (2021). https://doi.org/10.1002/adfm.202100144
M. Xiao, K.P. Musselman, W.W. Duley, N.Y. Zhou, Resistive switching memory of TiO2 nanowire networks grown on Ti foil by a single hydrothermal method. Nano-Micro Lett. 9, 15 (2016). https://doi.org/10.1007/s40820-016-0116-2
W. Liu, Y. Yun, M. Li, J. Mao, C. Li et al., Preparation of hollow ceramic photocatalytic membrane grafted with silicon-doped TiO2 nanorods and conversion of high-concentration NO. Chem. Eng. J. 437, 135261 (2022). https://doi.org/10.1016/j.cej.2022.135261
M.S. Irshad, A. Abbas, H.H. Qazi, M.H. Aziz, M. Shah et al., Role of point defects in hybrid phase TiO2 for resistive random-access memory (RRAM). Mater. Res. Express 6, 076311 (2019). https://doi.org/10.1088/2053-1591/ab17b5
P. Russo, M. Xiao, R. Liang, N.Y. Zhou, UV-induced multilevel current amplification memory effect in zinc oxide rods resistive switching devices. Adv. Funct. Mater. 28, 1706230 (2018). https://doi.org/10.1002/adfm.201706230
W. Wang, R. Wang, T. Shi, J. Wei, R. Cao et al., A self-rectification and quasi-linear analogue memristor for artificial neural networks. IEEE Electron Device Lett. 40, 1407–1410 (2019). https://doi.org/10.1109/LED.2019.2929240
J.-T. Yang, C. Ge, J.-Y. Du, H.-Y. Huang, M. He et al., Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. (2018). https://doi.org/10.1002/adma.201801548
S.J. Kim, T.H. Lee, J.-M. Yang, J.W. Yang, Y.J. Lee et al., Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater. Today 52, 19–30 (2022). https://doi.org/10.1016/j.mattod.2021.10.035
Y. Lin, J. Liu, J. Shi, T. Zeng, X. Shan et al., Nitrogen-induced ultralow power switching in flexible ZnO-based memristor for artificial synaptic learning. Appl. Phys. Lett. 118, 103502 (2021). https://doi.org/10.1063/5.0036667
K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
T. Chang, S.-H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5, 7669–7676 (2011). https://doi.org/10.1021/nn202983n
P. Zhang, M. Xia, F. Zhuge, Y. Zhou, Z. Wang et al., Nanochannel-based transport in an interfacial memristor can emulate the analog weight modulation of synapses. Nano Lett. 19, 4279–4286 (2019). https://doi.org/10.1021/acs.nanolett.9b00525
Q. Liu, S. Gao, Y. Li, W. Yue, C. Zhang et al., HfO2/WO3 heterojunction structured memristor for high-density storage and neuromorphic computing. Adv. Mater. Technol. 8, 2201143 (2023). https://doi.org/10.1002/admt.202201143