Versatile MXene Gels Assisted by Brief and Low-Strength Centrifugation
Corresponding Author: Lu Xu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 94
Abstract
Due to the mutual repulsion between their hydrophilic surface terminations and the high surface energy facilitating their random restacking, 2D MXene nanosheets usually cannot self-assemble into 3D macroscopic gels with various applications in the absence of proper linking agents. In this work, a rapid spontaneous gelation of Ti3C2Tx MXene with a very low dispersion concentration of 0.5 mg mL−1 into multifunctional architectures under moderate centrifugation is illustrated. The as-prepared MXene gels exhibit reconfigurable internal structures and tunable rheological, tribological, electrochemical, infrared-emissive and photothermal-conversion properties based on the pH-induced changes in the surface chemistry of Ti3C2Tx nanosheets. By adopting a gel with optimized pH value, high lubrication, exceptional specific capacitances (~ 635 and ~ 408 F g−1 at 5 and 100 mV s−1, respectively), long-term capacitance retention (~ 96.7% after 10,000 cycles) and high-precision screen- or extrusion-printing into different high-resolution anticounterfeiting patterns can be achieved, thus displaying extensive potential applications in the fields of semi-solid lubrication, controllable devices, supercapacitors, information encryption and infrared camouflaging.
Highlights:
1 A low-strength-centrifugation-assisted approach for rapid gelation of Ti3C2Tx MXene with a very low dispersion concentration into multifunctional 3D architectures is developed.
2 On the basis of pH-induced surface termination changes, the MXene gels exhibit reconfigurable internal structures and tunable rheological, tribological, electrochemical, infrared-emissive and photothermal-conversion properties.
3 By adopting a gel with optimized pH value, high lubrication, remarkable capacitance, long-term capacitance retention and high-precision screen- or extrusion-printing into high-resolution anticounterfeiting patterns can be achieved.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
- M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- Y. Liu, W. Zhang, W. Zheng, Quantum dots compete at the Acme of MXene family for the optimal catalysis. Nano-Micro Lett. 14, 158 (2022). https://doi.org/10.1007/s40820-022-00908-3
- Y. Chen, X. Xie, X. Xin, Z.-R. Tang, Y.-J. Xu, Ti3C2Tx-based three-dimensional hydrogel by a graphene oxide-assisted self-convergence process for enhanced photoredox catalysis. ACS Nano 13, 295–304 (2019). https://doi.org/10.1021/acsnano.8b06136
- Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou et al., A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017). https://doi.org/10.1038/s41467-017-01136-9
- Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 14, 56 (2022). https://doi.org/10.1007/s40820-022-00796-7
- M. Malaki, R.S. Varma, Mechanotribological aspects of MXene-reinforced nanocomposites. Adv. Mater. 32, e2003154 (2020). https://doi.org/10.1002/adma.202003154
- S. Liu, Q. Gao, K. Hou, Z. Li, J. Wang et al., Solvent-free covalent MXene nanofluid: a new lubricant combining the characteristics of solid and liquid lubricants. Chem. Eng. J. 462, 142238 (2023). https://doi.org/10.1016/j.cej.2023.142238
- Y. Li, C. Xiong, H. Huang, X. Peng, D. Mei et al., 2D Ti3C2Tx MXenes: visible black but infrared white materials. Adv. Mater. 33, 2103054 (2021). https://doi.org/10.1002/adma.202103054
- X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9
- Y.-Z. Zhang, Y. Wang, Q. Jiang, J.K. El-Demellawi, H. Kim et al., MXene printing and patterned coating for device applications. Adv. Mater. 32, e1908486 (2020). https://doi.org/10.1002/adma.201908486
- Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo et al., Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31, 1902432 (2019). https://doi.org/10.1002/adma.201902432
- M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29, 1702410 (2017). https://doi.org/10.1002/adma.201702410
- F. Song, J. Hu, G. Li, J. Wang, S. Chen et al., Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage. Nano-Micro Lett. 14, 37 (2021). https://doi.org/10.1007/s40820-021-00781-6
- A. Vahid Mohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021). https://doi.org/10.1126/science.abf1581
- X. Xu, T. Guo, M. Lanza, H.N. Alshareef, Status and prospects of MXene-based nanoelectronic devices. Matter 6, 800–837 (2023). https://doi.org/10.1016/j.matt.2023.01.019
- K. Sano, N. Igarashi, Y. Ebina, T. Sasaki, T. Hikima et al., A mechanically adaptive hydrogel with a reconfigurable network consisting entirely of inorganic nanosheets and water. Nat. Commun. 11, 6026 (2020). https://doi.org/10.1038/s41467-020-19905-4
- C. Luo, W. Lv, C. Qi, L. Zhong, Z.-Z. Pan et al., Realizing ultralow concentration gelation of graphene oxide with artificial interfaces. Adv. Mater. 31, e1805075 (2019). https://doi.org/10.1002/adma.201805075
- H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6, 2693–2703 (2012). https://doi.org/10.1021/nn300082k
- L. Hu, Y. Yang, J. Hao, L. Xu, Dual-driven mechanically and tribologically adaptive hydrogels solely constituted of graphene oxide and water. Nano Lett. 22, 6004–6009 (2022). https://doi.org/10.1021/acs.nanolett.2c01489
- Y. Yang, H. Sun, B. Zhang, L. Hu, L. Xu et al., Hydrogels totally from inorganic nanosheets and water with mechanical robustness, self-healing, controlled lubrication and anti-corrosion. Nano Res. 16, 1533–1544 (2023). https://doi.org/10.1007/s12274-022-4730-7
- T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29, 1903960 (2019). https://doi.org/10.1002/adfm.201903960
- Z. Fan, J. Jin, C. Li, J. Cai, C. Wei et al., 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink. ACS Nano 15, 3098–3107 (2021). https://doi.org/10.1021/acsnano.0c09646
- R. Bian, R. Lin, G. Wang, G. Lu, W. Zhi et al., 3D assembly of Ti3C2-MXene directed by water/oil interfaces. Nanoscale 10, 3621–3625 (2018). https://doi.org/10.1039/c7nr07346a
- G. Shi, Y. Zhu, M. Batmunkh, M. Ingram, Y. Huang et al., Cytomembrane-inspired MXene ink with amphiphilic surfactant for 3D printed microsupercapacitors. ACS Nano 16, 14723–14736 (2022). https://doi.org/10.1021/acsnano.2c05445
- J. Orangi, F. Hamade, V.A. Davis, M. Beidaghi, 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 14, 640–650 (2020). https://doi.org/10.1021/acsnano.9b07325
- L. Ding, D. Xiao, Z. Lu, J. Deng, Y. Wei et al., Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew. Chem. Int. Ed. 132, 8798–8804 (2020). https://doi.org/10.1002/ange.201915993
- Y. Yang, J. Wang, Y. Yang, A. Chen, J. Wang et al., Low-load MXene nanosheet/melamine composite sponges for enhanced electromagnetic interference shielding. ACS Appl. Nano Mater. 6, 10953–10959 (2023). https://doi.org/10.1021/acsanm.3c01723
- L. Yin, Y. Yang, H. Yang, H. Kang, J. Wang et al., Rapid foaming of dense MXene films induced by acid-base neutralization reaction. Cell Rep. Phys. Sci. 4, 101421 (2023). https://doi.org/10.1016/j.xcrp.2023.101421
- W. Wang, T. Cai, Z. Cheng, Y. Yang, J. Wang et al., A shape programmable MXene-based supermolecular nanocomposite film. Compos. Part A Appl. Sci. Manuf. 159, 106997 (2022). https://doi.org/10.1016/j.compositesa.2022.106997
- L. Xu, L. Feng, R. Dong, J. Hao, S. Dong, Transfection efficiency of DNA enhanced by association with salt-free catanionic vesicles. Biomacromolecules 14, 2781–2789 (2013). https://doi.org/10.1021/bm400616y
- L. Xu, L. Feng, S. Dong, J. Hao, Magnetic controlling of migration of DNA and proteins using one-step modified gold nanops. Chem. Commun. 51, 9257–9260 (2015). https://doi.org/10.1039/C5CC01738F
- L.J. Michot, I. Bihannic, S. Maddi, S.S. Funari, C. Baravian et al., Liquid-crystalline aqueous clay suspensions. Proc. Natl. Acad. Sci. U.S.A. 103, 16101–16104 (2006). https://doi.org/10.1073/pnas.0605201103
- M.D. Mourad, D.V. Byelov, A.V. Petukhov, H.W. Lekkerkerker, Structure of the repulsive gel/glass in suspensions of charged colloidal platelets. J. Phys.: Condens. Matter 20, 494201 (2008). https://doi.org/10.1088/0953-8984/20/49/494201
- Z. Deng, L. Li, P. Tang, C. Jiao, Z.Z. Yu et al., Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 16, 16976–16986 (2022). https://doi.org/10.1021/acsnano.2c07084
- D. Chen, Y. Long, Z. Wu, X. Dong, N. Wang et al., A gelation-assisted approach for versatile MXene inks. Adv. Funct. Mater. 32, 2204372 (2022). https://doi.org/10.1002/adfm.202204372
- Y. Bai, Q. Yu, J. Zhang, M. Cai, Y. Liang et al., Soft-nanocomposite lubricants of supramolecular gel with carbon nanotubes. J. Mater. Chem. A 7, 7654–7663 (2019). https://doi.org/10.1039/C8TA11051D
- Y. Bai, C. Zhang, Q. Yu, J. Zhang, M. Zhang et al., Supramolecular PFPE gel lubricant with anti-creep capability under irradiation conditions at high vacuum. Chem. Eng. J. 409, 128120 (2021). https://doi.org/10.1016/j.cej.2020.128120
- C.J. Zhang, L. McKeon, M.P. Kremer, S.H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
- Z. Fan, H. He, J. Yu, J. Wang, L. Yin et al., Binder-free Ti3C2Tx MXene doughs with high redispersibility. ACS Mater. Lett. 2, 1598–1605 (2020). https://doi.org/10.1021/acsmaterialslett.0c00422
- H. Ma, J. Wang, J. Wang, K. Shang, Y. Yang et al., Blade-coated Ti3C2T MXene films for pseudocapacitive energy storage and infrared stealth. Diam. Relat. Mater. 131, 109587 (2023). https://doi.org/10.1016/j.diamond.2022.109587
- S. Barwich, M.E. Möbius, The elastic response of graphene oxide gels as a crumpling phenomenon. Soft Matter 18, 8223–8228 (2022). https://doi.org/10.1039/d2sm00918h
- D. Zhao, R. Zhao, S. Dong, X. Miao, Z. Zhang et al., Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanops as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 12, 2422–2432 (2019). https://doi.org/10.1039/C9EE00308H
- H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu et al., Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 30, 1906996 (2020). https://doi.org/10.1002/adfm.201906996
- W. Xing, C. Liu, Z. Zhou, L. Zhang, J. Zhou et al., Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ. Sci. 5, 7323–7327 (2012). https://doi.org/10.1039/C2EE21653A
- H. Hong, H.Y. Kim, W.I. Cho, H.C. Song, H.C. Ham et al., Surface-functionalized three-dimensional MXene supports to boost the hydrogen evolution activity of Pt catalysts in alkaline media. J. Mater. Chem. A 11, 5328–5336 (2023). https://doi.org/10.1039/D2TA08852E
- D. Zhang, J. Liu, Q. Chen, W. Jiang, Y. Wang et al., A sandcastle worm-inspired strategy to functionalize wet hydrogels. Nat. Commun. 12, 6331 (2021). https://doi.org/10.1038/s41467-021-26659-0
- Z. Zhang, C. Qin, H. Feng, Y. Xiang, B. Yu et al., Design of large-span stick-slip freely switchable hydrogels via dynamic multiscale contact synergy. Nat. Commun. 13, 6964 (2022). https://doi.org/10.1038/s41467-022-34816-2
- R. Xu, M. Hua, S. Wu, S. Ma, Y. Zhang et al., Continuously growing multi-layered hydrogel structures with seamless interlocked interface. Matter 5, 634–653 (2022). https://doi.org/10.1016/j.matt.2021.11.018
- W. Guo, J. Yin, H. Qiu, Y. Guo, H. Wu et al., Friction of low-dimensional nanomaterial systems. Friction 2, 209–225 (2014). https://doi.org/10.1007/s40544-014-0064-0
- Z. Xue, X. Li, X. Chen, C. Huang, H. Ye et al., Mechanical and tribological performances enhanced by self-assembled structures. Adv. Mater. 32, e2002004 (2020). https://doi.org/10.1002/adma.202002004
- J. Guo, C. Zeng, P. Wu, G. Liu, F. Zhou et al., Surface-functionalized Ti3C2Tx MXene as a kind of efficient lubricating additive for supramolecular gel. ACS Appl. Mater. Interfaces 14, 52566–52573 (2022). https://doi.org/10.1021/acsami.2c17729
- J. Guo, P. Wu, C. Zeng, W. Wu, X. Zhao et al., Fluoropolymer grafted Ti3C2Tx MXene as an efficient lubricant additive for fluorine-containing lubricating oil. Tribol. Int. 170, 107500 (2022). https://doi.org/10.1016/j.triboint.2022.107500
- J. Guo, Z. Shang, Y. Sun, C. Li, J. Xia et al., Surface-modified Ti3C2Tx MXene as anti-wear and extreme pressure additive for PFPE supramolecular gel. Tribol. Int. 186, 108611 (2023). https://doi.org/10.1016/j.triboint.2023.108611
- Y. Wu, Q. Wei, M. Cai, F. Zhou, Interfacial friction control. Adv. Mater Interfaces 2, 1400392 (2015). https://doi.org/10.1002/admi.201400392
- L. Zhai, Stimuli-responsive polymer films. Chem. Soc. Rev. 42, 7148–7160 (2013). https://doi.org/10.1039/c3cs60023h
- Y. Ru, R. Fang, Z. Gu, L. Jiang, M. Liu, Reversibly thermosecreting organogels with switchable lubrication and anti-icing performance. Angew. Chem. Int. Ed. 59, 11876–11880 (2020). https://doi.org/10.1002/anie.202004122
- X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013). https://doi.org/10.1126/science.1239089
- T.S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon et al., Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 9, 1902007 (2019). https://doi.org/10.1002/aenm.201902007
- M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang et al., Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 49, 6666–6693 (2020). https://doi.org/10.1039/d0cs00175a
- T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545–573 (2019). https://doi.org/10.1016/j.ensm.2018.09.007
- T. Liu, Y. Li, Addressing the Achilles’ heel of pseudocapacitive materials: long-term stability. InfoMat 2, 807–842 (2020). https://doi.org/10.1002/inf2.12105
- H. Li, J. Liang, Recent development of printed micro-supercapacitors: printable materials, printing technologies, and perspectives. Adv. Mater. 32, e1805864 (2020). https://doi.org/10.1002/adma.201805864
- A. Shahsafi, P. Roney, Y. Zhou, Z. Zhang, Y. Xiao et al., Temperature-independent thermal radiation. Proc. Natl. Acad. Sci. U.S.A. 116, 26402–26406 (2019). https://doi.org/10.1073/pnas.1911244116
- K. Li, T.-H. Chang, Z. Li, H. Yang, F. Fu et al., Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 9, 1901687 (2019). https://doi.org/10.1002/aenm.201901687
- R. Hu, W. Xi, Y. Liu, K. Tang, J. Song et al., Thermal camouflaging metamaterials. Mater. Today 45, 120–141 (2021). https://doi.org/10.1016/j.mattod.2020.11.013
References
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
Y. Liu, W. Zhang, W. Zheng, Quantum dots compete at the Acme of MXene family for the optimal catalysis. Nano-Micro Lett. 14, 158 (2022). https://doi.org/10.1007/s40820-022-00908-3
Y. Chen, X. Xie, X. Xin, Z.-R. Tang, Y.-J. Xu, Ti3C2Tx-based three-dimensional hydrogel by a graphene oxide-assisted self-convergence process for enhanced photoredox catalysis. ACS Nano 13, 295–304 (2019). https://doi.org/10.1021/acsnano.8b06136
Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou et al., A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017). https://doi.org/10.1038/s41467-017-01136-9
Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 14, 56 (2022). https://doi.org/10.1007/s40820-022-00796-7
M. Malaki, R.S. Varma, Mechanotribological aspects of MXene-reinforced nanocomposites. Adv. Mater. 32, e2003154 (2020). https://doi.org/10.1002/adma.202003154
S. Liu, Q. Gao, K. Hou, Z. Li, J. Wang et al., Solvent-free covalent MXene nanofluid: a new lubricant combining the characteristics of solid and liquid lubricants. Chem. Eng. J. 462, 142238 (2023). https://doi.org/10.1016/j.cej.2023.142238
Y. Li, C. Xiong, H. Huang, X. Peng, D. Mei et al., 2D Ti3C2Tx MXenes: visible black but infrared white materials. Adv. Mater. 33, 2103054 (2021). https://doi.org/10.1002/adma.202103054
X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9
Y.-Z. Zhang, Y. Wang, Q. Jiang, J.K. El-Demellawi, H. Kim et al., MXene printing and patterned coating for device applications. Adv. Mater. 32, e1908486 (2020). https://doi.org/10.1002/adma.201908486
Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo et al., Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31, 1902432 (2019). https://doi.org/10.1002/adma.201902432
M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29, 1702410 (2017). https://doi.org/10.1002/adma.201702410
F. Song, J. Hu, G. Li, J. Wang, S. Chen et al., Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage. Nano-Micro Lett. 14, 37 (2021). https://doi.org/10.1007/s40820-021-00781-6
A. Vahid Mohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021). https://doi.org/10.1126/science.abf1581
X. Xu, T. Guo, M. Lanza, H.N. Alshareef, Status and prospects of MXene-based nanoelectronic devices. Matter 6, 800–837 (2023). https://doi.org/10.1016/j.matt.2023.01.019
K. Sano, N. Igarashi, Y. Ebina, T. Sasaki, T. Hikima et al., A mechanically adaptive hydrogel with a reconfigurable network consisting entirely of inorganic nanosheets and water. Nat. Commun. 11, 6026 (2020). https://doi.org/10.1038/s41467-020-19905-4
C. Luo, W. Lv, C. Qi, L. Zhong, Z.-Z. Pan et al., Realizing ultralow concentration gelation of graphene oxide with artificial interfaces. Adv. Mater. 31, e1805075 (2019). https://doi.org/10.1002/adma.201805075
H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6, 2693–2703 (2012). https://doi.org/10.1021/nn300082k
L. Hu, Y. Yang, J. Hao, L. Xu, Dual-driven mechanically and tribologically adaptive hydrogels solely constituted of graphene oxide and water. Nano Lett. 22, 6004–6009 (2022). https://doi.org/10.1021/acs.nanolett.2c01489
Y. Yang, H. Sun, B. Zhang, L. Hu, L. Xu et al., Hydrogels totally from inorganic nanosheets and water with mechanical robustness, self-healing, controlled lubrication and anti-corrosion. Nano Res. 16, 1533–1544 (2023). https://doi.org/10.1007/s12274-022-4730-7
T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29, 1903960 (2019). https://doi.org/10.1002/adfm.201903960
Z. Fan, J. Jin, C. Li, J. Cai, C. Wei et al., 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink. ACS Nano 15, 3098–3107 (2021). https://doi.org/10.1021/acsnano.0c09646
R. Bian, R. Lin, G. Wang, G. Lu, W. Zhi et al., 3D assembly of Ti3C2-MXene directed by water/oil interfaces. Nanoscale 10, 3621–3625 (2018). https://doi.org/10.1039/c7nr07346a
G. Shi, Y. Zhu, M. Batmunkh, M. Ingram, Y. Huang et al., Cytomembrane-inspired MXene ink with amphiphilic surfactant for 3D printed microsupercapacitors. ACS Nano 16, 14723–14736 (2022). https://doi.org/10.1021/acsnano.2c05445
J. Orangi, F. Hamade, V.A. Davis, M. Beidaghi, 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 14, 640–650 (2020). https://doi.org/10.1021/acsnano.9b07325
L. Ding, D. Xiao, Z. Lu, J. Deng, Y. Wei et al., Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew. Chem. Int. Ed. 132, 8798–8804 (2020). https://doi.org/10.1002/ange.201915993
Y. Yang, J. Wang, Y. Yang, A. Chen, J. Wang et al., Low-load MXene nanosheet/melamine composite sponges for enhanced electromagnetic interference shielding. ACS Appl. Nano Mater. 6, 10953–10959 (2023). https://doi.org/10.1021/acsanm.3c01723
L. Yin, Y. Yang, H. Yang, H. Kang, J. Wang et al., Rapid foaming of dense MXene films induced by acid-base neutralization reaction. Cell Rep. Phys. Sci. 4, 101421 (2023). https://doi.org/10.1016/j.xcrp.2023.101421
W. Wang, T. Cai, Z. Cheng, Y. Yang, J. Wang et al., A shape programmable MXene-based supermolecular nanocomposite film. Compos. Part A Appl. Sci. Manuf. 159, 106997 (2022). https://doi.org/10.1016/j.compositesa.2022.106997
L. Xu, L. Feng, R. Dong, J. Hao, S. Dong, Transfection efficiency of DNA enhanced by association with salt-free catanionic vesicles. Biomacromolecules 14, 2781–2789 (2013). https://doi.org/10.1021/bm400616y
L. Xu, L. Feng, S. Dong, J. Hao, Magnetic controlling of migration of DNA and proteins using one-step modified gold nanops. Chem. Commun. 51, 9257–9260 (2015). https://doi.org/10.1039/C5CC01738F
L.J. Michot, I. Bihannic, S. Maddi, S.S. Funari, C. Baravian et al., Liquid-crystalline aqueous clay suspensions. Proc. Natl. Acad. Sci. U.S.A. 103, 16101–16104 (2006). https://doi.org/10.1073/pnas.0605201103
M.D. Mourad, D.V. Byelov, A.V. Petukhov, H.W. Lekkerkerker, Structure of the repulsive gel/glass in suspensions of charged colloidal platelets. J. Phys.: Condens. Matter 20, 494201 (2008). https://doi.org/10.1088/0953-8984/20/49/494201
Z. Deng, L. Li, P. Tang, C. Jiao, Z.Z. Yu et al., Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 16, 16976–16986 (2022). https://doi.org/10.1021/acsnano.2c07084
D. Chen, Y. Long, Z. Wu, X. Dong, N. Wang et al., A gelation-assisted approach for versatile MXene inks. Adv. Funct. Mater. 32, 2204372 (2022). https://doi.org/10.1002/adfm.202204372
Y. Bai, Q. Yu, J. Zhang, M. Cai, Y. Liang et al., Soft-nanocomposite lubricants of supramolecular gel with carbon nanotubes. J. Mater. Chem. A 7, 7654–7663 (2019). https://doi.org/10.1039/C8TA11051D
Y. Bai, C. Zhang, Q. Yu, J. Zhang, M. Zhang et al., Supramolecular PFPE gel lubricant with anti-creep capability under irradiation conditions at high vacuum. Chem. Eng. J. 409, 128120 (2021). https://doi.org/10.1016/j.cej.2020.128120
C.J. Zhang, L. McKeon, M.P. Kremer, S.H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
Z. Fan, H. He, J. Yu, J. Wang, L. Yin et al., Binder-free Ti3C2Tx MXene doughs with high redispersibility. ACS Mater. Lett. 2, 1598–1605 (2020). https://doi.org/10.1021/acsmaterialslett.0c00422
H. Ma, J. Wang, J. Wang, K. Shang, Y. Yang et al., Blade-coated Ti3C2T MXene films for pseudocapacitive energy storage and infrared stealth. Diam. Relat. Mater. 131, 109587 (2023). https://doi.org/10.1016/j.diamond.2022.109587
S. Barwich, M.E. Möbius, The elastic response of graphene oxide gels as a crumpling phenomenon. Soft Matter 18, 8223–8228 (2022). https://doi.org/10.1039/d2sm00918h
D. Zhao, R. Zhao, S. Dong, X. Miao, Z. Zhang et al., Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanops as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 12, 2422–2432 (2019). https://doi.org/10.1039/C9EE00308H
H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu et al., Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 30, 1906996 (2020). https://doi.org/10.1002/adfm.201906996
W. Xing, C. Liu, Z. Zhou, L. Zhang, J. Zhou et al., Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ. Sci. 5, 7323–7327 (2012). https://doi.org/10.1039/C2EE21653A
H. Hong, H.Y. Kim, W.I. Cho, H.C. Song, H.C. Ham et al., Surface-functionalized three-dimensional MXene supports to boost the hydrogen evolution activity of Pt catalysts in alkaline media. J. Mater. Chem. A 11, 5328–5336 (2023). https://doi.org/10.1039/D2TA08852E
D. Zhang, J. Liu, Q. Chen, W. Jiang, Y. Wang et al., A sandcastle worm-inspired strategy to functionalize wet hydrogels. Nat. Commun. 12, 6331 (2021). https://doi.org/10.1038/s41467-021-26659-0
Z. Zhang, C. Qin, H. Feng, Y. Xiang, B. Yu et al., Design of large-span stick-slip freely switchable hydrogels via dynamic multiscale contact synergy. Nat. Commun. 13, 6964 (2022). https://doi.org/10.1038/s41467-022-34816-2
R. Xu, M. Hua, S. Wu, S. Ma, Y. Zhang et al., Continuously growing multi-layered hydrogel structures with seamless interlocked interface. Matter 5, 634–653 (2022). https://doi.org/10.1016/j.matt.2021.11.018
W. Guo, J. Yin, H. Qiu, Y. Guo, H. Wu et al., Friction of low-dimensional nanomaterial systems. Friction 2, 209–225 (2014). https://doi.org/10.1007/s40544-014-0064-0
Z. Xue, X. Li, X. Chen, C. Huang, H. Ye et al., Mechanical and tribological performances enhanced by self-assembled structures. Adv. Mater. 32, e2002004 (2020). https://doi.org/10.1002/adma.202002004
J. Guo, C. Zeng, P. Wu, G. Liu, F. Zhou et al., Surface-functionalized Ti3C2Tx MXene as a kind of efficient lubricating additive for supramolecular gel. ACS Appl. Mater. Interfaces 14, 52566–52573 (2022). https://doi.org/10.1021/acsami.2c17729
J. Guo, P. Wu, C. Zeng, W. Wu, X. Zhao et al., Fluoropolymer grafted Ti3C2Tx MXene as an efficient lubricant additive for fluorine-containing lubricating oil. Tribol. Int. 170, 107500 (2022). https://doi.org/10.1016/j.triboint.2022.107500
J. Guo, Z. Shang, Y. Sun, C. Li, J. Xia et al., Surface-modified Ti3C2Tx MXene as anti-wear and extreme pressure additive for PFPE supramolecular gel. Tribol. Int. 186, 108611 (2023). https://doi.org/10.1016/j.triboint.2023.108611
Y. Wu, Q. Wei, M. Cai, F. Zhou, Interfacial friction control. Adv. Mater Interfaces 2, 1400392 (2015). https://doi.org/10.1002/admi.201400392
L. Zhai, Stimuli-responsive polymer films. Chem. Soc. Rev. 42, 7148–7160 (2013). https://doi.org/10.1039/c3cs60023h
Y. Ru, R. Fang, Z. Gu, L. Jiang, M. Liu, Reversibly thermosecreting organogels with switchable lubrication and anti-icing performance. Angew. Chem. Int. Ed. 59, 11876–11880 (2020). https://doi.org/10.1002/anie.202004122
X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013). https://doi.org/10.1126/science.1239089
T.S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon et al., Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 9, 1902007 (2019). https://doi.org/10.1002/aenm.201902007
M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang et al., Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 49, 6666–6693 (2020). https://doi.org/10.1039/d0cs00175a
T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545–573 (2019). https://doi.org/10.1016/j.ensm.2018.09.007
T. Liu, Y. Li, Addressing the Achilles’ heel of pseudocapacitive materials: long-term stability. InfoMat 2, 807–842 (2020). https://doi.org/10.1002/inf2.12105
H. Li, J. Liang, Recent development of printed micro-supercapacitors: printable materials, printing technologies, and perspectives. Adv. Mater. 32, e1805864 (2020). https://doi.org/10.1002/adma.201805864
A. Shahsafi, P. Roney, Y. Zhou, Z. Zhang, Y. Xiao et al., Temperature-independent thermal radiation. Proc. Natl. Acad. Sci. U.S.A. 116, 26402–26406 (2019). https://doi.org/10.1073/pnas.1911244116
K. Li, T.-H. Chang, Z. Li, H. Yang, F. Fu et al., Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 9, 1901687 (2019). https://doi.org/10.1002/aenm.201901687
R. Hu, W. Xi, Y. Liu, K. Tang, J. Song et al., Thermal camouflaging metamaterials. Mater. Today 45, 120–141 (2021). https://doi.org/10.1016/j.mattod.2020.11.013