Intramolecular Hydrogen Bond Improved Durability and Kinetics for Zinc-Organic Batteries
Corresponding Author: Zhanliang Tao
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 46
Abstract
Organic compounds have the advantages of green sustainability and high designability, but their high solubility leads to poor durability of zinc-organic batteries. Herein, a high-performance quinone-based polymer (H-PNADBQ) material is designed by introducing an intramolecular hydrogen bonding (HB) strategy. The intramolecular HB (C=O⋯N–H) is formed in the reaction of 1,4-benzoquinone and 1,5-naphthalene diamine, which efficiently reduces the H-PNADBQ solubility and enhances its charge transfer in theory. In situ ultraviolet–visible analysis further reveals the insolubility of H-PNADBQ during the electrochemical cycles, enabling high durability at different current densities. Specifically, the H-PNADBQ electrode with high loading (10 mg cm−2) performs a long cycling life at 125 mA g−1 (> 290 cycles). The H-PNADBQ also shows high rate capability (137.1 mAh g−1 at 25 A g−1) due to significantly improved kinetics inducted by intramolecular HB. This work provides an efficient approach toward insoluble organic electrode materials.
Highlights:
1 Intramolecular hydrogen bond regulation is proposed to improve the quinone-based polymer (H-PNADBQ) solubility, conductivity, and kinetics.
2 Intramolecular hydrogen bonds reduce molecular polarization and increase π conjugation level, thereby suppressing the dissolution of the H-PNADBQ and accelerating reaction kinetics of H+/Zn2+ uptake/removal.
3 The H-PNADBQ electrodes exhibit excellent durability with high loading of 5 mg cm−2 and 10 mg cm−2, as well as high rate capability (137.1 mAh g−1 at 25 A g−1).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liang, Y. Jing, S. Gheytani, K.Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841 (2017). https://doi.org/10.1038/nmat4919
- D. Bruce, K. Haresh, T. Jean-Maríe, Electrical energy storage for the grid: a battery of choices. Science 334, 928 (2011). https://doi.org/10.1126/science.1212741
- Z. Tie, Y. Zhang, J. Zhu, S. Bi, Z. Niu, An air-rechargeable Zn/organic battery with proton storage. J. Am. Chem. Soc. 144, 10301 (2022). https://doi.org/10.1021/jacs.2c01485
- K. Qu, X. Lu, Z. Huang, J. Liu, Synthesis strategies of optimized cathodes and mechanisms for zinc ion capacitors. Mater. Today Energy 30, 101188 (2022). https://doi.org/10.1016/j.mtener.2022.101188
- H.-G. Wang, Y. Wang, Q. Wu, G. Zhu, Recent developments in electrode materials for dual-ion batteries: potential alternatives to conventional batteries. Mater. Today 52, 269 (2022). https://doi.org/10.1016/j.mattod.2021.11.008
- H.-G. Wang, Q. Wu, L. Cheng, G. Zhu, The emerging aqueous zinc-organic battery. Coord. Chem. Rev. (2022). https://doi.org/10.1016/j.ccr.2022.214772
- C. Chen, C.S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
- D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58, 7823 (2019). https://doi.org/10.1002/anie.201904174
- Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun et al., Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 19, 4035 (2019). https://doi.org/10.1021/acs.nanolett.9b01403
- D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 1 (2016). https://doi.org/10.1038/nenergy.2016.119
- Y. Li, J. Zhao, Q. Hu, T. Hao, H. Cao et al., Prussian blue analogs cathodes for aqueous zinc ion batteries. Mater. Today Energy 29, 101095 (2022). https://doi.org/10.1016/j.mtener.2022.101095
- L. Hu, Z. Wu, C. Lu, F. Ye, Q. Liu et al., Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ. Sci. 14, 4095 (2021). https://doi.org/10.1039/D1EE01158H
- F. Ye, Q. Liu, C. Lu, F. Meng, T. Lin et al., Inorganic manganese oxide/quinone coupling for high-capacity aqueous Zn–ion battery. Energy Storage Mater. 52, 675 (2022). https://doi.org/10.1016/j.ensm.2022.08.040
- Z. Wu, C. Lu, F. Ye, L. Zhang, L. Jiang et al., Bilayered VOPO4⋅2H2O nanosheets with high-concentration oxygen vacancies for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202106816
- Z. Wu, F. Ye, Q. Liu, R. Pang, Y. Liu et al., Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage. Adv. Energy Mater. 12, 2200654 (2022). https://doi.org/10.1002/aenm.202200654
- Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang et al., An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew. Chem. Int. Ed. 57, 11737 (2018). https://doi.org/10.1002/anie.201807121
- Z. Chen, H. Cui, Y. Hou, X. Wang, X. Jin et al., Anion chemistry enabled positive valence conversion to achieve a record high-voltage organic cathode for zinc batteries. Chem 8, 2204 (2022). https://doi.org/10.1016/j.chempr.2022.05.001
- J. Xie, Q. Zhang, Recent progress in aqueous monovalent-ion batteries with organic materials as promising electrodes. Mater. Today Energy 18, 100547 (2020). https://doi.org/10.1016/j.mtener.2020.100547
- T. Sun, W. Zhang, Q. Nian, Z. Tao, Molecular engineering design for high-performance aqueous zinc-organic battery. Nano-Micro Lett. 15, 36 (2023). https://doi.org/10.1007/s40820-022-01009-x
- Y. Zhang, C. Zhao, Z. Li, Y. Wang, L. Yan et al., Synergistic co-reaction of Zn2+ and H+ with carbonyl groups towards stable aqueous zinc–organic batteries. Energy Storage Mater. 52, 386 (2022). https://doi.org/10.1016/j.ensm.2022.08.005
- Y. Zhao, Y. Huang, F. Wu, R. Chen, L. Li, High-performance aqueous zinc batteries based on organic/organic cathodes integrating multiredox centers. Adv. Mater. 33, e2106469 (2021). https://doi.org/10.1002/adma.202106469
- H. Peng, J. Xiao, Z. Wu, L. Zhang, Y. Geng et al., N-heterocycles extended π-conjugation enables ultrahigh capacity, long-lived, and fast-charging organic cathodes for aqueous zinc batteries. CCS Chem. 5, 1 (2022). https://doi.org/10.31635/ccschem.022.202202276
- T. Sun, Z.J. Li, Y.F. Zhi, Y.J. Huang, H.J. Fan et al., Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) as an efficient cathode for high-performance aqueous zinc–organic batteries. Adv. Funct. Mater. 31, 2010049 (2021). https://doi.org/10.1002/adfm.202010049
- S. Zheng, D. Shi, D. Yan, Q. Wang, T. Sun et al., Orthoquinone–based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc–organic batteries. Angew. Chem. Int. Ed. 61, e202117511 (2022). https://doi.org/10.1002/anie.202117511
- B. Yang, Y. Ma, D. Bin, H. Lu, Y. Xia, Ultralong-life cathode for aqueous zinc-organic batteries via pouring 9,10-phenanthraquinone into active carbon. ACS Appl. Mater. Interfaces 13, 58818 (2021). https://doi.org/10.1021/acsami.1c20087
- F. Ye, Q. Liu, H. Dong, K. Guan, Z. Chen et al., Organic zinc-ion battery: planar, π-conjugated quinone-based polymer endows ultrafast ion diffusion kinetics. Angew. Chem. Int. Ed. 61, e202214244 (2022). https://doi.org/10.1002/anie.202214244
- J. Wang, Z. Liu, H.-G. Wang, F. Cui, G. Zhu, Integrated pyrazine-based porous aromatic frameworks/carbon nanotube composite as cathode materials for aqueous zinc ion batteries. Chem. Eng. J. 450, 138051 (2022). https://doi.org/10.1016/j.cej.2022.138051
- P.A. Small, Some factors affecting the solubility of polymers. J. Appl. Chem. 3, 71 (2007). https://doi.org/10.1002/jctb.5010030205
- Y.F. Yuan, J.M. Zhang, B.Q. Zhang, J.J. Liu, Y. Zhou et al., Polymer solubility in ionic liquids: dominated by hydrogen bonding. Phys. Chem. Chem. Phys. 23, 21893 (2021). https://doi.org/10.1039/d1cp03193g
- Z. Lin, H.Y. Shi, L. Lin, X. Yang, W. Wu et al., A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat. Commun. 12, 4424 (2021). https://doi.org/10.1038/s41467-021-24701-9
- Y. Chen, J. Li, Q. Zhu, K. Fan, Y. Cao et al., Two-dimensional organic supramolecule via hydrogen bonding and π–π stacking for ultrahigh capacity and long-life aqueous zinc-organic batteries. Angew. Chem. Int. Ed. 61, e202116289 (2022). https://doi.org/10.1002/anie.202116289
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, et al. Gaussian 16 rev. C.01 (Wallingford, CT, 2016).
- T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 (2012). https://doi.org/10.1002/jcc.22885
- S. Emamian, T. Lu, H. Kruse, H. Emamian, Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. J. Comput. Chem. 40, 2868 (2019). https://doi.org/10.1002/jcc.26068
- M.M. Coleman, D.J. Skrovanek, J. Hu, P.C. Painter, Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends. Macromolecules 21, 59 (1988). https://doi.org/10.1021/ma00179a014
- T. Lu, Q. Chen, Interaction region indicator: a simple real space function clearly revealing both chemical bonds and weak interactions. Chemistry-Methods 1, 231 (2021). https://doi.org/10.1002/cmtd.202100007
- A.G. Carr, R. Mammucari, N.R. Foster, A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem. Eng. J. 172, 1 (2011). https://doi.org/10.1016/j.cej.2011.06.007
- Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu et al., High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4, eaao1761 (2018). https://doi.org/10.1126/sciadv.aao1761
- T. Sun, W. Zhang, Q. Nian, Z. Tao, Proton-insertion dominated polymer cathode for high-performance aqueous zinc-ion battery. Chem. Eng. J. 452, 139324 (2023). https://doi.org/10.1016/j.cej.2022.139324
- T. Lu, Q. Chen, A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure. Theor. Chem. Acc. 139, 25 (2020). https://doi.org/10.1007/s00214-019-2541-z
- S. Li, J. Shang, M. Li, M. Xu, F. Zeng et al., Design and synthesis of a π-conjugated N-heteroaromatic material for aqueous zinc-organic batteries with ultrahigh rate and extremely long life. Adv. Mater. (2022). https://doi.org/10.1002/adma.202207115
- H. Zhang, S. Xie, Z. Cao, D. Xu, L. Wang et al., Extended π-conjugated system in organic cathode with active C=N bonds for driving aqueous zinc-ion batteries. ACS Appl. Energy Mater. 4, 655 (2021). https://doi.org/10.1021/acsaem.0c02526
- Z. Song, L. Miao, H. Duan, L. Ruhlmann, Y. Lv et al., Anionic co-insertion charge storage in dinitrobenzene cathodes for high-performance aqueous zinc−organic batteries. Angew. Chem. Int. Ed. 61, e202208821 (2022). https://doi.org/10.1002/anie.202208821
- Z. Tie, L. Liu, S. Deng, D. Zhao, Z. Niu, Proton insertion chemistry of a zinc-organic battery. Angew. Chem. Int. Ed. 59, 4920 (2020). https://doi.org/10.1002/anie.201916529
- Q. Zhao, Z. Zhu, J. Chen, Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries. Adv. Mater. 29, 1607007 (2017). https://doi.org/10.1002/adma.201607007
- F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28, 1804975 (2018). https://doi.org/10.1002/adfm.201804975
- H. Zhang, D. Xu, L. Wang, Z. Ye, B. Chen et al., A polymer/graphene composite cathode with active carbonyls and secondary amine moieties for high-performance aqueous Zn-organic batteries involving dual-ion mechanism. Small 17, e2100902 (2021). https://doi.org/10.1002/smll.202100902
- L. Yan, Y. Zhang, Z. Ni, Y. Zhang, J. Xu et al., Chemically self-charging aqueous zinc-organic battery. J. Am. Chem. Soc. 143, 15369 (2021). https://doi.org/10.1021/jacs.1c06936
- Z. Ye, S. Xie, Z. Cao, L. Wang, D. Xu et al., High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy Storage Mater. 37, 378 (2021). https://doi.org/10.1016/j.ensm.2021.02.022
- Z. Li, J. Tan, X. Zhu, S. Xie, H. Fang et al., High capacity and long-life aqueous zinc-ion battery enabled by improving active sites utilization and protons insertion in polymer cathode. Energy Storage Mater. 51, 294 (2022). https://doi.org/10.1016/j.ensm.2022.06.049
- L. Lin, Z. Lin, J. Zhu, K. Wang, W. Wu et al., A semi-conductive organic cathode material enabled by extended conjugation for rechargeable aqueous zinc batteries. Energy Environ. Sci. 16, 89 (2023). https://doi.org/10.1039/d2ee02961h
- H.Y. Shi, Y.J. Ye, K. Liu, Y. Song, X. Sun, A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 57, 16359 (2018). https://doi.org/10.1002/anie.201808886
- Z. Lin, L. Lin, J. Zhu, W. Wu, X. Yang et al., An anti-aromatic covalent organic framework cathode with dual-redox centers for rechargeable aqueous zinc batteries. ACS Appl. Mater. Interfaces 14, 38689 (2022). https://doi.org/10.1021/acsami.2c08170
- Y. Wang, C. Wang, Z. Ni, Y. Gu, B. Wang et al., Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries. Adv. Mater. 32, e2000338 (2020). https://doi.org/10.1002/adma.202000338
- W. Wang, V.S. Kale, Z. Cao, Y. Lei, S. Kandambeth et al., Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries. Adv. Mater. 33, e2103617 (2021). https://doi.org/10.1002/adma.202103617
- L. Yan, Q. Zhu, Y. Qi, J. Xu, Y. Peng et al., Towards high-performance aqueous zinc batteries via a semi-conductive bipolar-type polymer cathode. Angew. Chem. Int. Ed. 61, e202211107 (2022). https://doi.org/10.1002/anie.202211107
- H. Peng, S. Huang, V. Montes-Garcia, D. Pakulski, H. Guo et al., Supramolecular engineering of cathode materials for aqueous zinc-ion energy storage devices: Novel benzothiadiazole functionalized two-dimensional olefin-linked COFs. Angew. Chem. Int. Ed. 62, e202216136 (2023). https://doi.org/10.1002/anie.202216136
- P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210 (2014). https://doi.org/10.1126/science.1249625
- S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.E. Jiang et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738 (2020). https://doi.org/10.1021/acs.chemrev.0c00170
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518 (2013). https://doi.org/10.1038/nmat3601
- Z. Yang, X. Huang, P. Meng, M. Jiang, Y. Wang et al., Phenoxazine polymer-based p-type positive electrode for aluminum-ion batteries with ultra-long cycle life. Angew. Chem. Int. Ed. 62, e202216797 (2022). https://doi.org/10.1002/anie.202216797
- M. Ludvigsson, J. Lindgren, J. Tegenfeldt, FTIR study of water in cast nafion films. Electrochim. Acta 45, 2267 (2000). https://doi.org/10.1016/S0013-4686(99)00438-7
- L.N. Sim, S.R. Majid, A.K. Arof, FTIR studies of PEMA/PVDF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib. Spectrosc. 58, 57 (2012). https://doi.org/10.1016/j.vibspec.2011.11.005
- L. Wang, K.-W. Huang, J. Chen, J. Zheng, Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci. Adv. 5, eaax4279 (2019). https://doi.org/10.1126/sciadv.aax4279
References
Y. Liang, Y. Jing, S. Gheytani, K.Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841 (2017). https://doi.org/10.1038/nmat4919
D. Bruce, K. Haresh, T. Jean-Maríe, Electrical energy storage for the grid: a battery of choices. Science 334, 928 (2011). https://doi.org/10.1126/science.1212741
Z. Tie, Y. Zhang, J. Zhu, S. Bi, Z. Niu, An air-rechargeable Zn/organic battery with proton storage. J. Am. Chem. Soc. 144, 10301 (2022). https://doi.org/10.1021/jacs.2c01485
K. Qu, X. Lu, Z. Huang, J. Liu, Synthesis strategies of optimized cathodes and mechanisms for zinc ion capacitors. Mater. Today Energy 30, 101188 (2022). https://doi.org/10.1016/j.mtener.2022.101188
H.-G. Wang, Y. Wang, Q. Wu, G. Zhu, Recent developments in electrode materials for dual-ion batteries: potential alternatives to conventional batteries. Mater. Today 52, 269 (2022). https://doi.org/10.1016/j.mattod.2021.11.008
H.-G. Wang, Q. Wu, L. Cheng, G. Zhu, The emerging aqueous zinc-organic battery. Coord. Chem. Rev. (2022). https://doi.org/10.1016/j.ccr.2022.214772
C. Chen, C.S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58, 7823 (2019). https://doi.org/10.1002/anie.201904174
Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun et al., Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 19, 4035 (2019). https://doi.org/10.1021/acs.nanolett.9b01403
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 1 (2016). https://doi.org/10.1038/nenergy.2016.119
Y. Li, J. Zhao, Q. Hu, T. Hao, H. Cao et al., Prussian blue analogs cathodes for aqueous zinc ion batteries. Mater. Today Energy 29, 101095 (2022). https://doi.org/10.1016/j.mtener.2022.101095
L. Hu, Z. Wu, C. Lu, F. Ye, Q. Liu et al., Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ. Sci. 14, 4095 (2021). https://doi.org/10.1039/D1EE01158H
F. Ye, Q. Liu, C. Lu, F. Meng, T. Lin et al., Inorganic manganese oxide/quinone coupling for high-capacity aqueous Zn–ion battery. Energy Storage Mater. 52, 675 (2022). https://doi.org/10.1016/j.ensm.2022.08.040
Z. Wu, C. Lu, F. Ye, L. Zhang, L. Jiang et al., Bilayered VOPO4⋅2H2O nanosheets with high-concentration oxygen vacancies for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202106816
Z. Wu, F. Ye, Q. Liu, R. Pang, Y. Liu et al., Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage. Adv. Energy Mater. 12, 2200654 (2022). https://doi.org/10.1002/aenm.202200654
Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang et al., An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew. Chem. Int. Ed. 57, 11737 (2018). https://doi.org/10.1002/anie.201807121
Z. Chen, H. Cui, Y. Hou, X. Wang, X. Jin et al., Anion chemistry enabled positive valence conversion to achieve a record high-voltage organic cathode for zinc batteries. Chem 8, 2204 (2022). https://doi.org/10.1016/j.chempr.2022.05.001
J. Xie, Q. Zhang, Recent progress in aqueous monovalent-ion batteries with organic materials as promising electrodes. Mater. Today Energy 18, 100547 (2020). https://doi.org/10.1016/j.mtener.2020.100547
T. Sun, W. Zhang, Q. Nian, Z. Tao, Molecular engineering design for high-performance aqueous zinc-organic battery. Nano-Micro Lett. 15, 36 (2023). https://doi.org/10.1007/s40820-022-01009-x
Y. Zhang, C. Zhao, Z. Li, Y. Wang, L. Yan et al., Synergistic co-reaction of Zn2+ and H+ with carbonyl groups towards stable aqueous zinc–organic batteries. Energy Storage Mater. 52, 386 (2022). https://doi.org/10.1016/j.ensm.2022.08.005
Y. Zhao, Y. Huang, F. Wu, R. Chen, L. Li, High-performance aqueous zinc batteries based on organic/organic cathodes integrating multiredox centers. Adv. Mater. 33, e2106469 (2021). https://doi.org/10.1002/adma.202106469
H. Peng, J. Xiao, Z. Wu, L. Zhang, Y. Geng et al., N-heterocycles extended π-conjugation enables ultrahigh capacity, long-lived, and fast-charging organic cathodes for aqueous zinc batteries. CCS Chem. 5, 1 (2022). https://doi.org/10.31635/ccschem.022.202202276
T. Sun, Z.J. Li, Y.F. Zhi, Y.J. Huang, H.J. Fan et al., Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) as an efficient cathode for high-performance aqueous zinc–organic batteries. Adv. Funct. Mater. 31, 2010049 (2021). https://doi.org/10.1002/adfm.202010049
S. Zheng, D. Shi, D. Yan, Q. Wang, T. Sun et al., Orthoquinone–based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc–organic batteries. Angew. Chem. Int. Ed. 61, e202117511 (2022). https://doi.org/10.1002/anie.202117511
B. Yang, Y. Ma, D. Bin, H. Lu, Y. Xia, Ultralong-life cathode for aqueous zinc-organic batteries via pouring 9,10-phenanthraquinone into active carbon. ACS Appl. Mater. Interfaces 13, 58818 (2021). https://doi.org/10.1021/acsami.1c20087
F. Ye, Q. Liu, H. Dong, K. Guan, Z. Chen et al., Organic zinc-ion battery: planar, π-conjugated quinone-based polymer endows ultrafast ion diffusion kinetics. Angew. Chem. Int. Ed. 61, e202214244 (2022). https://doi.org/10.1002/anie.202214244
J. Wang, Z. Liu, H.-G. Wang, F. Cui, G. Zhu, Integrated pyrazine-based porous aromatic frameworks/carbon nanotube composite as cathode materials for aqueous zinc ion batteries. Chem. Eng. J. 450, 138051 (2022). https://doi.org/10.1016/j.cej.2022.138051
P.A. Small, Some factors affecting the solubility of polymers. J. Appl. Chem. 3, 71 (2007). https://doi.org/10.1002/jctb.5010030205
Y.F. Yuan, J.M. Zhang, B.Q. Zhang, J.J. Liu, Y. Zhou et al., Polymer solubility in ionic liquids: dominated by hydrogen bonding. Phys. Chem. Chem. Phys. 23, 21893 (2021). https://doi.org/10.1039/d1cp03193g
Z. Lin, H.Y. Shi, L. Lin, X. Yang, W. Wu et al., A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat. Commun. 12, 4424 (2021). https://doi.org/10.1038/s41467-021-24701-9
Y. Chen, J. Li, Q. Zhu, K. Fan, Y. Cao et al., Two-dimensional organic supramolecule via hydrogen bonding and π–π stacking for ultrahigh capacity and long-life aqueous zinc-organic batteries. Angew. Chem. Int. Ed. 61, e202116289 (2022). https://doi.org/10.1002/anie.202116289
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, et al. Gaussian 16 rev. C.01 (Wallingford, CT, 2016).
T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 (2012). https://doi.org/10.1002/jcc.22885
S. Emamian, T. Lu, H. Kruse, H. Emamian, Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. J. Comput. Chem. 40, 2868 (2019). https://doi.org/10.1002/jcc.26068
M.M. Coleman, D.J. Skrovanek, J. Hu, P.C. Painter, Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends. Macromolecules 21, 59 (1988). https://doi.org/10.1021/ma00179a014
T. Lu, Q. Chen, Interaction region indicator: a simple real space function clearly revealing both chemical bonds and weak interactions. Chemistry-Methods 1, 231 (2021). https://doi.org/10.1002/cmtd.202100007
A.G. Carr, R. Mammucari, N.R. Foster, A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem. Eng. J. 172, 1 (2011). https://doi.org/10.1016/j.cej.2011.06.007
Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu et al., High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4, eaao1761 (2018). https://doi.org/10.1126/sciadv.aao1761
T. Sun, W. Zhang, Q. Nian, Z. Tao, Proton-insertion dominated polymer cathode for high-performance aqueous zinc-ion battery. Chem. Eng. J. 452, 139324 (2023). https://doi.org/10.1016/j.cej.2022.139324
T. Lu, Q. Chen, A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure. Theor. Chem. Acc. 139, 25 (2020). https://doi.org/10.1007/s00214-019-2541-z
S. Li, J. Shang, M. Li, M. Xu, F. Zeng et al., Design and synthesis of a π-conjugated N-heteroaromatic material for aqueous zinc-organic batteries with ultrahigh rate and extremely long life. Adv. Mater. (2022). https://doi.org/10.1002/adma.202207115
H. Zhang, S. Xie, Z. Cao, D. Xu, L. Wang et al., Extended π-conjugated system in organic cathode with active C=N bonds for driving aqueous zinc-ion batteries. ACS Appl. Energy Mater. 4, 655 (2021). https://doi.org/10.1021/acsaem.0c02526
Z. Song, L. Miao, H. Duan, L. Ruhlmann, Y. Lv et al., Anionic co-insertion charge storage in dinitrobenzene cathodes for high-performance aqueous zinc−organic batteries. Angew. Chem. Int. Ed. 61, e202208821 (2022). https://doi.org/10.1002/anie.202208821
Z. Tie, L. Liu, S. Deng, D. Zhao, Z. Niu, Proton insertion chemistry of a zinc-organic battery. Angew. Chem. Int. Ed. 59, 4920 (2020). https://doi.org/10.1002/anie.201916529
Q. Zhao, Z. Zhu, J. Chen, Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries. Adv. Mater. 29, 1607007 (2017). https://doi.org/10.1002/adma.201607007
F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28, 1804975 (2018). https://doi.org/10.1002/adfm.201804975
H. Zhang, D. Xu, L. Wang, Z. Ye, B. Chen et al., A polymer/graphene composite cathode with active carbonyls and secondary amine moieties for high-performance aqueous Zn-organic batteries involving dual-ion mechanism. Small 17, e2100902 (2021). https://doi.org/10.1002/smll.202100902
L. Yan, Y. Zhang, Z. Ni, Y. Zhang, J. Xu et al., Chemically self-charging aqueous zinc-organic battery. J. Am. Chem. Soc. 143, 15369 (2021). https://doi.org/10.1021/jacs.1c06936
Z. Ye, S. Xie, Z. Cao, L. Wang, D. Xu et al., High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy Storage Mater. 37, 378 (2021). https://doi.org/10.1016/j.ensm.2021.02.022
Z. Li, J. Tan, X. Zhu, S. Xie, H. Fang et al., High capacity and long-life aqueous zinc-ion battery enabled by improving active sites utilization and protons insertion in polymer cathode. Energy Storage Mater. 51, 294 (2022). https://doi.org/10.1016/j.ensm.2022.06.049
L. Lin, Z. Lin, J. Zhu, K. Wang, W. Wu et al., A semi-conductive organic cathode material enabled by extended conjugation for rechargeable aqueous zinc batteries. Energy Environ. Sci. 16, 89 (2023). https://doi.org/10.1039/d2ee02961h
H.Y. Shi, Y.J. Ye, K. Liu, Y. Song, X. Sun, A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 57, 16359 (2018). https://doi.org/10.1002/anie.201808886
Z. Lin, L. Lin, J. Zhu, W. Wu, X. Yang et al., An anti-aromatic covalent organic framework cathode with dual-redox centers for rechargeable aqueous zinc batteries. ACS Appl. Mater. Interfaces 14, 38689 (2022). https://doi.org/10.1021/acsami.2c08170
Y. Wang, C. Wang, Z. Ni, Y. Gu, B. Wang et al., Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries. Adv. Mater. 32, e2000338 (2020). https://doi.org/10.1002/adma.202000338
W. Wang, V.S. Kale, Z. Cao, Y. Lei, S. Kandambeth et al., Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries. Adv. Mater. 33, e2103617 (2021). https://doi.org/10.1002/adma.202103617
L. Yan, Q. Zhu, Y. Qi, J. Xu, Y. Peng et al., Towards high-performance aqueous zinc batteries via a semi-conductive bipolar-type polymer cathode. Angew. Chem. Int. Ed. 61, e202211107 (2022). https://doi.org/10.1002/anie.202211107
H. Peng, S. Huang, V. Montes-Garcia, D. Pakulski, H. Guo et al., Supramolecular engineering of cathode materials for aqueous zinc-ion energy storage devices: Novel benzothiadiazole functionalized two-dimensional olefin-linked COFs. Angew. Chem. Int. Ed. 62, e202216136 (2023). https://doi.org/10.1002/anie.202216136
P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210 (2014). https://doi.org/10.1126/science.1249625
S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.E. Jiang et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738 (2020). https://doi.org/10.1021/acs.chemrev.0c00170
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518 (2013). https://doi.org/10.1038/nmat3601
Z. Yang, X. Huang, P. Meng, M. Jiang, Y. Wang et al., Phenoxazine polymer-based p-type positive electrode for aluminum-ion batteries with ultra-long cycle life. Angew. Chem. Int. Ed. 62, e202216797 (2022). https://doi.org/10.1002/anie.202216797
M. Ludvigsson, J. Lindgren, J. Tegenfeldt, FTIR study of water in cast nafion films. Electrochim. Acta 45, 2267 (2000). https://doi.org/10.1016/S0013-4686(99)00438-7
L.N. Sim, S.R. Majid, A.K. Arof, FTIR studies of PEMA/PVDF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib. Spectrosc. 58, 57 (2012). https://doi.org/10.1016/j.vibspec.2011.11.005
L. Wang, K.-W. Huang, J. Chen, J. Zheng, Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci. Adv. 5, eaax4279 (2019). https://doi.org/10.1126/sciadv.aax4279