Augmenting Intrinsic Fenton-Like Activities of MOF-Derived Catalysts via N-Molecule-Assisted Self-catalyzed Carbonization
Corresponding Author: Puxin Zhu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 87
Abstract
To overcome the ever-growing organic pollutions in the water system, abundant efforts have been dedicated to fabricating efficient Fenton-like carbon catalysts. However, the rational design of carbon catalysts with high intrinsic activity remains a long-term goal. Herein, we report a new N-molecule-assisted self-catalytic carbonization process in augmenting the intrinsic Fenton-like activity of metal–organic-framework-derived carbon hybrids. During carbonization, the N-molecules provide alkane/ammonia gases and the formed iron nanocrystals act as the in situ catalysts, which result in the elaborated formation of carbon nanotubes (in situ chemical vapor deposition from alkane/iron catalysts) and micro-/meso-porous structures (ammonia gas etching). The obtained catalysts exhibited with abundant Fe/Fe–Nx/pyridinic-N active species, micro-/meso-porous structures, and conductive carbon nanotubes. Consequently, the catalysts exhibit high efficiency toward the degradation of different organic pollutions, such as bisphenol A, methylene blue, and tetracycline. This study not only creates a new pathway for achieving highly active Fenton-like carbon catalysts but also takes a step toward the customized production of advanced carbon hybrids for diverse energy and environmental applications.
Highlights:
1 Metal–organic-framework-derived carbon hybrids with elaborated nanostructures were prepared via N-molecule- assisted self-catalytic carbonization process.
2 The enriched Fe/Fe-Nx/pyridinic-N active species, porous structures, and conductive carbon nanotubes can synergically augment the intrinsic catalytic activities.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Lu, J.S. Guest, C.A. Peters, X. Zhu, G.H. Rau, Z.J. Ren, Wastewater treatment for carbon capture and utilization. Nat. Sustain. 1(12), 750–758 (2018). https://doi.org/10.1038/s41893-018-0187-9
- Y. Xie, C. Chen, X. Ren, X. Wang, H. Wang, X. Wang, Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog. Mater Sci. 103, 180–234 (2019). https://doi.org/10.1016/j.pmatsci.2019.01.005
- C.X. Nie, Z.H. Peng, Y. Yang, C. Cheng, L. Ma, C.S. Zhao, Kevlar based nanofibrous particles as robust, effective and recyclable absorbents for water purification. J. Hazard. Mater. 318, 255–265 (2016). https://doi.org/10.1016/j.jhazmat.2016.06.061
- S. Li, C. Cheng, A. Thomas, Carbon-based microbial-fuel-cell electrodes: From conductive supports to active catalysts. Adv. Mater. 29(8), 1602547 (2017). https://doi.org/10.1002/adma.201602547
- S. Kang, M. He, M. Chen, Y. Liu, Y. Wang, Y. Wang, M. Dong, X. Chang, L. Cui, Surface amino group regulation and structural engineering of graphitic carbon nitride with enhanced photocatalytic activity by ultrafast ammonia plasma immersion modification. ACS Appl. Mater. Interfaces 11(16), 14952–14959 (2019). https://doi.org/10.1021/acsami.9b01068
- T. Li, F. Liu, S. Zhang, H. Lin, J. Wang, C.Y. Tang, Janus polyvinylidene fluoride membrane with extremely opposite wetting surfaces via one single-step unidirectional segregation strategy. ACS Appl. Mater. Interfaces 10(29), 24947–24954 (2018). https://doi.org/10.1021/acsami.8b08278
- J. Zhao, Q. Huang, M. Liu, Y. Dai, J. Chen et al., Synthesis of functionalized mgal-layered double hydroxides via modified mussel inspired chemistry and their application in organic dye adsorption. J. Colloid Interf. Sci. 505, 168–177 (2017). https://doi.org/10.1016/j.jcis.2017.05.087
- X. Li, X. Huang, S. Xi, S. Miao, J. Ding et al., Single cobalt atoms anchored on porous n-doped graphene with dual reaction sites for efficient fenton-like catalysis. J. Am. Chem. Soc. 140(39), 12469–12475 (2018). https://doi.org/10.1021/jacs.8b05992
- X. Li, Z. Ao, J. Liu, H. Sun, A.I. Rykov, J. Wang, Topotactic transformation of metal–organic frameworks to graphene-encapsulated transition-metal nitrides as efficient fenton-like catalysts. ACS Nano 10(12), 11532–11540 (2016). https://doi.org/10.1021/acsnano.6b07522
- M. Du, D. Song, A. Huang, R. Chen, D. Jin, K. Rui, C. Zhang, J. Zhu, W. Huang, Stereoselectively assembled metal-organic framework (MOF) host for catalytic synthesis of carbon hybrids for alkaline-metal-ion batteries. Angew. Chem. Int. Ed. 58(16), 5307–5311 (2019). https://doi.org/10.1002/anie.201900240
- W. Wu, Z. Ruan, J. Li, Y. Li, Y. Jiang et al., In situ preparation and analysis of bimetal co-doped mesoporous graphitic carbon nitride with enhanced photocatalytic activity. Nano-Micro Lett. 11(1), 10 (2019). https://doi.org/10.1007/s40820-018-0236-y
- X. Duan, H. Sun, S. Wang, Metal-free carbocatalysis in advanced oxidation reactions. Acc. Chem. Res. 51(3), 678–687 (2018). https://doi.org/10.1021/acs.accounts.7b00535
- J. Li, H.-X. Liu, W. Gou, M. Zhang, Z. Xia et al., Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover. Energy Environ. Sci. 12(7), 2298–2304 (2019). https://doi.org/10.1039/c9ee00752k
- X. Duan, Z. Ao, H. Sun, L. Zhou, G. Wang, S. Wang, Insights into n-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study. Chem. Commun. 51(83), 15249–15252 (2015). https://doi.org/10.1039/c5cc05101k
- Z. Du, N. Jannatun, D. Yu, J. Ren, W. Huang, X. Lu, C60-decorated nickel-cobalt phosphide as an efficient and robust electrocatalyst for hydrogen evolution reaction. Nanoscale 10(48), 23070–23079 (2018). https://doi.org/10.1039/c8nr07472k
- J. Liu, X. Li, B. Liu, C. Zhao, Z. Kuang et al., Shape-controlled synthesis of metal-organic frameworks with adjustable fenton-like catalytic activity. ACS Appl. Mater. Interfaces 10(44), 38051–38056 (2018). https://doi.org/10.1021/acsami.8b12686
- T. Wang, L. Gao, J. Hou, S.J.A. Herou, J.T. Griffiths et al., Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nat. Commun. 10(1), 1340 (2019). https://doi.org/10.1038/s41467-019-08972-x
- J. He, Y. Zhang, X. Zhang, Y. Huang, Highly efficient fenton and enzyme-mimetic activities of NH2-MIL-88B(Fe) metal organic framework for methylene blue degradation. Sci. Rep. 8(1), 5159 (2018). https://doi.org/10.1038/s41598-018-23557-2
- M. Ahmad, S. Chen, F. Ye, X. Quan, S. Afzal, H. Yu, X. Zhao, Efficient photo-fenton activity in mesoporous MIL-100(Fe) decorated with ZnO nanosphere for pollutants degradation. Appl. Catal. B 245, 428–438 (2019). https://doi.org/10.1016/j.apcatb.2018.12.057
- Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu et al., Core-shell ZIF-8@ZIF-67-derived cop nanoparticle-embedded n-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140(7), 2610–2618 (2018). https://doi.org/10.1021/jacs.7b12420
- W. Yang, X. Li, Y. Li, R. Zhu, H. Pang, Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 31(6), 1804740 (2019). https://doi.org/10.1002/adma.201804740
- Y. Zhong, B. Li, S. Li, S. Xu, Z. Pan et al., Bi nanoparticles anchored in n-doped porous carbon as anode of high energy density lithium ion battery. Nano-Micro Lett. 10(4), 56 (2018). https://doi.org/10.1007/s40820-018-0209-1
- X. Fan, F. Yang, J. Huang, Y. Yang, C. Nie et al., Metal–organic-framework-derived 2D carbon nanosheets for localized multiple bacterial eradication and augmented anti-infective therapy. Nano Lett. 19(9), 5885 (2019). https://doi.org/10.1021/acs.nanolett.9b01400
- Y. Yang, Y. Deng, J. Huang, X. Fan, C. Cheng et al., Size-transformable metal–organic framework–derived nanocarbons for localized chemo-photothermal bacterial ablation and wound disinfection. Adv. Funct. Mater. 29(33), 1900143 (2019). https://doi.org/10.1002/adfm.201900143
- H. Jiang, Z. Wang, Q. Yang, L. Tan, L. Dong, M. Dong, Ultrathin Ti3C2Tx (MXene) nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting. Nano-Micro Lett. 11(1), 31 (2019). https://doi.org/10.1007/s40820-019-0261-5
- C. Cheng, S. Li, Y. Xia, L. Ma, C. Nie, C. Roth, A. Thomas, R. Haag, Atomic Fe-Nx coupled open-mesoporous carbon nanofibers for efficient and bioadaptable oxygen electrode in Mg-air batteries. Adv. Mater. 30(40), 1802669 (2018). https://doi.org/10.1002/adma.201802669
- T. Zeng, M. Yu, H. Zhang, Z. He, J. Chen, S. Song, Fe/Fe3C@n-doped porous carbon hybrids derived from nano-scale MOFs: robust and enhanced heterogeneous catalyst for peroxymonosulfate activation. Catal. Sci. Technol. 7(2), 396–404 (2017). https://doi.org/10.1039/c6cy02130a
- C. Wang, Y.V. Kaneti, Y. Bando, J. Lin, C. Liu, J. Li, Y. Yamauchi, Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater. Horiz. 5(3), 394–407 (2018). https://doi.org/10.1039/c8mh00133b
- Y. Zhao, Q. Lai, J. Zhu, J. Zhong, Z. Tang, Y. Luo, Y. Liang, Controllable construction of core-shell polymer@zeolitic imidazolate frameworks fiber derived heteroatom-doped carbon nanofiber network for efficient oxygen electrocatalysis. Small 14(19), 1704207 (2018). https://doi.org/10.1002/smll.201704207
- W. Gong, Y. Lin, C. Chen, M. Al-Mamun, H.S. Lu, G. Wang, H. Zhang, H. Zhao, Nitrogen-doped carbon nanotube confined Co-Nx sites for selective hydrogenation of biomass-derived compounds. Adv. Mater. 31(11), 1808341 (2019). https://doi.org/10.1002/adma.201808341
- J. Meng, C. Niu, L. Xu, J. Li, X. Liu et al., General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 139(24), 8212–8221 (2017). https://doi.org/10.1021/jacs.7b01942
- X. Zhao, P. Pachfule, S. Li, J.R.J. Simke, J. Schmidt, A. Thomas, Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite. Angew. Chem. Int. Ed. 57(29), 8921–8926 (2018). https://doi.org/10.1002/anie.201803136
- Y. Hu, D. Ye, B. Luo, H. Hu, X. Zhu et al., A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries. Adv. Mater. 30(2), 1703824 (2018). https://doi.org/10.1002/adma.201703824
- Y. Zhou, Y. Zhu, B. Xu, X. Zhang, K.A. Al-Ghanim, S. Mahboob, Cobalt sulfide confined in n-doped porous branched carbon nanotubes for lithium-ion batteries. Nano-Micro Lett. 11(1), 29 (2019). https://doi.org/10.1007/s40820-019-0259-z
- X.F. Lu, L. Yu, X.W.D. Lou, Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 5(2), eaav6009 (2019). https://doi.org/10.1126/sciadv.aav6009
- S. Zhao, H. Yin, L. Du, L. He, K. Zhao et al., Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 8(12), 12660–12668 (2014). https://doi.org/10.1021/nn505582e
- J. Gong, J. Zhang, H. Lin, J. Yuan, “Cooking carbon in a solid salt”: synthesis of porous heteroatom-doped carbon foams for enhanced organic pollutant degradation under visible light. Appl. Mater. Today 12, 168–176 (2018). https://doi.org/10.1016/j.apmt.2018.04.008
- Y. Li, R. Cui, L. Ding, Y. Liu, W. Zhou et al., How catalysts affect the growth of single-walled carbon nanotubes on substrates. Adv. Mater. 22(13), 1508–1515 (2010). https://doi.org/10.1002/adma.200904366
- L. Han, Y. Sun, S. Li, C. Cheng, C.E. Halbig et al., In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. ACS Catal. 9(2), 1283–1288 (2019). https://doi.org/10.1021/acscatal.8b03734
- S. Li, C. Cheng, H.W. Liang, X. Feng, A. Thomas, 2D porous carbons prepared from layered organic-inorganic hybrids and their use as oxygen-reduction electrocatalysts. Adv. Mater. 29(28), 1700707 (2017). https://doi.org/10.1002/adma.201700707
- H. Zhang, X. Liu, Y. Wu, C. Guan, A.K. Cheetham, J. Wang, MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chem. Commun. 54(42), 5268–5288 (2018). https://doi.org/10.1039/C8CC00789F
- Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2(7), 1242–1264 (2018). https://doi.org/10.1016/j.joule.2018.06.019
- Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen et al., Isolated single iron atoms anchored on n-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56(24), 6937–6941 (2017). https://doi.org/10.1002/anie.201702473
- S. Li, C. Cheng, X.J. Zhao, J. Schmidt, A. Thomas, Active salt/silica-templated 2D mesoporous FeCo-N-x-carbon as bifunctional oxygen electrodes for zinc-air batteries. Angew. Chem. Int. Ed. 57(7), 1856–1862 (2018). https://doi.org/10.1002/anie.201710852
- D. Gu, Y. Zhou, R. Ma, F. Wang, Q. Liu, J. Wang, Facile synthesis of n-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Lett. 10(2), 29 (2017). https://doi.org/10.1007/s40820-017-0181-1
- Y. Yao, H. Chen, J. Qin, G. Wu, C. Lian, J. Zhang, S. Wang, Iron encapsulated in boron and nitrogen codoped carbon nanotubes as synergistic catalysts for fenton-like reaction. Water Res. 101, 281–291 (2016). https://doi.org/10.1016/j.watres.2016.05.065
- L. Wang, L. Wang, X. Meng, F.S. Xiao, New strategies for the preparation of sinter-resistant metal-nanoparticle based catalysts. Adv. Mater. (2019). https://doi.org/10.1002/adma.201901905
- S. Li, D.Q. Wu, C. Cheng, J.Z. Wang, F. Zhang, Y.Z. Su, X.L. Feng, Polyaniline-coupled multifunctional 2D metal oxide/hydroxide graphene nanohybrids. Angew. Chem. Int. Ed. 52(46), 12105–12109 (2013). https://doi.org/10.1002/anie.201306871
- Y. Wu, X. Tao, Y. Qing, H. Xu, F. Yang et al., Cr-doped FeNi-P nanoparticles encapsulated into n-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv. Mater. 31(15), 1900178 (2019). https://doi.org/10.1002/adma.201900178
- Z. Chen, R. Wu, Y. Liu, Y. Ha, Y. Guo et al., Ultrafine co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 30(30), 1802011 (2018). https://doi.org/10.1002/adma.201802011
- Y. Wu, Y. Yang, X. Zhao, Y. Tan, L. Ying, W. Zhen, R. Fen, A novel hierarchical porous 3D structured vanadium nitride/carbon membranes for high-performance supercapacitor negative electrodes. Nano-Micro Lett. 10(4), 63 (2018). https://doi.org/10.1007/s40820-018-0217-1
- J. Gong, X. Chen, T. Tang, Recent progress in controlled carbonization of (waste) polymers. Prog. Polym. Sci. 94, 1–32 (2019). https://doi.org/10.1016/j.progpolymsci.2019.04.001
- S. Li, D. Wu, H. Liang, J. Wang, X. Zhuang, Y. Mai, Y. Su, X. Feng, Metal–nitrogen doping of mesoporous carbon/graphene nanosheets by self-templating for oxygen reduction electrocatalysts. Chemsuschem 7(11), 3002–3006 (2014). https://doi.org/10.1002/cssc.201402680
- X. Liang, X. Wang, J. Zhuang, Y. Chen, D. Wang, Y. Li, Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv. Funct. Mater. 16(14), 1805–1813 (2006). https://doi.org/10.1002/adfm.200500884
References
L. Lu, J.S. Guest, C.A. Peters, X. Zhu, G.H. Rau, Z.J. Ren, Wastewater treatment for carbon capture and utilization. Nat. Sustain. 1(12), 750–758 (2018). https://doi.org/10.1038/s41893-018-0187-9
Y. Xie, C. Chen, X. Ren, X. Wang, H. Wang, X. Wang, Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog. Mater Sci. 103, 180–234 (2019). https://doi.org/10.1016/j.pmatsci.2019.01.005
C.X. Nie, Z.H. Peng, Y. Yang, C. Cheng, L. Ma, C.S. Zhao, Kevlar based nanofibrous particles as robust, effective and recyclable absorbents for water purification. J. Hazard. Mater. 318, 255–265 (2016). https://doi.org/10.1016/j.jhazmat.2016.06.061
S. Li, C. Cheng, A. Thomas, Carbon-based microbial-fuel-cell electrodes: From conductive supports to active catalysts. Adv. Mater. 29(8), 1602547 (2017). https://doi.org/10.1002/adma.201602547
S. Kang, M. He, M. Chen, Y. Liu, Y. Wang, Y. Wang, M. Dong, X. Chang, L. Cui, Surface amino group regulation and structural engineering of graphitic carbon nitride with enhanced photocatalytic activity by ultrafast ammonia plasma immersion modification. ACS Appl. Mater. Interfaces 11(16), 14952–14959 (2019). https://doi.org/10.1021/acsami.9b01068
T. Li, F. Liu, S. Zhang, H. Lin, J. Wang, C.Y. Tang, Janus polyvinylidene fluoride membrane with extremely opposite wetting surfaces via one single-step unidirectional segregation strategy. ACS Appl. Mater. Interfaces 10(29), 24947–24954 (2018). https://doi.org/10.1021/acsami.8b08278
J. Zhao, Q. Huang, M. Liu, Y. Dai, J. Chen et al., Synthesis of functionalized mgal-layered double hydroxides via modified mussel inspired chemistry and their application in organic dye adsorption. J. Colloid Interf. Sci. 505, 168–177 (2017). https://doi.org/10.1016/j.jcis.2017.05.087
X. Li, X. Huang, S. Xi, S. Miao, J. Ding et al., Single cobalt atoms anchored on porous n-doped graphene with dual reaction sites for efficient fenton-like catalysis. J. Am. Chem. Soc. 140(39), 12469–12475 (2018). https://doi.org/10.1021/jacs.8b05992
X. Li, Z. Ao, J. Liu, H. Sun, A.I. Rykov, J. Wang, Topotactic transformation of metal–organic frameworks to graphene-encapsulated transition-metal nitrides as efficient fenton-like catalysts. ACS Nano 10(12), 11532–11540 (2016). https://doi.org/10.1021/acsnano.6b07522
M. Du, D. Song, A. Huang, R. Chen, D. Jin, K. Rui, C. Zhang, J. Zhu, W. Huang, Stereoselectively assembled metal-organic framework (MOF) host for catalytic synthesis of carbon hybrids for alkaline-metal-ion batteries. Angew. Chem. Int. Ed. 58(16), 5307–5311 (2019). https://doi.org/10.1002/anie.201900240
W. Wu, Z. Ruan, J. Li, Y. Li, Y. Jiang et al., In situ preparation and analysis of bimetal co-doped mesoporous graphitic carbon nitride with enhanced photocatalytic activity. Nano-Micro Lett. 11(1), 10 (2019). https://doi.org/10.1007/s40820-018-0236-y
X. Duan, H. Sun, S. Wang, Metal-free carbocatalysis in advanced oxidation reactions. Acc. Chem. Res. 51(3), 678–687 (2018). https://doi.org/10.1021/acs.accounts.7b00535
J. Li, H.-X. Liu, W. Gou, M. Zhang, Z. Xia et al., Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover. Energy Environ. Sci. 12(7), 2298–2304 (2019). https://doi.org/10.1039/c9ee00752k
X. Duan, Z. Ao, H. Sun, L. Zhou, G. Wang, S. Wang, Insights into n-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study. Chem. Commun. 51(83), 15249–15252 (2015). https://doi.org/10.1039/c5cc05101k
Z. Du, N. Jannatun, D. Yu, J. Ren, W. Huang, X. Lu, C60-decorated nickel-cobalt phosphide as an efficient and robust electrocatalyst for hydrogen evolution reaction. Nanoscale 10(48), 23070–23079 (2018). https://doi.org/10.1039/c8nr07472k
J. Liu, X. Li, B. Liu, C. Zhao, Z. Kuang et al., Shape-controlled synthesis of metal-organic frameworks with adjustable fenton-like catalytic activity. ACS Appl. Mater. Interfaces 10(44), 38051–38056 (2018). https://doi.org/10.1021/acsami.8b12686
T. Wang, L. Gao, J. Hou, S.J.A. Herou, J.T. Griffiths et al., Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nat. Commun. 10(1), 1340 (2019). https://doi.org/10.1038/s41467-019-08972-x
J. He, Y. Zhang, X. Zhang, Y. Huang, Highly efficient fenton and enzyme-mimetic activities of NH2-MIL-88B(Fe) metal organic framework for methylene blue degradation. Sci. Rep. 8(1), 5159 (2018). https://doi.org/10.1038/s41598-018-23557-2
M. Ahmad, S. Chen, F. Ye, X. Quan, S. Afzal, H. Yu, X. Zhao, Efficient photo-fenton activity in mesoporous MIL-100(Fe) decorated with ZnO nanosphere for pollutants degradation. Appl. Catal. B 245, 428–438 (2019). https://doi.org/10.1016/j.apcatb.2018.12.057
Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu et al., Core-shell ZIF-8@ZIF-67-derived cop nanoparticle-embedded n-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140(7), 2610–2618 (2018). https://doi.org/10.1021/jacs.7b12420
W. Yang, X. Li, Y. Li, R. Zhu, H. Pang, Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 31(6), 1804740 (2019). https://doi.org/10.1002/adma.201804740
Y. Zhong, B. Li, S. Li, S. Xu, Z. Pan et al., Bi nanoparticles anchored in n-doped porous carbon as anode of high energy density lithium ion battery. Nano-Micro Lett. 10(4), 56 (2018). https://doi.org/10.1007/s40820-018-0209-1
X. Fan, F. Yang, J. Huang, Y. Yang, C. Nie et al., Metal–organic-framework-derived 2D carbon nanosheets for localized multiple bacterial eradication and augmented anti-infective therapy. Nano Lett. 19(9), 5885 (2019). https://doi.org/10.1021/acs.nanolett.9b01400
Y. Yang, Y. Deng, J. Huang, X. Fan, C. Cheng et al., Size-transformable metal–organic framework–derived nanocarbons for localized chemo-photothermal bacterial ablation and wound disinfection. Adv. Funct. Mater. 29(33), 1900143 (2019). https://doi.org/10.1002/adfm.201900143
H. Jiang, Z. Wang, Q. Yang, L. Tan, L. Dong, M. Dong, Ultrathin Ti3C2Tx (MXene) nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting. Nano-Micro Lett. 11(1), 31 (2019). https://doi.org/10.1007/s40820-019-0261-5
C. Cheng, S. Li, Y. Xia, L. Ma, C. Nie, C. Roth, A. Thomas, R. Haag, Atomic Fe-Nx coupled open-mesoporous carbon nanofibers for efficient and bioadaptable oxygen electrode in Mg-air batteries. Adv. Mater. 30(40), 1802669 (2018). https://doi.org/10.1002/adma.201802669
T. Zeng, M. Yu, H. Zhang, Z. He, J. Chen, S. Song, Fe/Fe3C@n-doped porous carbon hybrids derived from nano-scale MOFs: robust and enhanced heterogeneous catalyst for peroxymonosulfate activation. Catal. Sci. Technol. 7(2), 396–404 (2017). https://doi.org/10.1039/c6cy02130a
C. Wang, Y.V. Kaneti, Y. Bando, J. Lin, C. Liu, J. Li, Y. Yamauchi, Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater. Horiz. 5(3), 394–407 (2018). https://doi.org/10.1039/c8mh00133b
Y. Zhao, Q. Lai, J. Zhu, J. Zhong, Z. Tang, Y. Luo, Y. Liang, Controllable construction of core-shell polymer@zeolitic imidazolate frameworks fiber derived heteroatom-doped carbon nanofiber network for efficient oxygen electrocatalysis. Small 14(19), 1704207 (2018). https://doi.org/10.1002/smll.201704207
W. Gong, Y. Lin, C. Chen, M. Al-Mamun, H.S. Lu, G. Wang, H. Zhang, H. Zhao, Nitrogen-doped carbon nanotube confined Co-Nx sites for selective hydrogenation of biomass-derived compounds. Adv. Mater. 31(11), 1808341 (2019). https://doi.org/10.1002/adma.201808341
J. Meng, C. Niu, L. Xu, J. Li, X. Liu et al., General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 139(24), 8212–8221 (2017). https://doi.org/10.1021/jacs.7b01942
X. Zhao, P. Pachfule, S. Li, J.R.J. Simke, J. Schmidt, A. Thomas, Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite. Angew. Chem. Int. Ed. 57(29), 8921–8926 (2018). https://doi.org/10.1002/anie.201803136
Y. Hu, D. Ye, B. Luo, H. Hu, X. Zhu et al., A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries. Adv. Mater. 30(2), 1703824 (2018). https://doi.org/10.1002/adma.201703824
Y. Zhou, Y. Zhu, B. Xu, X. Zhang, K.A. Al-Ghanim, S. Mahboob, Cobalt sulfide confined in n-doped porous branched carbon nanotubes for lithium-ion batteries. Nano-Micro Lett. 11(1), 29 (2019). https://doi.org/10.1007/s40820-019-0259-z
X.F. Lu, L. Yu, X.W.D. Lou, Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 5(2), eaav6009 (2019). https://doi.org/10.1126/sciadv.aav6009
S. Zhao, H. Yin, L. Du, L. He, K. Zhao et al., Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 8(12), 12660–12668 (2014). https://doi.org/10.1021/nn505582e
J. Gong, J. Zhang, H. Lin, J. Yuan, “Cooking carbon in a solid salt”: synthesis of porous heteroatom-doped carbon foams for enhanced organic pollutant degradation under visible light. Appl. Mater. Today 12, 168–176 (2018). https://doi.org/10.1016/j.apmt.2018.04.008
Y. Li, R. Cui, L. Ding, Y. Liu, W. Zhou et al., How catalysts affect the growth of single-walled carbon nanotubes on substrates. Adv. Mater. 22(13), 1508–1515 (2010). https://doi.org/10.1002/adma.200904366
L. Han, Y. Sun, S. Li, C. Cheng, C.E. Halbig et al., In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. ACS Catal. 9(2), 1283–1288 (2019). https://doi.org/10.1021/acscatal.8b03734
S. Li, C. Cheng, H.W. Liang, X. Feng, A. Thomas, 2D porous carbons prepared from layered organic-inorganic hybrids and their use as oxygen-reduction electrocatalysts. Adv. Mater. 29(28), 1700707 (2017). https://doi.org/10.1002/adma.201700707
H. Zhang, X. Liu, Y. Wu, C. Guan, A.K. Cheetham, J. Wang, MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chem. Commun. 54(42), 5268–5288 (2018). https://doi.org/10.1039/C8CC00789F
Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2(7), 1242–1264 (2018). https://doi.org/10.1016/j.joule.2018.06.019
Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen et al., Isolated single iron atoms anchored on n-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56(24), 6937–6941 (2017). https://doi.org/10.1002/anie.201702473
S. Li, C. Cheng, X.J. Zhao, J. Schmidt, A. Thomas, Active salt/silica-templated 2D mesoporous FeCo-N-x-carbon as bifunctional oxygen electrodes for zinc-air batteries. Angew. Chem. Int. Ed. 57(7), 1856–1862 (2018). https://doi.org/10.1002/anie.201710852
D. Gu, Y. Zhou, R. Ma, F. Wang, Q. Liu, J. Wang, Facile synthesis of n-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Lett. 10(2), 29 (2017). https://doi.org/10.1007/s40820-017-0181-1
Y. Yao, H. Chen, J. Qin, G. Wu, C. Lian, J. Zhang, S. Wang, Iron encapsulated in boron and nitrogen codoped carbon nanotubes as synergistic catalysts for fenton-like reaction. Water Res. 101, 281–291 (2016). https://doi.org/10.1016/j.watres.2016.05.065
L. Wang, L. Wang, X. Meng, F.S. Xiao, New strategies for the preparation of sinter-resistant metal-nanoparticle based catalysts. Adv. Mater. (2019). https://doi.org/10.1002/adma.201901905
S. Li, D.Q. Wu, C. Cheng, J.Z. Wang, F. Zhang, Y.Z. Su, X.L. Feng, Polyaniline-coupled multifunctional 2D metal oxide/hydroxide graphene nanohybrids. Angew. Chem. Int. Ed. 52(46), 12105–12109 (2013). https://doi.org/10.1002/anie.201306871
Y. Wu, X. Tao, Y. Qing, H. Xu, F. Yang et al., Cr-doped FeNi-P nanoparticles encapsulated into n-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv. Mater. 31(15), 1900178 (2019). https://doi.org/10.1002/adma.201900178
Z. Chen, R. Wu, Y. Liu, Y. Ha, Y. Guo et al., Ultrafine co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 30(30), 1802011 (2018). https://doi.org/10.1002/adma.201802011
Y. Wu, Y. Yang, X. Zhao, Y. Tan, L. Ying, W. Zhen, R. Fen, A novel hierarchical porous 3D structured vanadium nitride/carbon membranes for high-performance supercapacitor negative electrodes. Nano-Micro Lett. 10(4), 63 (2018). https://doi.org/10.1007/s40820-018-0217-1
J. Gong, X. Chen, T. Tang, Recent progress in controlled carbonization of (waste) polymers. Prog. Polym. Sci. 94, 1–32 (2019). https://doi.org/10.1016/j.progpolymsci.2019.04.001
S. Li, D. Wu, H. Liang, J. Wang, X. Zhuang, Y. Mai, Y. Su, X. Feng, Metal–nitrogen doping of mesoporous carbon/graphene nanosheets by self-templating for oxygen reduction electrocatalysts. Chemsuschem 7(11), 3002–3006 (2014). https://doi.org/10.1002/cssc.201402680
X. Liang, X. Wang, J. Zhuang, Y. Chen, D. Wang, Y. Li, Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv. Funct. Mater. 16(14), 1805–1813 (2006). https://doi.org/10.1002/adfm.200500884