Muscle-Inspired Anisotropic Aramid Nanofibers Aerogel Exhibiting High-Efficiency Thermoelectric Conversion and Precise Temperature Monitoring for Firefighting Clothing
Corresponding Author: Hualing He
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 214
Abstract
Enhancing the firefighting protective clothing with exceptional thermal barrier and temperature sensing functions to ensure high fire safety for firefighters has long been anticipated, but it remains a major challenge. Herein, inspired by the human muscle, an anisotropic fire safety aerogel (ACMCA) with precise self-actuated temperature monitoring performance is developed by combining aramid nanofibers with eicosane/MXene to form an anisotropically oriented conductive network. By combining the two synergies of the negative temperature-dependent thermal conductive eicosane, which induces a high-temperature differential, and directionally ordered MXene that establishes a conductive network along the directional freezing direction. The resultant ACMCA exhibited remarkable thermoelectric properties, with S values reaching 46.78 μV K−1 and κ values as low as 0.048 W m−1 K−1 at room temperature. Moreover, the prepared anisotropic aerogel ACMCA exhibited electrical responsiveness to temperature variations, facilitating its application in intelligent temperature monitoring systems. The designed anisotropic aerogel ACMCA could be incorporated into the firefighting clothing as a thermal barrier layer, demonstrating a wide temperature sensing range (50–400 °C) and a rapid response time for early high-temperature alerts (~ 1.43 s). This work provides novel insights into the design and application of temperature-sensitive anisotropic aramid nanofibers aerogel in firefighting clothing.
Highlights:
1 Muscle-inspired anisotropic aramid nanofibers thermoelectric aerogel was prepared via directional freeze-drying strategy.
2 Resultant anisotropic aerogel exhibited high-efficiency thermoelectric conversion with Seebeck coefficient of 46.78 μV K−1 and low thermal conductivity of 0.048 W m−1 K−1.
3 Thermoelectric aerogel-based multistage wireless high-temperature alarm system achieves a wide temperature sensing range (50–400 °C) and sensitivity response time (trigger time ~ 1.43 s) for firefighting clothing.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Li, G. Yang, J. Lyu, Z. Sheng, F. Ma et al., Folk arts-inspired twice-coagulated configuration-editable tough aerogels enabled by transformable gel precursors. Nat. Commun. 14(1), 8450 (2023). https://doi.org/10.1038/s41467-023-44156-4
- X. Chang, Y. Yang, X. Cheng, X. Yin, J. Yu et al., Multiphase symbiotic engineered elastic ceramic-carbon aerogels with advanced thermal protection in extreme oxidative environments. Adv. Mater. 36(32), e2406055 (2024). https://doi.org/10.1002/adma.202406055
- W. Zhang, G. Liang, S. Wang, F. Yang, X. Liu et al., Loofah-inspired ultralight and superelastic micro/nanofibrous aerogels for highly efficient thermal insulation. Adv. Funct. Mater. 35(2), 2412424 (2025). https://doi.org/10.1002/adfm.202412424
- X. Zhang, Y. Gao, X. Wang, Y. Li, S. Wang et al., A flexible, thermal-insulating, and fire-resistant bagasse-derived cellulose aerogel prepared via a refrigerator freezing combined ambient pressure drying technique. Chem. Eng. J. 498, 155466 (2024). https://doi.org/10.1016/j.cej.2024.155466
- X. You, H. Ouyang, R. Deng, Q. Zhang, Z. Xing et al., Graphene aerogel composites with self-organized nanowires-packed honeycomb structure for highly efficient electromagnetic wave absorption. Nano-Micro Lett. 17, 47 (2025). https://doi.org/10.1007/s40820-024-01541-y
- T. Wang, Y.-J. Zhan, M.-J. Chen, L. He, W.-L. An et al., Reversible-gel-assisted, ambient-pressure-dried, multifunctional, flame-retardant biomass aerogels with smart high-strength-elasticity transformation. Natl. Sci. Rev. 11(11), nwae360 (2024). https://doi.org/10.1093/nsr/nwae360
- G. Han, B. Zhou, Z. Li, Y. Feng, C. Liu et al., Ultrafine aramid nanofibers prepared by high-efficiency wet ball-milling-assisted deprotonation for high-performance nanopaper. Mater. Horiz. 10(8), 3051–3060 (2023). https://doi.org/10.1039/d3mh00600j
- Z. Yu, Y. Wan, Y. Qin, Q. Jiang, J.-P. Guan et al., High fire safety thermal protective composite aerogel with efficient thermal insulation and reversible fire warning performance for firefighting clothing. Chem. Eng. J. 477, 147187 (2023). https://doi.org/10.1016/j.cej.2023.147187
- S. Wang, R. Ding, G. Liang, W. Zhang, F. Yang et al., Direct synthesis of polyimide curly nanofibrous aerogels for high-performance thermal insulation under extreme temperature. Adv. Mater. 36(13), e2313444 (2024). https://doi.org/10.1002/adma.202313444
- P. Hu, F. Wu, B. Ma, J. Luo, P. Zhang et al., Robust and flame-retardant zylon aerogel fibers for wearable thermal insulation and sensing in harsh environment. Adv. Mater. 36(6), e2310023 (2024). https://doi.org/10.1002/adma.202310023
- H. He, Y. Qin, Z. Zhu, Q. Jiang, S. Ouyang et al., Temperature-arousing self-powered fire warning E-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing. Nano-Micro Lett. 15(1), 226 (2023). https://doi.org/10.1007/s40820-023-01200-8
- Q. Jiang, Y. Wan, Y. Qin, X. Qu, M. Zhou et al., Durable and wearable self-powered temperature sensor based on self-healing thermoelectric fiber by coaxial wet spinning strategy for fire safety of firefighting clothing. Adv. Fiber Mater. 6(5), 1387–1401 (2024). https://doi.org/10.1007/s42765-024-00416-6
- W. Zhao, H. Zhou, W. Li, M. Chen, M. Zhou et al., An environment-tolerant ion-conducting double-network composite hydrogel for high-performance flexible electronic devices. Nano-Micro Lett. 16(1), 99 (2024). https://doi.org/10.1007/s40820-023-01311-2
- L. Li, Y. Zhang, H. Lu, Y. Wang, J. Xu et al., Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat. Commun. 11(1), 62 (2020). https://doi.org/10.1038/s41467-019-13959-9
- Y. Lu, H. Zhang, Y. Zhao, H. Liu, Z. Nie et al., Robust fiber-shaped flexible temperature sensors for safety monitoring with ultrahigh sensitivity. Adv. Mater. 36(18), e2310613 (2024). https://doi.org/10.1002/adma.202310613
- K. Yoon, S. Lee, C. Kwon, C. Won, S. Cho et al., Highly stretchable thermoelectric fiber with embedded copper(I) iodide nanops for a multimodal temperature, strain, and pressure sensor in wearable electronics. Adv. Funct. Mater. 35(1), 2570001 (2025). https://doi.org/10.1002/adfm.202570001
- H. Li, Z. Ding, Q. Zhou, J. Chen, Z. Liu et al., Harness high-temperature thermal energy via elastic thermoelectric aerogels. Nano-Micro Lett. 16(1), 151 (2024). https://doi.org/10.1007/s40820-024-01370-z
- L. Sun, Y. Guo, R. Ou, J. Xu, F. Gao et al., Ultrastrong and thermo-remoldable lignin-based polyurethane foam insulation with active-passive fire resistance. Adv. Funct. Mater. 34(40), 2405424 (2024). https://doi.org/10.1002/adfm.202405424
- X. Zhang, J. Chen, Z. Zheng, S. Tang, B. Cheng et al., Flexible temperature sensor with high reproducibility and wireless closed-loop system for decoupled multimodal health monitoring and personalized thermoregulation. Adv. Mater. 36(45), e2407859 (2024). https://doi.org/10.1002/adma.202407859
- Y. Fu, S. Kang, G. Xiang, C. Su, C. Gao et al., Ultraflexible temperature-strain dual-sensor based on chalcogenide glass-polymer film for human-machine interaction. Adv. Mater. 36(23), e2313101 (2024). https://doi.org/10.1002/adma.202313101
- J. Pu, Y. Gao, Z. Geng, Y. Zhang, Q. Cao et al., Grafted MXene assisted bifunctional hydrogel for stable and highly sensitive self-powered fibrous system. Adv. Funct. Mater. 34(24), 2304453 (2024). https://doi.org/10.1002/adfm.202304453
- Y. Zhang, X. Zhou, L. Liu, S. Wang, Y. Zhang et al., Highly-aligned all-fiber actuator with asymmetric photothermal-humidity response and autonomous perceptivity. Adv. Mater. 36(33), e2404696 (2024). https://doi.org/10.1002/adma.202404696
- H. Yu, Z. Hu, J. He, Y. Ran, Y. Zhao et al., Flexible temperature-pressure dual sensor based on 3D spiral thermoelectric Bi2Te3 films. Nat. Commun. 15(1), 2521 (2024). https://doi.org/10.1038/s41467-024-46836-1
- X. Lu, Z. Mo, Z. Liu, Y. Hu, C. Du et al., Robust, efficient, and recoverable thermocells with zwitterion-boosted hydrogel electrolytes for energy-autonomous and wearable sensing. Angew. Chem. Int. Ed. 63(29), e202405357 (2024). https://doi.org/10.1002/anie.202405357
- H. Lu, Y. Zhang, M. Zhu, S. Li, H. Liang et al., Intelligent perceptual textiles based on ionic-conductive and strong silk fibers. Nat. Commun. 15(1), 3289 (2024). https://doi.org/10.1038/s41467-024-47665-y
- P. Cao, Y. Wang, J. Yang, S. Niu, X. Pan et al., Scalable layered heterogeneous hydrogel fibers with strain-induced crystallization for tough, resilient, and highly conductive soft bioelectronics. Adv. Mater. 36(48), 2409632 (2024). https://doi.org/10.1002/adma.202409632
- H. Jang, J. Ahn, Y. Jeong, J.H. Ha, J.H. Jeong et al., Flexible all-inorganic thermoelectric yarns. Adv. Mater. 36(47), 2408320 (2024). https://doi.org/10.1002/adma.202408320
- N. Wang, K. Zeng, Y. Zheng, H. Jiang, Y. Yang et al., High-performance thermoelectric fibers from metal-backboned polymers for body-temperature wearable power devices. Angew. Chem. Int. Ed. 63(23), e202403415 (2024). https://doi.org/10.1002/anie.202403415
- G.J. Snyder, A.H. Snyder, Figure of merit ZT of a thermoelectric device defined from materials properties. Energy Environ. Sci. 10(11), 2280–2283 (2017). https://doi.org/10.1039/C7EE02007D
- D. Takemori, M. Okuhata, M. Takashiri, Thermoelectric properties of electrodeposited bismuth telluride thin films by thermal annealing and homogeneous electron beam irradiation. ECS Trans. 75(52), 123–131 (2017). https://doi.org/10.1149/07552.0123ecst
- R. Abinaya, S. Harish, S. Ponnusamy, M. Shimomura, M. Navaneethan et al., Enhanced thermoelectric figure-of-merit of MoS2/α-MoO3 nanosheets via tuning of sulphur vacancies. Chem. Eng. J. 416, 128484 (2021). https://doi.org/10.1016/j.cej.2021.128484
- A. Nagaoka, K. Yoshino, T. Masuda, T.D. Sparks, M.A. Scarpulla et al., Environmentally friendly thermoelectric sulphide Cu2ZnSnS4 single crystals achieving a 1.6 dimensionless figure of merit ZT. J. Mater. Chem. A. 9(28), 15595–15604 (2021). https://doi.org/10.1039/d1ta02978a
- J. Lyu, Z. Sheng, Y. Xu, C. Liu, X. Zhang, Nanoporous kevlar aerogel confined phase change fluids enable super-flexible thermal diodes. Adv. Funct. Mater. 32(19), 2200137 (2022). https://doi.org/10.1002/adfm.202200137
- A. Abdi, M. Ignatowicz, S.N. Gunasekara, J.N. Chiu, V. Martin, Experimental investigation of thermo-physical properties of n-octadecane and n-eicosane. Int. J. Heat Mass Transf. 161, 120285 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120285
- J. Ren, X. Huang, R. Han, G. Chen, Q. Li et al., Avian bone-inspired super fatigue resistant MXene-based aerogels with human-like tactile perception for multilevel information encryption assisted by machine learning. Adv. Funct. Mater. 34, 2403091 (2024). https://doi.org/10.1002/adfm.202403091
- Y. Feng, H. Liu, W. Zhu, L. Guan, X. Yang et al., Muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays. Adv. Funct. Mater. 31(46), 2105264 (2021). https://doi.org/10.1002/adfm.202105264
- F. Lin, W. Yang, B. Lu, Y. Xu, J. Chen et al., Muscle-inspired robust anisotropic cellulose conductive hydrogel for multidirectional strain sensors and implantable bioelectronics. Adv. Funct. Mater. 35(10), 2416419 (2025). https://doi.org/10.1002/adfm.202416419
- Y. Liu, Z. Lv, J. Zhou, Z. Cui, W. Li et al., Muscle-inspired formable wood-based phase change materials. Adv. Mater. 36(39), e2406915 (2024). https://doi.org/10.1002/adma.202406915
- X. Zhao, H. Zhang, K.-Y. Chan, X. Huang, Y. Yang et al., Tree-inspired structurally graded aerogel with synergistic water, salt, and thermal transport for high-salinity solar-powered evaporation. Nano-Micro Lett. 16(1), 222 (2024). https://doi.org/10.1007/s40820-024-01448-8
- Y. Xiao, H. Li, T. Gu, X. Jia, S. Sun et al., Ti3C2Tx composite aerogels enable pressure sensors for dialect speech recognition assisted by deep learning. Nano-Micro Lett. 17(1), 101 (2024). https://doi.org/10.1007/s40820-024-01605-z
- B. Li, Y. Yang, N. Wu, S. Zhao, H. Jin et al., Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano 16(11), 19293–19304 (2022). https://doi.org/10.1021/acsnano.2c08678
- L. Lan, C. Jiang, Y. Yao, J. Ping, Y. Ying, A stretchable and conductive fiber for multifunctional sensing and energy harvesting. Nano Energy 84, 105954 (2021). https://doi.org/10.1016/j.nanoen.2021.105954
- T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15(1), 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
- H. Cao, Beyond graphene and boron nitride: Why MXene can be used in composite for corrosion protection on metals? Compos. Part B Eng. 271, 111168 (2024). https://doi.org/10.1016/j.compositesb.2023.111168
- C. Yu, Y.S. Song, Analysis of thermoelectric energy harvesting with graphene aerogel-supported form-stable phase change materials. Nanomaterials 11(9), 2192 (2021). https://doi.org/10.3390/nano11092192
- X.-Z. Gao, F.-L. Gao, J. Liu, Y. Li, P. Wan et al., Self-powered resilient porous sensors with thermoelectric poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) and carbon nanotubes for sensitive temperature and pressure dual-mode sensing. ACS Appl. Mater. Interfaces 14(38), 43783–43791 (2022). https://doi.org/10.1021/acsami.2c12892
- F.-L. Gao, P. Min, X.-Z. Gao, C. Li, T. Zhang et al., Integrated temperature and pressure dual-mode sensors based on elastic PDMS foams decorated with thermoelectric PEDOT:PSS and carbon nanotubes for human energy harvesting and electronic-skin. J. Mater. Chem. A 10(35), 18256–18266 (2022). https://doi.org/10.1039/D2TA04862K
- X. Wang, L. Liang, H. Lv, Y. Zhang, G. Chen, Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement. Nano Energy 90, 106577 (2021). https://doi.org/10.1016/j.nanoen.2021.106577
- X. Zhao, Z. Chen, H. Zhuo, Y. Hu, G. Shi et al., Thermoelectric generator based on anisotropic wood aerogel for low-grade heat energy harvesting. J. Mater. Sci. Technol. 120, 150–158 (2022). https://doi.org/10.1016/j.jmst.2021.12.039
- H. Li, Y. Zong, J. He, Q. Ding, Y. Jiang et al., Wood-inspired high strength and lightweight aerogel based on carbon nanotube and nanocellulose fiber for heat collection. Carbohydr. Polym. 280, 119036 (2022). https://doi.org/10.1016/j.carbpol.2021.119036
- U. Ail, Z.U. Khan, H. Granberg, F. Berthold, R. Parasuraman et al., Room temperature synthesis of transition metal silicide-conducting polymer micro-composites for thermoelectric applications. Synth. Met. 225, 55–63 (2017). https://doi.org/10.1016/j.synthmet.2017.01.007
- Y. Wang, H. Wu, L. Xu, H. Zhang, Y. Yang et al., Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 6(34), eabb9083 (2020). https://doi.org/10.1126/sciadv.abb9083
- Y. Yin, Y. Wang, H. Li, J. Xu, C. Zhang et al., A flexible dual parameter sensor with hierarchical porous structure for fully decoupled pressure–temperature sensing. Chem. Eng. J. 430, 133158 (2022). https://doi.org/10.1016/j.cej.2021.133158
- C. Jiang, J. Chen, X. Lai, H. Li, X. Zeng et al., Mechanically robust and multifunctional polyimide/MXene composite aerogel for smart fire protection. Chem. Eng. J. 434, 134630 (2022). https://doi.org/10.1016/j.cej.2022.134630
- H. Cheng, Y. Du, B. Wang, Z. Mao, H. Xu et al., Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting. Chem. Eng. J. 338, 1–7 (2018). https://doi.org/10.1016/j.cej.2017.12.134
- C. Jiang, X. Lai, Z. Wu, H. Li, X. Zeng et al., A high-thermopower ionic hydrogel for intelligent fire protection. J. Mater. Chem. A 10, 21368 (2022). https://doi.org/10.1039/d2ta05737a
- H. Xie, X. Lai, H. Li, J. Gao, X. Zeng, Skin-inspired thermoelectric nanocoating for temperature sensing and fire safety. J. Colloid Interface Sci. 602, 756 (2021). https://doi.org/10.1016/j.jcis.2021.06.054
- B. Wang, X. Lai, H. Li, C. Jiang, J. Gao et al., Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl. Mater. Interfaces 13, 23020 (2021). https://doi.org/10.1021/acsami.1c05222
- M. Mao, H. Xu, K.-Y. Guo, J.-W. Zhang, Q.-Q. Xia et al., Mechanically flexible, super-hydrophobic and flame-retardant hybrid nano-silica/graphene oxide wide ribbon decorated sponges for efficient oil/water separation and fire warning response. Compos. Pt. A-Appl. Sci. Manuf. 140, 106191 (2021). https://doi.org/10.1016/j.compositesa.2020.106191
- F. Khan, S. Wang, Z. Ma, A. Ahmed, P. Song, Y. Zhao et al., A durable, flexible, large-area, flame-retardant, early fire warning sensor with built-in patterned electrodes. Small Methods 5, 2001040 (2021). https://doi.org/10.1002/smtd.202001040
- L. Zhang, Y. Huang, H. Dong, R. Xu, S. Jiang, Flame-retardant shape memory polyurethane/MXene paper and the application for early ffre alarm sensor. Compos. Pt. B-Eng. 223, 109149 (2021). https://doi.org/10.1016/j.compositesb.2021.109149
References
L. Li, G. Yang, J. Lyu, Z. Sheng, F. Ma et al., Folk arts-inspired twice-coagulated configuration-editable tough aerogels enabled by transformable gel precursors. Nat. Commun. 14(1), 8450 (2023). https://doi.org/10.1038/s41467-023-44156-4
X. Chang, Y. Yang, X. Cheng, X. Yin, J. Yu et al., Multiphase symbiotic engineered elastic ceramic-carbon aerogels with advanced thermal protection in extreme oxidative environments. Adv. Mater. 36(32), e2406055 (2024). https://doi.org/10.1002/adma.202406055
W. Zhang, G. Liang, S. Wang, F. Yang, X. Liu et al., Loofah-inspired ultralight and superelastic micro/nanofibrous aerogels for highly efficient thermal insulation. Adv. Funct. Mater. 35(2), 2412424 (2025). https://doi.org/10.1002/adfm.202412424
X. Zhang, Y. Gao, X. Wang, Y. Li, S. Wang et al., A flexible, thermal-insulating, and fire-resistant bagasse-derived cellulose aerogel prepared via a refrigerator freezing combined ambient pressure drying technique. Chem. Eng. J. 498, 155466 (2024). https://doi.org/10.1016/j.cej.2024.155466
X. You, H. Ouyang, R. Deng, Q. Zhang, Z. Xing et al., Graphene aerogel composites with self-organized nanowires-packed honeycomb structure for highly efficient electromagnetic wave absorption. Nano-Micro Lett. 17, 47 (2025). https://doi.org/10.1007/s40820-024-01541-y
T. Wang, Y.-J. Zhan, M.-J. Chen, L. He, W.-L. An et al., Reversible-gel-assisted, ambient-pressure-dried, multifunctional, flame-retardant biomass aerogels with smart high-strength-elasticity transformation. Natl. Sci. Rev. 11(11), nwae360 (2024). https://doi.org/10.1093/nsr/nwae360
G. Han, B. Zhou, Z. Li, Y. Feng, C. Liu et al., Ultrafine aramid nanofibers prepared by high-efficiency wet ball-milling-assisted deprotonation for high-performance nanopaper. Mater. Horiz. 10(8), 3051–3060 (2023). https://doi.org/10.1039/d3mh00600j
Z. Yu, Y. Wan, Y. Qin, Q. Jiang, J.-P. Guan et al., High fire safety thermal protective composite aerogel with efficient thermal insulation and reversible fire warning performance for firefighting clothing. Chem. Eng. J. 477, 147187 (2023). https://doi.org/10.1016/j.cej.2023.147187
S. Wang, R. Ding, G. Liang, W. Zhang, F. Yang et al., Direct synthesis of polyimide curly nanofibrous aerogels for high-performance thermal insulation under extreme temperature. Adv. Mater. 36(13), e2313444 (2024). https://doi.org/10.1002/adma.202313444
P. Hu, F. Wu, B. Ma, J. Luo, P. Zhang et al., Robust and flame-retardant zylon aerogel fibers for wearable thermal insulation and sensing in harsh environment. Adv. Mater. 36(6), e2310023 (2024). https://doi.org/10.1002/adma.202310023
H. He, Y. Qin, Z. Zhu, Q. Jiang, S. Ouyang et al., Temperature-arousing self-powered fire warning E-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing. Nano-Micro Lett. 15(1), 226 (2023). https://doi.org/10.1007/s40820-023-01200-8
Q. Jiang, Y. Wan, Y. Qin, X. Qu, M. Zhou et al., Durable and wearable self-powered temperature sensor based on self-healing thermoelectric fiber by coaxial wet spinning strategy for fire safety of firefighting clothing. Adv. Fiber Mater. 6(5), 1387–1401 (2024). https://doi.org/10.1007/s42765-024-00416-6
W. Zhao, H. Zhou, W. Li, M. Chen, M. Zhou et al., An environment-tolerant ion-conducting double-network composite hydrogel for high-performance flexible electronic devices. Nano-Micro Lett. 16(1), 99 (2024). https://doi.org/10.1007/s40820-023-01311-2
L. Li, Y. Zhang, H. Lu, Y. Wang, J. Xu et al., Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat. Commun. 11(1), 62 (2020). https://doi.org/10.1038/s41467-019-13959-9
Y. Lu, H. Zhang, Y. Zhao, H. Liu, Z. Nie et al., Robust fiber-shaped flexible temperature sensors for safety monitoring with ultrahigh sensitivity. Adv. Mater. 36(18), e2310613 (2024). https://doi.org/10.1002/adma.202310613
K. Yoon, S. Lee, C. Kwon, C. Won, S. Cho et al., Highly stretchable thermoelectric fiber with embedded copper(I) iodide nanops for a multimodal temperature, strain, and pressure sensor in wearable electronics. Adv. Funct. Mater. 35(1), 2570001 (2025). https://doi.org/10.1002/adfm.202570001
H. Li, Z. Ding, Q. Zhou, J. Chen, Z. Liu et al., Harness high-temperature thermal energy via elastic thermoelectric aerogels. Nano-Micro Lett. 16(1), 151 (2024). https://doi.org/10.1007/s40820-024-01370-z
L. Sun, Y. Guo, R. Ou, J. Xu, F. Gao et al., Ultrastrong and thermo-remoldable lignin-based polyurethane foam insulation with active-passive fire resistance. Adv. Funct. Mater. 34(40), 2405424 (2024). https://doi.org/10.1002/adfm.202405424
X. Zhang, J. Chen, Z. Zheng, S. Tang, B. Cheng et al., Flexible temperature sensor with high reproducibility and wireless closed-loop system for decoupled multimodal health monitoring and personalized thermoregulation. Adv. Mater. 36(45), e2407859 (2024). https://doi.org/10.1002/adma.202407859
Y. Fu, S. Kang, G. Xiang, C. Su, C. Gao et al., Ultraflexible temperature-strain dual-sensor based on chalcogenide glass-polymer film for human-machine interaction. Adv. Mater. 36(23), e2313101 (2024). https://doi.org/10.1002/adma.202313101
J. Pu, Y. Gao, Z. Geng, Y. Zhang, Q. Cao et al., Grafted MXene assisted bifunctional hydrogel for stable and highly sensitive self-powered fibrous system. Adv. Funct. Mater. 34(24), 2304453 (2024). https://doi.org/10.1002/adfm.202304453
Y. Zhang, X. Zhou, L. Liu, S. Wang, Y. Zhang et al., Highly-aligned all-fiber actuator with asymmetric photothermal-humidity response and autonomous perceptivity. Adv. Mater. 36(33), e2404696 (2024). https://doi.org/10.1002/adma.202404696
H. Yu, Z. Hu, J. He, Y. Ran, Y. Zhao et al., Flexible temperature-pressure dual sensor based on 3D spiral thermoelectric Bi2Te3 films. Nat. Commun. 15(1), 2521 (2024). https://doi.org/10.1038/s41467-024-46836-1
X. Lu, Z. Mo, Z. Liu, Y. Hu, C. Du et al., Robust, efficient, and recoverable thermocells with zwitterion-boosted hydrogel electrolytes for energy-autonomous and wearable sensing. Angew. Chem. Int. Ed. 63(29), e202405357 (2024). https://doi.org/10.1002/anie.202405357
H. Lu, Y. Zhang, M. Zhu, S. Li, H. Liang et al., Intelligent perceptual textiles based on ionic-conductive and strong silk fibers. Nat. Commun. 15(1), 3289 (2024). https://doi.org/10.1038/s41467-024-47665-y
P. Cao, Y. Wang, J. Yang, S. Niu, X. Pan et al., Scalable layered heterogeneous hydrogel fibers with strain-induced crystallization for tough, resilient, and highly conductive soft bioelectronics. Adv. Mater. 36(48), 2409632 (2024). https://doi.org/10.1002/adma.202409632
H. Jang, J. Ahn, Y. Jeong, J.H. Ha, J.H. Jeong et al., Flexible all-inorganic thermoelectric yarns. Adv. Mater. 36(47), 2408320 (2024). https://doi.org/10.1002/adma.202408320
N. Wang, K. Zeng, Y. Zheng, H. Jiang, Y. Yang et al., High-performance thermoelectric fibers from metal-backboned polymers for body-temperature wearable power devices. Angew. Chem. Int. Ed. 63(23), e202403415 (2024). https://doi.org/10.1002/anie.202403415
G.J. Snyder, A.H. Snyder, Figure of merit ZT of a thermoelectric device defined from materials properties. Energy Environ. Sci. 10(11), 2280–2283 (2017). https://doi.org/10.1039/C7EE02007D
D. Takemori, M. Okuhata, M. Takashiri, Thermoelectric properties of electrodeposited bismuth telluride thin films by thermal annealing and homogeneous electron beam irradiation. ECS Trans. 75(52), 123–131 (2017). https://doi.org/10.1149/07552.0123ecst
R. Abinaya, S. Harish, S. Ponnusamy, M. Shimomura, M. Navaneethan et al., Enhanced thermoelectric figure-of-merit of MoS2/α-MoO3 nanosheets via tuning of sulphur vacancies. Chem. Eng. J. 416, 128484 (2021). https://doi.org/10.1016/j.cej.2021.128484
A. Nagaoka, K. Yoshino, T. Masuda, T.D. Sparks, M.A. Scarpulla et al., Environmentally friendly thermoelectric sulphide Cu2ZnSnS4 single crystals achieving a 1.6 dimensionless figure of merit ZT. J. Mater. Chem. A. 9(28), 15595–15604 (2021). https://doi.org/10.1039/d1ta02978a
J. Lyu, Z. Sheng, Y. Xu, C. Liu, X. Zhang, Nanoporous kevlar aerogel confined phase change fluids enable super-flexible thermal diodes. Adv. Funct. Mater. 32(19), 2200137 (2022). https://doi.org/10.1002/adfm.202200137
A. Abdi, M. Ignatowicz, S.N. Gunasekara, J.N. Chiu, V. Martin, Experimental investigation of thermo-physical properties of n-octadecane and n-eicosane. Int. J. Heat Mass Transf. 161, 120285 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120285
J. Ren, X. Huang, R. Han, G. Chen, Q. Li et al., Avian bone-inspired super fatigue resistant MXene-based aerogels with human-like tactile perception for multilevel information encryption assisted by machine learning. Adv. Funct. Mater. 34, 2403091 (2024). https://doi.org/10.1002/adfm.202403091
Y. Feng, H. Liu, W. Zhu, L. Guan, X. Yang et al., Muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays. Adv. Funct. Mater. 31(46), 2105264 (2021). https://doi.org/10.1002/adfm.202105264
F. Lin, W. Yang, B. Lu, Y. Xu, J. Chen et al., Muscle-inspired robust anisotropic cellulose conductive hydrogel for multidirectional strain sensors and implantable bioelectronics. Adv. Funct. Mater. 35(10), 2416419 (2025). https://doi.org/10.1002/adfm.202416419
Y. Liu, Z. Lv, J. Zhou, Z. Cui, W. Li et al., Muscle-inspired formable wood-based phase change materials. Adv. Mater. 36(39), e2406915 (2024). https://doi.org/10.1002/adma.202406915
X. Zhao, H. Zhang, K.-Y. Chan, X. Huang, Y. Yang et al., Tree-inspired structurally graded aerogel with synergistic water, salt, and thermal transport for high-salinity solar-powered evaporation. Nano-Micro Lett. 16(1), 222 (2024). https://doi.org/10.1007/s40820-024-01448-8
Y. Xiao, H. Li, T. Gu, X. Jia, S. Sun et al., Ti3C2Tx composite aerogels enable pressure sensors for dialect speech recognition assisted by deep learning. Nano-Micro Lett. 17(1), 101 (2024). https://doi.org/10.1007/s40820-024-01605-z
B. Li, Y. Yang, N. Wu, S. Zhao, H. Jin et al., Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano 16(11), 19293–19304 (2022). https://doi.org/10.1021/acsnano.2c08678
L. Lan, C. Jiang, Y. Yao, J. Ping, Y. Ying, A stretchable and conductive fiber for multifunctional sensing and energy harvesting. Nano Energy 84, 105954 (2021). https://doi.org/10.1016/j.nanoen.2021.105954
T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15(1), 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
H. Cao, Beyond graphene and boron nitride: Why MXene can be used in composite for corrosion protection on metals? Compos. Part B Eng. 271, 111168 (2024). https://doi.org/10.1016/j.compositesb.2023.111168
C. Yu, Y.S. Song, Analysis of thermoelectric energy harvesting with graphene aerogel-supported form-stable phase change materials. Nanomaterials 11(9), 2192 (2021). https://doi.org/10.3390/nano11092192
X.-Z. Gao, F.-L. Gao, J. Liu, Y. Li, P. Wan et al., Self-powered resilient porous sensors with thermoelectric poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) and carbon nanotubes for sensitive temperature and pressure dual-mode sensing. ACS Appl. Mater. Interfaces 14(38), 43783–43791 (2022). https://doi.org/10.1021/acsami.2c12892
F.-L. Gao, P. Min, X.-Z. Gao, C. Li, T. Zhang et al., Integrated temperature and pressure dual-mode sensors based on elastic PDMS foams decorated with thermoelectric PEDOT:PSS and carbon nanotubes for human energy harvesting and electronic-skin. J. Mater. Chem. A 10(35), 18256–18266 (2022). https://doi.org/10.1039/D2TA04862K
X. Wang, L. Liang, H. Lv, Y. Zhang, G. Chen, Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement. Nano Energy 90, 106577 (2021). https://doi.org/10.1016/j.nanoen.2021.106577
X. Zhao, Z. Chen, H. Zhuo, Y. Hu, G. Shi et al., Thermoelectric generator based on anisotropic wood aerogel for low-grade heat energy harvesting. J. Mater. Sci. Technol. 120, 150–158 (2022). https://doi.org/10.1016/j.jmst.2021.12.039
H. Li, Y. Zong, J. He, Q. Ding, Y. Jiang et al., Wood-inspired high strength and lightweight aerogel based on carbon nanotube and nanocellulose fiber for heat collection. Carbohydr. Polym. 280, 119036 (2022). https://doi.org/10.1016/j.carbpol.2021.119036
U. Ail, Z.U. Khan, H. Granberg, F. Berthold, R. Parasuraman et al., Room temperature synthesis of transition metal silicide-conducting polymer micro-composites for thermoelectric applications. Synth. Met. 225, 55–63 (2017). https://doi.org/10.1016/j.synthmet.2017.01.007
Y. Wang, H. Wu, L. Xu, H. Zhang, Y. Yang et al., Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 6(34), eabb9083 (2020). https://doi.org/10.1126/sciadv.abb9083
Y. Yin, Y. Wang, H. Li, J. Xu, C. Zhang et al., A flexible dual parameter sensor with hierarchical porous structure for fully decoupled pressure–temperature sensing. Chem. Eng. J. 430, 133158 (2022). https://doi.org/10.1016/j.cej.2021.133158
C. Jiang, J. Chen, X. Lai, H. Li, X. Zeng et al., Mechanically robust and multifunctional polyimide/MXene composite aerogel for smart fire protection. Chem. Eng. J. 434, 134630 (2022). https://doi.org/10.1016/j.cej.2022.134630
H. Cheng, Y. Du, B. Wang, Z. Mao, H. Xu et al., Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting. Chem. Eng. J. 338, 1–7 (2018). https://doi.org/10.1016/j.cej.2017.12.134
C. Jiang, X. Lai, Z. Wu, H. Li, X. Zeng et al., A high-thermopower ionic hydrogel for intelligent fire protection. J. Mater. Chem. A 10, 21368 (2022). https://doi.org/10.1039/d2ta05737a
H. Xie, X. Lai, H. Li, J. Gao, X. Zeng, Skin-inspired thermoelectric nanocoating for temperature sensing and fire safety. J. Colloid Interface Sci. 602, 756 (2021). https://doi.org/10.1016/j.jcis.2021.06.054
B. Wang, X. Lai, H. Li, C. Jiang, J. Gao et al., Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl. Mater. Interfaces 13, 23020 (2021). https://doi.org/10.1021/acsami.1c05222
M. Mao, H. Xu, K.-Y. Guo, J.-W. Zhang, Q.-Q. Xia et al., Mechanically flexible, super-hydrophobic and flame-retardant hybrid nano-silica/graphene oxide wide ribbon decorated sponges for efficient oil/water separation and fire warning response. Compos. Pt. A-Appl. Sci. Manuf. 140, 106191 (2021). https://doi.org/10.1016/j.compositesa.2020.106191
F. Khan, S. Wang, Z. Ma, A. Ahmed, P. Song, Y. Zhao et al., A durable, flexible, large-area, flame-retardant, early fire warning sensor with built-in patterned electrodes. Small Methods 5, 2001040 (2021). https://doi.org/10.1002/smtd.202001040
L. Zhang, Y. Huang, H. Dong, R. Xu, S. Jiang, Flame-retardant shape memory polyurethane/MXene paper and the application for early ffre alarm sensor. Compos. Pt. B-Eng. 223, 109149 (2021). https://doi.org/10.1016/j.compositesb.2021.109149