Inorganic Nanozyme with Combined Self-Oxygenation/Degradable Capabilities for Sensitized Cancer Immunochemotherapy
Corresponding Author: Dawei Deng
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 74
Abstract
Recently emerged cancer immunochemotherapy has provided enormous new possibilities to replace traditional chemotherapy in fighting tumor. However, the treatment efficacy is hampered by tumor hypoxia-induced immunosuppression in tumor microenvironment (TME). Herein, we fabricated a self-oxygenation/degradable inorganic nanozyme with a core–shell structure to relieve tumor hypoxia in cancer immunochemotherapy. By integrating the biocompatible CaO2 as the oxygen-storing component, this strategy is more effective than the earlier designed nanocarriers for delivering oxygen or H2O2, and thus provides remarkable oxygenation and long-term capability in relieving hypoxia throughout the tumor tissue. Consequently, in vivo tests validate that the delivery system can successfully relieve hypoxia and reverse the immunosuppressive TME to favor antitumor immune responses, leading to enhanced chemoimmunotherapy with cytotoxic T lymphocyte-associated antigen 4 blockade. Overall, a facile, robust and effective strategy is proposed to improve tumor oxygenation by using self-decomposable and biocompatible inorganic nanozyme reactor, which will not only provide an innovative pathway to relieve intratumoral hypoxia, but also present potential applications in other oxygen-favored cancer therapies or oxygen deficiency-originated diseases.
Highlights:
1 Self-oxygenation/degradable nanozyme reactors with core–shell structure were fabricated for relieving tumor hypoxia.
2 Intratumoral hypoxia alleviation and sensitization of immunochemotherapy using as-prepared nanozyme reactors was demonstrated in B16F10 melanoma tumor.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wang, D.J. Mooney, Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nat. Mater. 17(9), 761–772 (2018). https://doi.org/10.1038/s41563-018-0147-9
- Y. Chen, R. Xia, Y. Huang, W. Zhao, J. Li et al., An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy. Nat. Commun. 7, 13443 (2016). https://doi.org/10.1038/ncomms13443
- P. Sharma, S. Hu-Lieskovan, J.A. Wargo, A. Ribas, Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4), 707–723 (2017). https://doi.org/10.1016/j.cell.2017.01.017
- D.F. Quail, J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423 (2013). https://doi.org/10.1038/nm.3394
- J.-N. Liu, W. Bu, J. Shi, Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem. Rev. 117(9), 6160–6224 (2017). https://doi.org/10.1021/acs.chemrev.6b00525
- N. Li, L. Yu, J. Wang, X. Gao, Y. Chen, W. Pan, B. Tang, A mitochondria-targeted nanoradiosensitizer activating reactive oxygen species burst for enhanced radiation therapy. Chem. Sci. 9(12), 3159–3164 (2018). https://doi.org/10.1039/C7SC04458E
- D. Guo, X. Ji, F. Peng, Y. Zhong, B. Chu, Y. Su, Y. He, Photostable and biocompatible fluorescent silicon nanoparticles for imaging-guided co-delivery of sirna and doxorubicin to drug-resistant cancer cells. Nano-Micro Lett. 11, 27 (2019). https://doi.org/10.1007/s40820-019-0257-1
- D. Huo, S. Liu, C. Zhang, J. He, Z. Zhou, H. Zhang, Y. Hu, Hypoxia-targeting, tumor microenvironment responsive nanocluster bomb for radical-enhanced radiotherapy. ACS Nano 11(10), 10159–10174 (2017). https://doi.org/10.1021/acsnano.7b04737
- D. Lukashev, B. Klebanov, H. Kojima, A. Grinberg, A. Ohta et al., Cutting edge: hypoxia-inducible factor 1α and its activation-inducible short isoform I. 1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. J. Immunol. 177(8), 4962–4965 (2006). https://doi.org/10.4049/jimmunol.177.8.4962
- A. Ohta, R. Diwanji, R. Kini, M. Subramanian, A. Ohta, M. Sitkovsky, In vivo T cell activation in lymphoid tissues is inhibited in the oxygen-poor microenvironment. Front. Immunol. 2, 27 (2011). https://doi.org/10.3389/fimmu.2011.00027
- R.K. Jain, Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26(5), 605–622 (2014). https://doi.org/10.1016/j.ccell.2014.10.006
- M.V. Sitkovsky, S. Hatfield, R. Abbott, B. Belikoff, D. Lukashev, A. Ohta, Hostile, hypoxia-A2-adenosinergic tumor biology as the next barrier to overcome for tumor immunologists. Cancer Immunol. Res. 2(7), 598–605 (2014). https://doi.org/10.1158/2326-6066.Cir-14-0075
- W.R. Wilson, M.P. Hay, Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393 (2011). https://doi.org/10.1038/nrc3064
- J. Liu, L. Tian, R. Zhang, Z. Dong, H. Wang, Z. Liu, Collagenase-encapsulated ph-responsive nanoscale coordination polymers for tumor microenvironment modulation and enhanced photodynamic nanomedicine. ACS Appl. Mater. Interfaces 10(50), 43493–43502 (2018). https://doi.org/10.1021/acsami.8b17684
- Y. Huang, S. Goel, D.G. Duda, D. Fukumura, R.K. Jain, Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res. 73(10), 2943–2948 (2013). https://doi.org/10.1158/0008-5472.Can-12-4354
- Z. Zhou, B. Zhang, S. Wang, W. Zai, A. Yuan, Y. Hu, J. Wu, Perfluorocarbon nanoparticles mediated platelet blocking disrupt vascular barriers to improve the efficacy of oxygen-sensitive antitumor drugs. Small 14(45), 1801694 (2018). https://doi.org/10.1002/smll.201801694
- M. Thiel, A. Chouker, A. Ohta, E. Jackson, C. Caldwell et al., Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury. PLoS Biol. 3(6), e174 (2005). https://doi.org/10.1371/journal.pbio.0030174
- S.M. Hatfield, J. Kjaergaard, D. Lukashev, B. Belikoff, T.H. Schreiber et al., Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection. J. Mol. Med. 92(12), 1283–1292 (2014). https://doi.org/10.1007/s00109-014-1189-3
- S.M. Hatfield, J. Kjaergaard, D. Lukashev, T.H. Schreiber, B. Belikoff et al., Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl. Med. 7(277), 277ra230 (2015). https://doi.org/10.1126/scitranslmed.aaa1260
- S. Gao, H. Lin, H. Zhang, H. Yao, Y. Chen, J. Shi, Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 6(3), 1801733 (2019). https://doi.org/10.1002/advs.201801733
- J. Wang, Y. Zhang, E. Archibong, F.S. Ligler, Z. Gu, Leveraging H2O2 levels for biomedical applications. Adv. Biosyst. 1(9), 1700084 (2017). https://doi.org/10.1002/adbi.201700084
- D. Deng, C. Hao, S. Sen, C. Xu, P. Král, N.A. Kotov, Template-free hierarchical self-assembly of iron diselenide nanoparticles into mesoscale hedgehogs. J. Am. Chem. Soc. 139(46), 16630–16639 (2017). https://doi.org/10.1021/jacs.7b07838
- D. Deng, Y. Chen, J. Cao, J. Tian, Z. Qian, S. Achilefu, Y. Gu, High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging. Chem. Mater. 24(15), 3029–3037 (2012). https://doi.org/10.1021/cm3015594
- C. Cheng, S. Li, A. Thomas, N.A. Kotov, R. Haag, Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem. Rev. 117(3), 1826–1914 (2017). https://doi.org/10.1021/acs.chemrev.6b00520
- P.N. Manghnani, W. Wu, S. Xu, F. Hu, C. Teh, B. Liu, Visualizing photodynamic therapy in transgenic zebrafish using organic nanoparticles with aggregation-induced emission. Nano-Micro Lett. 10(4), 61 (2018). https://doi.org/10.1007/s40820-018-0214-4
- C.R. Gordijo, A.Z. Abbasi, M.A. Amini, H.Y. Lip, A. Maeda et al., Design of hybrid MnO2-polymer-lipid nanoparticles with tunable oxygen generation rates and tumor accumulation for cancer treatment. Adv. Funct. Mater. 25(12), 1858–1872 (2015). https://doi.org/10.1002/adfm.201404511
- Y. Yang, L. Ma, C. Cheng, Y. Deng, J. Huang et al., Nonchemotherapic and robust dual-responsive nanoagents with on-demand bacterial trapping, ablation, and release for efficient wound disinfection. Adv. Funct. Mater. 28(21), 1705708 (2018). https://doi.org/10.1002/adfm.201705708
- S. Shi, F. Chen, S. Goel, S.A. Graves, H. Luo et al., In vivo tumor-targeted dual-modality PET/optical imaging with a yolk/shell-structured silica nanosystem. Nano-Micro Lett. 10(4), 65 (2018). https://doi.org/10.1007/s40820-018-0216-2
- G. Yang, L. Xu, Y. Chao, J. Xu, X. Sun, Y. Wu, R. Peng, Z. Liu, Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 8(1), 902 (2017). https://doi.org/10.1038/s41467-017-01050-0
- M. Song, T. Liu, C. Shi, X. Zhang, X. Chen, Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 10(1), 633–647 (2016). https://doi.org/10.1021/acsnano.5b06779
- R.-Q. Li, C. Zhang, B.-R. Xie, W.-Y. Yu, W.-X. Qiu, H. Cheng, X.-Z. Zhang, A two-photon excited O2-evolving nanocomposite for efficient photodynamic therapy against hypoxic tumor. Biomaterials 194, 84–93 (2019). https://doi.org/10.1016/j.biomaterials.2018.12.017
- L. Meng, Y. Cheng, X. Tong, S. Gan, Y. Ding et al., Tumor oxygenation and hypoxia inducible factor-1 functional inhibition via a reactive oxygen species responsive nanoplatform for enhancing radiation therapy and abscopal effects. ACS Nano 12(8), 8308–8322 (2018). https://doi.org/10.1021/acsnano.8b03590
- Y. Zhang, F. Wang, C. Liu, Z. Wang, L. Kang et al., Nanozyme decorated metal–organic frameworks for enhanced photodynamic therapy. ACS Nano 12(1), 651–661 (2018). https://doi.org/10.1021/acsnano.7b07746
- Z. Wang, Y. Zhang, E. Ju, Z. Liu, F. Cao, Z. Chen, J. Ren, X. Qu, Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 9(1), 3334 (2018). https://doi.org/10.1038/s41467-018-05798-x
- C. Yao, W. Wang, P. Wang, M. Zhao, X. Li, F. Zhang, Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy. Adv. Mater. 30(7), 1704833 (2018). https://doi.org/10.1002/adma.201704833
- T. Finkel, M. Serrano, M.A. Blasco, The common biology of cancer and ageing. Nature 448, 767–774 (2007). https://doi.org/10.1038/nature05985
- X. Song, J. Xu, C. Liang, Y. Chao, Q. Jin, C. Wang, M. Chen, Z. Liu, Self-supplied tumor oxygenation through separated liposomal delivery of H2O2 and catalase for enhanced radio-immunotherapy of cancer. Nano Lett. 18(10), 6360–6368 (2018). https://doi.org/10.1021/acs.nanolett.8b02720
- M. Thiel, C.C. Caldwell, S. Kreth, S. Kuboki, P. Chen et al., Targeted deletion of HIF-1α gene in T cells prevents their inhibition in hypoxic inflamed tissues and improves septic mice survival. PLoS ONE 2(9), e853 (2007). https://doi.org/10.1371/journal.pone.0000853
- W.-P. Li, C.-H. Su, Y.-C. Chang, Y.-J. Lin, C.-S. Yeh, Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS Nano 10(2), 2017–2027 (2016). https://doi.org/10.1021/acsnano.5b06175
- J. Wang, D. Xu, T. Deng, Y. Li, L. Xue, T. Yan, D. Huang, D. Deng, Self-decomposable mesoporous doxorubicin@ silica nanocomposites for nuclear targeted chemo-photodynamic combination therapy. ACS Appl. Nano Mater. 1(4), 1976–1984 (2018). https://doi.org/10.1021/acsanm.8b00486
- S. Zhang, Z. Chu, C. Yin, C. Zhang, G. Lin, Q. Li, Controllable drug release and simultaneously carrier decomposition of SiO2-drug composite nanoparticles. J. Am. Chem. Soc. 135(15), 5709–5716 (2013). https://doi.org/10.1021/ja3123015
- S.B. Lee, J.-E. Lee, S.J. Cho, J. Chin, S.K. Kim et al., Crushed gold shell nanoparticles labeled with radioactive iodine as a theranostic nanoplatform for macrophage-mediated photothermal therapy. Nano-Micro Lett. 11, 36 (2019). https://doi.org/10.1007/s40820-019-0266-0
- H. Chen, J. Tian, W. He, Z. Guo, H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc. 137(4), 1539–1547 (2015). https://doi.org/10.1021/ja511420n
- K. Synnestvedt, G.T. Furuta, K.M. Comerford, N. Louis, J. Karhausen et al., Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Investig. 110(7), 993–1002 (2002). https://doi.org/10.1172/jci0215337
- H.K. Eltzschig, D. Kohler, T. Eckle, T. Kong, S.C. Robson, S.P. Colgan, Central role of sp1-regulated CD39 in hypoxia/ischemia protection. Blood 113(1), 224–232 (2009). https://doi.org/10.1182/blood-2008-06-165746
- A. Palazon, A.W. Goldrath, V. Nizet, R.S. Johnson, HIF transcription factors, inflammation, and immunity. Immunity 41(4), 518–528 (2014). https://doi.org/10.1016/j.immuni.2014.09.008
- K.M. Mahoney, P.D. Rennert, G.J. Freeman, Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14, 561 (2015). https://doi.org/10.1038/nrd4591
- G.L. Klement, Eco-evolution of cancer resistance. Sci. Transl. Med. 8(327), 327fs325 (2016). https://doi.org/10.1126/scitranslmed.aaf3802
- P.M. Enriquez-Navas, Y. Kam, T. Das, S. Hassan, A. Silva, P. Foroutan et al., Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci. Transl. Med. 8(327), 327ra324 (2016). https://doi.org/10.1126/scitranslmed.aad7842
- D.-W. Zheng, J.-L. Chen, J.-Y. Zhu, L. Rong, B. Li et al., Highly integrated nano-platform for breaking the barrier between chemotherapy and immunotherapy. Nano Lett. 16(7), 4341–4347 (2016). https://doi.org/10.1021/acs.nanolett.6b01432
- W. Chen, Y. Wang, M. Qin, X. Zhang, Z. Zhang, X. Sun, Z. Gu, Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 12(6), 5995–6005 (2018). https://doi.org/10.1021/acsnano.8b02235
- Y.N. Zhao, X.X. Sun, G.N. Zhang, B.G. Trewyn, I.I. Slowing, V.S.-Y. Lin, Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 5(2), 1366–1375 (2011). https://doi.org/10.1021/nn103077k
- T. Maj, W. Wang, J. Crespo, H. Zhang, W. Wang et al., Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332 (2017). https://doi.org/10.1038/ni.3868
- C. Wang, Y. Ye, Q. Hu, A. Bellotti, Z. Gu, Tailoring biomaterials for cancer immunotherapy: emerging trends and future outlook. Adv. Mater. 29(29), 1606036 (2017). https://doi.org/10.1002/adma.201606036
- A. Facciabene, X. Peng, I.S. Hagemann, K. Balint, A. Barchetti et al., Tumour hypoxia promotes tolerance and angiogenesis via ccl28 and Treg cells. Nature 475, 226 (2011). https://doi.org/10.1038/nature10169
- N. Casares, M.O. Pequignot, A. Tesniere, F. Ghiringhelli, S. Roux et al., Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202(12), 1691–1701 (2005). https://doi.org/10.1084/jem.20050915
- D. Hannani, A. Sistigu, O. Kepp, L. Galluzzi, G. Kroemer, L. Zitvogel, Prerequisites for the antitumor vaccine-like effect of chemotherapy and radiotherapy. Cancer J. 17(5), 351–358 (2011). https://doi.org/10.1097/PPO.0b013e3182325d4d
- S.L. Topalian, C.G. Drake, D.M. Pardoll, Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27(4), 450–461 (2015). https://doi.org/10.1016/j.ccell.2015.03.001
References
H. Wang, D.J. Mooney, Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nat. Mater. 17(9), 761–772 (2018). https://doi.org/10.1038/s41563-018-0147-9
Y. Chen, R. Xia, Y. Huang, W. Zhao, J. Li et al., An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy. Nat. Commun. 7, 13443 (2016). https://doi.org/10.1038/ncomms13443
P. Sharma, S. Hu-Lieskovan, J.A. Wargo, A. Ribas, Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4), 707–723 (2017). https://doi.org/10.1016/j.cell.2017.01.017
D.F. Quail, J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423 (2013). https://doi.org/10.1038/nm.3394
J.-N. Liu, W. Bu, J. Shi, Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem. Rev. 117(9), 6160–6224 (2017). https://doi.org/10.1021/acs.chemrev.6b00525
N. Li, L. Yu, J. Wang, X. Gao, Y. Chen, W. Pan, B. Tang, A mitochondria-targeted nanoradiosensitizer activating reactive oxygen species burst for enhanced radiation therapy. Chem. Sci. 9(12), 3159–3164 (2018). https://doi.org/10.1039/C7SC04458E
D. Guo, X. Ji, F. Peng, Y. Zhong, B. Chu, Y. Su, Y. He, Photostable and biocompatible fluorescent silicon nanoparticles for imaging-guided co-delivery of sirna and doxorubicin to drug-resistant cancer cells. Nano-Micro Lett. 11, 27 (2019). https://doi.org/10.1007/s40820-019-0257-1
D. Huo, S. Liu, C. Zhang, J. He, Z. Zhou, H. Zhang, Y. Hu, Hypoxia-targeting, tumor microenvironment responsive nanocluster bomb for radical-enhanced radiotherapy. ACS Nano 11(10), 10159–10174 (2017). https://doi.org/10.1021/acsnano.7b04737
D. Lukashev, B. Klebanov, H. Kojima, A. Grinberg, A. Ohta et al., Cutting edge: hypoxia-inducible factor 1α and its activation-inducible short isoform I. 1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. J. Immunol. 177(8), 4962–4965 (2006). https://doi.org/10.4049/jimmunol.177.8.4962
A. Ohta, R. Diwanji, R. Kini, M. Subramanian, A. Ohta, M. Sitkovsky, In vivo T cell activation in lymphoid tissues is inhibited in the oxygen-poor microenvironment. Front. Immunol. 2, 27 (2011). https://doi.org/10.3389/fimmu.2011.00027
R.K. Jain, Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26(5), 605–622 (2014). https://doi.org/10.1016/j.ccell.2014.10.006
M.V. Sitkovsky, S. Hatfield, R. Abbott, B. Belikoff, D. Lukashev, A. Ohta, Hostile, hypoxia-A2-adenosinergic tumor biology as the next barrier to overcome for tumor immunologists. Cancer Immunol. Res. 2(7), 598–605 (2014). https://doi.org/10.1158/2326-6066.Cir-14-0075
W.R. Wilson, M.P. Hay, Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393 (2011). https://doi.org/10.1038/nrc3064
J. Liu, L. Tian, R. Zhang, Z. Dong, H. Wang, Z. Liu, Collagenase-encapsulated ph-responsive nanoscale coordination polymers for tumor microenvironment modulation and enhanced photodynamic nanomedicine. ACS Appl. Mater. Interfaces 10(50), 43493–43502 (2018). https://doi.org/10.1021/acsami.8b17684
Y. Huang, S. Goel, D.G. Duda, D. Fukumura, R.K. Jain, Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res. 73(10), 2943–2948 (2013). https://doi.org/10.1158/0008-5472.Can-12-4354
Z. Zhou, B. Zhang, S. Wang, W. Zai, A. Yuan, Y. Hu, J. Wu, Perfluorocarbon nanoparticles mediated platelet blocking disrupt vascular barriers to improve the efficacy of oxygen-sensitive antitumor drugs. Small 14(45), 1801694 (2018). https://doi.org/10.1002/smll.201801694
M. Thiel, A. Chouker, A. Ohta, E. Jackson, C. Caldwell et al., Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury. PLoS Biol. 3(6), e174 (2005). https://doi.org/10.1371/journal.pbio.0030174
S.M. Hatfield, J. Kjaergaard, D. Lukashev, B. Belikoff, T.H. Schreiber et al., Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection. J. Mol. Med. 92(12), 1283–1292 (2014). https://doi.org/10.1007/s00109-014-1189-3
S.M. Hatfield, J. Kjaergaard, D. Lukashev, T.H. Schreiber, B. Belikoff et al., Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl. Med. 7(277), 277ra230 (2015). https://doi.org/10.1126/scitranslmed.aaa1260
S. Gao, H. Lin, H. Zhang, H. Yao, Y. Chen, J. Shi, Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 6(3), 1801733 (2019). https://doi.org/10.1002/advs.201801733
J. Wang, Y. Zhang, E. Archibong, F.S. Ligler, Z. Gu, Leveraging H2O2 levels for biomedical applications. Adv. Biosyst. 1(9), 1700084 (2017). https://doi.org/10.1002/adbi.201700084
D. Deng, C. Hao, S. Sen, C. Xu, P. Král, N.A. Kotov, Template-free hierarchical self-assembly of iron diselenide nanoparticles into mesoscale hedgehogs. J. Am. Chem. Soc. 139(46), 16630–16639 (2017). https://doi.org/10.1021/jacs.7b07838
D. Deng, Y. Chen, J. Cao, J. Tian, Z. Qian, S. Achilefu, Y. Gu, High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging. Chem. Mater. 24(15), 3029–3037 (2012). https://doi.org/10.1021/cm3015594
C. Cheng, S. Li, A. Thomas, N.A. Kotov, R. Haag, Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem. Rev. 117(3), 1826–1914 (2017). https://doi.org/10.1021/acs.chemrev.6b00520
P.N. Manghnani, W. Wu, S. Xu, F. Hu, C. Teh, B. Liu, Visualizing photodynamic therapy in transgenic zebrafish using organic nanoparticles with aggregation-induced emission. Nano-Micro Lett. 10(4), 61 (2018). https://doi.org/10.1007/s40820-018-0214-4
C.R. Gordijo, A.Z. Abbasi, M.A. Amini, H.Y. Lip, A. Maeda et al., Design of hybrid MnO2-polymer-lipid nanoparticles with tunable oxygen generation rates and tumor accumulation for cancer treatment. Adv. Funct. Mater. 25(12), 1858–1872 (2015). https://doi.org/10.1002/adfm.201404511
Y. Yang, L. Ma, C. Cheng, Y. Deng, J. Huang et al., Nonchemotherapic and robust dual-responsive nanoagents with on-demand bacterial trapping, ablation, and release for efficient wound disinfection. Adv. Funct. Mater. 28(21), 1705708 (2018). https://doi.org/10.1002/adfm.201705708
S. Shi, F. Chen, S. Goel, S.A. Graves, H. Luo et al., In vivo tumor-targeted dual-modality PET/optical imaging with a yolk/shell-structured silica nanosystem. Nano-Micro Lett. 10(4), 65 (2018). https://doi.org/10.1007/s40820-018-0216-2
G. Yang, L. Xu, Y. Chao, J. Xu, X. Sun, Y. Wu, R. Peng, Z. Liu, Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 8(1), 902 (2017). https://doi.org/10.1038/s41467-017-01050-0
M. Song, T. Liu, C. Shi, X. Zhang, X. Chen, Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 10(1), 633–647 (2016). https://doi.org/10.1021/acsnano.5b06779
R.-Q. Li, C. Zhang, B.-R. Xie, W.-Y. Yu, W.-X. Qiu, H. Cheng, X.-Z. Zhang, A two-photon excited O2-evolving nanocomposite for efficient photodynamic therapy against hypoxic tumor. Biomaterials 194, 84–93 (2019). https://doi.org/10.1016/j.biomaterials.2018.12.017
L. Meng, Y. Cheng, X. Tong, S. Gan, Y. Ding et al., Tumor oxygenation and hypoxia inducible factor-1 functional inhibition via a reactive oxygen species responsive nanoplatform for enhancing radiation therapy and abscopal effects. ACS Nano 12(8), 8308–8322 (2018). https://doi.org/10.1021/acsnano.8b03590
Y. Zhang, F. Wang, C. Liu, Z. Wang, L. Kang et al., Nanozyme decorated metal–organic frameworks for enhanced photodynamic therapy. ACS Nano 12(1), 651–661 (2018). https://doi.org/10.1021/acsnano.7b07746
Z. Wang, Y. Zhang, E. Ju, Z. Liu, F. Cao, Z. Chen, J. Ren, X. Qu, Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 9(1), 3334 (2018). https://doi.org/10.1038/s41467-018-05798-x
C. Yao, W. Wang, P. Wang, M. Zhao, X. Li, F. Zhang, Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy. Adv. Mater. 30(7), 1704833 (2018). https://doi.org/10.1002/adma.201704833
T. Finkel, M. Serrano, M.A. Blasco, The common biology of cancer and ageing. Nature 448, 767–774 (2007). https://doi.org/10.1038/nature05985
X. Song, J. Xu, C. Liang, Y. Chao, Q. Jin, C. Wang, M. Chen, Z. Liu, Self-supplied tumor oxygenation through separated liposomal delivery of H2O2 and catalase for enhanced radio-immunotherapy of cancer. Nano Lett. 18(10), 6360–6368 (2018). https://doi.org/10.1021/acs.nanolett.8b02720
M. Thiel, C.C. Caldwell, S. Kreth, S. Kuboki, P. Chen et al., Targeted deletion of HIF-1α gene in T cells prevents their inhibition in hypoxic inflamed tissues and improves septic mice survival. PLoS ONE 2(9), e853 (2007). https://doi.org/10.1371/journal.pone.0000853
W.-P. Li, C.-H. Su, Y.-C. Chang, Y.-J. Lin, C.-S. Yeh, Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS Nano 10(2), 2017–2027 (2016). https://doi.org/10.1021/acsnano.5b06175
J. Wang, D. Xu, T. Deng, Y. Li, L. Xue, T. Yan, D. Huang, D. Deng, Self-decomposable mesoporous doxorubicin@ silica nanocomposites for nuclear targeted chemo-photodynamic combination therapy. ACS Appl. Nano Mater. 1(4), 1976–1984 (2018). https://doi.org/10.1021/acsanm.8b00486
S. Zhang, Z. Chu, C. Yin, C. Zhang, G. Lin, Q. Li, Controllable drug release and simultaneously carrier decomposition of SiO2-drug composite nanoparticles. J. Am. Chem. Soc. 135(15), 5709–5716 (2013). https://doi.org/10.1021/ja3123015
S.B. Lee, J.-E. Lee, S.J. Cho, J. Chin, S.K. Kim et al., Crushed gold shell nanoparticles labeled with radioactive iodine as a theranostic nanoplatform for macrophage-mediated photothermal therapy. Nano-Micro Lett. 11, 36 (2019). https://doi.org/10.1007/s40820-019-0266-0
H. Chen, J. Tian, W. He, Z. Guo, H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc. 137(4), 1539–1547 (2015). https://doi.org/10.1021/ja511420n
K. Synnestvedt, G.T. Furuta, K.M. Comerford, N. Louis, J. Karhausen et al., Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Investig. 110(7), 993–1002 (2002). https://doi.org/10.1172/jci0215337
H.K. Eltzschig, D. Kohler, T. Eckle, T. Kong, S.C. Robson, S.P. Colgan, Central role of sp1-regulated CD39 in hypoxia/ischemia protection. Blood 113(1), 224–232 (2009). https://doi.org/10.1182/blood-2008-06-165746
A. Palazon, A.W. Goldrath, V. Nizet, R.S. Johnson, HIF transcription factors, inflammation, and immunity. Immunity 41(4), 518–528 (2014). https://doi.org/10.1016/j.immuni.2014.09.008
K.M. Mahoney, P.D. Rennert, G.J. Freeman, Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14, 561 (2015). https://doi.org/10.1038/nrd4591
G.L. Klement, Eco-evolution of cancer resistance. Sci. Transl. Med. 8(327), 327fs325 (2016). https://doi.org/10.1126/scitranslmed.aaf3802
P.M. Enriquez-Navas, Y. Kam, T. Das, S. Hassan, A. Silva, P. Foroutan et al., Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci. Transl. Med. 8(327), 327ra324 (2016). https://doi.org/10.1126/scitranslmed.aad7842
D.-W. Zheng, J.-L. Chen, J.-Y. Zhu, L. Rong, B. Li et al., Highly integrated nano-platform for breaking the barrier between chemotherapy and immunotherapy. Nano Lett. 16(7), 4341–4347 (2016). https://doi.org/10.1021/acs.nanolett.6b01432
W. Chen, Y. Wang, M. Qin, X. Zhang, Z. Zhang, X. Sun, Z. Gu, Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 12(6), 5995–6005 (2018). https://doi.org/10.1021/acsnano.8b02235
Y.N. Zhao, X.X. Sun, G.N. Zhang, B.G. Trewyn, I.I. Slowing, V.S.-Y. Lin, Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 5(2), 1366–1375 (2011). https://doi.org/10.1021/nn103077k
T. Maj, W. Wang, J. Crespo, H. Zhang, W. Wang et al., Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332 (2017). https://doi.org/10.1038/ni.3868
C. Wang, Y. Ye, Q. Hu, A. Bellotti, Z. Gu, Tailoring biomaterials for cancer immunotherapy: emerging trends and future outlook. Adv. Mater. 29(29), 1606036 (2017). https://doi.org/10.1002/adma.201606036
A. Facciabene, X. Peng, I.S. Hagemann, K. Balint, A. Barchetti et al., Tumour hypoxia promotes tolerance and angiogenesis via ccl28 and Treg cells. Nature 475, 226 (2011). https://doi.org/10.1038/nature10169
N. Casares, M.O. Pequignot, A. Tesniere, F. Ghiringhelli, S. Roux et al., Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202(12), 1691–1701 (2005). https://doi.org/10.1084/jem.20050915
D. Hannani, A. Sistigu, O. Kepp, L. Galluzzi, G. Kroemer, L. Zitvogel, Prerequisites for the antitumor vaccine-like effect of chemotherapy and radiotherapy. Cancer J. 17(5), 351–358 (2011). https://doi.org/10.1097/PPO.0b013e3182325d4d
S.L. Topalian, C.G. Drake, D.M. Pardoll, Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27(4), 450–461 (2015). https://doi.org/10.1016/j.ccell.2015.03.001