Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding
Corresponding Author: Zhihui Zeng
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 240
Abstract
There is an urgent demand for flexible, lightweight, mechanically robust, excellent electromagnetic interference (EMI) shielding materials. Two-dimensional (2D) transition metal carbides/nitrides (MXenes) have been potential candidates for the construction of excellent EMI shielding materials due to their great electrical electroconductibility, favorable mechanical nature such as flexibility, large aspect ratios, and simple processability in aqueous media. The applicability of MXenes for EMI shielding has been intensively explored; thus, reviewing the relevant research is beneficial for advancing the design of high-performance MXene-based EMI shields. Herein, recent progress in MXene-based macrostructure development is reviewed, including the associated EMI shielding mechanisms. In particular, various structural design strategies for MXene-based EMI shielding materials are highlighted and explored. In the end, the difficulties and views for the future growth of MXene-based EMI shields are proposed. This review aims to drive the growth of high-performance MXene-based EMI shielding macrostructures on basis of rational structural design and the future high-efficiency utilization of MXene.
Highlights:
1 MXene-based macrostructure development and EMI shielding mechanisms are reviewed.
2 Various structural design strategies for MXene-based EMI shielding materials are highlighted and discussed.
3 Current challenges and future directions for MXenes in electromagnetic interference shielding are outlined.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Gholamirad, J.Q. Ge, M. Sadati, G.A. Wang, N. Taheri-Qazvini, Tuning the self-assembled morphology of Ti3C2Tx MXene-based hybrids for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 14(43), 49158–49170 (2022). https://doi.org/10.1021/acsami.2c14019
- X. Shen, J.K. Kim, Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. 16, 1387–1413 (2022). https://doi.org/10.1007/s12274-022-4938-6
- F.S. Wu, Z.H. Tian, P.Y. Hu, J.W. Tang, X.Q. Xu, L. Pan, J. Liu, P.G. Zhang, Z.M. Sun, Lightweight and flexible PAN@PPy/MXene films with outstanding electromagnetic interference shielding and joule heating performance. Nanoscale 14(48), 18133–18142 (2022). https://doi.org/10.1039/d2nr05318g
- A. Ali, F. Hussain, M.F. Tahir, M. Ali, M.Z. Khan, B. Tomkova, J. Militky, M.T. Noman, M. Azeem, Fabrication of conductive, high strength and electromagnetic interference (EMI) shielded green composites based on waste materials. Polymers-Basel 14(7), 1289 (2022). https://doi.org/10.3390/polym14071289
- Z.H. Zhou, Q.C. Song, B.X. Huang, S.Y. Feng, C.H. Lu, Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 15(7), 12405–12417 (2021). https://doi.org/10.1021/acsnano.1c04526
- S.Y. Feng, Y. Yi, B.X. Chen, P.C. Deng, Z.H. Zhou, C.H. Lu, Rheology-guided assembly of a highly aligned MXene/cellulose nanofiber composite film for high-performance electromagnetic interference shielding and infrared stealth. ACS Appl. Mater. Interfaces 14(31), 36060–36070 (2022). https://doi.org/10.1021/acsami.2c11292
- Y.S. Chen, Y. Huang, C.B. Park, R.C. Che, Z.Z. Yu, Electromagnetic interference shielding and microwave absorption materials: a virtual special issue. Carbon 186, 320–322 (2022). https://doi.org/10.1016/j.carbon.2021.10.058
- J.Y. Cheng, C.B. Li, Y.F. Xiong, H.B. Zhang, H. Raza, S. Ullah, J.Y. Wu, G.P. Zheng, Q. Cao, D.Q. Zhang, Q.B. Zheng, R.C. Che, Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14(1), 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
- M.L. Cheng, M.F. Ying, R.Z. Zhao, L.Z. Ji, H.X. Li, X.G. Liu, J. Zhang, Y.X. Li, X.L. Dong, X.F. Zhang, Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16(10), 16996–17007 (2022). https://doi.org/10.1021/acsnano.2c07111
- Y.Y. Gao, D. Bao, M.H. Zhang, Y.X. Cui, F. Xu, X.S. Shen, Y.J. Zhu, H.Y. Wang, Millefeuille-inspired thermal interface materials based on double self-assembly technique for efficient microelectronic cooling and electromagnetic interference shielding. Small 18(2), 2105567 (2022). https://doi.org/10.1002/smll.202105567
- J.W. Song, K.J. Xu, J. He, H.J. Ye, L.X. Xu, Three-dimensional graphene/carbon nanotube electromagnetic shielding composite material based on melamine resin foam template. Polym. Compos. 44(5), 2836–2845 (2023). https://doi.org/10.1002/pc.27284
- M. Asandulesa, C. Hamciuc, A. Pui, C. Virlan, G. Lisa, A.I. Barzic, B. Oprisan, Cobalt ferrite/polyetherimide composites as thermally stable materials for electromagnetic interference shielding uses. Int. J. Mol. Sci. 24(2), 999 (2023). https://doi.org/10.3390/ijms24020999
- T.Y. Zhang, H. Hu, J.L. Wang, Z. Fen, J.W. Guo, X.L. Liu, Research on electromagnetic shielding effectiveness of multi-layered LZ91/Al alloy composite materials by asynchronous accumulative roll bonding. Mater. Sci. 28(4), 434–439 (2022). https://doi.org/10.5755/j02.ms.29571
- V. Lalan, S. Ganesanpotti, The smallest anions, induced porosity and graphene interfaces in C12A7: e– electrides: a paradigm shift in electromagnetic absorbers and shielding materials. J. Mater. Chem. C 10(3), 969–982 (2022). https://doi.org/10.1039/d1tc03762e
- Q.N. Lv, X.Y. Tao, S.H. Shi, Y.J. Li, N. Chen, From materials to components: 3D-printed architected honeycombs toward high-performance and tunable electromagnetic interference shielding. Compos. B Eng. 230(1), 109500 (2022). https://doi.org/10.1016/j.compositesb.2021.109500
- S.Y. Feng, Z.Y. Zhan, Y. Yi, Z.H. Zhou, C.H. Lu, Facile fabrication of MXene/cellulose fiber composite film with homogeneous and aligned structure via wet co-milling for enhancing electromagnetic interference shielding performance. Compos. Part A—Appl. S. 157, 106907 (2022). https://doi.org/10.1016/j.compositesa.2022.106907
- A. Rajan, S.K. Solaman, S. Ganesanpotti, Design and fabrication of layered electromagnetic interference shielding materials: a cost-effective strategy for performance prediction and efficiency tuning. ACS Appl. Mater. Interfaces 15(4), 5822–5835 (2023). https://doi.org/10.1021/acsami.2c19016
- R. Kumar, B.C. Maji, M. Krishnan, Synthesis of 2D material MXene from Ti3AlC2 max-phase for electromagnetic shielding applications. AIP Conf. Proc. 2265(1), 030705 (2020). https://doi.org/10.1063/5.0025338
- Y.F. Yang, N. Wu, B. Li, W. Liu, F. Pan, Z.H. Zeng, J.R. Liu, Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16(9), 15042–15052 (2022). https://doi.org/10.1021/acsnano.2c06164
- X.L. Li, X.W. Yin, S. Liang, M.H. Li, L.F. Cheng, L.T. Zhang, 2D carbide MXene Ti2CTx as a novel high-performance electromagnetic interference shielding material. Carbon 146(2), 210–217 (2019). https://doi.org/10.1016/j.carbon.2019.02.003
- Y. Gogotsi, P. Simon, True performance metrics in electrochemical energy storage. Science 334(6058), 917–918 (2011). https://doi.org/10.1126/science.1213003
- H.B. Liu, R.L. Fu, X.Q. Su, B.Y. Wu, H. Wang, Y. Xu, X.H. Liu, MXene confined in shape-stabilized phase change material combining enhanced electromagnetic interference shielding and thermal management capability. Compos. Sci. Technol. 210(7), 108835 (2021). https://doi.org/10.1016/j.compscitech.2021.108835
- J.F. Wang, H. Kang, Z.J. Cheng, Z.M. Xie, Y.S. Wang, Y.Y. Liu, Z.M. Fan, Research progress in Ti3C2Tx MXene-based electromagnetic interference shielding material. Nanoscale 49(6), 14–25 (2021). https://doi.org/10.11868/j.issn.1001-1381.2020.000280
- S.J. Wang, D.S. Li, L. Jiang, D.N. Fang, Flexible and mechanically strong MXene/FeCo@C decorated carbon cloth: a multifunctional electromagnetic interference shielding material. Compos. Sci. Technol. 221, 109337 (2022). https://doi.org/10.1016/j.compscitech.2022.109337
- X.W. Sun, X.D. Wu, P.C. Deng, D. Tian, Y.Y. Song, J.Q. Zhao, Q.Y. Li, S.Y. Feng, J. Zhang, C.H. Lu, H.W. Zou, Z.H. Zhou, Facile and universal fabrication of cellulose nanofibers from bulk lignocellulose materials and their applications in multifunctional epidermal electrophysiological signals monitoring. Ind. Crop Prod. 199, 116762 (2023). https://doi.org/10.1016/j.indcrop.2023.116762
- J.-M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon-based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R 74(7), 211–232 (2013). https://doi.org/10.1016/j.mser.2013.06.001
- S.A. Schelkunoff, A mathematical theory of linear arrays. Bell Syst. Tech. J. 22(1), 80–107 (1943). https://doi.org/10.1002/j.1538-73051943.tb01306.x
- Y. Yi, S. Y. Feng, Z. H. Zhou, C. H. Lu. Wet mechanical grinding regulates the micro-nano interfaces and structure of MXene/PVA composite for enhanced mechanical properties and thermal conductivity. Compos. Part A—Appl. S. (2022). https://doi.org/10.1016/j.compositesa.2022.107232
- A. Nazir, H.J. Yu, L. Wang, M. Haroon, R.S. Ullah, S. Fahad, K.U.R. Naveed, T. Elshaarani, A. Khan, M. Usman, Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding. J. Mater. Sci. 53(12), 8699–8719 (2018). https://doi.org/10.1007/s10853-018-2122-x
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai, Q. Shao, Y. Chen, L. Guo, C. Liu, S. Angaiah, Z. Guo, Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140(9), 696–733 (2018). https://doi.org/10.1016/j.carbon.2018.09.006
- D.Q. Zhang, S. Liang, J.X. Chai, T.T. Liu, X.Y. Yang, H. Wang, J.Y. Cheng, G.P. Zheng, M.S. Cao, Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. J. Phys. Chem. Solids 134(5), 77–82 (2019). https://doi.org/10.1016/j.jpcs.2019.05.041
- S. Geetha, K.K. Satheesh Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: methods and materials—a review. J. Appl. Polym. Sci. 112(4), 2073–2086 (2009). https://doi.org/10.1002/app.29812
- P. Kumar, U. Narayan Maiti, A. Sikdar, T. Kumar Das, A. Kumar, V. Sudarsan, Recent advances in polymer and polymer composites for electromagnetic interference shielding: Review and future prospects. Polym. Rev. 59(4), 687–738 (2019). https://doi.org/10.1080/15583724.2019.1625058
- R.B. Schulz, V.C. Plantz, D.R. Brush, Shielding theory and practice. IEEE T. Electromagn. C. 30(3), 187–201 (1988). https://doi.org/10.1109/15.3297
- S. Sankaran, K. Deshmukh, M.B. Ahamed, S.K.K. Pasha, Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A—Appl. Sci. Manuf. 114(8), 49–71 (2018). https://doi.org/10.1016/j.compositesa.2018.08.006
- H.S. Wang, G.B. Wang, W.L. Li, Q.T. Wang, W. Wei, Z.H. Jiang, S.L. Zhang, A material with high electromagnetic radiation shielding effectiveness fabricated using multi-walled carbon nanotubes wrapped with poly (ether sulfone) in a poly (ether ether ketone) matrix. J. Mater. Chem. C 22(39), 21232–21237 (2012). https://doi.org/10.1039/c2jm35129c
- C.F. Li, C.X. Zhou, J.B. Lv, B. Liang, R.K. Li, Y. Liu, J.H. Hu, K. Zeng, G. Yang, Bio-molecule adenine building block effectively enhances electromagnetic interference shielding performance of polyimide-derived carbon foam. Carbon 149(4), 190–202 (2019). https://doi.org/10.1016/j.carbon2019.04.012
- Y. Yuan, W.L. Yin, M.L. Yang, F. Xu, X. Zhao, J.J. Li, Q.Y. Peng, X.D. He, S.Y. Du, Y.B. Li, Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding. Carbon 130(12), 59–68 (2018). https://doi.org/10.1016/j.carbon2017.12.122
- D. Yevick, T. Friese, F. Schmidt, A comparison of transparent boundary conditions for the fresnel equation. J. Comput. Chem. 168(2), 433–444 (2001). https://doi.org/10.1006/jcph.2001.6708
- D.Q. Zhang, J.Y. Cheng, X.Y. Yang, B. Zhao, M.S. Cao, Electromagnetic and microwave absorbing properties of magnetite nanops decorated carbon nanotubes/polyaniline multiphase heterostructures. J. Mater. Sci. 49(20), 7221–7230 (2014). https://doi.org/10.1007/s10853-014-8429-3
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- R. Kumar, H.K. Choudhary, S.P. Pawar, S. Bose, B. Sahoo, Carbon encapsulated nanoscale iron/iron-carbide/graphite ps for EMI shielding and microwave absorption. Phys. Chem. Chem. Phys. 19(34), 23268–23279 (2017). https://doi.org/10.1039/c7cp03175k
- T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee, M.K. Kim, S.J. Kim, D. Kim, Y. Gogotsi, S.O. Kim, C.M. Koo, Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32(9), 1906769 (2020). https://doi.org/10.1002/adma.201906769
- Q. Song, F. Ye, X.W. Yin, W. Li, H.J. Li, Y.S. Liu, K.Z. Li, K.Y. Xie, X.H. Li, Q.G. Fu, L.F. Cheng, L.T. Zhang, B.Q. Wei, Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29(31), 1701583 (2017). https://doi.org/10.1002/adma.201701583
- Y. Li, X. Tian, S.P. Gao, L. Jing, K.R. Li, H.T. Yang, F.F. Fu, J.Y. Lee, Y.X. Guo, J.S. Ho, P.Y. Chen, Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30(5), 1907451 (2020). https://doi.org/10.1002/adfm.201907451
- B.P. Singh, P. Saini, T. Gupta, P. Garg, G. Kumar, I. Pande, S. Pande, R.K. Seth, S.K. Dhawan, R.B. Mathur, Designing of multiwalled carbon nanotubes reinforced low density polyethylene nanocomposites for suppression of electromagnetic radiation. J. Nanopart. Res. 13(12), 7065–7074 (2011). https://doi.org/10.1007/s11051-011-0619-1
- B.R. Kim, H.K. Lee, E. Kim, S.H. Lee, Intrinsic electromagnetic radiation shielding/absorbing characteristics of polyaniline-coated transparent thin films. Synth. Met. 160(17–18), 1838–1842 (2010). https://doi.org/10.1016/j.synthmet.2010.06.027
- M.Y. Peng, F.X. Qin. Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. (2021). https://doi.org/10.1063/5.0075019
- Y.Z. Li, B.J. Wang, X.F. Sui, H. Xu, L.P. Zhang, Y. Zhong, Z.P. Mao, Facile synthesis of microfibrillated cellulose/organosilicon/polydopamine composite sponges with flame retardant properties. Cellulose 24(9), 3815–3823 (2017). https://doi.org/10.1007/s10570-017-1373-z
- B. Wang, W.F. Li, J.P. Deng, Chiral 3D porous hybrid foams constructed by graphene and helically substituted polyacetylene: preparation and application in enantioselective crystallization. J. Mater. Sci. 52(8), 4575–4586 (2017). https://doi.org/10.1007/s10853-016-0702-1
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon, J. Hong, H. Kim, D. Kim, Y. Gogotsi, C.M. Koo, Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CnTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
- K. Hantanasirisakul, M. Alhabeb, A. Lipatov, K. Maleski, B. Anasori, P. Salles, C. Ieosakulrat, P. Pakawatpanurut, A. Sinitskii, S.J. May, Y. Gogotsi, Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem. Mater. 31(8), 2941–2951 (2019). https://doi.org/10.1021/acs.chemmater.9b00401
- M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, J. Yuan, 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359(11), 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
- K.P. Qian, Q.F. Zhou, H.M. Wu, J.H. Fang, M. Miao, Y.H. Yang, S.M. Cao, L.Y. Shi, X. Feng, Carbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shielding. Compos. Part. A—Appl. Sci. Manuf. 141, 106229 (2021). https://doi.org/10.1016/j.compositesa.2020.106229
- J. Liu, H.B. Zhang, R.H. Sun, Y.F. Liu, Z.S. Liu, A.G. Zhou, Z.ZYu. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- X.Y. Wu, B.Y. Han, H.B. Zhang, X. Xie, T.X. Tu, Y. Zhang, Y. Dai, R. Yang, Z.ZYu. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
- S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu, S. Hong, Z.Z. Yu, Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- R.J. Bian, G.L. He, W.Q. Zhi, S.L. Xiang, T.W. Wang, D.Y. Cai, Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C 7(3), 474–478 (2019). https://doi.org/10.1039/c8tc04795b
- Y.F. Yang, B. Li, N. Wu, W. Liu, S.Y. Zhao, C.J. Zhang, J.R. Liu, Z.H. Zeng, Biomimetic porous MXene-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Mater. Lett. 4(11), 2352–2361 (2022). https://doi.org/10.1021/acsmaterialslett.2c00778
- Y. Bai, S.H. Bi, W.K. Wang, N. Ding, Y.Y. Lu, M.Y. Jiang, C.B. Ding, W.W. Zhao, N. Liu, J. Bian, S.J. Liu, Q. Zhao, Biocompatible, stretchable, and compressible cellulose/MXene hydrogel for strain sensor and electromagnetic interference shielding. Soft Mater. 20(4), 444–454 (2022). https://doi.org/10.1080/1539445x.2022.2081580
- F.Y. Hu, X.H. Wang, S. Bao, L.M. Song, S. Zhang, H.H. Niu, B.B. Fan, R. Zhang, H.X. Li, Tailoring electromagnetic responses of delaminated Mo2TiC2Tx MXene through the decoration of Ni ps of different morphologies. Chem. Eng. J. 440, 135855 (2022). https://doi.org/10.1016/j.cej.2022.135855
- R. Khaledialidusti, A.K. Mishra, A. Barnoush, Atomic defects in monolayer ordered double transition metal carbide (Mo2TiC2Tx) MXene and CO2 adsorption. J. Mater. Chem. C 8(14), 4771–4779 (2020). https://doi.org/10.1039/c9tc06046d
- J.Y. Wang, P.L. He, Y.L. Shen, L.X. Dai, Z. Li, Y. Wu, C.H. An, FeNi nanops on Mo2TiC2Tx MXene@nickel foam as robust electrocatalysts for overall water splitting. Nano Res. 14(10), 3474–3481 (2021). https://doi.org/10.1007/s12274-021-3660-0
- X.Y. Zhao, K.W. Tang, C. Lee, C.F. Du, H. Yu, X.M. Wang, W.H. Qi, Q. Ye, Q. Y. Yan. Promoting the water-reduction kinetics and alkali tolerance of MoNi4 nanocrystals via a Mo2TiC2Tx induced built-in electric field. Small (2022). https://doi.org/10.1002/smll.202107541
- P. He, X.X. Wang, Y.Z. Cai, J.C. Shu, Q.L. Zhao, J. Yuan, M.S. Cao, Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale 11(13), 6080–6088 (2019). https://doi.org/10.1039/c8nr10489a
- W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang, M.G. Ma, F. Chen, Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- F. Xie, F.F. Jia, L.H. Zhuo, Z.Q. Lu, L.M. Si, J.Z. Huang, M.Y. Zhang, Q. Ma, Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11(48), 23382–23391 (2019). https://doi.org/10.1039/c9nr07331k
- P. He, M.S. Cao, Y.Z. Cai, J.C. Shu, W.Q. Cao, J. Yuan, Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 157(10), 80–89 (2020). https://doi.org/10.1016/j.carbon.2019.10.009
- L. Wang, L.X. Chen, P. Song, C.B. Liang, Y.J. Lu, H. Qiu, Y.L. Zhang, J. Kong, J.W. Gu, Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application. Compos. B Eng. 171(4), 111–118 (2019). https://doi.org/10.1016/j.compositesb.2019.04.050
- R.T. Liu, M. Miao, Y.H. Li, J.F. Zhang, S.M. Cao, X. Feng, Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(51), 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
- Y.L. Zhang, L. Wang, J.L. Zhang, P. Song, Z.R. Xiao, C.B. Liang, H. Qiu, J. Kong, J.W. Gu, Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/Co-doped polyaniline electromagnetic interference shielding composite films. Compos. Sci. Technol. 183, 107833 (2019). https://doi.org/10.1016/j.compscitech.2019.107833
- F.S. Yang, C.L. Li, W.Z. Xu, Z.S. Cai, Multifunctional antifogging coatings based on ZrO2 and SiO2 nanops by spray-spin-blow layer-by-layer assembly. J. Mater. Res. 34(22), 3827–3836 (2019). https://doi.org/10.1557/jmr.2019.309
- Y.B. Zhao, H.P. Liu, C.Y. Li, Y. Chen, S.Q. Li, R.C. Zeng, Z.L. Wang, Corrosion resistance and adhesion strength of a spin-assisted layer-by-layer assembled coating on AZ31 magnesium alloy. Appl. Surf. Sci. 434(11), 787–795 (2018). https://doi.org/10.1016/j.apsusc.2017.11.012
- S. Javaid, A. Mahmood, H. Nasir, M. Iqbal, N. Ahmed, N.M. Ahmad, Layer-by-layer self-assembled dip coating for antifouling functionalized finishing of cotton textile. Polymers 14(13), 2540 (2022). https://doi.org/10.3390/polym14132540
- J. Alongi, F. Carosio, A. Frache, G. Malucelli, Layer by layer coatings assembled through dipping, vertical or horizontal spray for cotton flame retardancy. Carbohydr. Polym. 92(1), 114–119 (2013). https://doi.org/10.1016/j.carbpol.2012.08.086
- M.M. Xiong, Z.H. Ren, W.J. Liu, Fabrication of uv-resistant and superhydrophobic surface on cotton fabric by functionalized polyethyleneimine/SiO2 via layer-by-layer assembly and dip-coating. Cellulose 26(16), 8951–8962 (2019). https://doi.org/10.1007/s10570-019-02705-5
- T. Charinpanitkul, W. Suthabanditpong, H. Watanabe, T. Shirai, K. Faungnawakij, N. Viriya-empikul, M. Fuji, Improved hydrophilicity of zinc oxide-incorporated layer-by-layer polyelectrolyte film fabricated by dip coating method. J. Ind. Eng. Chem. 18(4), 1441–1445 (2012). https://doi.org/10.1016/j.jiec.2012.02.003
- B. Li, N. Wu, Y.F. Yang, F. Pan, C.X. Wang, G. Wang, L. Xiao, W. Liu, J.R. Liu, Z.H. Zeng, Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 33(11), 2213357 (2022). https://doi.org/10.1002/adfm.202213357
- G.M. Weng, J.Y. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi, A.D. Taylor, Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
- X.X. Jin, J.F. Wang, L.Z. Dai, X.Y. Liu, L. Li, Y.Y. Yang, Y.X. Cao, W.J. Wang, H. Wu, S.Y. Guo, Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020). https://doi.org/10.1016/j.cej.2019.122475
- B. Zhou, Z. Zhang, Y.L. Li, G.J. Han, Y.Z. Feng, B. Wang, D.B. Zhang, J.M. Ma, C.T. Liu, Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
- Y. Wang, W. Wang, Q.B. Qi, N. Xu, D. Yu, Layer-by-layer assembly of pdms-coated nickel ferrite/multiwalled carbon nanotubes/cotton fabrics for robust and durable electromagnetic interference shielding. Cellulose 27(5), 2829–2845 (2020). https://doi.org/10.1007/s10570-019-02949-1
- X.C. Jia, B. Shen, L.H. Zhang, W.G. Zheng, Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and joule heating. Compos. B Eng. 198, 108250 (2020). https://doi.org/10.1016/j.compositesb.2020.108250
- X.F. Wang, Z.W. Lei, X.D. Ma, G.F. He, T. Xu, J. Tan, L.L. Wang, X.S. Zhang, L.J. Qu, X.J. Zhang, A lightweight MXene-coated nonwoven fabric with excellent flame retardancy, EMI shielding, and electrothermal/photothermal conversion for wearable heater. Chem. Eng. J. 430, 132605 (2022). https://doi.org/10.1016/j.cej.2021.132605
- H.Y. Zhang, J.Y. Chen, H. Ji, N. Wang, S. Feng, H. Xiao, Electromagnetic interference shielding with absorption-dominant performance of Ti3C2Tx MXene/non-woven laminated fabrics. Text. Res. J. 91(21–22), 2448–2458 (2021). https://doi.org/10.1177/00405175211006216
- X.S. Zhang, X.F. Wang, Z.W. Lei, L.L. Wang, M.W. Tian, S.F. Zhu, H. Xiao, X.N. Tang, L.J. Qu, Flexible MXene-decorated fabric with interwoven conductive networks for integrated joule heating, electromagnetic interference shielding, and strain sensing performances. Acs. Appl. Mater. Interfaces 12(12), 14459–14467 (2020). https://doi.org/10.1021/acsami.0c01182
- L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F.L. Guan, Z.Z. Yu, Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905179 (2019). https://doi.org/10.1002/adfm.201905197
- D.W. Hu, X.Y. Huang, S.T. Li, P.K. Jiang, Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 188, 107995 (2020). https://doi.org/10.1016/j.compscitech.2020.107995
- C. Ma, T. Liu, W. Xin, G.Q. Xi, M.G. Ma, Breathable and wearable MXene-decorated air-laid paper with superior folding endurance and electromagnetic interference-shielding performances. Front. Mater. 6, 308 (2019). https://doi.org/10.3389/fmats.2019.00308
- Z.M. Fan, D.L. Wang, Y. Yuan, Y.S. Wang, Z.J. Cheng, Y.Y. Liu, Z.M. Xie, A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). https://doi.org/10.1016/j.cej.2019.122696
- M. Sang, Y.X. Wu, S. Liu, L.F. Bai, S. Wang, W.Q. Jiang, X.L. Gong, S.H. Xuan, Flexible and lightweight melamine sponge/MXene/polyborosiloxane (MSMP) hybrid structure for high-performance electromagnetic interference shielding and anti-impact safe-guarding. Compos. B Eng. 211, 108669 (2021). https://doi.org/10.1016/j.compositesb.2021.108669
- B. Li, Y.F. Yang, N. Wu, S.Y. Zhao, H. Jin, G.L. Wang, X.Y. Li, W. Liu, J.R. Liu, Z.H. Zeng, Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano 16(11), 19293–19304 (2022). https://doi.org/10.1021/acsnano.2c08678
- W.T. Cao, C. Ma, S. Tan, M.G. Ma, P.B. Wan, F. Chen, Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro. Lett. 11(72), 1–17 (2019). https://doi.org/10.1007/s40820-019-0304-y
- W. Xin, G.Q. Xi, W.T. Cao, C. Ma, T. Liu, M.G. Ma, J. Bian, Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding. Rsc. Adv. 9(51), 29636–29644 (2019). https://doi.org/10.1039/c9ra06399d
- S.J. Wang, D.S. Li, L. Jiang, Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films. Adv. Mater. Interfaces 6(19), 1900961 (2019). https://doi.org/10.1002/admi.201900961
- C. Xiang, R.H. Guo, S.J. Lin, S.X. Jiang, J.W. Lan, C. Wang, C. Cui, H.Y. Xiao, Y. Zhang, Lightweight and ultrathin TiO2-Ti3C2Tx/graphene film with electromagnetic interference shielding. Chem. Eng. J. 360, 1158–1166 (2019). https://doi.org/10.1016/j.cej.2018.10.174
- J. Liu, Z.S. Liu, H.B. Zhang, W. Chen, Z.F. Zhao, Q.W. Wang, Z.Z. Yu, Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6(1), 1901094 (2020). https://doi.org/10.1002/aelm.201901094
- M. Miao, R.T. Liu, S. Thaiboonrod, L.Y. Shi, S.M. Cao, J.F. Zhang, J.H. Fang, X. Feng, Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding. J. Mater. Chem. C 8(9), 3120–3126 (2020). https://doi.org/10.1039/c9tc06361g
- R.H. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang, Y. Li, S. Hong, Z.Z. Yu, Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- H.L. Xu, X.W. Yin, X.L. Li, M.H. Li, S. Liang, L.T. Zhang, L.F. Cheng, Lightweight Ti2CTx MXene/poly (vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
- F.Q. Qi, L. Wang, Y.L. Zhang, Z.L. Ma, H. Qiu, J.W. Gu, Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 21, 100512 (2021). https://doi.org/10.1016/j.mtphys.2021.100512
- Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu, B. Li, S.B. Hauser, W.D. Yang, J.R. Liu, S.Y. Zhao, Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro. Lett. 14(1), 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
- Z.J. Xu, X. Ding, S.K. Li, F.Z. Huang, B.J. Wang, S.P. Wang, X. Zhang, F.H. Liu, H. Zhang, Oxidation-resistant MXene-based melamine foam with ultralow-percolation thresholds for electromagnetic-infrared compatible shielding. ACS Appl. Mater. Interfaces 14(35), 40396–40407 (2022). https://doi.org/10.1021/acsami.2c0554440396
- Z.Q. Lu, F.F. Jia, L.H. Zhuo, D.D. Ning, K. Gao, F. Xie, Micro-porous MXene/aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Compos. B Eng. 217, 108853 (2021). https://doi.org/10.1016/j.compositesb.2021.108853
- N. Wu, Y.F. Yang, C.X. Wang, Q.L. Wu, F. Pan, R.A. Zhang, J.R. Liu, Z.H. Zeng, Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 35(1), 220969 (2023). https://doi.org/10.1002/adma.202207969
- C.Z. Qi, X.Y. Wu, J. Liu, X.J. Luo, H.B. Zhang, Z.Z. Yu, Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and joule heating. J. Mater. Sci. Technol. 135(6), 213–220 (2023). https://doi.org/10.1016/j.jmst.2022.06.046
- G.Y. Yang, S.Z. Wang, H.T. Sun, X.M. Yao, C.B. Li, Y.J. Li, J.J. Jiang, Ultralight, conductive Ti3C2Tx MXene/PEDOT: PSS hybrid aerogels for electromagnetic interference shielding dominated by the absorption mechanism. ACS Appl. Mater. Interfaces 13(48), 57521–57531 (2021). https://doi.org/10.1021/acsami.1c13303
- Y.Q. Du, J. Xu, J.Y. Fang, Y.T. Zhang, X.Y. Liu, P.Y. Zuo, Q.X. Zhuang, Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding. J. Mater. Chem. A 10(12), 6690–6700 (2022). https://doi.org/10.1039/d1ta11025j
- P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.K. Kim, S.M. Hong, M.K. Han, Y. Gogotsi, C.M. Koo, Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11(41), 38046–38054 (2019). https://doi.org/10.1021/acsami.9b12550
- C.X. Weng, G.R. Wang, Z.H. Dai, Y.M. Pei, L.Q. Liu, Z. Zhang, Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale 11(47), 22804–22812 (2019). https://doi.org/10.1039/c9nr07988b
- S.Q. Wu, D.M. Chen, W.B. Han, Y.S. Xie, G.D. Zhao, S. Dong, M.Y. Tan, H. Huang, S.B. Xu, G.Q. Chen, Y. Cheng, X.H. Zhang, Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 446, 137093 (2022). https://doi.org/10.1016/j.cej.2022.137093
- D.Q. Zhao, L.Y. Dang, G.G. Wang, N. Sun, X.Y. Deng, J.C. Han, J.Q. Zhu, Y. Yang, Multifunctional, superhydrophobic and highly elastic MXene/bacterial cellulose hybrid aerogels enabled via silylation. J Mater. Chem. A 10(46), 24772–24782 (2022). https://doi.org/10.1039/d2ta06621a
- Z.Z. Guo, P.G. Ren, F. Yang, T. Wu, L.X. Zhang, Z.Y. Chen, S.Q. Huang, F. Ren, Mof-derived Co/C and MXene Co-decorated cellulose-derived hybrid carbon aerogel with a multi-interface architecture toward absorption-dominated ultra-efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 15(5), 7308–7318 (2023). https://doi.org/10.1021/acsami.2c22447
- Y. Wang, Q.B. Qi, G. Yin, W. Wang, DYu. Flexible, ultralight, and mechanically robust waterborne polyurethane/Ti3C2Tx MXene/nickel ferrite hybrid aerogels for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13(18), 21831–21843 (2021). https://doi.org/10.1021/acsami.1c04962
- Y.H. Li, Y. Chen, X.F. He, Z.Y. Xiang, T. Heinze, H.S. Qi, Lignocellulose nanofibril/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance. Chem. Eng. J. 431, 133907 (2022). https://doi.org/10.1016/j.cej.2021.133907
- Z.H. Zeng, C.X. Wang, G. Siqueira, D.X. Han, A. Huch, S. Abdolhosseinzadeh, J. Heier, F. Nuesch, C.F. Zhang, G. Nystrom, Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
- Y. Cheng, W.D. Zhu, X.F. Lu, C. Wang, Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy 98, 107229 (2022). https://doi.org/10.1016/j.nanoen.2022.107229
- Y. Zhang, J. Yu, J.Y. Lu, C.J. Zhu, D.M. Qi, Facile construction of 2D MXene (Ti3C2Tx) based aerogels with effective fire-resistance and electromagnetic interference shielding performance. J. Alloys Compd. 870, 159442 (2021). https://doi.org/10.1016/j.jallcom.2021.159442
- B.H. Xia, T. Li, M.Q. Chen, S.B. Wang, W.F. Dong, L-citrulline-modified Ti3C2Tx MXene nanosheets embedded in polyacrylamide/sodium alginate hydrogels for electromagnetic interference shielding. ACS Appl. Nano Mater. 5(12), 18664–18669 (2022). https://doi.org/10.1021/acsanm.2c04437
- T. Zhao, P.Y. Xie, H.J. Wan, T.P. Ding, M.Q. Liu, J.L. Xie, E.E. Li, X.Q. Chen, T.W. Wang, Q. Zhang, Y.Y. Wei, Y.B. Gong, Q.Y. Wen, M. Hu, C.W. Qiu, X. Xiao, Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band. Nat. Photonics 17(7), 622–628 (2023). https://doi.org/10.1038/s41566-023-01197-x
- Y.Y. Zhu, J. Liu, T. Guo, J.J. Wang, X.Z. Tang, V. Nicolosi, Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic- interference shielding. ACS Nano 15(1), 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
- Y.H. Yu, P. Yi, W.B. Xu, X. Sun, G. Deng, X.F. Liu, J.L. Shui, R.H. Yu, Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro. Lett. 14(1), 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
- Z.S. Liu, Y. Zhang, H.B. Zhang, Y. Dai, J. Liu, X.F. Li, Z.Z. Yu, Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J. Mater. Chem. C 8(5), 1673–1678 (2020). https://doi.org/10.1039/c9tc06304h
- N. Liu, Q.Q. Li, H.J. Wan, L.B. Chang, H. Wang, J.H. Fang, T.P. Ding, Q.Y. Wen, L.J. Zhou, X. Xiao, High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite. Nat. Commun. 13(1), 5551 (2022). https://doi.org/10.1038/s41467-022-33280-2
- T.Z. Zhang, L.B. Chang, X.F. Zhang, H.J. Wan, N. Liu, L.J. Zhou, X. Xiao, Simultaneously tuning interlayer spacing and termination of MXenes by Lewis-basic halides. Nat. Commun. 13(1), 6731 (2022). https://doi.org/10.1038/s41467-022-34569-y
- D.J. Xu, Q. Huang, L.K. Yang, Y.J. Chen, Z.M. Lu, H.J. Liu, P.J. Han, L. Guo, C. Wang, C.C. Liu, Experimental design of composite films with thermal management and electromagnetic shielding properties based on polyethylene glycol and MXene. Carbon 202(11), 1–12 (2023). https://doi.org/10.1016/j.carbon.2022.11.010
- T.T. Xue, Y. Yang, D.Y. Yu, Q. Wali, Z.Y. Wang, X.S. Cao, W. Fan, T.X. Liu, 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro. Lett. 15(1), 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
- M. Zhu, X.X. Yan, H.L. Xu, Y.J. Xu, L. Kong, Ultralight, compressible, and anisotropic MXene@wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 182(6), 806–814 (2021). https://doi.org/10.1016/j.carbon.2021.06.054
- Y.F. Yang, M.R. Han, W. Liu, N. Wu, J.R. Liu, Hydrogel-based composites beyond the porous architectures for electromagnetic interference shielding. Nano Res. 15(10), 9614–9630 (2022). https://doi.org/10.1007/s12274-022-4817-1
- Z. Wang, Z. Cheng, L. Xie, X.L. Hou, C.Q. Fang, Flexible and lightweight Ti3C2Tx MXene/Fe3O4@PANI composite films for high-performance electromagnetic interference shielding. Ceram. Int. 47(4), 5747–5757 (2021). https://doi.org/10.1016/j.ceramint.2020.10.161
References
F. Gholamirad, J.Q. Ge, M. Sadati, G.A. Wang, N. Taheri-Qazvini, Tuning the self-assembled morphology of Ti3C2Tx MXene-based hybrids for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 14(43), 49158–49170 (2022). https://doi.org/10.1021/acsami.2c14019
X. Shen, J.K. Kim, Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. 16, 1387–1413 (2022). https://doi.org/10.1007/s12274-022-4938-6
F.S. Wu, Z.H. Tian, P.Y. Hu, J.W. Tang, X.Q. Xu, L. Pan, J. Liu, P.G. Zhang, Z.M. Sun, Lightweight and flexible PAN@PPy/MXene films with outstanding electromagnetic interference shielding and joule heating performance. Nanoscale 14(48), 18133–18142 (2022). https://doi.org/10.1039/d2nr05318g
A. Ali, F. Hussain, M.F. Tahir, M. Ali, M.Z. Khan, B. Tomkova, J. Militky, M.T. Noman, M. Azeem, Fabrication of conductive, high strength and electromagnetic interference (EMI) shielded green composites based on waste materials. Polymers-Basel 14(7), 1289 (2022). https://doi.org/10.3390/polym14071289
Z.H. Zhou, Q.C. Song, B.X. Huang, S.Y. Feng, C.H. Lu, Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 15(7), 12405–12417 (2021). https://doi.org/10.1021/acsnano.1c04526
S.Y. Feng, Y. Yi, B.X. Chen, P.C. Deng, Z.H. Zhou, C.H. Lu, Rheology-guided assembly of a highly aligned MXene/cellulose nanofiber composite film for high-performance electromagnetic interference shielding and infrared stealth. ACS Appl. Mater. Interfaces 14(31), 36060–36070 (2022). https://doi.org/10.1021/acsami.2c11292
Y.S. Chen, Y. Huang, C.B. Park, R.C. Che, Z.Z. Yu, Electromagnetic interference shielding and microwave absorption materials: a virtual special issue. Carbon 186, 320–322 (2022). https://doi.org/10.1016/j.carbon.2021.10.058
J.Y. Cheng, C.B. Li, Y.F. Xiong, H.B. Zhang, H. Raza, S. Ullah, J.Y. Wu, G.P. Zheng, Q. Cao, D.Q. Zhang, Q.B. Zheng, R.C. Che, Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14(1), 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
M.L. Cheng, M.F. Ying, R.Z. Zhao, L.Z. Ji, H.X. Li, X.G. Liu, J. Zhang, Y.X. Li, X.L. Dong, X.F. Zhang, Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16(10), 16996–17007 (2022). https://doi.org/10.1021/acsnano.2c07111
Y.Y. Gao, D. Bao, M.H. Zhang, Y.X. Cui, F. Xu, X.S. Shen, Y.J. Zhu, H.Y. Wang, Millefeuille-inspired thermal interface materials based on double self-assembly technique for efficient microelectronic cooling and electromagnetic interference shielding. Small 18(2), 2105567 (2022). https://doi.org/10.1002/smll.202105567
J.W. Song, K.J. Xu, J. He, H.J. Ye, L.X. Xu, Three-dimensional graphene/carbon nanotube electromagnetic shielding composite material based on melamine resin foam template. Polym. Compos. 44(5), 2836–2845 (2023). https://doi.org/10.1002/pc.27284
M. Asandulesa, C. Hamciuc, A. Pui, C. Virlan, G. Lisa, A.I. Barzic, B. Oprisan, Cobalt ferrite/polyetherimide composites as thermally stable materials for electromagnetic interference shielding uses. Int. J. Mol. Sci. 24(2), 999 (2023). https://doi.org/10.3390/ijms24020999
T.Y. Zhang, H. Hu, J.L. Wang, Z. Fen, J.W. Guo, X.L. Liu, Research on electromagnetic shielding effectiveness of multi-layered LZ91/Al alloy composite materials by asynchronous accumulative roll bonding. Mater. Sci. 28(4), 434–439 (2022). https://doi.org/10.5755/j02.ms.29571
V. Lalan, S. Ganesanpotti, The smallest anions, induced porosity and graphene interfaces in C12A7: e– electrides: a paradigm shift in electromagnetic absorbers and shielding materials. J. Mater. Chem. C 10(3), 969–982 (2022). https://doi.org/10.1039/d1tc03762e
Q.N. Lv, X.Y. Tao, S.H. Shi, Y.J. Li, N. Chen, From materials to components: 3D-printed architected honeycombs toward high-performance and tunable electromagnetic interference shielding. Compos. B Eng. 230(1), 109500 (2022). https://doi.org/10.1016/j.compositesb.2021.109500
S.Y. Feng, Z.Y. Zhan, Y. Yi, Z.H. Zhou, C.H. Lu, Facile fabrication of MXene/cellulose fiber composite film with homogeneous and aligned structure via wet co-milling for enhancing electromagnetic interference shielding performance. Compos. Part A—Appl. S. 157, 106907 (2022). https://doi.org/10.1016/j.compositesa.2022.106907
A. Rajan, S.K. Solaman, S. Ganesanpotti, Design and fabrication of layered electromagnetic interference shielding materials: a cost-effective strategy for performance prediction and efficiency tuning. ACS Appl. Mater. Interfaces 15(4), 5822–5835 (2023). https://doi.org/10.1021/acsami.2c19016
R. Kumar, B.C. Maji, M. Krishnan, Synthesis of 2D material MXene from Ti3AlC2 max-phase for electromagnetic shielding applications. AIP Conf. Proc. 2265(1), 030705 (2020). https://doi.org/10.1063/5.0025338
Y.F. Yang, N. Wu, B. Li, W. Liu, F. Pan, Z.H. Zeng, J.R. Liu, Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16(9), 15042–15052 (2022). https://doi.org/10.1021/acsnano.2c06164
X.L. Li, X.W. Yin, S. Liang, M.H. Li, L.F. Cheng, L.T. Zhang, 2D carbide MXene Ti2CTx as a novel high-performance electromagnetic interference shielding material. Carbon 146(2), 210–217 (2019). https://doi.org/10.1016/j.carbon.2019.02.003
Y. Gogotsi, P. Simon, True performance metrics in electrochemical energy storage. Science 334(6058), 917–918 (2011). https://doi.org/10.1126/science.1213003
H.B. Liu, R.L. Fu, X.Q. Su, B.Y. Wu, H. Wang, Y. Xu, X.H. Liu, MXene confined in shape-stabilized phase change material combining enhanced electromagnetic interference shielding and thermal management capability. Compos. Sci. Technol. 210(7), 108835 (2021). https://doi.org/10.1016/j.compscitech.2021.108835
J.F. Wang, H. Kang, Z.J. Cheng, Z.M. Xie, Y.S. Wang, Y.Y. Liu, Z.M. Fan, Research progress in Ti3C2Tx MXene-based electromagnetic interference shielding material. Nanoscale 49(6), 14–25 (2021). https://doi.org/10.11868/j.issn.1001-1381.2020.000280
S.J. Wang, D.S. Li, L. Jiang, D.N. Fang, Flexible and mechanically strong MXene/FeCo@C decorated carbon cloth: a multifunctional electromagnetic interference shielding material. Compos. Sci. Technol. 221, 109337 (2022). https://doi.org/10.1016/j.compscitech.2022.109337
X.W. Sun, X.D. Wu, P.C. Deng, D. Tian, Y.Y. Song, J.Q. Zhao, Q.Y. Li, S.Y. Feng, J. Zhang, C.H. Lu, H.W. Zou, Z.H. Zhou, Facile and universal fabrication of cellulose nanofibers from bulk lignocellulose materials and their applications in multifunctional epidermal electrophysiological signals monitoring. Ind. Crop Prod. 199, 116762 (2023). https://doi.org/10.1016/j.indcrop.2023.116762
J.-M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon-based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R 74(7), 211–232 (2013). https://doi.org/10.1016/j.mser.2013.06.001
S.A. Schelkunoff, A mathematical theory of linear arrays. Bell Syst. Tech. J. 22(1), 80–107 (1943). https://doi.org/10.1002/j.1538-73051943.tb01306.x
Y. Yi, S. Y. Feng, Z. H. Zhou, C. H. Lu. Wet mechanical grinding regulates the micro-nano interfaces and structure of MXene/PVA composite for enhanced mechanical properties and thermal conductivity. Compos. Part A—Appl. S. (2022). https://doi.org/10.1016/j.compositesa.2022.107232
A. Nazir, H.J. Yu, L. Wang, M. Haroon, R.S. Ullah, S. Fahad, K.U.R. Naveed, T. Elshaarani, A. Khan, M. Usman, Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding. J. Mater. Sci. 53(12), 8699–8719 (2018). https://doi.org/10.1007/s10853-018-2122-x
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai, Q. Shao, Y. Chen, L. Guo, C. Liu, S. Angaiah, Z. Guo, Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140(9), 696–733 (2018). https://doi.org/10.1016/j.carbon.2018.09.006
D.Q. Zhang, S. Liang, J.X. Chai, T.T. Liu, X.Y. Yang, H. Wang, J.Y. Cheng, G.P. Zheng, M.S. Cao, Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. J. Phys. Chem. Solids 134(5), 77–82 (2019). https://doi.org/10.1016/j.jpcs.2019.05.041
S. Geetha, K.K. Satheesh Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: methods and materials—a review. J. Appl. Polym. Sci. 112(4), 2073–2086 (2009). https://doi.org/10.1002/app.29812
P. Kumar, U. Narayan Maiti, A. Sikdar, T. Kumar Das, A. Kumar, V. Sudarsan, Recent advances in polymer and polymer composites for electromagnetic interference shielding: Review and future prospects. Polym. Rev. 59(4), 687–738 (2019). https://doi.org/10.1080/15583724.2019.1625058
R.B. Schulz, V.C. Plantz, D.R. Brush, Shielding theory and practice. IEEE T. Electromagn. C. 30(3), 187–201 (1988). https://doi.org/10.1109/15.3297
S. Sankaran, K. Deshmukh, M.B. Ahamed, S.K.K. Pasha, Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A—Appl. Sci. Manuf. 114(8), 49–71 (2018). https://doi.org/10.1016/j.compositesa.2018.08.006
H.S. Wang, G.B. Wang, W.L. Li, Q.T. Wang, W. Wei, Z.H. Jiang, S.L. Zhang, A material with high electromagnetic radiation shielding effectiveness fabricated using multi-walled carbon nanotubes wrapped with poly (ether sulfone) in a poly (ether ether ketone) matrix. J. Mater. Chem. C 22(39), 21232–21237 (2012). https://doi.org/10.1039/c2jm35129c
C.F. Li, C.X. Zhou, J.B. Lv, B. Liang, R.K. Li, Y. Liu, J.H. Hu, K. Zeng, G. Yang, Bio-molecule adenine building block effectively enhances electromagnetic interference shielding performance of polyimide-derived carbon foam. Carbon 149(4), 190–202 (2019). https://doi.org/10.1016/j.carbon2019.04.012
Y. Yuan, W.L. Yin, M.L. Yang, F. Xu, X. Zhao, J.J. Li, Q.Y. Peng, X.D. He, S.Y. Du, Y.B. Li, Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding. Carbon 130(12), 59–68 (2018). https://doi.org/10.1016/j.carbon2017.12.122
D. Yevick, T. Friese, F. Schmidt, A comparison of transparent boundary conditions for the fresnel equation. J. Comput. Chem. 168(2), 433–444 (2001). https://doi.org/10.1006/jcph.2001.6708
D.Q. Zhang, J.Y. Cheng, X.Y. Yang, B. Zhao, M.S. Cao, Electromagnetic and microwave absorbing properties of magnetite nanops decorated carbon nanotubes/polyaniline multiphase heterostructures. J. Mater. Sci. 49(20), 7221–7230 (2014). https://doi.org/10.1007/s10853-014-8429-3
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
R. Kumar, H.K. Choudhary, S.P. Pawar, S. Bose, B. Sahoo, Carbon encapsulated nanoscale iron/iron-carbide/graphite ps for EMI shielding and microwave absorption. Phys. Chem. Chem. Phys. 19(34), 23268–23279 (2017). https://doi.org/10.1039/c7cp03175k
T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee, M.K. Kim, S.J. Kim, D. Kim, Y. Gogotsi, S.O. Kim, C.M. Koo, Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32(9), 1906769 (2020). https://doi.org/10.1002/adma.201906769
Q. Song, F. Ye, X.W. Yin, W. Li, H.J. Li, Y.S. Liu, K.Z. Li, K.Y. Xie, X.H. Li, Q.G. Fu, L.F. Cheng, L.T. Zhang, B.Q. Wei, Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29(31), 1701583 (2017). https://doi.org/10.1002/adma.201701583
Y. Li, X. Tian, S.P. Gao, L. Jing, K.R. Li, H.T. Yang, F.F. Fu, J.Y. Lee, Y.X. Guo, J.S. Ho, P.Y. Chen, Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30(5), 1907451 (2020). https://doi.org/10.1002/adfm.201907451
B.P. Singh, P. Saini, T. Gupta, P. Garg, G. Kumar, I. Pande, S. Pande, R.K. Seth, S.K. Dhawan, R.B. Mathur, Designing of multiwalled carbon nanotubes reinforced low density polyethylene nanocomposites for suppression of electromagnetic radiation. J. Nanopart. Res. 13(12), 7065–7074 (2011). https://doi.org/10.1007/s11051-011-0619-1
B.R. Kim, H.K. Lee, E. Kim, S.H. Lee, Intrinsic electromagnetic radiation shielding/absorbing characteristics of polyaniline-coated transparent thin films. Synth. Met. 160(17–18), 1838–1842 (2010). https://doi.org/10.1016/j.synthmet.2010.06.027
M.Y. Peng, F.X. Qin. Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. (2021). https://doi.org/10.1063/5.0075019
Y.Z. Li, B.J. Wang, X.F. Sui, H. Xu, L.P. Zhang, Y. Zhong, Z.P. Mao, Facile synthesis of microfibrillated cellulose/organosilicon/polydopamine composite sponges with flame retardant properties. Cellulose 24(9), 3815–3823 (2017). https://doi.org/10.1007/s10570-017-1373-z
B. Wang, W.F. Li, J.P. Deng, Chiral 3D porous hybrid foams constructed by graphene and helically substituted polyacetylene: preparation and application in enantioselective crystallization. J. Mater. Sci. 52(8), 4575–4586 (2017). https://doi.org/10.1007/s10853-016-0702-1
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon, J. Hong, H. Kim, D. Kim, Y. Gogotsi, C.M. Koo, Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CnTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
K. Hantanasirisakul, M. Alhabeb, A. Lipatov, K. Maleski, B. Anasori, P. Salles, C. Ieosakulrat, P. Pakawatpanurut, A. Sinitskii, S.J. May, Y. Gogotsi, Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem. Mater. 31(8), 2941–2951 (2019). https://doi.org/10.1021/acs.chemmater.9b00401
M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, J. Yuan, 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359(11), 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
K.P. Qian, Q.F. Zhou, H.M. Wu, J.H. Fang, M. Miao, Y.H. Yang, S.M. Cao, L.Y. Shi, X. Feng, Carbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shielding. Compos. Part. A—Appl. Sci. Manuf. 141, 106229 (2021). https://doi.org/10.1016/j.compositesa.2020.106229
J. Liu, H.B. Zhang, R.H. Sun, Y.F. Liu, Z.S. Liu, A.G. Zhou, Z.ZYu. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
X.Y. Wu, B.Y. Han, H.B. Zhang, X. Xie, T.X. Tu, Y. Zhang, Y. Dai, R. Yang, Z.ZYu. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu, S. Hong, Z.Z. Yu, Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
R.J. Bian, G.L. He, W.Q. Zhi, S.L. Xiang, T.W. Wang, D.Y. Cai, Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C 7(3), 474–478 (2019). https://doi.org/10.1039/c8tc04795b
Y.F. Yang, B. Li, N. Wu, W. Liu, S.Y. Zhao, C.J. Zhang, J.R. Liu, Z.H. Zeng, Biomimetic porous MXene-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Mater. Lett. 4(11), 2352–2361 (2022). https://doi.org/10.1021/acsmaterialslett.2c00778
Y. Bai, S.H. Bi, W.K. Wang, N. Ding, Y.Y. Lu, M.Y. Jiang, C.B. Ding, W.W. Zhao, N. Liu, J. Bian, S.J. Liu, Q. Zhao, Biocompatible, stretchable, and compressible cellulose/MXene hydrogel for strain sensor and electromagnetic interference shielding. Soft Mater. 20(4), 444–454 (2022). https://doi.org/10.1080/1539445x.2022.2081580
F.Y. Hu, X.H. Wang, S. Bao, L.M. Song, S. Zhang, H.H. Niu, B.B. Fan, R. Zhang, H.X. Li, Tailoring electromagnetic responses of delaminated Mo2TiC2Tx MXene through the decoration of Ni ps of different morphologies. Chem. Eng. J. 440, 135855 (2022). https://doi.org/10.1016/j.cej.2022.135855
R. Khaledialidusti, A.K. Mishra, A. Barnoush, Atomic defects in monolayer ordered double transition metal carbide (Mo2TiC2Tx) MXene and CO2 adsorption. J. Mater. Chem. C 8(14), 4771–4779 (2020). https://doi.org/10.1039/c9tc06046d
J.Y. Wang, P.L. He, Y.L. Shen, L.X. Dai, Z. Li, Y. Wu, C.H. An, FeNi nanops on Mo2TiC2Tx MXene@nickel foam as robust electrocatalysts for overall water splitting. Nano Res. 14(10), 3474–3481 (2021). https://doi.org/10.1007/s12274-021-3660-0
X.Y. Zhao, K.W. Tang, C. Lee, C.F. Du, H. Yu, X.M. Wang, W.H. Qi, Q. Ye, Q. Y. Yan. Promoting the water-reduction kinetics and alkali tolerance of MoNi4 nanocrystals via a Mo2TiC2Tx induced built-in electric field. Small (2022). https://doi.org/10.1002/smll.202107541
P. He, X.X. Wang, Y.Z. Cai, J.C. Shu, Q.L. Zhao, J. Yuan, M.S. Cao, Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale 11(13), 6080–6088 (2019). https://doi.org/10.1039/c8nr10489a
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang, M.G. Ma, F. Chen, Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
F. Xie, F.F. Jia, L.H. Zhuo, Z.Q. Lu, L.M. Si, J.Z. Huang, M.Y. Zhang, Q. Ma, Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11(48), 23382–23391 (2019). https://doi.org/10.1039/c9nr07331k
P. He, M.S. Cao, Y.Z. Cai, J.C. Shu, W.Q. Cao, J. Yuan, Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 157(10), 80–89 (2020). https://doi.org/10.1016/j.carbon.2019.10.009
L. Wang, L.X. Chen, P. Song, C.B. Liang, Y.J. Lu, H. Qiu, Y.L. Zhang, J. Kong, J.W. Gu, Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application. Compos. B Eng. 171(4), 111–118 (2019). https://doi.org/10.1016/j.compositesb.2019.04.050
R.T. Liu, M. Miao, Y.H. Li, J.F. Zhang, S.M. Cao, X. Feng, Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(51), 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
Y.L. Zhang, L. Wang, J.L. Zhang, P. Song, Z.R. Xiao, C.B. Liang, H. Qiu, J. Kong, J.W. Gu, Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/Co-doped polyaniline electromagnetic interference shielding composite films. Compos. Sci. Technol. 183, 107833 (2019). https://doi.org/10.1016/j.compscitech.2019.107833
F.S. Yang, C.L. Li, W.Z. Xu, Z.S. Cai, Multifunctional antifogging coatings based on ZrO2 and SiO2 nanops by spray-spin-blow layer-by-layer assembly. J. Mater. Res. 34(22), 3827–3836 (2019). https://doi.org/10.1557/jmr.2019.309
Y.B. Zhao, H.P. Liu, C.Y. Li, Y. Chen, S.Q. Li, R.C. Zeng, Z.L. Wang, Corrosion resistance and adhesion strength of a spin-assisted layer-by-layer assembled coating on AZ31 magnesium alloy. Appl. Surf. Sci. 434(11), 787–795 (2018). https://doi.org/10.1016/j.apsusc.2017.11.012
S. Javaid, A. Mahmood, H. Nasir, M. Iqbal, N. Ahmed, N.M. Ahmad, Layer-by-layer self-assembled dip coating for antifouling functionalized finishing of cotton textile. Polymers 14(13), 2540 (2022). https://doi.org/10.3390/polym14132540
J. Alongi, F. Carosio, A. Frache, G. Malucelli, Layer by layer coatings assembled through dipping, vertical or horizontal spray for cotton flame retardancy. Carbohydr. Polym. 92(1), 114–119 (2013). https://doi.org/10.1016/j.carbpol.2012.08.086
M.M. Xiong, Z.H. Ren, W.J. Liu, Fabrication of uv-resistant and superhydrophobic surface on cotton fabric by functionalized polyethyleneimine/SiO2 via layer-by-layer assembly and dip-coating. Cellulose 26(16), 8951–8962 (2019). https://doi.org/10.1007/s10570-019-02705-5
T. Charinpanitkul, W. Suthabanditpong, H. Watanabe, T. Shirai, K. Faungnawakij, N. Viriya-empikul, M. Fuji, Improved hydrophilicity of zinc oxide-incorporated layer-by-layer polyelectrolyte film fabricated by dip coating method. J. Ind. Eng. Chem. 18(4), 1441–1445 (2012). https://doi.org/10.1016/j.jiec.2012.02.003
B. Li, N. Wu, Y.F. Yang, F. Pan, C.X. Wang, G. Wang, L. Xiao, W. Liu, J.R. Liu, Z.H. Zeng, Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 33(11), 2213357 (2022). https://doi.org/10.1002/adfm.202213357
G.M. Weng, J.Y. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi, A.D. Taylor, Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
X.X. Jin, J.F. Wang, L.Z. Dai, X.Y. Liu, L. Li, Y.Y. Yang, Y.X. Cao, W.J. Wang, H. Wu, S.Y. Guo, Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020). https://doi.org/10.1016/j.cej.2019.122475
B. Zhou, Z. Zhang, Y.L. Li, G.J. Han, Y.Z. Feng, B. Wang, D.B. Zhang, J.M. Ma, C.T. Liu, Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
Y. Wang, W. Wang, Q.B. Qi, N. Xu, D. Yu, Layer-by-layer assembly of pdms-coated nickel ferrite/multiwalled carbon nanotubes/cotton fabrics for robust and durable electromagnetic interference shielding. Cellulose 27(5), 2829–2845 (2020). https://doi.org/10.1007/s10570-019-02949-1
X.C. Jia, B. Shen, L.H. Zhang, W.G. Zheng, Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and joule heating. Compos. B Eng. 198, 108250 (2020). https://doi.org/10.1016/j.compositesb.2020.108250
X.F. Wang, Z.W. Lei, X.D. Ma, G.F. He, T. Xu, J. Tan, L.L. Wang, X.S. Zhang, L.J. Qu, X.J. Zhang, A lightweight MXene-coated nonwoven fabric with excellent flame retardancy, EMI shielding, and electrothermal/photothermal conversion for wearable heater. Chem. Eng. J. 430, 132605 (2022). https://doi.org/10.1016/j.cej.2021.132605
H.Y. Zhang, J.Y. Chen, H. Ji, N. Wang, S. Feng, H. Xiao, Electromagnetic interference shielding with absorption-dominant performance of Ti3C2Tx MXene/non-woven laminated fabrics. Text. Res. J. 91(21–22), 2448–2458 (2021). https://doi.org/10.1177/00405175211006216
X.S. Zhang, X.F. Wang, Z.W. Lei, L.L. Wang, M.W. Tian, S.F. Zhu, H. Xiao, X.N. Tang, L.J. Qu, Flexible MXene-decorated fabric with interwoven conductive networks for integrated joule heating, electromagnetic interference shielding, and strain sensing performances. Acs. Appl. Mater. Interfaces 12(12), 14459–14467 (2020). https://doi.org/10.1021/acsami.0c01182
L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F.L. Guan, Z.Z. Yu, Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905179 (2019). https://doi.org/10.1002/adfm.201905197
D.W. Hu, X.Y. Huang, S.T. Li, P.K. Jiang, Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 188, 107995 (2020). https://doi.org/10.1016/j.compscitech.2020.107995
C. Ma, T. Liu, W. Xin, G.Q. Xi, M.G. Ma, Breathable and wearable MXene-decorated air-laid paper with superior folding endurance and electromagnetic interference-shielding performances. Front. Mater. 6, 308 (2019). https://doi.org/10.3389/fmats.2019.00308
Z.M. Fan, D.L. Wang, Y. Yuan, Y.S. Wang, Z.J. Cheng, Y.Y. Liu, Z.M. Xie, A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). https://doi.org/10.1016/j.cej.2019.122696
M. Sang, Y.X. Wu, S. Liu, L.F. Bai, S. Wang, W.Q. Jiang, X.L. Gong, S.H. Xuan, Flexible and lightweight melamine sponge/MXene/polyborosiloxane (MSMP) hybrid structure for high-performance electromagnetic interference shielding and anti-impact safe-guarding. Compos. B Eng. 211, 108669 (2021). https://doi.org/10.1016/j.compositesb.2021.108669
B. Li, Y.F. Yang, N. Wu, S.Y. Zhao, H. Jin, G.L. Wang, X.Y. Li, W. Liu, J.R. Liu, Z.H. Zeng, Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano 16(11), 19293–19304 (2022). https://doi.org/10.1021/acsnano.2c08678
W.T. Cao, C. Ma, S. Tan, M.G. Ma, P.B. Wan, F. Chen, Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro. Lett. 11(72), 1–17 (2019). https://doi.org/10.1007/s40820-019-0304-y
W. Xin, G.Q. Xi, W.T. Cao, C. Ma, T. Liu, M.G. Ma, J. Bian, Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding. Rsc. Adv. 9(51), 29636–29644 (2019). https://doi.org/10.1039/c9ra06399d
S.J. Wang, D.S. Li, L. Jiang, Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films. Adv. Mater. Interfaces 6(19), 1900961 (2019). https://doi.org/10.1002/admi.201900961
C. Xiang, R.H. Guo, S.J. Lin, S.X. Jiang, J.W. Lan, C. Wang, C. Cui, H.Y. Xiao, Y. Zhang, Lightweight and ultrathin TiO2-Ti3C2Tx/graphene film with electromagnetic interference shielding. Chem. Eng. J. 360, 1158–1166 (2019). https://doi.org/10.1016/j.cej.2018.10.174
J. Liu, Z.S. Liu, H.B. Zhang, W. Chen, Z.F. Zhao, Q.W. Wang, Z.Z. Yu, Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6(1), 1901094 (2020). https://doi.org/10.1002/aelm.201901094
M. Miao, R.T. Liu, S. Thaiboonrod, L.Y. Shi, S.M. Cao, J.F. Zhang, J.H. Fang, X. Feng, Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding. J. Mater. Chem. C 8(9), 3120–3126 (2020). https://doi.org/10.1039/c9tc06361g
R.H. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang, Y. Li, S. Hong, Z.Z. Yu, Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
H.L. Xu, X.W. Yin, X.L. Li, M.H. Li, S. Liang, L.T. Zhang, L.F. Cheng, Lightweight Ti2CTx MXene/poly (vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
F.Q. Qi, L. Wang, Y.L. Zhang, Z.L. Ma, H. Qiu, J.W. Gu, Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 21, 100512 (2021). https://doi.org/10.1016/j.mtphys.2021.100512
Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu, B. Li, S.B. Hauser, W.D. Yang, J.R. Liu, S.Y. Zhao, Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro. Lett. 14(1), 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
Z.J. Xu, X. Ding, S.K. Li, F.Z. Huang, B.J. Wang, S.P. Wang, X. Zhang, F.H. Liu, H. Zhang, Oxidation-resistant MXene-based melamine foam with ultralow-percolation thresholds for electromagnetic-infrared compatible shielding. ACS Appl. Mater. Interfaces 14(35), 40396–40407 (2022). https://doi.org/10.1021/acsami.2c0554440396
Z.Q. Lu, F.F. Jia, L.H. Zhuo, D.D. Ning, K. Gao, F. Xie, Micro-porous MXene/aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Compos. B Eng. 217, 108853 (2021). https://doi.org/10.1016/j.compositesb.2021.108853
N. Wu, Y.F. Yang, C.X. Wang, Q.L. Wu, F. Pan, R.A. Zhang, J.R. Liu, Z.H. Zeng, Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 35(1), 220969 (2023). https://doi.org/10.1002/adma.202207969
C.Z. Qi, X.Y. Wu, J. Liu, X.J. Luo, H.B. Zhang, Z.Z. Yu, Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and joule heating. J. Mater. Sci. Technol. 135(6), 213–220 (2023). https://doi.org/10.1016/j.jmst.2022.06.046
G.Y. Yang, S.Z. Wang, H.T. Sun, X.M. Yao, C.B. Li, Y.J. Li, J.J. Jiang, Ultralight, conductive Ti3C2Tx MXene/PEDOT: PSS hybrid aerogels for electromagnetic interference shielding dominated by the absorption mechanism. ACS Appl. Mater. Interfaces 13(48), 57521–57531 (2021). https://doi.org/10.1021/acsami.1c13303
Y.Q. Du, J. Xu, J.Y. Fang, Y.T. Zhang, X.Y. Liu, P.Y. Zuo, Q.X. Zhuang, Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding. J. Mater. Chem. A 10(12), 6690–6700 (2022). https://doi.org/10.1039/d1ta11025j
P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.K. Kim, S.M. Hong, M.K. Han, Y. Gogotsi, C.M. Koo, Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11(41), 38046–38054 (2019). https://doi.org/10.1021/acsami.9b12550
C.X. Weng, G.R. Wang, Z.H. Dai, Y.M. Pei, L.Q. Liu, Z. Zhang, Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale 11(47), 22804–22812 (2019). https://doi.org/10.1039/c9nr07988b
S.Q. Wu, D.M. Chen, W.B. Han, Y.S. Xie, G.D. Zhao, S. Dong, M.Y. Tan, H. Huang, S.B. Xu, G.Q. Chen, Y. Cheng, X.H. Zhang, Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 446, 137093 (2022). https://doi.org/10.1016/j.cej.2022.137093
D.Q. Zhao, L.Y. Dang, G.G. Wang, N. Sun, X.Y. Deng, J.C. Han, J.Q. Zhu, Y. Yang, Multifunctional, superhydrophobic and highly elastic MXene/bacterial cellulose hybrid aerogels enabled via silylation. J Mater. Chem. A 10(46), 24772–24782 (2022). https://doi.org/10.1039/d2ta06621a
Z.Z. Guo, P.G. Ren, F. Yang, T. Wu, L.X. Zhang, Z.Y. Chen, S.Q. Huang, F. Ren, Mof-derived Co/C and MXene Co-decorated cellulose-derived hybrid carbon aerogel with a multi-interface architecture toward absorption-dominated ultra-efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 15(5), 7308–7318 (2023). https://doi.org/10.1021/acsami.2c22447
Y. Wang, Q.B. Qi, G. Yin, W. Wang, DYu. Flexible, ultralight, and mechanically robust waterborne polyurethane/Ti3C2Tx MXene/nickel ferrite hybrid aerogels for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13(18), 21831–21843 (2021). https://doi.org/10.1021/acsami.1c04962
Y.H. Li, Y. Chen, X.F. He, Z.Y. Xiang, T. Heinze, H.S. Qi, Lignocellulose nanofibril/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance. Chem. Eng. J. 431, 133907 (2022). https://doi.org/10.1016/j.cej.2021.133907
Z.H. Zeng, C.X. Wang, G. Siqueira, D.X. Han, A. Huch, S. Abdolhosseinzadeh, J. Heier, F. Nuesch, C.F. Zhang, G. Nystrom, Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
Y. Cheng, W.D. Zhu, X.F. Lu, C. Wang, Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy 98, 107229 (2022). https://doi.org/10.1016/j.nanoen.2022.107229
Y. Zhang, J. Yu, J.Y. Lu, C.J. Zhu, D.M. Qi, Facile construction of 2D MXene (Ti3C2Tx) based aerogels with effective fire-resistance and electromagnetic interference shielding performance. J. Alloys Compd. 870, 159442 (2021). https://doi.org/10.1016/j.jallcom.2021.159442
B.H. Xia, T. Li, M.Q. Chen, S.B. Wang, W.F. Dong, L-citrulline-modified Ti3C2Tx MXene nanosheets embedded in polyacrylamide/sodium alginate hydrogels for electromagnetic interference shielding. ACS Appl. Nano Mater. 5(12), 18664–18669 (2022). https://doi.org/10.1021/acsanm.2c04437
T. Zhao, P.Y. Xie, H.J. Wan, T.P. Ding, M.Q. Liu, J.L. Xie, E.E. Li, X.Q. Chen, T.W. Wang, Q. Zhang, Y.Y. Wei, Y.B. Gong, Q.Y. Wen, M. Hu, C.W. Qiu, X. Xiao, Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band. Nat. Photonics 17(7), 622–628 (2023). https://doi.org/10.1038/s41566-023-01197-x
Y.Y. Zhu, J. Liu, T. Guo, J.J. Wang, X.Z. Tang, V. Nicolosi, Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic- interference shielding. ACS Nano 15(1), 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
Y.H. Yu, P. Yi, W.B. Xu, X. Sun, G. Deng, X.F. Liu, J.L. Shui, R.H. Yu, Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro. Lett. 14(1), 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
Z.S. Liu, Y. Zhang, H.B. Zhang, Y. Dai, J. Liu, X.F. Li, Z.Z. Yu, Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J. Mater. Chem. C 8(5), 1673–1678 (2020). https://doi.org/10.1039/c9tc06304h
N. Liu, Q.Q. Li, H.J. Wan, L.B. Chang, H. Wang, J.H. Fang, T.P. Ding, Q.Y. Wen, L.J. Zhou, X. Xiao, High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite. Nat. Commun. 13(1), 5551 (2022). https://doi.org/10.1038/s41467-022-33280-2
T.Z. Zhang, L.B. Chang, X.F. Zhang, H.J. Wan, N. Liu, L.J. Zhou, X. Xiao, Simultaneously tuning interlayer spacing and termination of MXenes by Lewis-basic halides. Nat. Commun. 13(1), 6731 (2022). https://doi.org/10.1038/s41467-022-34569-y
D.J. Xu, Q. Huang, L.K. Yang, Y.J. Chen, Z.M. Lu, H.J. Liu, P.J. Han, L. Guo, C. Wang, C.C. Liu, Experimental design of composite films with thermal management and electromagnetic shielding properties based on polyethylene glycol and MXene. Carbon 202(11), 1–12 (2023). https://doi.org/10.1016/j.carbon.2022.11.010
T.T. Xue, Y. Yang, D.Y. Yu, Q. Wali, Z.Y. Wang, X.S. Cao, W. Fan, T.X. Liu, 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro. Lett. 15(1), 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
M. Zhu, X.X. Yan, H.L. Xu, Y.J. Xu, L. Kong, Ultralight, compressible, and anisotropic MXene@wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 182(6), 806–814 (2021). https://doi.org/10.1016/j.carbon.2021.06.054
Y.F. Yang, M.R. Han, W. Liu, N. Wu, J.R. Liu, Hydrogel-based composites beyond the porous architectures for electromagnetic interference shielding. Nano Res. 15(10), 9614–9630 (2022). https://doi.org/10.1007/s12274-022-4817-1
Z. Wang, Z. Cheng, L. Xie, X.L. Hou, C.Q. Fang, Flexible and lightweight Ti3C2Tx MXene/Fe3O4@PANI composite films for high-performance electromagnetic interference shielding. Ceram. Int. 47(4), 5747–5757 (2021). https://doi.org/10.1016/j.ceramint.2020.10.161