Designing Oxide Catalysts for Oxygen Electrocatalysis: Insights from Mechanism to Application
Corresponding Author: Jan Fransaer
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 185
Abstract
The electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are fundamental processes in a range of energy conversion devices such as fuel cells and metal–air batteries. ORR and OER both have significant activation barriers, which severely limit the overall performance of energy conversion devices that utilize ORR/OER. Meanwhile, ORR is another very important electrochemical reaction involving oxygen that has been widely investigated. ORR occurs in aqueous solutions via two pathways: the direct 4-electron reduction or 2-electron reduction pathways from O2 to water (H2O) or from O2 to hydrogen peroxide (H2O2). Noble metal electrocatalysts are often used to catalyze OER and ORR, despite the fact that noble metal electrocatalysts have certain intrinsic limitations, such as low storage. Thus, it is urgent to develop more active and stable low-cost electrocatalysts, especially for severe environments (e.g., acidic media). Theoretically, an ideal oxygen electrocatalyst should provide adequate binding to oxygen species. Transition metals not belonging to the platinum group metal-based oxides are a low-cost substance that could give a d orbital for oxygen species binding. As a result, transition metal oxides are regarded as a substitute for typical precious metal oxygen electrocatalysts. However, the development of oxide catalysts for oxygen reduction and oxygen evolution reactions still faces significant challenges, e.g., catalytic activity, stability, cost, and reaction mechanism. We discuss the fundamental principles underlying the design of oxide catalysts, including the influence of crystal structure, and electronic structure on their performance. We also discuss the challenges associated with developing oxide catalysts and the potential strategies to overcome these challenges.
Highlights:
1 Fundamental principles underlying the design of oxide catalysts, including the influence of crystal structure, and electronic structure on their performance are summarized and analyzed.
2 Challenges associated with developing oxide catalysts and the potential strategies are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Zhang, J. Sunarso, S. Liu, Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: Guidelines, recent advances, and forward directions. Chem. Soc. Rev. 46(10), 2941–3005 (2017). https://doi.org/10.1039/c6cs00841k
- W. Wang, C. Su, Y. Wu, R. Ran, Z. Shao, Progress in solid oxide fuel cells with Nickel-based anodes operating on methane and related fuels. Chem. Rev. 113(10), 8104–8151 (2013). https://doi.org/10.1021/cr300491e
- N. Han, X. Guo, J. Cheng, P. Liu, S. Zhang et al., Inhibiting in situ phase transition in Ruddlesden-popper perovskite via tailoring bond hybridization and its application in oxygen permeation. Matter 4, 1720–1734 (2021). https://doi.org/10.1016/j.matt.2021.02.019
- A. Kumar, A. Kumar, V. Krishnan, Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catal. 10(17), 10253–10315 (2020). https://doi.org/10.1021/acscatal.0c02947
- R. Shi, Z. Wang, Y. Zhao, G.I.N. Waterhouse, Z. Li et al., Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nat. Catal. 4(7), 565–574 (2021). https://doi.org/10.1038/s41929-021-00640-y
- Z. Wang, X. Li, Z. Yang, H. Guo, Y.J. Tan et al., Fully transient stretchable fruit-based battery as safe and environmentally friendly power source for wearable electronics. EcoMat 3(1), e12073 (2021). https://doi.org/10.1002/eom2.12073
- K. Liu, J. Lang, M. Yang, J. Xu, B. Sun et al., Molten lithium-brass/zinc chloride system as high-performance and low-cost battery. Matter 3(5), 1714–1724 (2020). https://doi.org/10.1016/j.matt.2020.08.022
- R. Razaq, P. Li, Y. Dong, Y. Li, Y. Mao et al., Practical energy densities, cost, and technical challenges for magnesium-sulfur batteries. EcoMat 2(4), e12056 (2020). https://doi.org/10.1002/eom2.12056
- K. Xie, N. Umezawa, N. Zhang, P. Reunchan, Y. Zhang et al., Self-doped SrTiO3-δ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energ. Environ. Sci. 4(10), 4211–4219 (2011). https://doi.org/10.1039/C1EE01594J
- U.G.M. Ekanayake, D.H. Seo, K. Faershteyn, A.P. O’Mullane, H. Shon et al., Atmospheric-pressure plasma seawater desalination: clean energy, agriculture, and resource recovery nexus for a blue planet. Sustain. Mater. Technol. 25, e00181 (2020). https://doi.org/10.1016/j.susmat.2020.e00181
- N. Han, P. Liu, J. Jiang, L. Ai, Z. Shao et al., Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 6(41), 19912–19933 (2018). https://doi.org/10.1039/C8TA06529B
- I. Concina, Z.H. Ibupoto, A. Vomiero, Semiconducting metal oxide nanostructures for water splitting and photovoltaics. Adv. Energy Mater. 7(23), 1700706 (2017). https://doi.org/10.1002/aenm.201700706
- H. Tian, J. Liang, J. Liu, Nanoengineering carbon spheres as nanoreactors for sustainable energy applications. Adv. Mater. 31(50), 1903886 (2019). https://doi.org/10.1002/adma.201903886
- J.D. Benck, T.R. Hellstern, J. Kibsgaard, P. Chakthranont, T.F. Jaramillo, Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4(11), 3957–3971 (2014). https://doi.org/10.1021/cs500923c
- Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao, Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem. Int. Ed. 56(5), 1324–1328 (2017). https://doi.org/10.1002/anie.201610413
- J. Sun, X. Liu, S. Yang, “Highway” toward efficient water oxidation. Matter 4(1), 21–22 (2021). https://doi.org/10.1016/j.matt.2020.12.010
- S. Liu, J. Huang, H. Su, G. Tang, Q. Liu et al., Multiphase phosphide cocatalyst for boosting efficient photocatalytic H2 production and enhancing the stability. Ceram. Int. 47(1), 1414–1420 (2021). https://doi.org/10.1016/j.ceramint.2020.08.265
- H. Lyu, T. Hisatomi, Y. Goto, M. Yoshida, T. Higashi et al., An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chem. Sci. 10(11), 3196–3201 (2019). https://doi.org/10.1039/C8SC05757E
- W. Wang, M.O. Tadé, Z. Shao, Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 44(15), 5371–5408 (2015). https://doi.org/10.1039/C5CS00113G
- P. Zhang, J. Zhang, J. Gong, Tantalum-based semiconductors for solar water splitting. Chem. Soc. Rev. 43(13), 4395–4422 (2014). https://doi.org/10.1039/C3CS60438A
- Y. Liu, W. Zeng, Y. Ma, R. Dong, P. Tan et al., Oxygen-defects modified amorphous Ta2O5 nanops for solar driven hydrogen evolution. Ceram. Int. 47(4), 4702–4706 (2021). https://doi.org/10.1016/j.ceramint.2020.10.038
- H.G. Kim, D.W. Hwang, J. Kim, Y.G. Kim, J.S. Lee, Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem. Commun. 12, 1077–1078 (1999). https://doi.org/10.1039/A902892G
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
- J. Huo, Y. Chen, Y. Liu, J. Guo, L. Lu et al., Bifunctional Iron Nickel phosphide nanocatalysts supported on porous carbon for highly efficient overall water splitting. Sustain. Mater. Technol. 22, e00117 (2019). https://doi.org/10.1016/j.susmat.2019.e00117
- J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu et al., Perovskites in catalysis and electrocatalysis. Science 358(6364), 751–756 (2017). https://doi.org/10.1126/science.aam7092
- J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14(1), 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
- Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14(1), 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
- H. Tian, A. Song, P. Zhang, K. Sun, J. Wang et al., High durability of Fe–N–C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media. Adv. Mater. 35(14), 2210714 (2023). https://doi.org/10.1002/adma.202210714
- H. Tian, F. Huang, Y. Zhu, S. Liu, Y. Han et al., The development of yolk–shell-structured Pd&ZnO@Carbon submicroreactors with high selectivity and stability. Adv. Funct. Mater. 28(32), 1801737 (2018). https://doi.org/10.1002/adfm.201801737
- H. Tian, A. Song, H. Tian, J. Liu, G. Shao et al., Single-atom catalysts for high-energy rechargeable batteries. Chem. Sci. 12(22), 7656–7676 (2021). https://doi.org/10.1039/D1SC00716E
- Z. Ma, A. Song, Z. Liu, Y. Guo, X. Yang et al., Nanoconfined expansion behavior of hollow MnS@Carbon anode with extended lithiation cyclic stability. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202301112
- L. Bai, A. Song, X. Lei, T. Zhang, S. Song et al., Hierarchical construction of hollow NiCo2S4 Nanotube@NiCo2S4 nanosheet arrays on ni foam as an efficient and durable electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen. Energ. 47(91), 38524–38532 (2022). https://doi.org/10.1016/j.ijhydene.2022.09.020
- H. Tian, H. Tian, S. Wang, S. Chen, F. Zhang et al., High-power lithium–selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode. Nat. Commun. 11(1), 5025 (2020). https://doi.org/10.1038/s41467-020-18820-y
- H. Tian, X. Liu, L. Dong, X. Ren, H. Liu et al., Enhanced hydrogenation performance over hollow structured Co-CoOx@N-C capsules. Adv. Sci. 6(22), 1900807 (2019). https://doi.org/10.1002/advs.201900807
- J. Dai, Y. Zhu, Y. Yin, H.A. Tahini, D. Guan et al., Super-exchange interaction induced overall optimization in ferromagnetic perovskite oxides enables ultrafast water oxidation. Small 15(39), 1903120 (2019). https://doi.org/10.1002/smll.201903120
- Y. Yan, C. Liu, H. Jian, X. Cheng, T. Hu et al., Substitutionally dispersed high-oxidation CoOx clusters in the lattice of rutile TiO2 triggering efficient co-ti cooperative catalytic centers for oxygen evolution reactions. Adv. Funct. Mater. 31(9), 2009610 (2021). https://doi.org/10.1002/adfm.202009610
- Y. Zhao, X. Jia, G. Chen, L. Shang, G.I.N. Waterhouse et al., Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LdH precursors: an active water oxidation electrocatalyst. J. Am. Chem. Soc. 138(20), 6517–6524 (2016). https://doi.org/10.1021/jacs.6b01606
- M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing et al., Pdo bimetallene for oxygen reduction catalysis. Nature 574(7776), 81–85 (2019). https://doi.org/10.1038/s41586-019-1603-7
- M. Luo, S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2(11), 17059 (2017). https://doi.org/10.1038/natrevmats.2017.59
- Q. Wang, N. Han, A. Bokhari, X. Li, Y. Cao et al., Insights into mxenes-based electrocatalysts for oxygen reduction. Energy 255, 124465 (2022). https://doi.org/10.1016/j.energy.2022.124465
- Y. Cao, W. Zhang, Y. Sun, Y. Jiang, N. Han et al., Highly active iron-nitrogen-boron-carbon bifunctional electrocatalytic platform for hydrogen peroxide sensing and oxygen reduction. Environ. Res. 201, 111563 (2021). https://doi.org/10.1016/j.envres.2021.111563
- Y. Cao, Y. Sun, N. Han, X. Li, Q. Wang et al., Novel highly active and selective consc efficient orr catalyst derived from In-SiTu egg gel pyrolysis. Fuel 333, 126432 (2023). https://doi.org/10.1016/j.fuel.2022.126432
- Y. Sun, W. Zhang, Q. Wang, N. Han, A. Núñez-Delgado et al., Biomass-derived N, S Co-doped 3d multichannel carbon supported Au@Pd@Pt catalysts for oxygen reduction. Environ. Res. 202, 111684 (2021). https://doi.org/10.1016/j.envres.2021.111684
- Y. Cao, Y. Sun, R. Zheng, Q. Wang, X. Li et al., Biomass-derived carbon material as efficient electrocatalysts for the oxygen reduction reaction. Biomass. Bioenerg. 168, 106676 (2023). https://doi.org/10.1016/j.biombioe.2022.106676
- Z.-F. Huang, J. Song, S. Dou, X. Li, J. Wang et al., Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter 1(6), 1494–1518 (2019). https://doi.org/10.1016/j.matt.2019.09.011
- L. Yang, G. Yu, X. Ai, W. Yan, H. Duan et al., Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IRO6 octahedral dimers. Nat. Commun. 9(1), 5236 (2018). https://doi.org/10.1038/s41467-018-07678-w
- Z. Chen, X. Gu, Y. Guo, X. Wang, M. Shao et al., A carbon dot-based total green and self-recoverable solid-state electrochemical cell fully utilizing O2/H2O redox couple. SusMat 1(3), 448–457 (2021). https://doi.org/10.1002/sus2.23
- W. Zhang, N. Han, J. Luo, X. Han, S. Feng et al., Critical role of phosphorus in hollow structures cobalt-based phosphides as bifunctional catalysts for water splitting. Small 18(4), 2103561 (2022). https://doi.org/10.1002/smll.202103561
- Y. Chen, J.K. Seo, Y. Sun, T.A. Wynn, M. Olguin et al., Enhanced oxygen evolution over dual corner-shared cobalt tetrahedra. Nat. Commun. 13(1), 5510 (2022). https://doi.org/10.1038/s41467-022-33000-w
- L. Li, P. Wang, Q. Shao, X. Huang, Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. 33(50), 2004243 (2021). https://doi.org/10.1002/adma.202004243
- X. Wang, H. Zhong, S. Xi, W.S.V. Lee et al., Understanding of oxygen redox in oxygen evolution reaction. Adv. Mater. 34(50), 2107956 (2021). https://doi.org/10.1002/adma.202107956
- N. Zhang, C. Wang, J. Chen, Y. Chai, Oxygen reactivity regulation via double-exchange interaction for enhanced water oxidation. EcoMat 5(2), e12290 (2022). https://doi.org/10.1002/eom2.12290
- Y. Wen, C. Liu, R. Huang, H. Zhang, X. Li et al., Introducing brønsted acid sites to accelerate the bridging-oxygen-assisted deprotonation in acidic water oxidation. Nat. Commun. 13(1), 4871 (2022). https://doi.org/10.1038/s41467-022-32581-w
- Y. Zhang, X. Zhu, G. Zhang, P. Shi, A.-L. Wang, Rational catalyst design for oxygen evolution under acidic conditions: strategies toward enhanced electrocatalytic performance. J. Mater. Chem. A 9(10), 5890–5914 (2021). https://doi.org/10.1039/D0TA11982B
- X. Xu, H. Sun, S.P. Jiang, Z. Shao, Modulating metal–organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. SusMat 1(4), 460–481 (2021). https://doi.org/10.1002/sus2.34
- Y. Pang, H. Xie, Y. Sun, M.-M. Titirici, G.-L. Chai, Electrochemical oxygen reduction for H2O2 production: catalysts, ph effects and mechanisms. J. Mater. Chem. A 8(47), 24996–25016 (2020). https://doi.org/10.1039/D0TA09122G
- A.T. Murray, S. Voskian, M. Schreier, T.A. Hatton, Y. Surendranath, Electrosynthesis of hydrogen peroxide by phase-transfer catalysis. Joule 3(12), 2942–2954 (2019). https://doi.org/10.1016/j.joule.2019.09.019
- O. Jung, M.L. Pegis, Z. Wang, G. Banerjee, C.T. Nemes et al., Highly active NiO photocathodes for H2O2 production enabled via outer-sphere electron transfer. J. Am. Chem. Soc. 140(11), 4079–4084 (2018). https://doi.org/10.1021/jacs.8b00015
- Y. Xia, X. Zhao, C. Xia, Z.-Y. Wu, P. Zhu et al., Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 12(1), 4225 (2021). https://doi.org/10.1038/s41467-021-24329-9
- P. Morandi, V. Flaud, S. Tingry, D. Cornu, Y. Holade, Tartaric acid regulated the advanced synthesis of bismuth-based materials with tunable performance towards the electrocatalytic production of hydrogen peroxide. J. Mater. Chem. A 8(36), 18840–18855 (2020). https://doi.org/10.1039/D0TA06466A
- J. Yu, Q. He, G. Yang, W. Zhou, Z. Shao et al., Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 9(11), 9973–10011 (2019). https://doi.org/10.1021/acscatal.9b02457
- H. Wang, Z.-N. Chen, D. Wu, M. Cao, F. Sun et al., Significantly enhanced overall water splitting performance by partial oxidation of ir through Au modification in core–shell alloy structure. J. Am. Chem. Soc. 143(12), 4639–4645 (2021). https://doi.org/10.1021/jacs.0c12740
- G. Zhang, Z.-A. Lan, L. Lin, S. Lin, X. Wang, Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 7(5), 3062–3066 (2016). https://doi.org/10.1039/C5SC04572J
- C. Li, N. Clament Sagaya Selvam, J. Fang, Shape-controlled synthesis of Platinum-based nanocrystals and their electrocatalytic applications in fuel cells. Nano-Micro Lett. 15(1), 83 (2023). https://doi.org/10.1007/s40820-023-01060-2
- K. Kalantar-zadeh, J.Z. Ou, T. Daeneke, A. Mitchell, T. Sasaki et al., Two dimensional and layered transition metal oxides. Appl. Mater. Today 5, 73–89 (2016). https://doi.org/10.1016/j.apmt.2016.09.012
- V. Charles, A.O. Anumah, K.A. Adegoke, M.O. Adesina, I.P. Ebuka et al., Progress and challenges pertaining to the earthly-abundant electrocatalytic materials for oxygen evolution reaction. Sustain. Mater. Technol. 28, e00252 (2021). https://doi.org/10.1016/j.susmat.2021.e00252
- B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15(1), 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
- C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15(1), 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
- J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011). https://doi.org/10.1126/science.1212858
- N. Han, M. Race, W. Zhang, R. Marotta, C. Zhang et al., Perovskite and related oxide based electrodes for water splitting. J. Clean Prod. 318, 128544 (2021). https://doi.org/10.1016/j.jclepro.2021.128544
- C. Zhang, F. Wang, M. Batool, B. Xiong, H. Yang, Phase transition of SrCo0.9Fe0.1O3 electrocatalysts and their effects on oxygen evolution reaction. SusMat 2, 445–455 (2022). https://doi.org/10.1002/sus2.72
- X. Xu, Y. Zhong, Z. Shao, Double perovskites in catalysis, electrocatalysis, and photo(electro)catalysis. Trends Chem. 1(4), 410–424 (2019). https://doi.org/10.1016/j.trechm.2019.05.006
- H. Sun, Z. Hu, X. Xu, J. He, J. Dai et al., Ternary phase diagram-facilitated rapid screening of double perovskites as electrocatalysts for the oxygen evolution reaction. Chem. Mater. 31(15), 5919–5926 (2019). https://doi.org/10.1021/acs.chemmater.9b02261
- C. Wei, Z. Feng, G.G. Scherer, J. Barber, Y. Shao-Horn et al., Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 29(23), 1606800 (2017). https://doi.org/10.1002/adma.201606800
- N. Han, S. Feng, W. Guo, O.M. Mora, X. Zhao et al., Rational design of ruddlesden–popper perovskite electrocatalyst for oxygen reduction to hydrogen peroxide. SusMat 2(4), 456–465 (2022). https://doi.org/10.1002/sus2.71
- Y. Zhu, H.A. Tahini, Z. Hu, Y. Yin, Q. Lin et al., Boosting oxygen evolution reaction by activation of Lattice-Oxygen sites in layered ruddlesden-popper oxide. EcoMat 2(2), e12021 (2020). https://doi.org/10.1002/eom2.12021
- J. Kim, P.-C. Shih, K.-C. Tsao, Y.-T. Pan, X. Yin et al., High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media. J. Am. Chem. Soc. 139(34), 12076–12083 (2017). https://doi.org/10.1021/jacs.7b06808
- J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng et al., A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49(7), 2196–2214 (2020). https://doi.org/10.1039/C9CS00607A
- N. Han, W. Zhang, W. Guo, S. Xie, C. Zhang et al., Novel oxygen permeable hollow fiber perovskite membrane with surface wrinkles. Sep. Purif. Technol. 261, 118295–118316 (2021). https://doi.org/10.1016/j.seppur.2020.118295
- Y. Liang, Y. Cui, Y. Chao, N. Han, J. Sunarso et al., Exsolution of cofe(Ru) nanops in Ru-doped (La0.8Sr0.2)0.9Co0.1Fe0.8Ru0.1O3−δ for efficient oxygen evolution reaction. Nano Res. 15, 6977–6986 (2022). https://doi.org/10.1007/s12274-022-4328-0
- N. Han, C. Zhang, X. Tan, Z. Wang, S. Kawi et al., Re-evaluation of La0.6Sr0.4Co0.2Fe0.8O3-δ hollow fiber membranes for oxygen separation after long-term storage of five and ten years. J. Mem. Sci. 587, 117180 (2019). https://doi.org/10.1016/j.memsci.2019.117180
- N. Han, S. Wang, Z. Yao, W. Zhang, X. Zhang et al., Superior three-dimensional perovskite catalyst for catalytic oxidation. EcoMat 2(3), e12044 (2020). https://doi.org/10.1002/eom2.12044
- L. Wang, K.A. Stoerzinger, L. Chang, J. Zhao, Y. Li et al., Tuning bifunctional oxygen electrocatalysts by changing the a-site rare-earth element in perovskite nickelates. Adv. Funct. Mater. 28(39), 1803712 (2018). https://doi.org/10.1002/adfm.201803712
- Y. Zhu, W. Zhou, J. Sunarso, Y. Zhong, Z. Shao, Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution. Adv. Funct. Mater. 26(32), 5862–5872 (2016). https://doi.org/10.1002/adfm.201601902
- X. Xu, Y. Chen, W. Zhou, Z. Zhu, C. Su et al., A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater. 28(30), 6442–6448 (2016). https://doi.org/10.1002/adma.201600005
- A. Sheelam, S. Balu, A. Muneeb, K.S. Bayikadi, D. Namasivayam et al., Improved oxygen redox activity by high-valent fe and Co3+ sites in the perovskite LaNi1–xFe0.5xCo0.5xO3. ACS Appl. Energ. Mater. 5(1), 343–354 (2022). https://doi.org/10.1021/acsaem.1c02871
- S. She, J. Yu, W. Tang, Y. Zhu, Y. Chen et al., Systematic study of oxygen evolution activity and stability on La1–xSrxFeO3−δ perovskite electrocatalysts in alkaline media. ACS Appl. Mater. Interfaces 10(14), 11715–11721 (2018). https://doi.org/10.1021/acsami.8b00682
- X. Cheng, E. Fabbri, Y. Yamashita, I.E. Castelli, B. Kim et al., Oxygen evolution reaction on perovskites: a multieffect descriptor study combining experimental and theoretical methods. ACS Catal. 8(10), 9567–9578 (2018). https://doi.org/10.1021/acscatal.8b02022
- X. Rong, J. Parolin, A.M. Kolpak, A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 6(2), 1153–1158 (2016). https://doi.org/10.1021/acscatal.5b02432
- Y. Guo, Y. Tong, P. Chen, K. Xu, J. Zhao et al., Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Adv. Mater. 27(39), 5989–5994 (2015). https://doi.org/10.1002/adma.201502024
- Y. Zhu, H.A. Tahini, Z. Hu, Z.-G. Chen, W. Zhou et al., Boosting oxygen evolution reaction by creating both metal ion and lattice-oxygen active sites in a complex oxide. Adv. Mater. 32(1), 1905025 (2020). https://doi.org/10.1002/adma.201905025
- C. Bloed, J. Vuong, A. Enriquez, S. Raghavan, I. Tran et al., Oxygen vacancy and chemical ordering control oxygen evolution activity of Sr2–xCaxFe2O6−δ perovskites. ACS Appl. Energ. Mater. 2, 6140–6145 (2019). https://doi.org/10.1021/acsaem.9b00581
- S. She, Y. Zhu, Y. Chen, Q. Lu, W. Zhou et al., Realizing ultrafast oxygen evolution by introducing proton acceptor into perovskites. Adv. Energ. Mater. 9(20), 1900429 (2019). https://doi.org/10.1002/aenm.201900429
- Y. Zhu, W. Zhou, Y. Zhong, Y. Bu, X. Chen et al., A perovskite nanorod as bifunctional electrocatalyst for overall water splitting. Adv. Energ. Mater. 7(8), 1602122 (2017). https://doi.org/10.1002/aenm.201602122
- Y. Zhu, W. Zhou, Z. Shao, Perovskite/carbon composites: applications in oxygen electrocatalysis. Small 13(12), 1602122 (2017). https://doi.org/10.1002/aenm.201602122
- P. Sabatier, Hydrogénations et déshydrogénations par catalyse. Ber. Dtsch. Chem. Ges. 44(3), 1984–2001 (1911). https://doi.org/10.1002/cber.19110440303
- J.S. Yoo, X. Rong, Y. Liu, A.M. Kolpak, Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 8(5), 4628–4636 (2018). https://doi.org/10.1021/acscatal.8b00612
- A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y.-L. Lee et al., Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9(5), 457–465 (2017). https://doi.org/10.1038/nchem.2695
- E. Fabbri, M. Nachtegaal, T. Binninger, X. Cheng, B.-J. Kim et al., Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 16(9), 925–931 (2017). https://doi.org/10.1038/nmat4938
- Y. Zhu, H.A. Tahini, Z. Hu, Y. Yin, Q. Lin et al., Boosting oxygen evolution reaction by activation of lattice-oxygen sites in layered ruddlesden-popper oxide. EcoMat (2020). https://doi.org/10.1002/eom2.12021
- D.A. Kuznetsov, M.A. Naeem, P.V. Kumar, P.M. Abdala, A. Fedorov et al., Tailoring lattice oxygen binding in ruthenium pyrochlores to enhance oxygen evolution activity. J. Am. Chem. Soc. 142(17), 7883–7888 (2020). https://doi.org/10.1021/jacs.0c01135
- Y. Yao, S. Hu, W. Chen, Z.-Q. Huang, W. Wei et al., Engineering the electronic structure of single atom ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2(4), 304–313 (2019). https://doi.org/10.1038/s41929-019-0246-2
- M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016). https://doi.org/10.1021/acs.chemrev.5b00462
- J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough et al., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3(7), 546–550 (2011)
- J. Lim, D. Park, S.S. Jeon, C.-W. Roh, J. Choi et al., Ultrathin IrO2 nanoneedles for electrochemical water oxidation. Adv. Funct. Mater. 28(4), 1704796 (2018). https://doi.org/10.1002/adfm.201704796
- S. Laha, Y. Lee, F. Podjaski, D. Weber, V. Duppel et al., Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Energ. Mater. 9(15), 1803795 (2019). https://doi.org/10.1002/aenm.201803795
- A. Bergmann, E. Martinez-Moreno, D. Teschner, P. Chernev, M. Gliech et al., Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 6(1), 8625 (2015). https://doi.org/10.1038/ncomms9625
- Y. Chen, H. Li, J. Wang, Y. Du, S. Xi et al., Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 10(1), 572 (2019)
- D. Chen, M. Qiao, Y.-R. Lu, L. Hao, D. Liu et al., Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction. Angew. Chem. Int. Ed. 57(28), 8691–8696 (2018). https://doi.org/10.1002/anie.201805520
- J.R. Petrie, V.R. Cooper, J.W. Freeland, T.L. Meyer, Z. Zhang et al., Enhanced bifunctional oxygen catalysis in strained LaNiO3 perovskites. J. Am. Chem. Soc. 138(8), 2488–2491 (2016). https://doi.org/10.1021/jacs.5b11713
- K.A. Stoerzinger, W.S. Choi, H. Jeen, H.N. Lee, Y. Shao-Horn, Role of strain and conductivity in oxygen electrocatalysis on LaCoO3 thin films. J. Phy. Chem. Lett. 6(3), 487–492 (2015). https://doi.org/10.1021/jz502692a
- J. Chen, H. Hu, F. Meng, T. Yajima, L. Yang et al., Overlooked transportation anisotropies in d-band correlated rare-earth perovskite nickelates. Matter 2(5), 1296–1306 (2020). https://doi.org/10.1016/j.matt.2020.02.023
- D.A. Kuznetsov, B. Han, Y. Yu, R.R. Rao, J. Hwang et al., Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule 2(2), 225–244 (2018). https://doi.org/10.1016/j.joule.2017.11.014
- C. Guo, Y. Zheng, J. Ran, F. Xie, M. Jaroniec et al., Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis. Angew. Chem. Int. Ed. 56(29), 8539–8543 (2017). https://doi.org/10.1002/anie.201701531
- L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya et al., A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353(6303), 1011–1014 (2016). https://doi.org/10.1126/science.aaf5050%JScience
- Z. Li, J. Yang, Z. Chen, C. Zheng, L.Q. Wei et al., V “bridged” Co to eliminate charge transfer barriers and drive lattice oxygen oxidation during water-splitting. Adv. Funct. Mater. 31(9), 2008822 (2021). https://doi.org/10.1002/adfm.202008822
- Y. Liu, Y. Ying, L. Fei, Y. Liu, Q. Hu et al., Valence engineering via selective atomic substitution on tetrahedral sites in spinel oxide for highly enhanced oxygen evolution catalysis. J. Am. Chem. Soc. 141(20), 8136–8145 (2019). https://doi.org/10.1021/jacs.8b13701
- M. Xu, H. Sun, W. Wang, Y. Shen, W. Zhou et al., Scandium and phosphorus co-doped perovskite oxides as high-performance electrocatalysts for the oxygen reduction reaction in an alkaline solution. J. Mater. Sci. Technol. 39, 22–27 (2020). https://doi.org/10.1016/j.jmst.2019.09.007
- A. Zunger, O.I. Malyi, Understanding doping of quantum materials. Chem. Rev. 121(5), 3031–3060 (2021). https://doi.org/10.1021/acs.chemrev.0c00608
- Y. Lin, Z. Tian, L. Zhang, J. Ma, Z. Jiang et al., Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 10(1), 162 (2019). https://doi.org/10.1038/s41467-018-08144-3
- J. Su, R. Ge, K. Jiang, Y. Dong, F. Hao et al., Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 30(29), 1801351 (2018). https://doi.org/10.1002/adma.201801351
- S. Chen, H. Huang, P. Jiang, K. Yang, J. Diao et al., Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal. 10(2), 1152–1160 (2020). https://doi.org/10.1021/acscatal.9b04922
- Y. Wang, S. Hao, X. Liu, Q. Wang, Z. Su et al., Ce-doped IrO2 electrocatalysts with enhanced performance for water oxidation in acidic media. ACS Appl. Mater. Interfaces 12(33), 37006–37012 (2020). https://doi.org/10.1021/acsami.0c00389
- Z. Li, S. Wang, Y. Tian, B. Li, H.J. Yan et al., Mg-doping improves the performance of Ru-based electrocatalysts for the acidic oxygen evolution reaction. Chem. Commun. 56(11), 1749–1752 (2020). https://doi.org/10.1039/C9CC09613B
- X. Cheng, E. Fabbri, M. Nachtegaal, I.E. Castelli, M. El Kazzi et al., Oxygen evolution reaction on La1–xSrxCoO3 perovskites: a combined experimental and theoretical study of their structural, electronic, and electrochemical properties. Chem. Mater. 27(22), 7662–7672 (2015). https://doi.org/10.1021/acs.chemmater.5b03138
- J.-I. Jung, H.Y. Jeong, J.-S. Lee, M.G. Kim, J. Cho, A bifunctional perovskite catalyst for oxygen reduction and evolution. Angew. Chem. Int. Ed. 53(18), 4582–4586 (2014). https://doi.org/10.1002/anie.201311223
- Z. Wu, L.-P. Sun, T. Xia, L.-H. Huo, H. Zhao et al., Effect of sr doping on the electrochemical properties of bi-functional oxygen electrode PrBa1−xSrxCo2O5+δ. J. Power Sources 334, 86–93 (2016). https://doi.org/10.1016/j.jpowsour.2016.10.013
- N. Han, S. Feng, Y. Liang, J. Wang, W. Zhang et al., Achieving efficient electrocatalytic oxygen evolution in acidic media on yttrium ruthenate pyrochlore through cobalt incorporation. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202208399
- S. She, Y. Zhu, X. Wu, Z. Hu, A. Shelke et al., Realizing high and stable electrocatalytic oxygen evolution for iron-based perovskites by co-doping-induced structural and electronic modulation. Adv. Funct. Mater. 32(15), 2111091 (2022). https://doi.org/10.1002/adfm.202111091
- Q. Lu, X. Zou, X. Wang, L. An, Z. Shao et al., Simultaneous reactant accessibility and charge transfer engineering in Co-doped RuO2-supported ocnt for robust rechargeable zinc-air batteries. Appl. Catal. B-Environ. 325, 122323 (2023). https://doi.org/10.1016/j.apcatb.2022.122323
- T.D. Nguyen, H.H. Nguyen, C. Dai, J. Wang, G.G. Scherer, Activity and stability optimization of RuxIr1-xO2 nanocatalyst for the oxygen evolution reaction by tuning the synthetic process. Int. J. Hydrogen. Energ. 45(1), 46–55 (2020). https://doi.org/10.1016/j.ijhydene.2019.10.179
- J. Feng, F. Lv, W. Zhang, P. Li, K. Wang et al., Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis. Adv. Mater. 29(47), 1703798 (2017). https://doi.org/10.1002/adma.201703798
- W. Sun, Y. Song, X.-Q. Gong, L.-M. Cao, J. Yang, An efficiently tuned d-orbital occupation of IrO2 by doping with cu for enhancing the oxygen evolution reaction activity. Chem. Sci. 6(8), 4993–4999 (2015). https://doi.org/10.1039/C5SC01251A
- F. Lv, J. Feng, K. Wang, Z. Dou, W. Zhang et al., Iridium–tungsten alloy nanodendrites as pH-universal water-splitting electrocatalysts. ACS Cent. Sci. 4(9), 1244–1252 (2018). https://doi.org/10.1021/acscentsci.8b00426
- R. Ge, L. Li, J. Su, Y. Lin, Z. Tian et al., Ultrafine defective RuO2 electrocatayst integrated on carbon cloth for robust water oxidation in acidic media. Adv. Energ. Mater. 9(35), 1901313 (2019). https://doi.org/10.1002/aenm.201901313
- J. Suntivich, W.T. Hong, Y.-L. Lee, J.M. Rondinelli, W. Yang et al., Estimating hybridization of transition metal and oxygen states in perovskites from o K-edge X-ray absorption spectroscopy. J. Phy. Chem. C 118(4), 1856–1863 (2014). https://doi.org/10.1021/jp410644j
- W.-J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li et al., Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci. 12(2), 442–462 (2019). https://doi.org/10.1039/C8EE01574K
- M. Retuerto, L. Pascual, F. Calle-Vallejo, P. Ferrer, D. Gianolio et al., Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media. Nat. Commun. 10(1), 2041 (2019). https://doi.org/10.1038/s41467-019-09791-w
- B.S. Yeo, A.T. Bell, Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133(14), 5587–5593 (2011). https://doi.org/10.1021/ja200559j
- X. Xu, Y. Pan, L. Ge, Y. Chen, X. Mao et al., High-performance perovskite composite electrocatalysts enabled by controllable interface engineering. Small 17(29), 2101573 (2021). https://doi.org/10.1002/smll.202101573
- X. Xu, W. Wang, W. Zhou, Z. Shao, Recent advances in novel nanostructuring methods of perovskite electrocatalysts for energy-related applications. Small Methods 2(7), 1800071 (2018). https://doi.org/10.1002/smtd.201800071
- J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). https://doi.org/10.1126/science.1212858
- J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Nørskov, Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607(1), 83–89 (2007). https://doi.org/10.1016/j.jelechem.2006.11.008
- J.B. Goodenough, R. Manoharan, M. Paranthaman, Surface protonation and electrochemical activity of oxides in aqueous solution. J. Am. Chem. Soc. 112(6), 2076–2082 (1990). https://doi.org/10.1021/ja00162a006
- J. Kim, X. Yin, K.-C. Tsao, S. Fang, H. Yang, Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. J. Am. Chem. Soc. 136(42), 14646–14649 (2014). https://doi.org/10.1021/ja506254g
- J.G. Lee, J. Hwang, H.J. Hwang, O.S. Jeon, J. Jang et al., A new family of perovskite catalysts for oxygen-evolution reaction in alkaline media: BaNiO3 and BaNi0.83O2.5. J. Am. Chem. Soc. 138(10), 3541–3547 (2016). https://doi.org/10.1021/jacs.6b00036
- Y. Zhou, S. Sun, S. Xi, Y. Duan, T. Sritharan et al., Superexchange effects on oxygen reduction activity of edge-sharing [CoxMn1−xO6] octahedra in spinel oxide. Adv. Mater. 30(11), 1705407 (2018). https://doi.org/10.1002/adma.201705407
- Y. Zhu, W. Zhou, J. Yu, Y. Chen, M. Liu et al., Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 28(6), 1691–1697 (2016). https://doi.org/10.1021/acs.chemmater.5b04457
- J. Huang, J. Chen, T. Yao, J. He, S. Jiang et al., CoOoH nanosheets with high mass activity for water oxidation. Angew. Chem. Int. Ed. 54(30), 8722–8727 (2015). https://doi.org/10.1002/anie.201502836
- C. Su, W. Wang, Y. Chen, G. Yang, X. Xu et al., SrCo0.9Ti0.1O3−δ as a new electrocatalyst for the oxygen evolution reaction in alkaline electrolyte with stable performance. ACS Appl. Mater. Interfaces 7(32), 17663–17670 (2015). https://doi.org/10.1021/acsami.5b02810
- Y.-Q. Lyu, F. Ciucci, Activating the bifunctionality of a perovskite oxide toward oxygen reduction and oxygen evolution reactions. ACS Appl. Mater. Interfaces 9(41), 35829–35836 (2017). https://doi.org/10.1021/acsami.7b10216
- B. Zhao, L. Zhang, D. Zhen, S. Yoo, Y. Ding et al., A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nat. Commun. 8(1), 14586 (2017). https://doi.org/10.1038/ncomms14586
- C.E. Beall, E. Fabbri, T.J. Schmidt, Perovskite oxide based electrodes for the oxygen reduction and evolution reactions: the underlying mechanism. ACS Catal. 11(5), 3094–3114 (2021). https://doi.org/10.1021/acscatal.0c04473
- J.M. Rondinelli, S.J. May, Deliberate deficiencies: expanding electronic function through non-stoichiometry. Matter 1(1), 33–35 (2019). https://doi.org/10.1016/j.matt.2019.06.013
- Z. Chen, N. Han, R. Zheng, Z. Ren, W. Wei et al., Design of earth-abundant amorphous transition metal-based catalysts for electrooxidation of small molecules: advances and perspectives. SusMat (2023). https://doi.org/10.1002/sus2.131
- G. Jia, Y. Wang, X. Cui, H. Zhang, J. Zhao et al., Wet-chemistry hydrogen doped TiO2 with switchable defects control for photocatalytic hydrogen evolution. Matter 5(1), 206–218 (2022). https://doi.org/10.1016/j.matt.2021.10.027
- S.C. Perry, D. Pangotra, L. Vieira, L.-I. Csepei, V. Sieber et al., Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3(7), 442–458 (2019)
- K.A. Stoerzinger, M. Risch, B. Han, Y. Shao-Horn, Recent insights into manganese oxides in catalyzing oxygen reduction kinetics. ACS Catal. 5(10), 6021–6031 (2015). https://doi.org/10.1021/acscatal.5b01444
- A. Kulkarni, S. Siahrostami, A. Patel, J.K. Nørskov, Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118(5), 2302–2312 (2018). https://doi.org/10.1021/acs.chemrev.7b00488
- Y. Xu, X. Liu, N. Cao, X. Xu, L. Bi, Defect engineering for electrocatalytic nitrogen reduction reaction at ambient conditions. Sustain. Mater. Technol. 27, e00229 (2021). https://doi.org/10.1016/j.susmat.2020.e00229
- J. Chen, W. Zhang, H. Li, W. Li, D. Zhao, Recent advances in TiO2-based catalysts for N2 reduction reaction. SusMat 1(2), 174–193 (2021). https://doi.org/10.1002/sus2.13
- W. Shi, H. Liu, Z. Li, C. Li, J. Zhou et al., High-entropy alloy stabilized and activated pt clusters for highly efficient electrocatalysis. SusMat 2(2), 186–196 (2022). https://doi.org/10.1002/sus2.56
- Y. Tian, S. Wang, E. Velasco, Y. Yang, L. Cao et al., A Co-doped nanorod-like RuO2 electrocatalyst with abundant oxygen vacancies for acidic water oxidation. Science 23(1), 100756–100816 (2020). https://doi.org/10.1016/j.isci.2019.100756
- Q. Ji, L. Bi, J. Zhang, H. Cao, X.S. Zhao, The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energ. Environ. Sci. 13(5), 1408–1428 (2020). https://doi.org/10.1039/D0EE00092B
- M.A. Peña, J.L.G. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101(7), 1981–2018 (2001). https://doi.org/10.1021/cr980129f
- K. Conder, E. Pomjakushina, A. Soldatov, E. Mitberg, Oxygen content determination in perovskite-type cobaltates. Mater. Res. Bull. 40(2), 257–263 (2005). https://doi.org/10.1016/j.materresbull.2004.10.009
- J.T. Mefford, X. Rong, A.M. Abakumov, W.G. Hardin, S. Dai et al., Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 7(1), 11053 (2016). https://doi.org/10.1038/ncomms11053
- Y. Jiang, Z. Geng, L. Yuan, Y. Sun, Y. Cong et al., Nanoscale architecture of RuO.2/La0.9Fe0.92Ru0.08–xO3−δ composite via manipulating the exsolution of low Ru-substituted a-site deficient perovskite. ACS Sustain. Chem. Eng. 6(9), 11999–12005 (2018). https://doi.org/10.1021/acssuschemeng.8b02288
- Y. Zhu, J. Dai, W. Zhou, Y. Zhong, H. Wang et al., Synergistically enhanced hydrogen evolution electrocatalysis by in-situ exsolution of metallic nanops on perovskites. J. Mater. Chem. A 6, 13582–13587 (2018). https://doi.org/10.1039/C8TA02347F
- X. Xu, Y. Chen, W. Zhou, Y. Zhong, D. Guan et al., Earth-abundant silicon for facilitating water oxidation over Iron-based perovskite electrocatalyst. Adv. Mater. Interfaces 5, 1701693 (2018). https://doi.org/10.1002/admi.201701693
- T. Ling, D.-Y. Yan, H. Wang, Y. Jiao, Z. Hu et al., Activating cobalt(ii) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun. 8(1), 1509 (2017). https://doi.org/10.1038/s41467-017-01872-y
- J. Hwang, Z. Feng, N. Charles, X.R. Wang, D. Lee et al., Tuning perovskite oxides by strain: electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Mater. Today 31, 100–118 (2019). https://doi.org/10.1016/j.mattod.2019.03.014
- D. Pesquera, G. Herranz, A. Barla, E. Pellegrin, F. Bondino et al., Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films. Nat. Commun. 3(1), 1189 (2012). https://doi.org/10.1038/ncomms2189
- J.M. Rondinelli, N.A. Spaldin, Structure and properties of functional oxide thin films: insights from electronic-structure calculations. Adv. Mater. 23(30), 3363–3381 (2011). https://doi.org/10.1002/adma.201101152
- S.A. Akhade, J.R. Kitchin, Effects of strain, d-band filling, and oxidation state on the surface electronic structure and reactivity of 3d perovskite surfaces. J. Chem. Phy. 137(8), 084703 (2012). https://doi.org/10.1063/1.4746117
- D. Lee, R. Jacobs, Y. Jee, A. Seo, C. Sohn et al., Stretching epitaxial La0.6Sr0.4CoO3−δ for fast oxygen reduction. J. Phy. Chem. C 121(46), 25651–25658 (2017). https://doi.org/10.1021/acs.jpcc.7b06374
- R. Jacobs, J. Booske, D. Morgan, Understanding and controlling the work function of perovskite oxides using density functional theory. Adv. Funct. Mater. 26(30), 5471–5482 (2016). https://doi.org/10.1002/adfm.201600243
- X. Li, H. Liu, Z. Chen, Q. Wu, Z. Yu, Enhancing oxygen evolution efficiency of multiferroic oxides by spintronic and ferroelectric polarization regulation. Nat. Commun. 10(1), 1409 (2019). https://doi.org/10.1038/s41467-019-09191-0
- K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert et al., Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306(5698), 1005–1009 (2004). https://doi.org/10.1126/science.1103218
- T. Mayeshiba, D. Morgan, Strain effects on oxygen migration in perovskites. Phys. Chem. Chem. Phys. 17(4), 2715–2721 (2015). https://doi.org/10.1039/C4CP05554C
- M. Kubicek, Z. Cai, W. Ma, B. Yildiz, H. Hutter et al., Tensile lattice strain accelerates oxygen surface exchange and diffusion in La1–xSrxCoO3−δ thin films. ACS Nano 7(4), 3276–3286 (2013). https://doi.org/10.1021/nn305987x
- S. Stemmer, A.J. Jacobson, X. Chen, A. Ignatiev, Oxygen vacancy ordering in epitaxial La0.5Sr0.5CoO3−δ thin films on (001) LaAlO3. J. Appl. Phys. 90(7), 3319–3324 (2001). https://doi.org/10.1063/1.1401793
- T.T. Mayeshiba, D.D. Morgan, Factors controlling oxygen migration barriers in perovskites. Solid State Ionics 296, 71–77 (2016). https://doi.org/10.1016/j.ssi.2016.09.007
- S. Xu, R. Jacobs, D. Morgan, Factors controlling oxygen interstitial diffusion in the Ruddlesden–popper oxide La2–xSrxNiO4+δ. Chem. Mater. 30(20), 7166–7177 (2018). https://doi.org/10.1021/acs.chemmater.8b03146
- T.L. Meyer, R. Jacobs, D. Lee, L. Jiang, J.W. Freeland et al., Strain control of oxygen kinetics in the Ruddlesden-popper oxide La1.85Sr0.15CuO4. Nat. Commun. 9(1), 92 (2018). https://doi.org/10.1038/s41467-017-02568-z
- N. Han, X. Guo, J. Cheng, P. Liu, S. Zhang et al., Inhibiting in situ phase transition in ruddlesden-popper perovskite via tailoring bond hybridization and its application in oxygen permeation. Matter 4(5), 1720–1734 (2021). https://doi.org/10.1016/j.matt.2021.02.019
- R. Jacobs, J. Hwang, Y. Shao-Horn, D. Morgan, Assessing correlations of perovskite catalytic performance with electronic structure descriptors. Chem. Mater. 31(3), 785–797 (2019). https://doi.org/10.1021/acs.chemmater.8b03840
- Y.-L. Lee, M.J. Gadre, Y. Shao-Horn, D. Morgan, Ab initio gga+u study of oxygen evolution and oxygen reduction electrocatalysis on the (001) surfaces of lanthanum transition metal perovskites LaBO3 (b=Cr, Mn, Fe, Co and Ni). Phys. Chem. Chem. Phys. 17(33), 21643–21663 (2015). https://doi.org/10.1039/C5CP02834E
- M. Risch, K.A. Stoerzinger, S. Maruyama, W.T. Hong, I. Takeuchi et al., La0.8Sr0.2MnO3−δ decorated with Ba0.5Sr0.5Co0.8Fe0.2O3−δ: a bifunctional surface for oxygen electrocatalysis with enhanced stability and activity. J. Am. Chem. Soc. 136(14), 5229–5232 (2014). https://doi.org/10.1021/ja5009954
- J.R. Petrie, C. Mitra, H. Jeen, W.S. Choi, T.L. Meyer et al., Strain control of oxygen vacancies in epitaxial strontium cobaltite films. Adv. Funct. Mater. 26(10), 1564–1570 (2016). https://doi.org/10.1002/adfm.201504868
- J.R. Petrie, H. Jeen, S.C. Barron, T.L. Meyer, H.N. Lee, Enhancing perovskite electrocatalysis through strain tuning of the oxygen deficiency. J. Am. Chem. Soc. 138(23), 7252–7255 (2016). https://doi.org/10.1021/jacs.6b03520
- Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15(1), 4 (2022). https://doi.org/10.1007/s40820-022-00974-7
- J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14(1), 112 (2022). https://doi.org/10.1007/s40820-022-00857-x
- X. Xu, Z. Shao, S.P. Jiang, High-entropy materials for water electrolysis. Energy Technol. 10(11), 2200573 (2022). https://doi.org/10.1002/ente.202200573
- P. Tan, R. Gao, Y. Zhang, N. Han, Y. Jiang et al., Electrostatically directed assembly of two-dimensional ultrathin Co2Ni-MoF/Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. J. Colloid. Interf. Sci. 630, 363–371 (2023). https://doi.org/10.1016/j.jcis.2022.10.109
- H. Sun, S. Song, X. Xu, J. Dai, J. Yu et al., Recent progress on structurally ordered materials for electrocatalysis. Adv. Energ. Mater. 11(37), 2101937 (2021). https://doi.org/10.1002/aenm.202101937
- Z. Liu, Z. Tang, Y. Song, G. Yang, W. Qian et al., High-entropy perovskite oxide: a new opportunity for developing highly active and durable air electrode for reversible protonic ceramic electrochemical cells. Nano-Micro Lett. 14(1), 217 (2022). https://doi.org/10.1007/s40820-022-00967-6
- Y. Dai, J. Yu, J. Wang, Z. Shao, D. Guan et al., Bridging the charge accumulation and high reaction order for high-rate oxygen evolution and long stable zn-air batteries. Adv. Funct. Mater. 32(24), 2111989 (2022). https://doi.org/10.1002/adfm.202111989
- H. Sun, X. Xu, H. Kim, W. Jung, W. Zhou et al., Electrochemical water splitting: bridging the gaps between fundamental research and industrial applications. Energ. Environ. Mater. (2023). https://doi.org/10.1002/eem2.12441
- A.I. Douka, H. Yang, L. Huang, S. Zaman, T. Yue et al., Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable zinc-air batteries. EcoMat 3(1), e12067 (2021). https://doi.org/10.1002/eom2.12067
- C. Jin, X. Cao, L. Zhang, C. Zhang, R. Yang, Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction. J. Power Sources 241, 225–230 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.116
- J. Bian, R. Su, Y. Yao, J. Wang, J. Zhou et al., Mg doped perovskite LaNiO3 nanofibers as an efficient bifunctional catalyst for rechargeable zinc–air batteries. ACS Appl. Energ. Mater. 2(1), 923–931 (2019). https://doi.org/10.1021/acsaem.8b02183
- S. Bie, Y. Zhu, J. Su, C. Jin, S. Liu et al., One-pot fabrication of yolk–shell structured La0.9Sr0.1CoO3 perovskite microspheres with enhanced catalytic activities for oxygen reduction and evolution reactions. J. Mater. Chem. A 3(44), 22448–22453 (2015). https://doi.org/10.1039/C5TA05271H
- C. Jin, Z. Yang, X. Cao, F. Lu, R. Yang, A novel bifunctional catalyst of Ba0.9Co0.5Fe0.4Nb0.1O3−δ perovskite for lithium–air battery. Int. J. Hydrogen Energy 39(6), 2526–2530 (2014). https://doi.org/10.1016/j.ijhydene.2013.12.003
- Y. Xu, A. Tsou, Y. Fu, J. Wang, J.-H. Tian et al., Carbon-coated perovskite BaMnO3 porous nanorods with enhanced electrocatalytic perporites for oxygen reduction and oxygen evolution. Electrochim. Acta 174, 551–556 (2015). https://doi.org/10.1016/j.electacta.2015.05.184
- X. Ge, B. Li, D. Wuu, A. Sumboja, T. An et al., Nanostructured perovskite LaCo1-xMnxO3 as bifunctional catalysts for rechargeable metal–air batteries. J. Mol. Eng. Mater. 3, 1540006 (2015). https://doi.org/10.1142/s2251237315400067
- C. Jin, X. Cao, F. Lu, Z. Yang, R. Yang, Electrochemical study of Ba0.5Sr0.5Co0.8Fe0.2O3 perovskite as bifunctional catalyst in alkaline media. Int. J. Hydrogen Energy 38(25), 10389–10393 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.047
- C.-F. Chen, G. King, R.M. Dickerson, P.A. Papin, S. Gupta et al., Oxygen-deficient BaTiO3−x perovskite as an efficient bifunctional oxygen electrocatalyst. Nano Energy 13, 423–432 (2015). https://doi.org/10.1016/j.nanoen.2015.03.005
- L. Yan, Y. Lin, X. Yu, W. Xu, T. Salas et al., La0.8Sr0.2MnO3-based perovskite nanops with the a-site deficiency as high performance bifunctional oxygen catalyst in alkaline solution. ACS Appl. Mater. Interfaces 9(28), 23820–23827 (2017). https://doi.org/10.1021/acsami.7b06458
- W. Xu, L. Yan, L. Teich, S. Liaw, M. Zhou et al., Polymer-assisted chemical solution synthesis of La0.8Sr0.2MnO3-based perovskite with a-site deficiency and cobalt-doping for bifunctional oxygen catalyst in alkaline media. Electrochim. Acta 273, 80–87 (2018). https://doi.org/10.1016/j.electacta.2018.04.046
- H. Wang, W. Xu, S. Richins, K. Liaw, L. Yan et al., Polymer-assisted approach to LaCo1-xNixO3 network nanostructures as bifunctional oxygen electrocatalysts. Electrochim. Acta 296, 945–953 (2019). https://doi.org/10.1016/j.electacta.2018.11.075
- M.Y. Oh, J.S. Jeon, J.J. Lee, P. Kim, K.S. Nahm, The bifunctional electrocatalytic activity of perovskite La0.6Sr0.4CoO3−δ for oxygen reduction and evolution reactions. RSC Adv. 5(25), 19190–19198 (2015). https://doi.org/10.1039/C4RA16097E
- Y. Zhao, L. Xu, L. Mai, C. Han, Q. An et al., Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries. Proc. Natl. Acad. Sci. 109(48), 19569–19574 (2012). https://doi.org/10.1073/pnas.1210315109
- Z. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431(7005), 170–173 (2004)
- Z. Shao, S.M. Haile, J. Ahn, P.D. Ronney, Z. Zhan et al., A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature 435(7043), 795 (2005)
- N. Han, W. Wang, S. Zhang, J. Sunarso, Z. Zhu et al., A novel heterogeneous La0.8Sr0.2CoO3−δ/(La0.5Sr0.5)2CoO4+δ dual-phase membrane for oxygen separation. Asia-Pac. J. Chem. Eng. 13(5), e2239 (2018). https://doi.org/10.1002/apj.2239
- N. Han, R. Chen, T. Chang, L. Li, H. Wang et al., A novel lanthanum strontium cobalt iron composite membrane synthesised through beneficial phase reaction for oxygen separation. Ceram. Int. 45(15), 18924–18930 (2019). https://doi.org/10.1016/j.ceramint.2019.06.128
- S. Dwivedi, Solid oxide fuel cell: materials for anode, cathode and electrolyte. Int. J. Hydrogen Energy 45(44), 23988–24013 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.234
- Y. Zhang, X. Gao, J. Sunarso, B. Liu, W. Zhou et al., Significantly improving the durability of single-chamber solid oxide fuel cells: a highly active CO2-resistant perovskite cathode. ACS Appl. Energ. Mater. 1(3), 1337–1343 (2018). https://doi.org/10.1021/acsaem.8b00051
- D. Chen, C. Chen, Z.M. Baiyee, Z. Shao, F. Ciucci, Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 115(18), 9869–9921 (2015). https://doi.org/10.1021/acs.chemrev.5b00073
- Y. Song, W. Wang, L. Ge, X. Xu, Z. Zhang et al., Rational design of a water-storable hierarchical architecture decorated with amorphous barium oxide and nickel nanops as a solid oxide fuel cell anode with excellent sulfur tolerance. Adv. Sci. 4(11), 1700337 (2017). https://doi.org/10.1002/advs.201700337
- M. Benamira, L. Thommy, F. Moser, O. Joubert, M.T. Caldes, New anode materials for it-sofc derived from the electrolyte BaIn0.3Ti0.7O2.85 by lanthanum and manganese doping. Solid State Ion. 265, 38–45 (2014). https://doi.org/10.1016/j.ssi.2014.07.006
- P.I. Cowin, C.T.G. Petit, R. Lan, J.T.S. Irvine, S. Tao, Recent progress in the development of anode materials for solid oxide fuel cells. Adv. Energ. Mater. 1(3), 314–332 (2011). https://doi.org/10.1002/aenm.201100108
- S.Y. Istomin, E.V. Antipov, Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Russ. Chem. Rev. 82(7), 686 (2013). https://doi.org/10.1070/RC2013v082n07ABEH004390
- D. Chen, C. Chen, Z. Zhang, Z.M. Baiyee, F. Ciucci et al., Compositional engineering of perovskite oxides for highly efficient oxygen reduction reactions. ACS Appl. Mater. Interfaces 7(16), 8562–8571 (2015). https://doi.org/10.1021/acsami.5b00358
- Y. Chen, W. Zhou, D. Ding, M. Liu, F. Ciucci et al., Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline earth metal elements. Adv. Energ. Mater. 5(18), 1500537 (2015). https://doi.org/10.1002/aenm.201500537
- Z. Zhang, Y. Zhu, Y. Zhong, W. Zhou, Z. Shao, Anion doping: a new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells. Adv. Energ. Mater. (2017). https://doi.org/10.1002/aenm.201700242
- Y. Zhu, W. Zhou, Y. Chen, Z. Shao, An aurivillius oxide based cathode with excellent CO2 tolerance for intermediate-temperature solid oxide fuel cells. Angew. Chem. Int. Ed. 55(31), 8988–8993 (2016). https://doi.org/10.1002/anie.201604160
- Z. Shao, Y. Cong, G. Xiong, S. Sheng, W. Yang, Mixed-conducting perovskite-type SrxBi1-xFeO3-δ oxygen-permeating membranes. Sci. China Series B: Chem. 43(4), 421–427 (2000). https://doi.org/10.1007/BF02969448
- Z. Shao, G. Xiong, J. Tong, H. Dong, W. Yang, Ba effect in doped Sr(Co0.8Fe0.2)O3-δ on the phase structure and oxygen permeation properties of the dense ceramic membranes. Sep. Purif. Technol. 25(1), 419–429 (2001). https://doi.org/10.1016/S1383-5866(01)00071-5
- N. Han, Q. Wei, H. Tian, S. Zhang, Z. Zhu et al., Highly stable dual-phase membrane based on Ce0.9Gd0.1O2–δ-La2NiO4+δ for oxygen permeation under pure CO2 atmosphere. Energ. Technol. 7(5), 1800701 (2019). https://doi.org/10.1002/ente.201800701
- J. Zhu, G. Liu, Z. Liu, Z. Chu, W. Jin et al., Unprecedented perovskite oxyfluoride membranes with high-efficiency oxygen ion transport paths for low-temperature oxygen permeation. Adv. Mater. 28(18), 3511–3515 (2016). https://doi.org/10.1002/adma.201505959
- N. Han, S. Zhang, X. Meng, N. Yang, B. Meng et al., Effect of enhanced oxygen reduction activity on oxygen permeation of La0.6Sr0.4Co0.2Fe0.8O3−δ membrane decorated by K2NiF4-type oxide. J. Alloy Compd. 654, 280–289 (2016). https://doi.org/10.1016/j.jallcom.2015.09.086
- Z. Zhang, Y. Chen, M.O. Tade, Y. Hao, S. Liu et al., Tin-doped perovskite mixed conducting membrane for efficient air separation. J. Mater. Chem. A 2(25), 9666–9674 (2014). https://doi.org/10.1039/C4TA00926F
- Z. Zhang, D. Chen, F. Dong, X. Xu, Y. Hao et al., Understanding the doping effect toward the design of CO2-tolerant perovskite membranes with enhanced oxygen permeability. J. Mem. Sci. 519, 11–21 (2016). https://doi.org/10.1016/j.memsci.2016.07.043
- N. Han, Q. Wei, S. Zhang, N. Yang, S. Liu, Rational design via tailoring mo content in La2Ni1-xMoxO4+δ to improve oxygen permeation properties in CO2 atmosphere. J. Alloy Compd. 806, 153–162 (2019). https://doi.org/10.1016/j.jallcom.2019.07.209
- N. Han, Z. Shen, X. Zhao, R. Chen, V.K. Thakur, Perovskite oxides for oxygen transport: chemistry and material horizons. Sci. Total Environ. 806, 151213 (2022). https://doi.org/10.1016/j.scitotenv.2021.151213
- Y. Xu, J. Qu, Y. Li, M. Zhu, Y. Liu et al., Bridging metal-ion induced vertical growth of MoS2 and overall fast electron transfer in (C, P)3N4-M (Ni2+, Co2+)-MoS2 electrocatalyst for efficient hydrogen evolution reaction. Sustain. Mater. Technol. 25, 00172 (2020). https://doi.org/10.1016/j.susmat.2020.e00172
- V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Energy and fuels from electrochemical interfaces. Nat. Mater. 16(1), 57–69 (2017). https://doi.org/10.1038/nmat4738
- D. Zhou, X. Xiong, Z. Cai, N. Han, Y. Jia et al., Flame-engraved Nickel-Iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity. Small Methods 2(7), 1800083 (2018). https://doi.org/10.1002/smtd.201800083
- J. Tang, X. Xu, T. Tang, Y. Zhong, Z. Shao, Perovskite-based electrocatalysts for cost-effective ultrahigh-current-density water splitting in anion exchange membrane electrolyzer cell. Small Methods 6(11), 2201099 (2022). https://doi.org/10.1002/smtd.202201099
References
C. Zhang, J. Sunarso, S. Liu, Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: Guidelines, recent advances, and forward directions. Chem. Soc. Rev. 46(10), 2941–3005 (2017). https://doi.org/10.1039/c6cs00841k
W. Wang, C. Su, Y. Wu, R. Ran, Z. Shao, Progress in solid oxide fuel cells with Nickel-based anodes operating on methane and related fuels. Chem. Rev. 113(10), 8104–8151 (2013). https://doi.org/10.1021/cr300491e
N. Han, X. Guo, J. Cheng, P. Liu, S. Zhang et al., Inhibiting in situ phase transition in Ruddlesden-popper perovskite via tailoring bond hybridization and its application in oxygen permeation. Matter 4, 1720–1734 (2021). https://doi.org/10.1016/j.matt.2021.02.019
A. Kumar, A. Kumar, V. Krishnan, Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catal. 10(17), 10253–10315 (2020). https://doi.org/10.1021/acscatal.0c02947
R. Shi, Z. Wang, Y. Zhao, G.I.N. Waterhouse, Z. Li et al., Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nat. Catal. 4(7), 565–574 (2021). https://doi.org/10.1038/s41929-021-00640-y
Z. Wang, X. Li, Z. Yang, H. Guo, Y.J. Tan et al., Fully transient stretchable fruit-based battery as safe and environmentally friendly power source for wearable electronics. EcoMat 3(1), e12073 (2021). https://doi.org/10.1002/eom2.12073
K. Liu, J. Lang, M. Yang, J. Xu, B. Sun et al., Molten lithium-brass/zinc chloride system as high-performance and low-cost battery. Matter 3(5), 1714–1724 (2020). https://doi.org/10.1016/j.matt.2020.08.022
R. Razaq, P. Li, Y. Dong, Y. Li, Y. Mao et al., Practical energy densities, cost, and technical challenges for magnesium-sulfur batteries. EcoMat 2(4), e12056 (2020). https://doi.org/10.1002/eom2.12056
K. Xie, N. Umezawa, N. Zhang, P. Reunchan, Y. Zhang et al., Self-doped SrTiO3-δ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energ. Environ. Sci. 4(10), 4211–4219 (2011). https://doi.org/10.1039/C1EE01594J
U.G.M. Ekanayake, D.H. Seo, K. Faershteyn, A.P. O’Mullane, H. Shon et al., Atmospheric-pressure plasma seawater desalination: clean energy, agriculture, and resource recovery nexus for a blue planet. Sustain. Mater. Technol. 25, e00181 (2020). https://doi.org/10.1016/j.susmat.2020.e00181
N. Han, P. Liu, J. Jiang, L. Ai, Z. Shao et al., Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 6(41), 19912–19933 (2018). https://doi.org/10.1039/C8TA06529B
I. Concina, Z.H. Ibupoto, A. Vomiero, Semiconducting metal oxide nanostructures for water splitting and photovoltaics. Adv. Energy Mater. 7(23), 1700706 (2017). https://doi.org/10.1002/aenm.201700706
H. Tian, J. Liang, J. Liu, Nanoengineering carbon spheres as nanoreactors for sustainable energy applications. Adv. Mater. 31(50), 1903886 (2019). https://doi.org/10.1002/adma.201903886
J.D. Benck, T.R. Hellstern, J. Kibsgaard, P. Chakthranont, T.F. Jaramillo, Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4(11), 3957–3971 (2014). https://doi.org/10.1021/cs500923c
Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao, Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem. Int. Ed. 56(5), 1324–1328 (2017). https://doi.org/10.1002/anie.201610413
J. Sun, X. Liu, S. Yang, “Highway” toward efficient water oxidation. Matter 4(1), 21–22 (2021). https://doi.org/10.1016/j.matt.2020.12.010
S. Liu, J. Huang, H. Su, G. Tang, Q. Liu et al., Multiphase phosphide cocatalyst for boosting efficient photocatalytic H2 production and enhancing the stability. Ceram. Int. 47(1), 1414–1420 (2021). https://doi.org/10.1016/j.ceramint.2020.08.265
H. Lyu, T. Hisatomi, Y. Goto, M. Yoshida, T. Higashi et al., An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chem. Sci. 10(11), 3196–3201 (2019). https://doi.org/10.1039/C8SC05757E
W. Wang, M.O. Tadé, Z. Shao, Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 44(15), 5371–5408 (2015). https://doi.org/10.1039/C5CS00113G
P. Zhang, J. Zhang, J. Gong, Tantalum-based semiconductors for solar water splitting. Chem. Soc. Rev. 43(13), 4395–4422 (2014). https://doi.org/10.1039/C3CS60438A
Y. Liu, W. Zeng, Y. Ma, R. Dong, P. Tan et al., Oxygen-defects modified amorphous Ta2O5 nanops for solar driven hydrogen evolution. Ceram. Int. 47(4), 4702–4706 (2021). https://doi.org/10.1016/j.ceramint.2020.10.038
H.G. Kim, D.W. Hwang, J. Kim, Y.G. Kim, J.S. Lee, Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem. Commun. 12, 1077–1078 (1999). https://doi.org/10.1039/A902892G
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
J. Huo, Y. Chen, Y. Liu, J. Guo, L. Lu et al., Bifunctional Iron Nickel phosphide nanocatalysts supported on porous carbon for highly efficient overall water splitting. Sustain. Mater. Technol. 22, e00117 (2019). https://doi.org/10.1016/j.susmat.2019.e00117
J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu et al., Perovskites in catalysis and electrocatalysis. Science 358(6364), 751–756 (2017). https://doi.org/10.1126/science.aam7092
J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14(1), 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14(1), 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
H. Tian, A. Song, P. Zhang, K. Sun, J. Wang et al., High durability of Fe–N–C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media. Adv. Mater. 35(14), 2210714 (2023). https://doi.org/10.1002/adma.202210714
H. Tian, F. Huang, Y. Zhu, S. Liu, Y. Han et al., The development of yolk–shell-structured Pd&ZnO@Carbon submicroreactors with high selectivity and stability. Adv. Funct. Mater. 28(32), 1801737 (2018). https://doi.org/10.1002/adfm.201801737
H. Tian, A. Song, H. Tian, J. Liu, G. Shao et al., Single-atom catalysts for high-energy rechargeable batteries. Chem. Sci. 12(22), 7656–7676 (2021). https://doi.org/10.1039/D1SC00716E
Z. Ma, A. Song, Z. Liu, Y. Guo, X. Yang et al., Nanoconfined expansion behavior of hollow MnS@Carbon anode with extended lithiation cyclic stability. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202301112
L. Bai, A. Song, X. Lei, T. Zhang, S. Song et al., Hierarchical construction of hollow NiCo2S4 Nanotube@NiCo2S4 nanosheet arrays on ni foam as an efficient and durable electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen. Energ. 47(91), 38524–38532 (2022). https://doi.org/10.1016/j.ijhydene.2022.09.020
H. Tian, H. Tian, S. Wang, S. Chen, F. Zhang et al., High-power lithium–selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode. Nat. Commun. 11(1), 5025 (2020). https://doi.org/10.1038/s41467-020-18820-y
H. Tian, X. Liu, L. Dong, X. Ren, H. Liu et al., Enhanced hydrogenation performance over hollow structured Co-CoOx@N-C capsules. Adv. Sci. 6(22), 1900807 (2019). https://doi.org/10.1002/advs.201900807
J. Dai, Y. Zhu, Y. Yin, H.A. Tahini, D. Guan et al., Super-exchange interaction induced overall optimization in ferromagnetic perovskite oxides enables ultrafast water oxidation. Small 15(39), 1903120 (2019). https://doi.org/10.1002/smll.201903120
Y. Yan, C. Liu, H. Jian, X. Cheng, T. Hu et al., Substitutionally dispersed high-oxidation CoOx clusters in the lattice of rutile TiO2 triggering efficient co-ti cooperative catalytic centers for oxygen evolution reactions. Adv. Funct. Mater. 31(9), 2009610 (2021). https://doi.org/10.1002/adfm.202009610
Y. Zhao, X. Jia, G. Chen, L. Shang, G.I.N. Waterhouse et al., Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LdH precursors: an active water oxidation electrocatalyst. J. Am. Chem. Soc. 138(20), 6517–6524 (2016). https://doi.org/10.1021/jacs.6b01606
M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing et al., Pdo bimetallene for oxygen reduction catalysis. Nature 574(7776), 81–85 (2019). https://doi.org/10.1038/s41586-019-1603-7
M. Luo, S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2(11), 17059 (2017). https://doi.org/10.1038/natrevmats.2017.59
Q. Wang, N. Han, A. Bokhari, X. Li, Y. Cao et al., Insights into mxenes-based electrocatalysts for oxygen reduction. Energy 255, 124465 (2022). https://doi.org/10.1016/j.energy.2022.124465
Y. Cao, W. Zhang, Y. Sun, Y. Jiang, N. Han et al., Highly active iron-nitrogen-boron-carbon bifunctional electrocatalytic platform for hydrogen peroxide sensing and oxygen reduction. Environ. Res. 201, 111563 (2021). https://doi.org/10.1016/j.envres.2021.111563
Y. Cao, Y. Sun, N. Han, X. Li, Q. Wang et al., Novel highly active and selective consc efficient orr catalyst derived from In-SiTu egg gel pyrolysis. Fuel 333, 126432 (2023). https://doi.org/10.1016/j.fuel.2022.126432
Y. Sun, W. Zhang, Q. Wang, N. Han, A. Núñez-Delgado et al., Biomass-derived N, S Co-doped 3d multichannel carbon supported Au@Pd@Pt catalysts for oxygen reduction. Environ. Res. 202, 111684 (2021). https://doi.org/10.1016/j.envres.2021.111684
Y. Cao, Y. Sun, R. Zheng, Q. Wang, X. Li et al., Biomass-derived carbon material as efficient electrocatalysts for the oxygen reduction reaction. Biomass. Bioenerg. 168, 106676 (2023). https://doi.org/10.1016/j.biombioe.2022.106676
Z.-F. Huang, J. Song, S. Dou, X. Li, J. Wang et al., Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter 1(6), 1494–1518 (2019). https://doi.org/10.1016/j.matt.2019.09.011
L. Yang, G. Yu, X. Ai, W. Yan, H. Duan et al., Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IRO6 octahedral dimers. Nat. Commun. 9(1), 5236 (2018). https://doi.org/10.1038/s41467-018-07678-w
Z. Chen, X. Gu, Y. Guo, X. Wang, M. Shao et al., A carbon dot-based total green and self-recoverable solid-state electrochemical cell fully utilizing O2/H2O redox couple. SusMat 1(3), 448–457 (2021). https://doi.org/10.1002/sus2.23
W. Zhang, N. Han, J. Luo, X. Han, S. Feng et al., Critical role of phosphorus in hollow structures cobalt-based phosphides as bifunctional catalysts for water splitting. Small 18(4), 2103561 (2022). https://doi.org/10.1002/smll.202103561
Y. Chen, J.K. Seo, Y. Sun, T.A. Wynn, M. Olguin et al., Enhanced oxygen evolution over dual corner-shared cobalt tetrahedra. Nat. Commun. 13(1), 5510 (2022). https://doi.org/10.1038/s41467-022-33000-w
L. Li, P. Wang, Q. Shao, X. Huang, Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. 33(50), 2004243 (2021). https://doi.org/10.1002/adma.202004243
X. Wang, H. Zhong, S. Xi, W.S.V. Lee et al., Understanding of oxygen redox in oxygen evolution reaction. Adv. Mater. 34(50), 2107956 (2021). https://doi.org/10.1002/adma.202107956
N. Zhang, C. Wang, J. Chen, Y. Chai, Oxygen reactivity regulation via double-exchange interaction for enhanced water oxidation. EcoMat 5(2), e12290 (2022). https://doi.org/10.1002/eom2.12290
Y. Wen, C. Liu, R. Huang, H. Zhang, X. Li et al., Introducing brønsted acid sites to accelerate the bridging-oxygen-assisted deprotonation in acidic water oxidation. Nat. Commun. 13(1), 4871 (2022). https://doi.org/10.1038/s41467-022-32581-w
Y. Zhang, X. Zhu, G. Zhang, P. Shi, A.-L. Wang, Rational catalyst design for oxygen evolution under acidic conditions: strategies toward enhanced electrocatalytic performance. J. Mater. Chem. A 9(10), 5890–5914 (2021). https://doi.org/10.1039/D0TA11982B
X. Xu, H. Sun, S.P. Jiang, Z. Shao, Modulating metal–organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. SusMat 1(4), 460–481 (2021). https://doi.org/10.1002/sus2.34
Y. Pang, H. Xie, Y. Sun, M.-M. Titirici, G.-L. Chai, Electrochemical oxygen reduction for H2O2 production: catalysts, ph effects and mechanisms. J. Mater. Chem. A 8(47), 24996–25016 (2020). https://doi.org/10.1039/D0TA09122G
A.T. Murray, S. Voskian, M. Schreier, T.A. Hatton, Y. Surendranath, Electrosynthesis of hydrogen peroxide by phase-transfer catalysis. Joule 3(12), 2942–2954 (2019). https://doi.org/10.1016/j.joule.2019.09.019
O. Jung, M.L. Pegis, Z. Wang, G. Banerjee, C.T. Nemes et al., Highly active NiO photocathodes for H2O2 production enabled via outer-sphere electron transfer. J. Am. Chem. Soc. 140(11), 4079–4084 (2018). https://doi.org/10.1021/jacs.8b00015
Y. Xia, X. Zhao, C. Xia, Z.-Y. Wu, P. Zhu et al., Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 12(1), 4225 (2021). https://doi.org/10.1038/s41467-021-24329-9
P. Morandi, V. Flaud, S. Tingry, D. Cornu, Y. Holade, Tartaric acid regulated the advanced synthesis of bismuth-based materials with tunable performance towards the electrocatalytic production of hydrogen peroxide. J. Mater. Chem. A 8(36), 18840–18855 (2020). https://doi.org/10.1039/D0TA06466A
J. Yu, Q. He, G. Yang, W. Zhou, Z. Shao et al., Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 9(11), 9973–10011 (2019). https://doi.org/10.1021/acscatal.9b02457
H. Wang, Z.-N. Chen, D. Wu, M. Cao, F. Sun et al., Significantly enhanced overall water splitting performance by partial oxidation of ir through Au modification in core–shell alloy structure. J. Am. Chem. Soc. 143(12), 4639–4645 (2021). https://doi.org/10.1021/jacs.0c12740
G. Zhang, Z.-A. Lan, L. Lin, S. Lin, X. Wang, Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 7(5), 3062–3066 (2016). https://doi.org/10.1039/C5SC04572J
C. Li, N. Clament Sagaya Selvam, J. Fang, Shape-controlled synthesis of Platinum-based nanocrystals and their electrocatalytic applications in fuel cells. Nano-Micro Lett. 15(1), 83 (2023). https://doi.org/10.1007/s40820-023-01060-2
K. Kalantar-zadeh, J.Z. Ou, T. Daeneke, A. Mitchell, T. Sasaki et al., Two dimensional and layered transition metal oxides. Appl. Mater. Today 5, 73–89 (2016). https://doi.org/10.1016/j.apmt.2016.09.012
V. Charles, A.O. Anumah, K.A. Adegoke, M.O. Adesina, I.P. Ebuka et al., Progress and challenges pertaining to the earthly-abundant electrocatalytic materials for oxygen evolution reaction. Sustain. Mater. Technol. 28, e00252 (2021). https://doi.org/10.1016/j.susmat.2021.e00252
B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15(1), 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15(1), 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011). https://doi.org/10.1126/science.1212858
N. Han, M. Race, W. Zhang, R. Marotta, C. Zhang et al., Perovskite and related oxide based electrodes for water splitting. J. Clean Prod. 318, 128544 (2021). https://doi.org/10.1016/j.jclepro.2021.128544
C. Zhang, F. Wang, M. Batool, B. Xiong, H. Yang, Phase transition of SrCo0.9Fe0.1O3 electrocatalysts and their effects on oxygen evolution reaction. SusMat 2, 445–455 (2022). https://doi.org/10.1002/sus2.72
X. Xu, Y. Zhong, Z. Shao, Double perovskites in catalysis, electrocatalysis, and photo(electro)catalysis. Trends Chem. 1(4), 410–424 (2019). https://doi.org/10.1016/j.trechm.2019.05.006
H. Sun, Z. Hu, X. Xu, J. He, J. Dai et al., Ternary phase diagram-facilitated rapid screening of double perovskites as electrocatalysts for the oxygen evolution reaction. Chem. Mater. 31(15), 5919–5926 (2019). https://doi.org/10.1021/acs.chemmater.9b02261
C. Wei, Z. Feng, G.G. Scherer, J. Barber, Y. Shao-Horn et al., Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 29(23), 1606800 (2017). https://doi.org/10.1002/adma.201606800
N. Han, S. Feng, W. Guo, O.M. Mora, X. Zhao et al., Rational design of ruddlesden–popper perovskite electrocatalyst for oxygen reduction to hydrogen peroxide. SusMat 2(4), 456–465 (2022). https://doi.org/10.1002/sus2.71
Y. Zhu, H.A. Tahini, Z. Hu, Y. Yin, Q. Lin et al., Boosting oxygen evolution reaction by activation of Lattice-Oxygen sites in layered ruddlesden-popper oxide. EcoMat 2(2), e12021 (2020). https://doi.org/10.1002/eom2.12021
J. Kim, P.-C. Shih, K.-C. Tsao, Y.-T. Pan, X. Yin et al., High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media. J. Am. Chem. Soc. 139(34), 12076–12083 (2017). https://doi.org/10.1021/jacs.7b06808
J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng et al., A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49(7), 2196–2214 (2020). https://doi.org/10.1039/C9CS00607A
N. Han, W. Zhang, W. Guo, S. Xie, C. Zhang et al., Novel oxygen permeable hollow fiber perovskite membrane with surface wrinkles. Sep. Purif. Technol. 261, 118295–118316 (2021). https://doi.org/10.1016/j.seppur.2020.118295
Y. Liang, Y. Cui, Y. Chao, N. Han, J. Sunarso et al., Exsolution of cofe(Ru) nanops in Ru-doped (La0.8Sr0.2)0.9Co0.1Fe0.8Ru0.1O3−δ for efficient oxygen evolution reaction. Nano Res. 15, 6977–6986 (2022). https://doi.org/10.1007/s12274-022-4328-0
N. Han, C. Zhang, X. Tan, Z. Wang, S. Kawi et al., Re-evaluation of La0.6Sr0.4Co0.2Fe0.8O3-δ hollow fiber membranes for oxygen separation after long-term storage of five and ten years. J. Mem. Sci. 587, 117180 (2019). https://doi.org/10.1016/j.memsci.2019.117180
N. Han, S. Wang, Z. Yao, W. Zhang, X. Zhang et al., Superior three-dimensional perovskite catalyst for catalytic oxidation. EcoMat 2(3), e12044 (2020). https://doi.org/10.1002/eom2.12044
L. Wang, K.A. Stoerzinger, L. Chang, J. Zhao, Y. Li et al., Tuning bifunctional oxygen electrocatalysts by changing the a-site rare-earth element in perovskite nickelates. Adv. Funct. Mater. 28(39), 1803712 (2018). https://doi.org/10.1002/adfm.201803712
Y. Zhu, W. Zhou, J. Sunarso, Y. Zhong, Z. Shao, Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution. Adv. Funct. Mater. 26(32), 5862–5872 (2016). https://doi.org/10.1002/adfm.201601902
X. Xu, Y. Chen, W. Zhou, Z. Zhu, C. Su et al., A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater. 28(30), 6442–6448 (2016). https://doi.org/10.1002/adma.201600005
A. Sheelam, S. Balu, A. Muneeb, K.S. Bayikadi, D. Namasivayam et al., Improved oxygen redox activity by high-valent fe and Co3+ sites in the perovskite LaNi1–xFe0.5xCo0.5xO3. ACS Appl. Energ. Mater. 5(1), 343–354 (2022). https://doi.org/10.1021/acsaem.1c02871
S. She, J. Yu, W. Tang, Y. Zhu, Y. Chen et al., Systematic study of oxygen evolution activity and stability on La1–xSrxFeO3−δ perovskite electrocatalysts in alkaline media. ACS Appl. Mater. Interfaces 10(14), 11715–11721 (2018). https://doi.org/10.1021/acsami.8b00682
X. Cheng, E. Fabbri, Y. Yamashita, I.E. Castelli, B. Kim et al., Oxygen evolution reaction on perovskites: a multieffect descriptor study combining experimental and theoretical methods. ACS Catal. 8(10), 9567–9578 (2018). https://doi.org/10.1021/acscatal.8b02022
X. Rong, J. Parolin, A.M. Kolpak, A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 6(2), 1153–1158 (2016). https://doi.org/10.1021/acscatal.5b02432
Y. Guo, Y. Tong, P. Chen, K. Xu, J. Zhao et al., Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Adv. Mater. 27(39), 5989–5994 (2015). https://doi.org/10.1002/adma.201502024
Y. Zhu, H.A. Tahini, Z. Hu, Z.-G. Chen, W. Zhou et al., Boosting oxygen evolution reaction by creating both metal ion and lattice-oxygen active sites in a complex oxide. Adv. Mater. 32(1), 1905025 (2020). https://doi.org/10.1002/adma.201905025
C. Bloed, J. Vuong, A. Enriquez, S. Raghavan, I. Tran et al., Oxygen vacancy and chemical ordering control oxygen evolution activity of Sr2–xCaxFe2O6−δ perovskites. ACS Appl. Energ. Mater. 2, 6140–6145 (2019). https://doi.org/10.1021/acsaem.9b00581
S. She, Y. Zhu, Y. Chen, Q. Lu, W. Zhou et al., Realizing ultrafast oxygen evolution by introducing proton acceptor into perovskites. Adv. Energ. Mater. 9(20), 1900429 (2019). https://doi.org/10.1002/aenm.201900429
Y. Zhu, W. Zhou, Y. Zhong, Y. Bu, X. Chen et al., A perovskite nanorod as bifunctional electrocatalyst for overall water splitting. Adv. Energ. Mater. 7(8), 1602122 (2017). https://doi.org/10.1002/aenm.201602122
Y. Zhu, W. Zhou, Z. Shao, Perovskite/carbon composites: applications in oxygen electrocatalysis. Small 13(12), 1602122 (2017). https://doi.org/10.1002/aenm.201602122
P. Sabatier, Hydrogénations et déshydrogénations par catalyse. Ber. Dtsch. Chem. Ges. 44(3), 1984–2001 (1911). https://doi.org/10.1002/cber.19110440303
J.S. Yoo, X. Rong, Y. Liu, A.M. Kolpak, Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 8(5), 4628–4636 (2018). https://doi.org/10.1021/acscatal.8b00612
A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y.-L. Lee et al., Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9(5), 457–465 (2017). https://doi.org/10.1038/nchem.2695
E. Fabbri, M. Nachtegaal, T. Binninger, X. Cheng, B.-J. Kim et al., Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 16(9), 925–931 (2017). https://doi.org/10.1038/nmat4938
Y. Zhu, H.A. Tahini, Z. Hu, Y. Yin, Q. Lin et al., Boosting oxygen evolution reaction by activation of lattice-oxygen sites in layered ruddlesden-popper oxide. EcoMat (2020). https://doi.org/10.1002/eom2.12021
D.A. Kuznetsov, M.A. Naeem, P.V. Kumar, P.M. Abdala, A. Fedorov et al., Tailoring lattice oxygen binding in ruthenium pyrochlores to enhance oxygen evolution activity. J. Am. Chem. Soc. 142(17), 7883–7888 (2020). https://doi.org/10.1021/jacs.0c01135
Y. Yao, S. Hu, W. Chen, Z.-Q. Huang, W. Wei et al., Engineering the electronic structure of single atom ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2(4), 304–313 (2019). https://doi.org/10.1038/s41929-019-0246-2
M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016). https://doi.org/10.1021/acs.chemrev.5b00462
J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough et al., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3(7), 546–550 (2011)
J. Lim, D. Park, S.S. Jeon, C.-W. Roh, J. Choi et al., Ultrathin IrO2 nanoneedles for electrochemical water oxidation. Adv. Funct. Mater. 28(4), 1704796 (2018). https://doi.org/10.1002/adfm.201704796
S. Laha, Y. Lee, F. Podjaski, D. Weber, V. Duppel et al., Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Energ. Mater. 9(15), 1803795 (2019). https://doi.org/10.1002/aenm.201803795
A. Bergmann, E. Martinez-Moreno, D. Teschner, P. Chernev, M. Gliech et al., Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 6(1), 8625 (2015). https://doi.org/10.1038/ncomms9625
Y. Chen, H. Li, J. Wang, Y. Du, S. Xi et al., Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 10(1), 572 (2019)
D. Chen, M. Qiao, Y.-R. Lu, L. Hao, D. Liu et al., Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction. Angew. Chem. Int. Ed. 57(28), 8691–8696 (2018). https://doi.org/10.1002/anie.201805520
J.R. Petrie, V.R. Cooper, J.W. Freeland, T.L. Meyer, Z. Zhang et al., Enhanced bifunctional oxygen catalysis in strained LaNiO3 perovskites. J. Am. Chem. Soc. 138(8), 2488–2491 (2016). https://doi.org/10.1021/jacs.5b11713
K.A. Stoerzinger, W.S. Choi, H. Jeen, H.N. Lee, Y. Shao-Horn, Role of strain and conductivity in oxygen electrocatalysis on LaCoO3 thin films. J. Phy. Chem. Lett. 6(3), 487–492 (2015). https://doi.org/10.1021/jz502692a
J. Chen, H. Hu, F. Meng, T. Yajima, L. Yang et al., Overlooked transportation anisotropies in d-band correlated rare-earth perovskite nickelates. Matter 2(5), 1296–1306 (2020). https://doi.org/10.1016/j.matt.2020.02.023
D.A. Kuznetsov, B. Han, Y. Yu, R.R. Rao, J. Hwang et al., Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule 2(2), 225–244 (2018). https://doi.org/10.1016/j.joule.2017.11.014
C. Guo, Y. Zheng, J. Ran, F. Xie, M. Jaroniec et al., Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis. Angew. Chem. Int. Ed. 56(29), 8539–8543 (2017). https://doi.org/10.1002/anie.201701531
L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya et al., A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353(6303), 1011–1014 (2016). https://doi.org/10.1126/science.aaf5050%JScience
Z. Li, J. Yang, Z. Chen, C. Zheng, L.Q. Wei et al., V “bridged” Co to eliminate charge transfer barriers and drive lattice oxygen oxidation during water-splitting. Adv. Funct. Mater. 31(9), 2008822 (2021). https://doi.org/10.1002/adfm.202008822
Y. Liu, Y. Ying, L. Fei, Y. Liu, Q. Hu et al., Valence engineering via selective atomic substitution on tetrahedral sites in spinel oxide for highly enhanced oxygen evolution catalysis. J. Am. Chem. Soc. 141(20), 8136–8145 (2019). https://doi.org/10.1021/jacs.8b13701
M. Xu, H. Sun, W. Wang, Y. Shen, W. Zhou et al., Scandium and phosphorus co-doped perovskite oxides as high-performance electrocatalysts for the oxygen reduction reaction in an alkaline solution. J. Mater. Sci. Technol. 39, 22–27 (2020). https://doi.org/10.1016/j.jmst.2019.09.007
A. Zunger, O.I. Malyi, Understanding doping of quantum materials. Chem. Rev. 121(5), 3031–3060 (2021). https://doi.org/10.1021/acs.chemrev.0c00608
Y. Lin, Z. Tian, L. Zhang, J. Ma, Z. Jiang et al., Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 10(1), 162 (2019). https://doi.org/10.1038/s41467-018-08144-3
J. Su, R. Ge, K. Jiang, Y. Dong, F. Hao et al., Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 30(29), 1801351 (2018). https://doi.org/10.1002/adma.201801351
S. Chen, H. Huang, P. Jiang, K. Yang, J. Diao et al., Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal. 10(2), 1152–1160 (2020). https://doi.org/10.1021/acscatal.9b04922
Y. Wang, S. Hao, X. Liu, Q. Wang, Z. Su et al., Ce-doped IrO2 electrocatalysts with enhanced performance for water oxidation in acidic media. ACS Appl. Mater. Interfaces 12(33), 37006–37012 (2020). https://doi.org/10.1021/acsami.0c00389
Z. Li, S. Wang, Y. Tian, B. Li, H.J. Yan et al., Mg-doping improves the performance of Ru-based electrocatalysts for the acidic oxygen evolution reaction. Chem. Commun. 56(11), 1749–1752 (2020). https://doi.org/10.1039/C9CC09613B
X. Cheng, E. Fabbri, M. Nachtegaal, I.E. Castelli, M. El Kazzi et al., Oxygen evolution reaction on La1–xSrxCoO3 perovskites: a combined experimental and theoretical study of their structural, electronic, and electrochemical properties. Chem. Mater. 27(22), 7662–7672 (2015). https://doi.org/10.1021/acs.chemmater.5b03138
J.-I. Jung, H.Y. Jeong, J.-S. Lee, M.G. Kim, J. Cho, A bifunctional perovskite catalyst for oxygen reduction and evolution. Angew. Chem. Int. Ed. 53(18), 4582–4586 (2014). https://doi.org/10.1002/anie.201311223
Z. Wu, L.-P. Sun, T. Xia, L.-H. Huo, H. Zhao et al., Effect of sr doping on the electrochemical properties of bi-functional oxygen electrode PrBa1−xSrxCo2O5+δ. J. Power Sources 334, 86–93 (2016). https://doi.org/10.1016/j.jpowsour.2016.10.013
N. Han, S. Feng, Y. Liang, J. Wang, W. Zhang et al., Achieving efficient electrocatalytic oxygen evolution in acidic media on yttrium ruthenate pyrochlore through cobalt incorporation. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202208399
S. She, Y. Zhu, X. Wu, Z. Hu, A. Shelke et al., Realizing high and stable electrocatalytic oxygen evolution for iron-based perovskites by co-doping-induced structural and electronic modulation. Adv. Funct. Mater. 32(15), 2111091 (2022). https://doi.org/10.1002/adfm.202111091
Q. Lu, X. Zou, X. Wang, L. An, Z. Shao et al., Simultaneous reactant accessibility and charge transfer engineering in Co-doped RuO2-supported ocnt for robust rechargeable zinc-air batteries. Appl. Catal. B-Environ. 325, 122323 (2023). https://doi.org/10.1016/j.apcatb.2022.122323
T.D. Nguyen, H.H. Nguyen, C. Dai, J. Wang, G.G. Scherer, Activity and stability optimization of RuxIr1-xO2 nanocatalyst for the oxygen evolution reaction by tuning the synthetic process. Int. J. Hydrogen. Energ. 45(1), 46–55 (2020). https://doi.org/10.1016/j.ijhydene.2019.10.179
J. Feng, F. Lv, W. Zhang, P. Li, K. Wang et al., Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis. Adv. Mater. 29(47), 1703798 (2017). https://doi.org/10.1002/adma.201703798
W. Sun, Y. Song, X.-Q. Gong, L.-M. Cao, J. Yang, An efficiently tuned d-orbital occupation of IrO2 by doping with cu for enhancing the oxygen evolution reaction activity. Chem. Sci. 6(8), 4993–4999 (2015). https://doi.org/10.1039/C5SC01251A
F. Lv, J. Feng, K. Wang, Z. Dou, W. Zhang et al., Iridium–tungsten alloy nanodendrites as pH-universal water-splitting electrocatalysts. ACS Cent. Sci. 4(9), 1244–1252 (2018). https://doi.org/10.1021/acscentsci.8b00426
R. Ge, L. Li, J. Su, Y. Lin, Z. Tian et al., Ultrafine defective RuO2 electrocatayst integrated on carbon cloth for robust water oxidation in acidic media. Adv. Energ. Mater. 9(35), 1901313 (2019). https://doi.org/10.1002/aenm.201901313
J. Suntivich, W.T. Hong, Y.-L. Lee, J.M. Rondinelli, W. Yang et al., Estimating hybridization of transition metal and oxygen states in perovskites from o K-edge X-ray absorption spectroscopy. J. Phy. Chem. C 118(4), 1856–1863 (2014). https://doi.org/10.1021/jp410644j
W.-J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li et al., Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci. 12(2), 442–462 (2019). https://doi.org/10.1039/C8EE01574K
M. Retuerto, L. Pascual, F. Calle-Vallejo, P. Ferrer, D. Gianolio et al., Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media. Nat. Commun. 10(1), 2041 (2019). https://doi.org/10.1038/s41467-019-09791-w
B.S. Yeo, A.T. Bell, Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133(14), 5587–5593 (2011). https://doi.org/10.1021/ja200559j
X. Xu, Y. Pan, L. Ge, Y. Chen, X. Mao et al., High-performance perovskite composite electrocatalysts enabled by controllable interface engineering. Small 17(29), 2101573 (2021). https://doi.org/10.1002/smll.202101573
X. Xu, W. Wang, W. Zhou, Z. Shao, Recent advances in novel nanostructuring methods of perovskite electrocatalysts for energy-related applications. Small Methods 2(7), 1800071 (2018). https://doi.org/10.1002/smtd.201800071
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). https://doi.org/10.1126/science.1212858
J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Nørskov, Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607(1), 83–89 (2007). https://doi.org/10.1016/j.jelechem.2006.11.008
J.B. Goodenough, R. Manoharan, M. Paranthaman, Surface protonation and electrochemical activity of oxides in aqueous solution. J. Am. Chem. Soc. 112(6), 2076–2082 (1990). https://doi.org/10.1021/ja00162a006
J. Kim, X. Yin, K.-C. Tsao, S. Fang, H. Yang, Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. J. Am. Chem. Soc. 136(42), 14646–14649 (2014). https://doi.org/10.1021/ja506254g
J.G. Lee, J. Hwang, H.J. Hwang, O.S. Jeon, J. Jang et al., A new family of perovskite catalysts for oxygen-evolution reaction in alkaline media: BaNiO3 and BaNi0.83O2.5. J. Am. Chem. Soc. 138(10), 3541–3547 (2016). https://doi.org/10.1021/jacs.6b00036
Y. Zhou, S. Sun, S. Xi, Y. Duan, T. Sritharan et al., Superexchange effects on oxygen reduction activity of edge-sharing [CoxMn1−xO6] octahedra in spinel oxide. Adv. Mater. 30(11), 1705407 (2018). https://doi.org/10.1002/adma.201705407
Y. Zhu, W. Zhou, J. Yu, Y. Chen, M. Liu et al., Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 28(6), 1691–1697 (2016). https://doi.org/10.1021/acs.chemmater.5b04457
J. Huang, J. Chen, T. Yao, J. He, S. Jiang et al., CoOoH nanosheets with high mass activity for water oxidation. Angew. Chem. Int. Ed. 54(30), 8722–8727 (2015). https://doi.org/10.1002/anie.201502836
C. Su, W. Wang, Y. Chen, G. Yang, X. Xu et al., SrCo0.9Ti0.1O3−δ as a new electrocatalyst for the oxygen evolution reaction in alkaline electrolyte with stable performance. ACS Appl. Mater. Interfaces 7(32), 17663–17670 (2015). https://doi.org/10.1021/acsami.5b02810
Y.-Q. Lyu, F. Ciucci, Activating the bifunctionality of a perovskite oxide toward oxygen reduction and oxygen evolution reactions. ACS Appl. Mater. Interfaces 9(41), 35829–35836 (2017). https://doi.org/10.1021/acsami.7b10216
B. Zhao, L. Zhang, D. Zhen, S. Yoo, Y. Ding et al., A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nat. Commun. 8(1), 14586 (2017). https://doi.org/10.1038/ncomms14586
C.E. Beall, E. Fabbri, T.J. Schmidt, Perovskite oxide based electrodes for the oxygen reduction and evolution reactions: the underlying mechanism. ACS Catal. 11(5), 3094–3114 (2021). https://doi.org/10.1021/acscatal.0c04473
J.M. Rondinelli, S.J. May, Deliberate deficiencies: expanding electronic function through non-stoichiometry. Matter 1(1), 33–35 (2019). https://doi.org/10.1016/j.matt.2019.06.013
Z. Chen, N. Han, R. Zheng, Z. Ren, W. Wei et al., Design of earth-abundant amorphous transition metal-based catalysts for electrooxidation of small molecules: advances and perspectives. SusMat (2023). https://doi.org/10.1002/sus2.131
G. Jia, Y. Wang, X. Cui, H. Zhang, J. Zhao et al., Wet-chemistry hydrogen doped TiO2 with switchable defects control for photocatalytic hydrogen evolution. Matter 5(1), 206–218 (2022). https://doi.org/10.1016/j.matt.2021.10.027
S.C. Perry, D. Pangotra, L. Vieira, L.-I. Csepei, V. Sieber et al., Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3(7), 442–458 (2019)
K.A. Stoerzinger, M. Risch, B. Han, Y. Shao-Horn, Recent insights into manganese oxides in catalyzing oxygen reduction kinetics. ACS Catal. 5(10), 6021–6031 (2015). https://doi.org/10.1021/acscatal.5b01444
A. Kulkarni, S. Siahrostami, A. Patel, J.K. Nørskov, Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118(5), 2302–2312 (2018). https://doi.org/10.1021/acs.chemrev.7b00488
Y. Xu, X. Liu, N. Cao, X. Xu, L. Bi, Defect engineering for electrocatalytic nitrogen reduction reaction at ambient conditions. Sustain. Mater. Technol. 27, e00229 (2021). https://doi.org/10.1016/j.susmat.2020.e00229
J. Chen, W. Zhang, H. Li, W. Li, D. Zhao, Recent advances in TiO2-based catalysts for N2 reduction reaction. SusMat 1(2), 174–193 (2021). https://doi.org/10.1002/sus2.13
W. Shi, H. Liu, Z. Li, C. Li, J. Zhou et al., High-entropy alloy stabilized and activated pt clusters for highly efficient electrocatalysis. SusMat 2(2), 186–196 (2022). https://doi.org/10.1002/sus2.56
Y. Tian, S. Wang, E. Velasco, Y. Yang, L. Cao et al., A Co-doped nanorod-like RuO2 electrocatalyst with abundant oxygen vacancies for acidic water oxidation. Science 23(1), 100756–100816 (2020). https://doi.org/10.1016/j.isci.2019.100756
Q. Ji, L. Bi, J. Zhang, H. Cao, X.S. Zhao, The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energ. Environ. Sci. 13(5), 1408–1428 (2020). https://doi.org/10.1039/D0EE00092B
M.A. Peña, J.L.G. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101(7), 1981–2018 (2001). https://doi.org/10.1021/cr980129f
K. Conder, E. Pomjakushina, A. Soldatov, E. Mitberg, Oxygen content determination in perovskite-type cobaltates. Mater. Res. Bull. 40(2), 257–263 (2005). https://doi.org/10.1016/j.materresbull.2004.10.009
J.T. Mefford, X. Rong, A.M. Abakumov, W.G. Hardin, S. Dai et al., Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 7(1), 11053 (2016). https://doi.org/10.1038/ncomms11053
Y. Jiang, Z. Geng, L. Yuan, Y. Sun, Y. Cong et al., Nanoscale architecture of RuO.2/La0.9Fe0.92Ru0.08–xO3−δ composite via manipulating the exsolution of low Ru-substituted a-site deficient perovskite. ACS Sustain. Chem. Eng. 6(9), 11999–12005 (2018). https://doi.org/10.1021/acssuschemeng.8b02288
Y. Zhu, J. Dai, W. Zhou, Y. Zhong, H. Wang et al., Synergistically enhanced hydrogen evolution electrocatalysis by in-situ exsolution of metallic nanops on perovskites. J. Mater. Chem. A 6, 13582–13587 (2018). https://doi.org/10.1039/C8TA02347F
X. Xu, Y. Chen, W. Zhou, Y. Zhong, D. Guan et al., Earth-abundant silicon for facilitating water oxidation over Iron-based perovskite electrocatalyst. Adv. Mater. Interfaces 5, 1701693 (2018). https://doi.org/10.1002/admi.201701693
T. Ling, D.-Y. Yan, H. Wang, Y. Jiao, Z. Hu et al., Activating cobalt(ii) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun. 8(1), 1509 (2017). https://doi.org/10.1038/s41467-017-01872-y
J. Hwang, Z. Feng, N. Charles, X.R. Wang, D. Lee et al., Tuning perovskite oxides by strain: electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Mater. Today 31, 100–118 (2019). https://doi.org/10.1016/j.mattod.2019.03.014
D. Pesquera, G. Herranz, A. Barla, E. Pellegrin, F. Bondino et al., Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films. Nat. Commun. 3(1), 1189 (2012). https://doi.org/10.1038/ncomms2189
J.M. Rondinelli, N.A. Spaldin, Structure and properties of functional oxide thin films: insights from electronic-structure calculations. Adv. Mater. 23(30), 3363–3381 (2011). https://doi.org/10.1002/adma.201101152
S.A. Akhade, J.R. Kitchin, Effects of strain, d-band filling, and oxidation state on the surface electronic structure and reactivity of 3d perovskite surfaces. J. Chem. Phy. 137(8), 084703 (2012). https://doi.org/10.1063/1.4746117
D. Lee, R. Jacobs, Y. Jee, A. Seo, C. Sohn et al., Stretching epitaxial La0.6Sr0.4CoO3−δ for fast oxygen reduction. J. Phy. Chem. C 121(46), 25651–25658 (2017). https://doi.org/10.1021/acs.jpcc.7b06374
R. Jacobs, J. Booske, D. Morgan, Understanding and controlling the work function of perovskite oxides using density functional theory. Adv. Funct. Mater. 26(30), 5471–5482 (2016). https://doi.org/10.1002/adfm.201600243
X. Li, H. Liu, Z. Chen, Q. Wu, Z. Yu, Enhancing oxygen evolution efficiency of multiferroic oxides by spintronic and ferroelectric polarization regulation. Nat. Commun. 10(1), 1409 (2019). https://doi.org/10.1038/s41467-019-09191-0
K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert et al., Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306(5698), 1005–1009 (2004). https://doi.org/10.1126/science.1103218
T. Mayeshiba, D. Morgan, Strain effects on oxygen migration in perovskites. Phys. Chem. Chem. Phys. 17(4), 2715–2721 (2015). https://doi.org/10.1039/C4CP05554C
M. Kubicek, Z. Cai, W. Ma, B. Yildiz, H. Hutter et al., Tensile lattice strain accelerates oxygen surface exchange and diffusion in La1–xSrxCoO3−δ thin films. ACS Nano 7(4), 3276–3286 (2013). https://doi.org/10.1021/nn305987x
S. Stemmer, A.J. Jacobson, X. Chen, A. Ignatiev, Oxygen vacancy ordering in epitaxial La0.5Sr0.5CoO3−δ thin films on (001) LaAlO3. J. Appl. Phys. 90(7), 3319–3324 (2001). https://doi.org/10.1063/1.1401793
T.T. Mayeshiba, D.D. Morgan, Factors controlling oxygen migration barriers in perovskites. Solid State Ionics 296, 71–77 (2016). https://doi.org/10.1016/j.ssi.2016.09.007
S. Xu, R. Jacobs, D. Morgan, Factors controlling oxygen interstitial diffusion in the Ruddlesden–popper oxide La2–xSrxNiO4+δ. Chem. Mater. 30(20), 7166–7177 (2018). https://doi.org/10.1021/acs.chemmater.8b03146
T.L. Meyer, R. Jacobs, D. Lee, L. Jiang, J.W. Freeland et al., Strain control of oxygen kinetics in the Ruddlesden-popper oxide La1.85Sr0.15CuO4. Nat. Commun. 9(1), 92 (2018). https://doi.org/10.1038/s41467-017-02568-z
N. Han, X. Guo, J. Cheng, P. Liu, S. Zhang et al., Inhibiting in situ phase transition in ruddlesden-popper perovskite via tailoring bond hybridization and its application in oxygen permeation. Matter 4(5), 1720–1734 (2021). https://doi.org/10.1016/j.matt.2021.02.019
R. Jacobs, J. Hwang, Y. Shao-Horn, D. Morgan, Assessing correlations of perovskite catalytic performance with electronic structure descriptors. Chem. Mater. 31(3), 785–797 (2019). https://doi.org/10.1021/acs.chemmater.8b03840
Y.-L. Lee, M.J. Gadre, Y. Shao-Horn, D. Morgan, Ab initio gga+u study of oxygen evolution and oxygen reduction electrocatalysis on the (001) surfaces of lanthanum transition metal perovskites LaBO3 (b=Cr, Mn, Fe, Co and Ni). Phys. Chem. Chem. Phys. 17(33), 21643–21663 (2015). https://doi.org/10.1039/C5CP02834E
M. Risch, K.A. Stoerzinger, S. Maruyama, W.T. Hong, I. Takeuchi et al., La0.8Sr0.2MnO3−δ decorated with Ba0.5Sr0.5Co0.8Fe0.2O3−δ: a bifunctional surface for oxygen electrocatalysis with enhanced stability and activity. J. Am. Chem. Soc. 136(14), 5229–5232 (2014). https://doi.org/10.1021/ja5009954
J.R. Petrie, C. Mitra, H. Jeen, W.S. Choi, T.L. Meyer et al., Strain control of oxygen vacancies in epitaxial strontium cobaltite films. Adv. Funct. Mater. 26(10), 1564–1570 (2016). https://doi.org/10.1002/adfm.201504868
J.R. Petrie, H. Jeen, S.C. Barron, T.L. Meyer, H.N. Lee, Enhancing perovskite electrocatalysis through strain tuning of the oxygen deficiency. J. Am. Chem. Soc. 138(23), 7252–7255 (2016). https://doi.org/10.1021/jacs.6b03520
Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15(1), 4 (2022). https://doi.org/10.1007/s40820-022-00974-7
J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14(1), 112 (2022). https://doi.org/10.1007/s40820-022-00857-x
X. Xu, Z. Shao, S.P. Jiang, High-entropy materials for water electrolysis. Energy Technol. 10(11), 2200573 (2022). https://doi.org/10.1002/ente.202200573
P. Tan, R. Gao, Y. Zhang, N. Han, Y. Jiang et al., Electrostatically directed assembly of two-dimensional ultrathin Co2Ni-MoF/Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. J. Colloid. Interf. Sci. 630, 363–371 (2023). https://doi.org/10.1016/j.jcis.2022.10.109
H. Sun, S. Song, X. Xu, J. Dai, J. Yu et al., Recent progress on structurally ordered materials for electrocatalysis. Adv. Energ. Mater. 11(37), 2101937 (2021). https://doi.org/10.1002/aenm.202101937
Z. Liu, Z. Tang, Y. Song, G. Yang, W. Qian et al., High-entropy perovskite oxide: a new opportunity for developing highly active and durable air electrode for reversible protonic ceramic electrochemical cells. Nano-Micro Lett. 14(1), 217 (2022). https://doi.org/10.1007/s40820-022-00967-6
Y. Dai, J. Yu, J. Wang, Z. Shao, D. Guan et al., Bridging the charge accumulation and high reaction order for high-rate oxygen evolution and long stable zn-air batteries. Adv. Funct. Mater. 32(24), 2111989 (2022). https://doi.org/10.1002/adfm.202111989
H. Sun, X. Xu, H. Kim, W. Jung, W. Zhou et al., Electrochemical water splitting: bridging the gaps between fundamental research and industrial applications. Energ. Environ. Mater. (2023). https://doi.org/10.1002/eem2.12441
A.I. Douka, H. Yang, L. Huang, S. Zaman, T. Yue et al., Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable zinc-air batteries. EcoMat 3(1), e12067 (2021). https://doi.org/10.1002/eom2.12067
C. Jin, X. Cao, L. Zhang, C. Zhang, R. Yang, Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction. J. Power Sources 241, 225–230 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.116
J. Bian, R. Su, Y. Yao, J. Wang, J. Zhou et al., Mg doped perovskite LaNiO3 nanofibers as an efficient bifunctional catalyst for rechargeable zinc–air batteries. ACS Appl. Energ. Mater. 2(1), 923–931 (2019). https://doi.org/10.1021/acsaem.8b02183
S. Bie, Y. Zhu, J. Su, C. Jin, S. Liu et al., One-pot fabrication of yolk–shell structured La0.9Sr0.1CoO3 perovskite microspheres with enhanced catalytic activities for oxygen reduction and evolution reactions. J. Mater. Chem. A 3(44), 22448–22453 (2015). https://doi.org/10.1039/C5TA05271H
C. Jin, Z. Yang, X. Cao, F. Lu, R. Yang, A novel bifunctional catalyst of Ba0.9Co0.5Fe0.4Nb0.1O3−δ perovskite for lithium–air battery. Int. J. Hydrogen Energy 39(6), 2526–2530 (2014). https://doi.org/10.1016/j.ijhydene.2013.12.003
Y. Xu, A. Tsou, Y. Fu, J. Wang, J.-H. Tian et al., Carbon-coated perovskite BaMnO3 porous nanorods with enhanced electrocatalytic perporites for oxygen reduction and oxygen evolution. Electrochim. Acta 174, 551–556 (2015). https://doi.org/10.1016/j.electacta.2015.05.184
X. Ge, B. Li, D. Wuu, A. Sumboja, T. An et al., Nanostructured perovskite LaCo1-xMnxO3 as bifunctional catalysts for rechargeable metal–air batteries. J. Mol. Eng. Mater. 3, 1540006 (2015). https://doi.org/10.1142/s2251237315400067
C. Jin, X. Cao, F. Lu, Z. Yang, R. Yang, Electrochemical study of Ba0.5Sr0.5Co0.8Fe0.2O3 perovskite as bifunctional catalyst in alkaline media. Int. J. Hydrogen Energy 38(25), 10389–10393 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.047
C.-F. Chen, G. King, R.M. Dickerson, P.A. Papin, S. Gupta et al., Oxygen-deficient BaTiO3−x perovskite as an efficient bifunctional oxygen electrocatalyst. Nano Energy 13, 423–432 (2015). https://doi.org/10.1016/j.nanoen.2015.03.005
L. Yan, Y. Lin, X. Yu, W. Xu, T. Salas et al., La0.8Sr0.2MnO3-based perovskite nanops with the a-site deficiency as high performance bifunctional oxygen catalyst in alkaline solution. ACS Appl. Mater. Interfaces 9(28), 23820–23827 (2017). https://doi.org/10.1021/acsami.7b06458
W. Xu, L. Yan, L. Teich, S. Liaw, M. Zhou et al., Polymer-assisted chemical solution synthesis of La0.8Sr0.2MnO3-based perovskite with a-site deficiency and cobalt-doping for bifunctional oxygen catalyst in alkaline media. Electrochim. Acta 273, 80–87 (2018). https://doi.org/10.1016/j.electacta.2018.04.046
H. Wang, W. Xu, S. Richins, K. Liaw, L. Yan et al., Polymer-assisted approach to LaCo1-xNixO3 network nanostructures as bifunctional oxygen electrocatalysts. Electrochim. Acta 296, 945–953 (2019). https://doi.org/10.1016/j.electacta.2018.11.075
M.Y. Oh, J.S. Jeon, J.J. Lee, P. Kim, K.S. Nahm, The bifunctional electrocatalytic activity of perovskite La0.6Sr0.4CoO3−δ for oxygen reduction and evolution reactions. RSC Adv. 5(25), 19190–19198 (2015). https://doi.org/10.1039/C4RA16097E
Y. Zhao, L. Xu, L. Mai, C. Han, Q. An et al., Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries. Proc. Natl. Acad. Sci. 109(48), 19569–19574 (2012). https://doi.org/10.1073/pnas.1210315109
Z. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431(7005), 170–173 (2004)
Z. Shao, S.M. Haile, J. Ahn, P.D. Ronney, Z. Zhan et al., A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature 435(7043), 795 (2005)
N. Han, W. Wang, S. Zhang, J. Sunarso, Z. Zhu et al., A novel heterogeneous La0.8Sr0.2CoO3−δ/(La0.5Sr0.5)2CoO4+δ dual-phase membrane for oxygen separation. Asia-Pac. J. Chem. Eng. 13(5), e2239 (2018). https://doi.org/10.1002/apj.2239
N. Han, R. Chen, T. Chang, L. Li, H. Wang et al., A novel lanthanum strontium cobalt iron composite membrane synthesised through beneficial phase reaction for oxygen separation. Ceram. Int. 45(15), 18924–18930 (2019). https://doi.org/10.1016/j.ceramint.2019.06.128
S. Dwivedi, Solid oxide fuel cell: materials for anode, cathode and electrolyte. Int. J. Hydrogen Energy 45(44), 23988–24013 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.234
Y. Zhang, X. Gao, J. Sunarso, B. Liu, W. Zhou et al., Significantly improving the durability of single-chamber solid oxide fuel cells: a highly active CO2-resistant perovskite cathode. ACS Appl. Energ. Mater. 1(3), 1337–1343 (2018). https://doi.org/10.1021/acsaem.8b00051
D. Chen, C. Chen, Z.M. Baiyee, Z. Shao, F. Ciucci, Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 115(18), 9869–9921 (2015). https://doi.org/10.1021/acs.chemrev.5b00073
Y. Song, W. Wang, L. Ge, X. Xu, Z. Zhang et al., Rational design of a water-storable hierarchical architecture decorated with amorphous barium oxide and nickel nanops as a solid oxide fuel cell anode with excellent sulfur tolerance. Adv. Sci. 4(11), 1700337 (2017). https://doi.org/10.1002/advs.201700337
M. Benamira, L. Thommy, F. Moser, O. Joubert, M.T. Caldes, New anode materials for it-sofc derived from the electrolyte BaIn0.3Ti0.7O2.85 by lanthanum and manganese doping. Solid State Ion. 265, 38–45 (2014). https://doi.org/10.1016/j.ssi.2014.07.006
P.I. Cowin, C.T.G. Petit, R. Lan, J.T.S. Irvine, S. Tao, Recent progress in the development of anode materials for solid oxide fuel cells. Adv. Energ. Mater. 1(3), 314–332 (2011). https://doi.org/10.1002/aenm.201100108
S.Y. Istomin, E.V. Antipov, Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Russ. Chem. Rev. 82(7), 686 (2013). https://doi.org/10.1070/RC2013v082n07ABEH004390
D. Chen, C. Chen, Z. Zhang, Z.M. Baiyee, F. Ciucci et al., Compositional engineering of perovskite oxides for highly efficient oxygen reduction reactions. ACS Appl. Mater. Interfaces 7(16), 8562–8571 (2015). https://doi.org/10.1021/acsami.5b00358
Y. Chen, W. Zhou, D. Ding, M. Liu, F. Ciucci et al., Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline earth metal elements. Adv. Energ. Mater. 5(18), 1500537 (2015). https://doi.org/10.1002/aenm.201500537
Z. Zhang, Y. Zhu, Y. Zhong, W. Zhou, Z. Shao, Anion doping: a new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells. Adv. Energ. Mater. (2017). https://doi.org/10.1002/aenm.201700242
Y. Zhu, W. Zhou, Y. Chen, Z. Shao, An aurivillius oxide based cathode with excellent CO2 tolerance for intermediate-temperature solid oxide fuel cells. Angew. Chem. Int. Ed. 55(31), 8988–8993 (2016). https://doi.org/10.1002/anie.201604160
Z. Shao, Y. Cong, G. Xiong, S. Sheng, W. Yang, Mixed-conducting perovskite-type SrxBi1-xFeO3-δ oxygen-permeating membranes. Sci. China Series B: Chem. 43(4), 421–427 (2000). https://doi.org/10.1007/BF02969448
Z. Shao, G. Xiong, J. Tong, H. Dong, W. Yang, Ba effect in doped Sr(Co0.8Fe0.2)O3-δ on the phase structure and oxygen permeation properties of the dense ceramic membranes. Sep. Purif. Technol. 25(1), 419–429 (2001). https://doi.org/10.1016/S1383-5866(01)00071-5
N. Han, Q. Wei, H. Tian, S. Zhang, Z. Zhu et al., Highly stable dual-phase membrane based on Ce0.9Gd0.1O2–δ-La2NiO4+δ for oxygen permeation under pure CO2 atmosphere. Energ. Technol. 7(5), 1800701 (2019). https://doi.org/10.1002/ente.201800701
J. Zhu, G. Liu, Z. Liu, Z. Chu, W. Jin et al., Unprecedented perovskite oxyfluoride membranes with high-efficiency oxygen ion transport paths for low-temperature oxygen permeation. Adv. Mater. 28(18), 3511–3515 (2016). https://doi.org/10.1002/adma.201505959
N. Han, S. Zhang, X. Meng, N. Yang, B. Meng et al., Effect of enhanced oxygen reduction activity on oxygen permeation of La0.6Sr0.4Co0.2Fe0.8O3−δ membrane decorated by K2NiF4-type oxide. J. Alloy Compd. 654, 280–289 (2016). https://doi.org/10.1016/j.jallcom.2015.09.086
Z. Zhang, Y. Chen, M.O. Tade, Y. Hao, S. Liu et al., Tin-doped perovskite mixed conducting membrane for efficient air separation. J. Mater. Chem. A 2(25), 9666–9674 (2014). https://doi.org/10.1039/C4TA00926F
Z. Zhang, D. Chen, F. Dong, X. Xu, Y. Hao et al., Understanding the doping effect toward the design of CO2-tolerant perovskite membranes with enhanced oxygen permeability. J. Mem. Sci. 519, 11–21 (2016). https://doi.org/10.1016/j.memsci.2016.07.043
N. Han, Q. Wei, S. Zhang, N. Yang, S. Liu, Rational design via tailoring mo content in La2Ni1-xMoxO4+δ to improve oxygen permeation properties in CO2 atmosphere. J. Alloy Compd. 806, 153–162 (2019). https://doi.org/10.1016/j.jallcom.2019.07.209
N. Han, Z. Shen, X. Zhao, R. Chen, V.K. Thakur, Perovskite oxides for oxygen transport: chemistry and material horizons. Sci. Total Environ. 806, 151213 (2022). https://doi.org/10.1016/j.scitotenv.2021.151213
Y. Xu, J. Qu, Y. Li, M. Zhu, Y. Liu et al., Bridging metal-ion induced vertical growth of MoS2 and overall fast electron transfer in (C, P)3N4-M (Ni2+, Co2+)-MoS2 electrocatalyst for efficient hydrogen evolution reaction. Sustain. Mater. Technol. 25, 00172 (2020). https://doi.org/10.1016/j.susmat.2020.e00172
V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Energy and fuels from electrochemical interfaces. Nat. Mater. 16(1), 57–69 (2017). https://doi.org/10.1038/nmat4738
D. Zhou, X. Xiong, Z. Cai, N. Han, Y. Jia et al., Flame-engraved Nickel-Iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity. Small Methods 2(7), 1800083 (2018). https://doi.org/10.1002/smtd.201800083
J. Tang, X. Xu, T. Tang, Y. Zhong, Z. Shao, Perovskite-based electrocatalysts for cost-effective ultrahigh-current-density water splitting in anion exchange membrane electrolyzer cell. Small Methods 6(11), 2201099 (2022). https://doi.org/10.1002/smtd.202201099