Tuning Metallic Co0.85Se Quantum Dots/Carbon Hollow Polyhedrons with Tertiary Hierarchical Structure for High-Performance Potassium Ion Batteries
Corresponding Author: Wei Wang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 96
Abstract
Potassium-ion batteries (KIBs) are a potential candidate to lithium-ion batteries (LIBs) but possess unsatisfactory capacity and rate properties. Herein, the metallic cobalt selenide quantum dots (Co0.85Se-QDs) encapsulated in mesoporous carbon matrix were designed via a direct hydrothermal method. Specifically, the cobalt selenide/carbon composite (Co0.85Se-QDs/C) possesses tertiary hierarchical structure, which is the primary quantum dots, the secondary petals flake, and the tertiary hollow micropolyhedron framework. Co0.85Se-QDs are homogenously embedded into the carbon petals flake, which constitute the hollow polyhedral framework. This unique structure can take the advantages of both nanoscale and microscale features: Co0.85Se-QDs can expand in a multidimensional and ductile carbon matrix and reduce the K-intercalation stress in particle dimensions; the micropetals can restrain the agglomeration of active materials and promote the transportation of potassium ion and electron. In addition, the hollow carbon framework buffers volume expansion, maintains the structural integrity, and increases the electronic conductivity. Benefiting from this tertiary hierarchical structure, outstanding K-storage performance (402 mAh g−1 after 100 cycles at 50 mA g−1) is obtained when Co0.85Se-QDs/C is used as KIBs anode. More importantly, the selenization process in this work is newly reported and can be generally extended to prepare other quantum dots encapsulated in edge-limited frameworks for excellent energy storage.
Highlights:
1 Metallic cobalt selenide quantum dots encapsulated in mesoporous carbon matrix were prepared via a direct hydrothermal method.
2 The cobalt selenide/carbon composite (Co0.85Se-QDs/C) possesses tertiary hierarchical structure, which is the primary quantum dots, the secondary petals flake, and the tertiary hollow micropolyhedron framework.
3 Benefiting from this tertiary hierarchical structure, the Co0.85Se-QDs/C electrode as potassium-ion batteries anode shows an outstanding K-storage performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Liu, Z.D. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W.T. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187 (2014). https://doi.org/10.1038/nnano.2014.6
- S.H. Choi, T.W. Kwon, A. Coskun, J.W. Choi, Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017). https://doi.org/10.1126/science.aal4373
- M. Freire, N.V. Kosova, C. Jordy, D. Chateigner, O.I. Lebedev, A. Maignan, V. Pralong, An active Li–Mn–O compound for high energy density Li-ion batteries. Nat. Mater. 15, 173 (2016). https://doi.org/10.1038/nmat4479
- X.D. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. ChemInform 46, 5343–5364 (2015). https://doi.org/10.1002/chin.201544273
- Z.W. Liu, P. Li, G.Q. Suo, S. Gong, W. Wang et al., Zero-strain K0.6Mn1F2.7 hollow nanocubes for ultrastable potassium ion storage. Energy Environ. Sci. 11, 3033–3042 (2018). https://doi.org/10.1039/C8EE01611A
- L. Fan, R.F. Ma, J. Wang, H.G. Yang, B.A. Lu, An ultrafast and highly stable potassium–organic battery. Adv. Mater. 30, 1805486 (2018). https://doi.org/10.1002/adma.201805486
- K. Han, Z.W. Liu, P. Li, Q.Y. Yu, W.A. Wang et al., High throughput fabrication of 3D N-doped graphenic framework coupled with Fe3C@porous graphite carbon for ultrastable potassium ion storage. Energy Storage Mater. 22, 185–193 (2019). https://doi.org/10.1016/j.ensm.2019.01.016
- Y. Zhang, S.Q. Liu, Y.J. Ji, J.M. Ma, H.J. Yu, Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30, 1706310 (2018). https://doi.org/10.1002/adma.201706310
- X. Ji, J. Chen, F. Wang, W. Sun, Y.J. Ruan, L. Miao, J.J. Jiang, C.S. Wang, Water-activated VOPO4 for magnesium ion batteries. Nano Lett. 18, 6441–6448 (2018). https://doi.org/10.1021/acs.nanolett.8b02854
- B.F. Ji, F. Zhang, X.H. Song, Y.B. Tang, A novel potassium-ion-based dual-ion battery. Adv. Mater. 29, 1700519 (2017). https://doi.org/10.1002/adma.201700519
- B.F. Ji, F. Zhang, N.Z. Wu, Y.B. Tang, A dual-carbon battery based on potassium-ion electrolyte. Adv. Energy Mater. 7, 1700920 (2017). https://doi.org/10.1002/aenm.201700920
- W.C. Zhang, Z.B. Wu, J. Zhang, G.P. Liu, N.H. Yang et al., Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for potassium ion batteries. Nano Energy 53, 967–974 (2018). https://doi.org/10.1016/j.nanoen.2018.09.058
- P. Li, X.B. Zheng, H.X. Yu, G.Q. Zhao, J. Shu, X. Xu, W.P. Sun, S.X. Dou, Electrochemical potassium/lithium-ion intercalation into TiSe2: kinetics and mechanism. Energy Storage Mater. 16, 512–518 (2019). https://doi.org/10.1016/j.ensm.2018.09.014
- J.C. Pramudita, D. Sehrawat, D. Goonetilleke, N. Sharma, An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 7, 1602911 (2017). https://doi.org/10.1002/aenm.201602911
- Y.H. Zhu, X. Yang, T. Sun, S. Wang, Y.L. Zhao, J.M. Yan, X.B. Zhang, Recent progresses and prospects of cathode materials for non-aqueous potassium-ion batteries. Electrochem. Energy Rev. 1, 548–566 (2018). https://doi.org/10.1007/s41918-018-0019-7
- Y. Xu, C.L. Zhang, M. Zhou, Q. Fu, C.X. Zhao, M.H. Wu, Y. Lei, Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9, 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
- J.L. Yang, Z.C. Ju, Y. Jiang, Z. Xing, B.J. Xi, J.K. Feng, S.L. Xiong, Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30, 1700104 (2018). https://doi.org/10.1002/adma.201700104
- B. Cao, Q. Zhang, H. Liu, B. Xu, S.L. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8, 1801149 (2018). https://doi.org/10.1002/aenm.201801149
- W. Luo, J.Y. Wan, B. Ozdemir, W.Z. Bao, Y.N. Chen et al., Potassium ion batteries with graphitic materials. Nano Lett. 15, 7671–7677 (2015). https://doi.org/10.1021/acs.nanolett.5b03667
- Z. Chen, D.G. Yin, M. Zhang, Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small 14, 1703818 (2018). https://doi.org/10.1002/smll.201703818
- V. Lakshmi, Y. Chen, A.A. Mikhaylov, A.G. Medvedev et al., Nanocrystalline SnS2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 53, 8272–8275 (2017). https://doi.org/10.1039/c7cc03998k
- H. Gao, T.F. Zhou, Y. Zheng, Q. Zhang, Y.Q. Liu et al., CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 27, 1702634 (2017). https://doi.org/10.1002/adfm.201702634
- Y.F. Dong, Z.S. Wu, S.H. Zheng, X.H. Wang, J.Q. Qin et al., Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11, 4792–4800 (2017). https://doi.org/10.1021/acsnano.7b01165
- W. Wang, B. Jiang, C. Qian, F. Lv, J.R. Feng et al., Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 30, 1801812 (2018). https://doi.org/10.1002/adma.201801812
- C. Yang, J.R. Feng, F. Lv, J.H. Zhou, C.F. Lin et al., Metallic graphene-like VSe2 ultrathin nanosheets: superior potassium-ion storage and their working mechanism. Adv. Mater. 30, 1800036 (2018). https://doi.org/10.1002/adma.201800036
- X.F. Wang, D.Z. Kong, Z.X. Huang, Y. Wang, H.Y. Yang, Nontopotactic reaction in highly reversible sodium storage of ultrathin Co9Se8/rGO hybrid nanosheets. Small 13, 1603980 (2017). https://doi.org/10.1002/smll.201603980
- K.N. Zhao, L. Zhang, R. Xia, Y.F. Dong, W.W. Xu et al., SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 12, 588 (2016). https://doi.org/10.1002/smll.201502183
- Y. Xiao, P. Cao, M. Sun, Core-shell bimetallic carbide nanoparticles confined in a three-dimensional N-doped carbon conductive network for efficient lithium storage. ACS Nano 8, 7846–7857 (2014). https://doi.org/10.1021/nn501390j
- J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S.H. Furukawa, Y. Yamauchi, Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 137, 1572–1580 (2015). https://doi.org/10.1021/ja511539a
- P. Zhang, B.Y. Guan, L. Yu, X.W. Lou, A long-range acting dehydratase domain as the missing link for C17-dehydration in iso-migrastatin biosynthesis. Angew. Chem. Int. Ed. 129, 7247–7251 (2017). https://doi.org/10.1002/anie.201703588
- Y.H. Zhu, J. Ciston, B. Zheng, X.H. Miao, C. Czarnik et al., Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nat. Mater. 16, 532–536 (2017). https://doi.org/10.1038/nmat4852
- H. Hu, J.T. Zhang, B.Y. Guan, X.W. Lou, Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem. Int. Ed. 55, 9514–9518 (2016). https://doi.org/10.1002/ange.201603852
- J. Shao, Z.M. Wan, H.M. Liu, H.Y. Zheng, T. Gao et al., Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J. Mater. Chem. A 2, 12194–12200 (2014). https://doi.org/10.1039/C4TA01966K
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- J. Kürti, G. Kresse, H. Kuzmany, First-principles calculations of the radial breathing mode of single-wall carbon nanotubes. Phys. Rev. B 58, R8869 (1998). https://doi.org/10.1103/PhysRevB.58.R8869
- G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/PhysRevB.47.558
- G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994). https://doi.org/10.1103/PhysRevB.49.14251
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/physrevb.54.11169
- H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.16.1746
- MathSciNet
- A. Banerjee, S. Bhatnagar, K.K. Upadhyay, P. Yadav, S. Ogale, Hollow Co0.85Se nanowire array on carbon fiber paper for high rate pseudocapacitor. ACS Appl. Mater. Interfaces 6, 18844–18852 (2014). https://doi.org/10.1021/am504333z
- D.S. Kong, H.T. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, Y. Cui, Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013). https://doi.org/10.1021/nl400258t
- L. Yu, B.Y. Xia, X. Wang, X.W. Lou, General formation of M–MoS3 (M = Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution. Adv. Mater. 28, 92–97 (2016). https://doi.org/10.1002/adma.201504024
- Y. Hou, M. Qiu, T. Zhang, X.D. Zhuang, C.S. Kim, C. Yuan, X.L. Feng, Ternary porous cobalt phosphoselenide nanosheets: an efficient electrocatalyst for electrocatalytic and photoelectrochemical water splitting. Adv. Mater. 29, 1701589 (2017). https://doi.org/10.1002/adma.201701589
- Y.J. Xiong, J.M. McLellan, J.Y. Chen, Y.D. Yin, Z.Y. Li, Y.N. Xia, Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J. Am. Chem. Soc. 127, 17118–17127 (2005). https://doi.org/10.1021/ja056498s
- J.F. Zhao, J.M. Song, C.C. Liu, B.H. Liu, H.L. Niu et al., Graphene-like cobalt selenide nanostructures: template-free solvothermal synthesis, characterization and wastewater treatment. CrystEngComm 13, 5681–5684 (2011). https://doi.org/10.1039/C1CE05323J
- Z.L. Chen, R.B. Wu, M. Liu, H. Wang, H.B. Xu et al., General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv. Funct. Mater. 27, 1702046 (2017). https://doi.org/10.1002/adfm.201702046
- J. Liu, C. Wu, D.D. Xiao, P. Kopold, L. Gu, P.A. van Aken, J. Maier, Y. Yu, MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li-ion storage. Small 12, 2354–2364 (2016). https://doi.org/10.1002/smll.201503821
- S.K. Park, J.K. Kim, Y.C. Kang, Excellent sodium-ion storage performances of CoSe2 nanoparticles embedded within N-doped porous graphitic carbon nanocube/carbon nanotube composite. Chem. Eng. J. 328, 546–555 (2017). https://doi.org/10.1016/j.cej.2017.07.079
- Q. Liu, J.L. Shi, J.M. Hu, A.M. Asiri, Y.L. Luo, X.P. Sun, CoSe2 nanowires array as a 3D electrode for highly efficient electrochemical hydrogen evolution. ACS Appl. Mater. Interfaces 7, 3877–3881 (2015). https://doi.org/10.1021/am509185x
- Q.Y. Yu, B. Jiang, J. Hu, C.Y. Lao, Y.Z. Gao et al., Metallic octahedral CoSe2 threaded by N-doped carbon nanotubes: a flexible framework for high-performance potassium-ion batteries. Adv. Sci. 5, 1800782 (2018). https://doi.org/10.1002/advs.201800782
- D.S. Kong, H.T. Wang, Z.Y. Lu, Y. Cui, CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 136, 4897–4900 (2014). https://doi.org/10.1021/ja501497n
- W. Wang, J.H. Zhou, Z.P. Wang, L.Y. Zhao, P.H. Li et al., Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8, 1701648 (2018). https://doi.org/10.1002/aenm.201701648
- Y.C. Tang, Z.B. Zhao, X.J. Hao, Y.W. Wang, Y. Liu et al., Engineering hollow polyhedrons structured from carbon-coated CoSe2 nanospheres bridged by CNTs with boosted sodium storage performance. J. Mater. Chem. A 5, 13591–13600 (2017). https://doi.org/10.1039/C7TA02665J
- B.R. Jia, M.L. Qin, S.M. Li, Z.L. Zhang, H.F. Lu et al., Synthesis of mesoporous single crystal Co(OH)2 nanoplate and its topotactic conversion to dual-pore mesoporous single crystal Co3O4. ACS Appl. Mater. Interfaces 8, 15582–15590 (2016). https://doi.org/10.1021/acsami.6b02768
- N. Xiao, W.D. Mcculloch, Y. Wu, Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 139, 9475–9478 (2017). https://doi.org/10.1021/jacs.7b04945
- L. Fan, S. Chen, R. Ma, J. Wang, L. Wang et al., Ultrastable potassium storage performance realized by highly effective solid electrolyte interphase layer. Small 14, 1801806 (2018). https://doi.org/10.1002/smll.201801806
- Y. Huang, M. Xie, Z. Wang, Y. Jiang, G. Xiao et al., Fast sodium storage kinetics of lantern-like Ti0.25Sn0.75S2 connected via carbon nanotubes. Energy Storage Mater. 11, 100–111 (2018). https://doi.org/10.1016/j.ensm.2017
- K. Zhang, M.H. Park, L.M. Zhou, G.H. Lee, W.J. Li, Y.M. Kang, J. Chen, Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 26, 6728–6735 (2016). https://doi.org/10.1002/adfm.201602608
- J.B. Cook, H.S. Kim, Y. Yan, J.S. Ko, S. Robbennolt, B. Dunn, S.H. Tolbert, Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-ion charge storage. Adv. Energy Mater. 6, 1501937 (2016). https://doi.org/10.1002/aenm.201501937
- N. Li, F. Zhang, Y.B. Tang, Hierarchical T-Nb2O5 nanostructure with hybrid mechanisms of intercalation and pseudocapacitance for potassium storage and high-performance potassium dual-ion batteries. J. Mater. Chem. A 6, 17889–17895 (2018). https://doi.org/10.1039/C8TA07
References
N. Liu, Z.D. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W.T. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187 (2014). https://doi.org/10.1038/nnano.2014.6
S.H. Choi, T.W. Kwon, A. Coskun, J.W. Choi, Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017). https://doi.org/10.1126/science.aal4373
M. Freire, N.V. Kosova, C. Jordy, D. Chateigner, O.I. Lebedev, A. Maignan, V. Pralong, An active Li–Mn–O compound for high energy density Li-ion batteries. Nat. Mater. 15, 173 (2016). https://doi.org/10.1038/nmat4479
X.D. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. ChemInform 46, 5343–5364 (2015). https://doi.org/10.1002/chin.201544273
Z.W. Liu, P. Li, G.Q. Suo, S. Gong, W. Wang et al., Zero-strain K0.6Mn1F2.7 hollow nanocubes for ultrastable potassium ion storage. Energy Environ. Sci. 11, 3033–3042 (2018). https://doi.org/10.1039/C8EE01611A
L. Fan, R.F. Ma, J. Wang, H.G. Yang, B.A. Lu, An ultrafast and highly stable potassium–organic battery. Adv. Mater. 30, 1805486 (2018). https://doi.org/10.1002/adma.201805486
K. Han, Z.W. Liu, P. Li, Q.Y. Yu, W.A. Wang et al., High throughput fabrication of 3D N-doped graphenic framework coupled with Fe3C@porous graphite carbon for ultrastable potassium ion storage. Energy Storage Mater. 22, 185–193 (2019). https://doi.org/10.1016/j.ensm.2019.01.016
Y. Zhang, S.Q. Liu, Y.J. Ji, J.M. Ma, H.J. Yu, Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30, 1706310 (2018). https://doi.org/10.1002/adma.201706310
X. Ji, J. Chen, F. Wang, W. Sun, Y.J. Ruan, L. Miao, J.J. Jiang, C.S. Wang, Water-activated VOPO4 for magnesium ion batteries. Nano Lett. 18, 6441–6448 (2018). https://doi.org/10.1021/acs.nanolett.8b02854
B.F. Ji, F. Zhang, X.H. Song, Y.B. Tang, A novel potassium-ion-based dual-ion battery. Adv. Mater. 29, 1700519 (2017). https://doi.org/10.1002/adma.201700519
B.F. Ji, F. Zhang, N.Z. Wu, Y.B. Tang, A dual-carbon battery based on potassium-ion electrolyte. Adv. Energy Mater. 7, 1700920 (2017). https://doi.org/10.1002/aenm.201700920
W.C. Zhang, Z.B. Wu, J. Zhang, G.P. Liu, N.H. Yang et al., Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for potassium ion batteries. Nano Energy 53, 967–974 (2018). https://doi.org/10.1016/j.nanoen.2018.09.058
P. Li, X.B. Zheng, H.X. Yu, G.Q. Zhao, J. Shu, X. Xu, W.P. Sun, S.X. Dou, Electrochemical potassium/lithium-ion intercalation into TiSe2: kinetics and mechanism. Energy Storage Mater. 16, 512–518 (2019). https://doi.org/10.1016/j.ensm.2018.09.014
J.C. Pramudita, D. Sehrawat, D. Goonetilleke, N. Sharma, An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 7, 1602911 (2017). https://doi.org/10.1002/aenm.201602911
Y.H. Zhu, X. Yang, T. Sun, S. Wang, Y.L. Zhao, J.M. Yan, X.B. Zhang, Recent progresses and prospects of cathode materials for non-aqueous potassium-ion batteries. Electrochem. Energy Rev. 1, 548–566 (2018). https://doi.org/10.1007/s41918-018-0019-7
Y. Xu, C.L. Zhang, M. Zhou, Q. Fu, C.X. Zhao, M.H. Wu, Y. Lei, Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9, 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
J.L. Yang, Z.C. Ju, Y. Jiang, Z. Xing, B.J. Xi, J.K. Feng, S.L. Xiong, Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30, 1700104 (2018). https://doi.org/10.1002/adma.201700104
B. Cao, Q. Zhang, H. Liu, B. Xu, S.L. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8, 1801149 (2018). https://doi.org/10.1002/aenm.201801149
W. Luo, J.Y. Wan, B. Ozdemir, W.Z. Bao, Y.N. Chen et al., Potassium ion batteries with graphitic materials. Nano Lett. 15, 7671–7677 (2015). https://doi.org/10.1021/acs.nanolett.5b03667
Z. Chen, D.G. Yin, M. Zhang, Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small 14, 1703818 (2018). https://doi.org/10.1002/smll.201703818
V. Lakshmi, Y. Chen, A.A. Mikhaylov, A.G. Medvedev et al., Nanocrystalline SnS2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 53, 8272–8275 (2017). https://doi.org/10.1039/c7cc03998k
H. Gao, T.F. Zhou, Y. Zheng, Q. Zhang, Y.Q. Liu et al., CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 27, 1702634 (2017). https://doi.org/10.1002/adfm.201702634
Y.F. Dong, Z.S. Wu, S.H. Zheng, X.H. Wang, J.Q. Qin et al., Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11, 4792–4800 (2017). https://doi.org/10.1021/acsnano.7b01165
W. Wang, B. Jiang, C. Qian, F. Lv, J.R. Feng et al., Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 30, 1801812 (2018). https://doi.org/10.1002/adma.201801812
C. Yang, J.R. Feng, F. Lv, J.H. Zhou, C.F. Lin et al., Metallic graphene-like VSe2 ultrathin nanosheets: superior potassium-ion storage and their working mechanism. Adv. Mater. 30, 1800036 (2018). https://doi.org/10.1002/adma.201800036
X.F. Wang, D.Z. Kong, Z.X. Huang, Y. Wang, H.Y. Yang, Nontopotactic reaction in highly reversible sodium storage of ultrathin Co9Se8/rGO hybrid nanosheets. Small 13, 1603980 (2017). https://doi.org/10.1002/smll.201603980
K.N. Zhao, L. Zhang, R. Xia, Y.F. Dong, W.W. Xu et al., SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 12, 588 (2016). https://doi.org/10.1002/smll.201502183
Y. Xiao, P. Cao, M. Sun, Core-shell bimetallic carbide nanoparticles confined in a three-dimensional N-doped carbon conductive network for efficient lithium storage. ACS Nano 8, 7846–7857 (2014). https://doi.org/10.1021/nn501390j
J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S.H. Furukawa, Y. Yamauchi, Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 137, 1572–1580 (2015). https://doi.org/10.1021/ja511539a
P. Zhang, B.Y. Guan, L. Yu, X.W. Lou, A long-range acting dehydratase domain as the missing link for C17-dehydration in iso-migrastatin biosynthesis. Angew. Chem. Int. Ed. 129, 7247–7251 (2017). https://doi.org/10.1002/anie.201703588
Y.H. Zhu, J. Ciston, B. Zheng, X.H. Miao, C. Czarnik et al., Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nat. Mater. 16, 532–536 (2017). https://doi.org/10.1038/nmat4852
H. Hu, J.T. Zhang, B.Y. Guan, X.W. Lou, Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem. Int. Ed. 55, 9514–9518 (2016). https://doi.org/10.1002/ange.201603852
J. Shao, Z.M. Wan, H.M. Liu, H.Y. Zheng, T. Gao et al., Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J. Mater. Chem. A 2, 12194–12200 (2014). https://doi.org/10.1039/C4TA01966K
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
J. Kürti, G. Kresse, H. Kuzmany, First-principles calculations of the radial breathing mode of single-wall carbon nanotubes. Phys. Rev. B 58, R8869 (1998). https://doi.org/10.1103/PhysRevB.58.R8869
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/PhysRevB.47.558
G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994). https://doi.org/10.1103/PhysRevB.49.14251
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/physrevb.54.11169
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.16.1746
MathSciNet
A. Banerjee, S. Bhatnagar, K.K. Upadhyay, P. Yadav, S. Ogale, Hollow Co0.85Se nanowire array on carbon fiber paper for high rate pseudocapacitor. ACS Appl. Mater. Interfaces 6, 18844–18852 (2014). https://doi.org/10.1021/am504333z
D.S. Kong, H.T. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, Y. Cui, Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013). https://doi.org/10.1021/nl400258t
L. Yu, B.Y. Xia, X. Wang, X.W. Lou, General formation of M–MoS3 (M = Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution. Adv. Mater. 28, 92–97 (2016). https://doi.org/10.1002/adma.201504024
Y. Hou, M. Qiu, T. Zhang, X.D. Zhuang, C.S. Kim, C. Yuan, X.L. Feng, Ternary porous cobalt phosphoselenide nanosheets: an efficient electrocatalyst for electrocatalytic and photoelectrochemical water splitting. Adv. Mater. 29, 1701589 (2017). https://doi.org/10.1002/adma.201701589
Y.J. Xiong, J.M. McLellan, J.Y. Chen, Y.D. Yin, Z.Y. Li, Y.N. Xia, Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J. Am. Chem. Soc. 127, 17118–17127 (2005). https://doi.org/10.1021/ja056498s
J.F. Zhao, J.M. Song, C.C. Liu, B.H. Liu, H.L. Niu et al., Graphene-like cobalt selenide nanostructures: template-free solvothermal synthesis, characterization and wastewater treatment. CrystEngComm 13, 5681–5684 (2011). https://doi.org/10.1039/C1CE05323J
Z.L. Chen, R.B. Wu, M. Liu, H. Wang, H.B. Xu et al., General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv. Funct. Mater. 27, 1702046 (2017). https://doi.org/10.1002/adfm.201702046
J. Liu, C. Wu, D.D. Xiao, P. Kopold, L. Gu, P.A. van Aken, J. Maier, Y. Yu, MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li-ion storage. Small 12, 2354–2364 (2016). https://doi.org/10.1002/smll.201503821
S.K. Park, J.K. Kim, Y.C. Kang, Excellent sodium-ion storage performances of CoSe2 nanoparticles embedded within N-doped porous graphitic carbon nanocube/carbon nanotube composite. Chem. Eng. J. 328, 546–555 (2017). https://doi.org/10.1016/j.cej.2017.07.079
Q. Liu, J.L. Shi, J.M. Hu, A.M. Asiri, Y.L. Luo, X.P. Sun, CoSe2 nanowires array as a 3D electrode for highly efficient electrochemical hydrogen evolution. ACS Appl. Mater. Interfaces 7, 3877–3881 (2015). https://doi.org/10.1021/am509185x
Q.Y. Yu, B. Jiang, J. Hu, C.Y. Lao, Y.Z. Gao et al., Metallic octahedral CoSe2 threaded by N-doped carbon nanotubes: a flexible framework for high-performance potassium-ion batteries. Adv. Sci. 5, 1800782 (2018). https://doi.org/10.1002/advs.201800782
D.S. Kong, H.T. Wang, Z.Y. Lu, Y. Cui, CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 136, 4897–4900 (2014). https://doi.org/10.1021/ja501497n
W. Wang, J.H. Zhou, Z.P. Wang, L.Y. Zhao, P.H. Li et al., Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8, 1701648 (2018). https://doi.org/10.1002/aenm.201701648
Y.C. Tang, Z.B. Zhao, X.J. Hao, Y.W. Wang, Y. Liu et al., Engineering hollow polyhedrons structured from carbon-coated CoSe2 nanospheres bridged by CNTs with boosted sodium storage performance. J. Mater. Chem. A 5, 13591–13600 (2017). https://doi.org/10.1039/C7TA02665J
B.R. Jia, M.L. Qin, S.M. Li, Z.L. Zhang, H.F. Lu et al., Synthesis of mesoporous single crystal Co(OH)2 nanoplate and its topotactic conversion to dual-pore mesoporous single crystal Co3O4. ACS Appl. Mater. Interfaces 8, 15582–15590 (2016). https://doi.org/10.1021/acsami.6b02768
N. Xiao, W.D. Mcculloch, Y. Wu, Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 139, 9475–9478 (2017). https://doi.org/10.1021/jacs.7b04945
L. Fan, S. Chen, R. Ma, J. Wang, L. Wang et al., Ultrastable potassium storage performance realized by highly effective solid electrolyte interphase layer. Small 14, 1801806 (2018). https://doi.org/10.1002/smll.201801806
Y. Huang, M. Xie, Z. Wang, Y. Jiang, G. Xiao et al., Fast sodium storage kinetics of lantern-like Ti0.25Sn0.75S2 connected via carbon nanotubes. Energy Storage Mater. 11, 100–111 (2018). https://doi.org/10.1016/j.ensm.2017
K. Zhang, M.H. Park, L.M. Zhou, G.H. Lee, W.J. Li, Y.M. Kang, J. Chen, Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 26, 6728–6735 (2016). https://doi.org/10.1002/adfm.201602608
J.B. Cook, H.S. Kim, Y. Yan, J.S. Ko, S. Robbennolt, B. Dunn, S.H. Tolbert, Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-ion charge storage. Adv. Energy Mater. 6, 1501937 (2016). https://doi.org/10.1002/aenm.201501937
N. Li, F. Zhang, Y.B. Tang, Hierarchical T-Nb2O5 nanostructure with hybrid mechanisms of intercalation and pseudocapacitance for potassium storage and high-performance potassium dual-ion batteries. J. Mater. Chem. A 6, 17889–17895 (2018). https://doi.org/10.1039/C8TA07