Aqueous Zinc Batteries with Ultra-Fast Redox Kinetics and High Iodine Utilization Enabled by Iron Single Atom Catalysts
Corresponding Author: Longtao Ma
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 126
Abstract
Rechargeable aqueous zinc iodine (ZnǀǀI2) batteries have been promising energy storage technologies due to low-cost position and constitutional safety of zinc anode, iodine cathode and aqueous electrolytes. Whereas, on one hand, the low-fraction utilization of electrochemically inert host causes severe shuttle of soluble polyiodides, deficient iodine utilization and sluggish reaction kinetics. On the other hand, the usage of high mass polar electrocatalysts occupies mass and volume of electrode materials and sacrifices device-level energy density. Here, we propose a “confinement-catalysis” host composed of Fe single atom catalyst embedding inside ordered mesoporous carbon host, which can effectively confine and catalytically convert I2/I− couple and polyiodide intermediates. Consequently, the cathode enables the high capacity of 188.2 mAh g−1 at 0.3 A g−1, excellent rate capability with a capacity of 139.6 mAh g−1 delivered at high current density of 15 A g−1 and ultra-long cyclic stability over 50,000 cycles with 80.5% initial capacity retained under high iodine loading of 76.72 wt%. Furthermore, the electrocatalytic host can also accelerate the I+↔I2 conversion. The greatly improved electrochemical performance originates from the modulation of physicochemical confinement and the decrease of energy barrier for reversible I−/I2 and I2/I+ couples, and polyiodide intermediates conversions.
Highlights:
1 The porous structure and interconnected conductive pathways accommodate a large amount of iodine, entrap polyiodides and guarantee its efficient utilization. While the Fe single atom catalyst efficiently catalyzes the iodine/polyiodide conversion.
2 With “confinement-catalysis” host, the ZnǀǀI2 battery delivers a high capacity of 188.2 mAh g−1 at 0.3 A g−1, excellent rate capability with a capacity of 139.6 mAh g−1 at 15 A g−1 and ultra-long cyclic stability over 50,000 cycles with 80.5% initial capacity retained under high iodine loading of 76.72 wt%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi et al., A four-electron Zn-I2 aqueous battery enabled by reversible I−/I2/I+ conversion. Nat. Commun. 12(1), 170 (2021). https://doi.org/10.1038/s41467-020-20331-9
- B. Li, Z. Nie, M. Vijayakumar, G. Li, J. Liu et al., Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6(1), 6303 (2015). https://doi.org/10.1038/ncomms7303
- D. Lin, Y. Li, Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Adv. Mater. 34(23), 2108856 (2022). https://doi.org/10.1002/adma.202108856
- C. Bai, F. Cai, L. Wang, S. Guo, X. Liu et al., A sustainable aqueous Zn-I2 battery. Nano Res. 11(7), 3548–3554 (2018). https://doi.org/10.1007/s12274-017-1920-9
- H. Pan, B. Li, D. Mei, Z. Nie, Y. Shao et al., Controlling solid–liquid conversion reactions for a highly reversible aqueous zinc–iodine battery. ACS Energy Lett. 2(12), 2674–2680 (2017). https://doi.org/10.1021/acsenergylett.7b00851
- C. Prehal, H. Fitzek, G. Kothleitner, V. Presser, B. Gollas et al., Persistent and reversible solid iodine electrodeposition in nanoporous carbons. Nat. Commun. 11(1), 4838 (2020). https://doi.org/10.1038/s41467-020-18610-6
- X. Li, X. Wang, L. Ma, W. Huang, Solvation structures in aqueous metal-ion batteries. Adv. Energy Mater. 12(37), 2202068 (2022). https://doi.org/10.1002/aenm.202202068
- W. Shang, Q. Li, F. Jiang, B. Huang, J. Song, B. Zn et al., I2 battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14(1), 82 (2022). https://doi.org/10.1007/s40820-022-00825-5
- Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
- H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He et al., A metal–organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc–iodide batteries. Adv. Mater. 32(38), 2004240 (2020). https://doi.org/10.1002/adma.202004240
- Y. Yang, S. Liang, B. Lu, J. Zhou, Eutectic electrolyte based on n-methylacetamide for highly reversible zinc–iodine battery. Energy Environ. Sci. 15(3), 1192–1200 (2022). https://doi.org/10.1039/D1EE03268B
- X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14(1), 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
- F. Hu, M. Li, G. Gao, H. Fan, L. Ma, The gel-state electrolytes in zinc-ion batteries. Batteries 8(11), 214 (2022). https://doi.org/10.3390/batteries8110214
- R. Zhao, X. Dong, P. Liang, H. Li, T. Zhang et al., Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv. Mater. (2023). https://doi.org/10.1002/adma.202209288
- Z. Wang, L. Dong, W. Huang, H. Jia, Q. Zhao et al., Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGo interlayers for high-performance Zn anodes. Nano-Micro Lett. 13(1), 73 (2021). https://doi.org/10.1007/s40820-021-00594-7
- Y. Yang, S. Liang, J. Zhou, Progress and prospect of the zinc–iodine battery. Curr. Opin. Electrochem. 30, 100761 (2021). https://doi.org/10.1016/j.coelec.2021.100761
- J. Liu, W. Zhou, R. Zhao, Z. Yang, W. Li et al., Sulfur-based aqueous batteries: electrochemistry and strategies. J. Am. Chem. Soc. 143(38), 15475–15489 (2021). https://doi.org/10.1021/jacs.1c06923
- T. Liu, H. Wang, C. Lei, Y. Mao, H. Wang et al., Recognition of the catalytic activities of graphitic n for zinc-iodine batteries. Energy Stor. Mater. 53, 544–551 (2022). https://doi.org/10.1016/j.ensm.2022.09.028
- H. Ge, X. Feng, D. Liu, Y. Zhang, Recent advances and perspectives for Zn-based batteries: Zn anode and electrolyte. Nano Res. Energy 2, e9120039 (2023). https://doi.org/10.26599/NRE.2023.9120039
- W. Wu, C. Li, Z. Wang, H.-Y. Shi, Y. Song et al., Electrode and electrolyte regulation to promote coulombic efficiency and cycling stability of aqueous zinc-iodine batteries. Chem. Eng. J. 428, 131283 (2022). https://doi.org/10.1016/j.cej.2021.131283
- Y. Tian, S. Chen, S. Ding, Q. Chen, J. Zhang, A highly conductive gel electrolyte with favorable ion transfer channels for long-lived zinc–iodine batteries. Chem. Sci. 14(2), 331–337 (2023). https://doi.org/10.1039/D2SC06035C
- S. Huang, S. He, H. Qin, X. Hou, Oxygen defect hydrated vanadium dioxide/graphene as a superior cathode for aqueous Zn batteries. ACS Appl. Mater. Interfaces 13(37), 44379–44388 (2021). https://doi.org/10.1021/acsami.1c12653
- Y. Li, M. Zhu, D.D. Karnaushenko, F. Li, J. Qu et al., Microbatteries with twin-swiss-rolls redefine performance limits in the sub-square millimeter range. Nanoscale Horiz. 8(1), 127–132 (2022). https://doi.org/10.1039/d2nh00472k
- Y. Li, M. Zhu, V.K. Bandari, D.D. Karnaushenko, D. Karnaushenko et al., On-chip batteries for dust-sized computers. Adv. Energy Mater. 12(13), 2103641 (2022). https://doi.org/10.1002/aenm.202103641
- X.Y. Xie, L.S. Peng, H.Z. Yang, G.I.N. Waterhouse, L. Shang et al., Mil-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 33(23), 2101038 (2021). https://doi.org/10.1002/adma.202101038
- S. Chen, X. Liang, S. Hu, X. Li, G. Zhang et al., Inducing Fe 3d electron delocalization and spin-state transition of FeN4 species boosts oxygen reduction reaction for wearable zinc–air battery. Nano-Micro Lett. 15(1), 47 (2023). https://doi.org/10.1007/s40820-023-01014-8
- X. Zheng, Y. Zhou, X. Yan, K.-H. Lam, X. Hou, Vanadium oxide with elevated interlayers for durable aqueous hybrid Li+/Zn2+ batteries. ACS Appl. Energy Mater. 5(7), 9070–9078 (2022). https://doi.org/10.1021/acsaem.2c01512
- D.L. Yu, A. Kumar, T.A. Nguyen, M.T. Nazir, G. Yasin, High-voltage and ultrastable aqueous zinc-iodine battery enabled by N-doped carbon materials: revealing the contributions of nitrogen configurations. ACS Sustain. Chem. Eng. 8(36), 13769–13776 (2020). https://doi.org/10.1021/acssuschemeng.0c04571
- Q. Guo, H. Wang, X. Sun, Y.N. Yang, N. Chen et al., In situ synthesis of cathode materials for aqueous high-rate and durable Zn–I2 batteries. ACS Mater. Lett. 4(10), 1872–1881 (2022). https://doi.org/10.1021/acsmaterialslett.2c00608
- L.Q. Zhang, M.J. Zhang, H.L. Guo, Z.H. Tian, L.F. Ge et al., A universal polyiodide regulation using quaternization engineering toward high value-added and ultra-stable zinc-iodine batteries. Adv. Sci. 9(13), 2105598 (2022). https://doi.org/10.1002/advs.202105598
- H.K. Machhi, K.K. Sonigara, S.N. Bariya, H.P. Soni, S.S. Soni, Hierarchically porous metal-organic gel hosting catholyte for limiting iodine diffusion and self-discharge control in sustainable aqueous zinc-I2 batteries. ACS Appl. Mater. Interfaces 13(18), 21426–21435 (2021). https://doi.org/10.1021/acsami.1c03812
- J. Xu, J. Wang, L. Ge, J. Sun, W. Ma et al., ZIF-8 derived porous carbon to mitigate shuttle effect for high performance aqueous zinc-iodine batteries. J. Colloid Interface Sci. 610, 98–105 (2022). https://doi.org/10.1016/j.jcis.2021.12.043
- W.F. Liu, P.G. Liu, Y.H. Lyu, J. Wen, R. Hao et al., Advanced Zn-I2 battery with excellent cycling stability and good rate performance by a multifunctional iodine host. ACS Appl. Mater. Interfaces 14(7), 8955–8962 (2022). https://doi.org/10.1021/acsami.1c21026
- F. Wang, Z. Liu, C. Yang, H. Zhong, G. Nam et al., Fully conjugated phthalocyanine copper metal-organic frameworks for sodium-iodine batteries with long-time-cycling durability. Adv. Mater. 32(4), 1905361 (2020). https://doi.org/10.1002/adma.201905361
- K. Wang, J.-B. Le, S.-J. Zhang, W.-F. Ren, J.-M. Yuan et al., A renewable biomass-based lignin film as an effective protective layer to stabilize zinc metal anodes for high-performance zinc-iodine batteries. J. Mater. Chem. A 10(9), 4845–4857 (2022). https://doi.org/10.1039/d1ta10170f
- L. Ma, Y. Ying, S. Chen, Z. Huang, X. Li et al., Electrocatalytic iodine reduction reaction enabled by aqueous zinc-iodine battery with improved power and energy densities. Angew. Chem. Int. Ed. 60(7), 3791–3798 (2021). https://doi.org/10.1002/anie.202014447
- C. Bai, H. Jin, Z. Gong, X. Liu, Z. Yuan, A high-power aqueous rechargeable Fe-I2 battery. Energy Stor. Mater. 28, 247–254 (2020). https://doi.org/10.1016/j.ensm.2020.03.010
- H. Park, R.K. Bera, R. Ryoo, Microporous 3d graphene-like carbon as iodine host for zinc-based battery-supercapacitor hybrid energy storage with ultrahigh energy and power densities. Adv. Energy Sustain. Res. 2(10), 2100076 (2021). https://doi.org/10.1002/aesr.202100076
- L. Xiang, S. Yuan, F. Wang, Z. Xu, X. Li et al., Porous polymer cubosomes with ordered single primitive bicontinuous architecture and their sodium–iodine batteries. J. Am. Chem. Soc. 144(34), 15497–15508 (2022). https://doi.org/10.1021/jacs.2c02881
- X. Zeng, X. Meng, W. Jiang, J. Liu, M. Ling et al., Anchoring polyiodide to conductive polymers as cathode for high-performance aqueous zinc–iodine batteries. ACS Sustain. Chem. Eng. 8(38), 14280–14285 (2020). https://doi.org/10.1021/acssuschemeng.0c05283
- Y. Hou, F. Kong, Z. Wang, M. Ren, C. Qiao et al., High performance rechargeable aqueous zinc-iodine batteries via a double iodine species fixation strategy with mesoporous carbon and modified separator. J. Colloid Interface Sci. 629, 279–287 (2023). https://doi.org/10.1016/j.jcis.2022.09.079
- L. Ma, Y. Ying, S. Chen, Z. Chen, H. Li et al., Electrocatalytic selenium redox reaction for high-mass-loading zinc-selenium batteries with improved kinetics and selenium utilization. Adv. Energy Mater. 12(26), 2201322 (2022). https://doi.org/10.1002/aenm.202201322
- L. Peng, Z. Wei, C. Wan, J. Li, Z. Chen et al., A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3(9), 762–770 (2020). https://doi.org/10.1038/s41929-020-0498-x
- Z.Q. Ye, Y. Jiang, L. Li, F. Wu, R.J. Chen, A high-efficiency cose electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li-S batteries. Adv. Mater. 32(32), 2002168 (2020). https://doi.org/10.1002/adma.202002168
- X. Zhao, J. Yan, H. Hong, Y. Zhao, Q. Li et al., Ligand-substitution chemistry enabling wide-voltage aqueous hybrid electrolyte for ultrafast-charging batteries. Adv. Energy Mater. 12(45), 2202478 (2022). https://doi.org/10.1002/aenm.202202478
- X. Zhang, S. Wu, S. Deng, W. Wu, Y. Zeng et al., 3D CNTs networks enable MnO2 cathodes with high capacity and superior rate capability for flexible rechargeable Zn–MnO2 batteries. Small Methods 3(12), 1900525 (2019). https://doi.org/10.1002/smtd.201900525
- N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
- X. Gao, Y. Zheng, J. Chang, H. Xu, Z. Hui et al., Universal strategy for preparing highly stable PBA/Ti3C2Tx mxene toward lithium-ion batteries via chemical transformation. ACS Appl. Mater. Interfaces 14(13), 15298–15306 (2022). https://doi.org/10.1021/acsami.2c01382
- R. Venkatkarthick, N. Rodthongkum, X. Zhang, S. Wang, P. Pattananuwat et al., Vanadium-based oxide on two-dimensional vanadium carbide mxene (V2Ox@V2CTx) as cathode for rechargeable aqueous zinc-ion batteries. ACS Appl. Energy Mater. 3(5), 4677–4689 (2020). https://doi.org/10.1021/acsaem.0c00309
- Z. Yang, B. Wang, Y. Chen, W. Zhou, H. Li et al., Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS2 for sulfur-based aqueous batteries. Natl. Sci. Rev. (2022). https://doi.org/10.1093/nsr/nwac268
- H. Li, M. Li, X. Zhou, T. Li, A novel rechargeable iodide ion battery with zinc and copper anodes. J. Power Sour 449, 227511 (2020). https://doi.org/10.1016/j.jpowsour.2019.227511
- K. Lu, H. Zhang, F. Ye, W. Luo, H. Ma et al., Rechargeable potassium-ion batteries enabled by potassium-iodine conversion chemistry. Energy Stor. Mater. 16, 1–5 (2019). https://doi.org/10.1016/j.ensm.2018.04.018
- L. Yan, T. Liu, X. Zeng, L. Sun, X. Meng et al., Multifunctional porous carbon strategy assisting high-performance aqueous zinc-iodine battery. Carbon 187, 145–152 (2022). https://doi.org/10.1016/j.carbon.2021.11.007
- Y. Liu, J. Hu, Q. Lu, M. Hantusch, H. Zhang et al., Highly enhanced reversibility of a Zn anode by in-situ texturing. Energy Stor. Mater. 47, 98–104 (2022). https://doi.org/10.1016/j.ensm.2022.01.059
- Y. Zhang, L. Wang, Q. Li, B. Hu, J. Kang et al., Iodine promoted ultralow Zn nucleation overpotential and Zn-rich cathode for low-cost, fast-production and high-energy density anode-free Zn-iodine batteries. Nano-Micro Lett. 14(1), 208 (2022). https://doi.org/10.1007/s40820-022-00948-9
- Z. Qu, M. Zhu, Y. Yin, Y. Huang, H. Tang et al., A sub-square-millimeter microbattery with milliampere-hour-level footprint capacity. Adv. Energy Mater. 12(28), 2200714 (2022). https://doi.org/10.1002/aenm.202200714
- Z. Hou, T. Zhang, X. Liu, Z. Xu, J. Liu et al., A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries. Sci. Adv. 8(41), eabp8960 (2022). https://doi.org/10.1126/sciadv.abp8960
- M. Qiu, L. Ma, P. Sun, Z. Wang, G. Cui et al., Manipulating interfacial stability via absorption-competition mechanism for long-lifespan Zn anode. Nano-Micro Lett. 14(1), 31 (2021). https://doi.org/10.1007/s40820-021-00777-2
- L. Ma, X. Li, G. Zhang, Z. Huang, C. Han et al., Initiating a wearable solid-state Mg hybrid ion full battery with high voltage, high capacity and ultra-long lifespan in air. Energy Stor. Mater. 31, 451–458 (2020). https://doi.org/10.1016/j.ensm.2020.08.001
References
Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi et al., A four-electron Zn-I2 aqueous battery enabled by reversible I−/I2/I+ conversion. Nat. Commun. 12(1), 170 (2021). https://doi.org/10.1038/s41467-020-20331-9
B. Li, Z. Nie, M. Vijayakumar, G. Li, J. Liu et al., Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6(1), 6303 (2015). https://doi.org/10.1038/ncomms7303
D. Lin, Y. Li, Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Adv. Mater. 34(23), 2108856 (2022). https://doi.org/10.1002/adma.202108856
C. Bai, F. Cai, L. Wang, S. Guo, X. Liu et al., A sustainable aqueous Zn-I2 battery. Nano Res. 11(7), 3548–3554 (2018). https://doi.org/10.1007/s12274-017-1920-9
H. Pan, B. Li, D. Mei, Z. Nie, Y. Shao et al., Controlling solid–liquid conversion reactions for a highly reversible aqueous zinc–iodine battery. ACS Energy Lett. 2(12), 2674–2680 (2017). https://doi.org/10.1021/acsenergylett.7b00851
C. Prehal, H. Fitzek, G. Kothleitner, V. Presser, B. Gollas et al., Persistent and reversible solid iodine electrodeposition in nanoporous carbons. Nat. Commun. 11(1), 4838 (2020). https://doi.org/10.1038/s41467-020-18610-6
X. Li, X. Wang, L. Ma, W. Huang, Solvation structures in aqueous metal-ion batteries. Adv. Energy Mater. 12(37), 2202068 (2022). https://doi.org/10.1002/aenm.202202068
W. Shang, Q. Li, F. Jiang, B. Huang, J. Song, B. Zn et al., I2 battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14(1), 82 (2022). https://doi.org/10.1007/s40820-022-00825-5
Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He et al., A metal–organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc–iodide batteries. Adv. Mater. 32(38), 2004240 (2020). https://doi.org/10.1002/adma.202004240
Y. Yang, S. Liang, B. Lu, J. Zhou, Eutectic electrolyte based on n-methylacetamide for highly reversible zinc–iodine battery. Energy Environ. Sci. 15(3), 1192–1200 (2022). https://doi.org/10.1039/D1EE03268B
X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14(1), 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
F. Hu, M. Li, G. Gao, H. Fan, L. Ma, The gel-state electrolytes in zinc-ion batteries. Batteries 8(11), 214 (2022). https://doi.org/10.3390/batteries8110214
R. Zhao, X. Dong, P. Liang, H. Li, T. Zhang et al., Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv. Mater. (2023). https://doi.org/10.1002/adma.202209288
Z. Wang, L. Dong, W. Huang, H. Jia, Q. Zhao et al., Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGo interlayers for high-performance Zn anodes. Nano-Micro Lett. 13(1), 73 (2021). https://doi.org/10.1007/s40820-021-00594-7
Y. Yang, S. Liang, J. Zhou, Progress and prospect of the zinc–iodine battery. Curr. Opin. Electrochem. 30, 100761 (2021). https://doi.org/10.1016/j.coelec.2021.100761
J. Liu, W. Zhou, R. Zhao, Z. Yang, W. Li et al., Sulfur-based aqueous batteries: electrochemistry and strategies. J. Am. Chem. Soc. 143(38), 15475–15489 (2021). https://doi.org/10.1021/jacs.1c06923
T. Liu, H. Wang, C. Lei, Y. Mao, H. Wang et al., Recognition of the catalytic activities of graphitic n for zinc-iodine batteries. Energy Stor. Mater. 53, 544–551 (2022). https://doi.org/10.1016/j.ensm.2022.09.028
H. Ge, X. Feng, D. Liu, Y. Zhang, Recent advances and perspectives for Zn-based batteries: Zn anode and electrolyte. Nano Res. Energy 2, e9120039 (2023). https://doi.org/10.26599/NRE.2023.9120039
W. Wu, C. Li, Z. Wang, H.-Y. Shi, Y. Song et al., Electrode and electrolyte regulation to promote coulombic efficiency and cycling stability of aqueous zinc-iodine batteries. Chem. Eng. J. 428, 131283 (2022). https://doi.org/10.1016/j.cej.2021.131283
Y. Tian, S. Chen, S. Ding, Q. Chen, J. Zhang, A highly conductive gel electrolyte with favorable ion transfer channels for long-lived zinc–iodine batteries. Chem. Sci. 14(2), 331–337 (2023). https://doi.org/10.1039/D2SC06035C
S. Huang, S. He, H. Qin, X. Hou, Oxygen defect hydrated vanadium dioxide/graphene as a superior cathode for aqueous Zn batteries. ACS Appl. Mater. Interfaces 13(37), 44379–44388 (2021). https://doi.org/10.1021/acsami.1c12653
Y. Li, M. Zhu, D.D. Karnaushenko, F. Li, J. Qu et al., Microbatteries with twin-swiss-rolls redefine performance limits in the sub-square millimeter range. Nanoscale Horiz. 8(1), 127–132 (2022). https://doi.org/10.1039/d2nh00472k
Y. Li, M. Zhu, V.K. Bandari, D.D. Karnaushenko, D. Karnaushenko et al., On-chip batteries for dust-sized computers. Adv. Energy Mater. 12(13), 2103641 (2022). https://doi.org/10.1002/aenm.202103641
X.Y. Xie, L.S. Peng, H.Z. Yang, G.I.N. Waterhouse, L. Shang et al., Mil-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 33(23), 2101038 (2021). https://doi.org/10.1002/adma.202101038
S. Chen, X. Liang, S. Hu, X. Li, G. Zhang et al., Inducing Fe 3d electron delocalization and spin-state transition of FeN4 species boosts oxygen reduction reaction for wearable zinc–air battery. Nano-Micro Lett. 15(1), 47 (2023). https://doi.org/10.1007/s40820-023-01014-8
X. Zheng, Y. Zhou, X. Yan, K.-H. Lam, X. Hou, Vanadium oxide with elevated interlayers for durable aqueous hybrid Li+/Zn2+ batteries. ACS Appl. Energy Mater. 5(7), 9070–9078 (2022). https://doi.org/10.1021/acsaem.2c01512
D.L. Yu, A. Kumar, T.A. Nguyen, M.T. Nazir, G. Yasin, High-voltage and ultrastable aqueous zinc-iodine battery enabled by N-doped carbon materials: revealing the contributions of nitrogen configurations. ACS Sustain. Chem. Eng. 8(36), 13769–13776 (2020). https://doi.org/10.1021/acssuschemeng.0c04571
Q. Guo, H. Wang, X. Sun, Y.N. Yang, N. Chen et al., In situ synthesis of cathode materials for aqueous high-rate and durable Zn–I2 batteries. ACS Mater. Lett. 4(10), 1872–1881 (2022). https://doi.org/10.1021/acsmaterialslett.2c00608
L.Q. Zhang, M.J. Zhang, H.L. Guo, Z.H. Tian, L.F. Ge et al., A universal polyiodide regulation using quaternization engineering toward high value-added and ultra-stable zinc-iodine batteries. Adv. Sci. 9(13), 2105598 (2022). https://doi.org/10.1002/advs.202105598
H.K. Machhi, K.K. Sonigara, S.N. Bariya, H.P. Soni, S.S. Soni, Hierarchically porous metal-organic gel hosting catholyte for limiting iodine diffusion and self-discharge control in sustainable aqueous zinc-I2 batteries. ACS Appl. Mater. Interfaces 13(18), 21426–21435 (2021). https://doi.org/10.1021/acsami.1c03812
J. Xu, J. Wang, L. Ge, J. Sun, W. Ma et al., ZIF-8 derived porous carbon to mitigate shuttle effect for high performance aqueous zinc-iodine batteries. J. Colloid Interface Sci. 610, 98–105 (2022). https://doi.org/10.1016/j.jcis.2021.12.043
W.F. Liu, P.G. Liu, Y.H. Lyu, J. Wen, R. Hao et al., Advanced Zn-I2 battery with excellent cycling stability and good rate performance by a multifunctional iodine host. ACS Appl. Mater. Interfaces 14(7), 8955–8962 (2022). https://doi.org/10.1021/acsami.1c21026
F. Wang, Z. Liu, C. Yang, H. Zhong, G. Nam et al., Fully conjugated phthalocyanine copper metal-organic frameworks for sodium-iodine batteries with long-time-cycling durability. Adv. Mater. 32(4), 1905361 (2020). https://doi.org/10.1002/adma.201905361
K. Wang, J.-B. Le, S.-J. Zhang, W.-F. Ren, J.-M. Yuan et al., A renewable biomass-based lignin film as an effective protective layer to stabilize zinc metal anodes for high-performance zinc-iodine batteries. J. Mater. Chem. A 10(9), 4845–4857 (2022). https://doi.org/10.1039/d1ta10170f
L. Ma, Y. Ying, S. Chen, Z. Huang, X. Li et al., Electrocatalytic iodine reduction reaction enabled by aqueous zinc-iodine battery with improved power and energy densities. Angew. Chem. Int. Ed. 60(7), 3791–3798 (2021). https://doi.org/10.1002/anie.202014447
C. Bai, H. Jin, Z. Gong, X. Liu, Z. Yuan, A high-power aqueous rechargeable Fe-I2 battery. Energy Stor. Mater. 28, 247–254 (2020). https://doi.org/10.1016/j.ensm.2020.03.010
H. Park, R.K. Bera, R. Ryoo, Microporous 3d graphene-like carbon as iodine host for zinc-based battery-supercapacitor hybrid energy storage with ultrahigh energy and power densities. Adv. Energy Sustain. Res. 2(10), 2100076 (2021). https://doi.org/10.1002/aesr.202100076
L. Xiang, S. Yuan, F. Wang, Z. Xu, X. Li et al., Porous polymer cubosomes with ordered single primitive bicontinuous architecture and their sodium–iodine batteries. J. Am. Chem. Soc. 144(34), 15497–15508 (2022). https://doi.org/10.1021/jacs.2c02881
X. Zeng, X. Meng, W. Jiang, J. Liu, M. Ling et al., Anchoring polyiodide to conductive polymers as cathode for high-performance aqueous zinc–iodine batteries. ACS Sustain. Chem. Eng. 8(38), 14280–14285 (2020). https://doi.org/10.1021/acssuschemeng.0c05283
Y. Hou, F. Kong, Z. Wang, M. Ren, C. Qiao et al., High performance rechargeable aqueous zinc-iodine batteries via a double iodine species fixation strategy with mesoporous carbon and modified separator. J. Colloid Interface Sci. 629, 279–287 (2023). https://doi.org/10.1016/j.jcis.2022.09.079
L. Ma, Y. Ying, S. Chen, Z. Chen, H. Li et al., Electrocatalytic selenium redox reaction for high-mass-loading zinc-selenium batteries with improved kinetics and selenium utilization. Adv. Energy Mater. 12(26), 2201322 (2022). https://doi.org/10.1002/aenm.202201322
L. Peng, Z. Wei, C. Wan, J. Li, Z. Chen et al., A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3(9), 762–770 (2020). https://doi.org/10.1038/s41929-020-0498-x
Z.Q. Ye, Y. Jiang, L. Li, F. Wu, R.J. Chen, A high-efficiency cose electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li-S batteries. Adv. Mater. 32(32), 2002168 (2020). https://doi.org/10.1002/adma.202002168
X. Zhao, J. Yan, H. Hong, Y. Zhao, Q. Li et al., Ligand-substitution chemistry enabling wide-voltage aqueous hybrid electrolyte for ultrafast-charging batteries. Adv. Energy Mater. 12(45), 2202478 (2022). https://doi.org/10.1002/aenm.202202478
X. Zhang, S. Wu, S. Deng, W. Wu, Y. Zeng et al., 3D CNTs networks enable MnO2 cathodes with high capacity and superior rate capability for flexible rechargeable Zn–MnO2 batteries. Small Methods 3(12), 1900525 (2019). https://doi.org/10.1002/smtd.201900525
N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
X. Gao, Y. Zheng, J. Chang, H. Xu, Z. Hui et al., Universal strategy for preparing highly stable PBA/Ti3C2Tx mxene toward lithium-ion batteries via chemical transformation. ACS Appl. Mater. Interfaces 14(13), 15298–15306 (2022). https://doi.org/10.1021/acsami.2c01382
R. Venkatkarthick, N. Rodthongkum, X. Zhang, S. Wang, P. Pattananuwat et al., Vanadium-based oxide on two-dimensional vanadium carbide mxene (V2Ox@V2CTx) as cathode for rechargeable aqueous zinc-ion batteries. ACS Appl. Energy Mater. 3(5), 4677–4689 (2020). https://doi.org/10.1021/acsaem.0c00309
Z. Yang, B. Wang, Y. Chen, W. Zhou, H. Li et al., Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS2 for sulfur-based aqueous batteries. Natl. Sci. Rev. (2022). https://doi.org/10.1093/nsr/nwac268
H. Li, M. Li, X. Zhou, T. Li, A novel rechargeable iodide ion battery with zinc and copper anodes. J. Power Sour 449, 227511 (2020). https://doi.org/10.1016/j.jpowsour.2019.227511
K. Lu, H. Zhang, F. Ye, W. Luo, H. Ma et al., Rechargeable potassium-ion batteries enabled by potassium-iodine conversion chemistry. Energy Stor. Mater. 16, 1–5 (2019). https://doi.org/10.1016/j.ensm.2018.04.018
L. Yan, T. Liu, X. Zeng, L. Sun, X. Meng et al., Multifunctional porous carbon strategy assisting high-performance aqueous zinc-iodine battery. Carbon 187, 145–152 (2022). https://doi.org/10.1016/j.carbon.2021.11.007
Y. Liu, J. Hu, Q. Lu, M. Hantusch, H. Zhang et al., Highly enhanced reversibility of a Zn anode by in-situ texturing. Energy Stor. Mater. 47, 98–104 (2022). https://doi.org/10.1016/j.ensm.2022.01.059
Y. Zhang, L. Wang, Q. Li, B. Hu, J. Kang et al., Iodine promoted ultralow Zn nucleation overpotential and Zn-rich cathode for low-cost, fast-production and high-energy density anode-free Zn-iodine batteries. Nano-Micro Lett. 14(1), 208 (2022). https://doi.org/10.1007/s40820-022-00948-9
Z. Qu, M. Zhu, Y. Yin, Y. Huang, H. Tang et al., A sub-square-millimeter microbattery with milliampere-hour-level footprint capacity. Adv. Energy Mater. 12(28), 2200714 (2022). https://doi.org/10.1002/aenm.202200714
Z. Hou, T. Zhang, X. Liu, Z. Xu, J. Liu et al., A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries. Sci. Adv. 8(41), eabp8960 (2022). https://doi.org/10.1126/sciadv.abp8960
M. Qiu, L. Ma, P. Sun, Z. Wang, G. Cui et al., Manipulating interfacial stability via absorption-competition mechanism for long-lifespan Zn anode. Nano-Micro Lett. 14(1), 31 (2021). https://doi.org/10.1007/s40820-021-00777-2
L. Ma, X. Li, G. Zhang, Z. Huang, C. Han et al., Initiating a wearable solid-state Mg hybrid ion full battery with high voltage, high capacity and ultra-long lifespan in air. Energy Stor. Mater. 31, 451–458 (2020). https://doi.org/10.1016/j.ensm.2020.08.001