Self-Assembled Monolayer of Mixed Gold and Nickel Nanoparticles
Corresponding Author: Wei You
Nano-Micro Letters,
Vol. 4 No. 3 (2012), Article Number: 166-171
Abstract
Forming a monolayer of mixed nickel and gold nanoparticles through self-assembly via simple solution processing constitutes an important step toward inexpensive nanoparticle-based carbon nanofiber growth. In this work, mixed gold and nickel nanoparticles were anchored on the silicon wafer using self-assembled monolayers (SAMs) as a template. SAMs of 3-mercaptopropyl trimethoxysilane (MPTS-SAMs) were formed on silicon wafer, with the exposed thiol functionality providing ligand exchange sites to form the mixed monolayer of nickel and gold nanoparticles via a two-step sequential soaking approach. The densities of the nickel and gold nanoparticles on the surface can be varied by adjusting the soaking sequence.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Baird, J. R. Fryer and B. Grant, Carbon 12, 591 (1974). http://dx.doi.org/10.1016/0008-6223(74)90060-8
- P.M. Ajayan, Nature 427, 402 (2004). http://dx.doi.org/10.1038/427402a
- J. Y. Raty, F. Gygi and G. Galli, Phys. Rev. Lett. 95, 096103 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.096103
- M. Long, J. Jiang, Y. Li, R. Cao, L. Zhang and W. Cai, Nano-Micro Lett. 3, 171 (2011). http://dx.doi.org/10.3786/nml.v3i3.p171-177
- A. Azadbakht and A. R. Abbasi, Nano-Micro Lett. 2, 296 (2010). http://dx.doi.org/10.3786/nml.v2i4.p296-305
- H. Hiramatsu and F. E. Osterloh, Chem. Mater. 16, 2509 (2004). http://dx.doi.org/10.1021/cm049532v
- A. C. Johnston-Peck, J. Wang and J. B. Tracy, ACS Nano 3, 1077 (2009). http://dx.doi.org/10.1021/nn900019x
- D. Huang, Z. D. Xiao, J. H. Gu, N. P. Huang and C. W. Yuan, Thin Solid Films 305, 110 (1997). http://dx.doi.org/10.1016/S0040-6090(97)00202-2
- Y. Jie, J. R. Niskala, A. C. Johnston-Peck, P. J. Krommenhoek, J. B. Tracy, H. Fan and W. You, J. Mater.Chem. 22, 1962 (2012). http://dx.doi.org/10.1039/c1jm14612b
References
T. Baird, J. R. Fryer and B. Grant, Carbon 12, 591 (1974). http://dx.doi.org/10.1016/0008-6223(74)90060-8
P.M. Ajayan, Nature 427, 402 (2004). http://dx.doi.org/10.1038/427402a
J. Y. Raty, F. Gygi and G. Galli, Phys. Rev. Lett. 95, 096103 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.096103
M. Long, J. Jiang, Y. Li, R. Cao, L. Zhang and W. Cai, Nano-Micro Lett. 3, 171 (2011). http://dx.doi.org/10.3786/nml.v3i3.p171-177
A. Azadbakht and A. R. Abbasi, Nano-Micro Lett. 2, 296 (2010). http://dx.doi.org/10.3786/nml.v2i4.p296-305
H. Hiramatsu and F. E. Osterloh, Chem. Mater. 16, 2509 (2004). http://dx.doi.org/10.1021/cm049532v
A. C. Johnston-Peck, J. Wang and J. B. Tracy, ACS Nano 3, 1077 (2009). http://dx.doi.org/10.1021/nn900019x
D. Huang, Z. D. Xiao, J. H. Gu, N. P. Huang and C. W. Yuan, Thin Solid Films 305, 110 (1997). http://dx.doi.org/10.1016/S0040-6090(97)00202-2
Y. Jie, J. R. Niskala, A. C. Johnston-Peck, P. J. Krommenhoek, J. B. Tracy, H. Fan and W. You, J. Mater.Chem. 22, 1962 (2012). http://dx.doi.org/10.1039/c1jm14612b