Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics
Corresponding Author: Shuangxi Nie
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 124
Abstract
With the rapid development of the Internet of Things and flexible electronic technologies, there is a growing demand for wireless, sustainable, multifunctional, and independently operating self-powered wearable devices. Nevertheless, structural flexibility, long operating time, and wearing comfort have become key requirements for the widespread adoption of wearable electronics. Triboelectric nanogenerators as a distributed energy harvesting technology have great potential for application development in wearable sensing. Compared with rigid electronics, cellulosic self-powered wearable electronics have significant advantages in terms of flexibility, breathability, and functionality. In this paper, the research progress of advanced cellulosic triboelectric materials for self-powered wearable electronics is reviewed. The interfacial characteristics of cellulose are introduced from the top-down, bottom-up, and interfacial characteristics of the composite material preparation process. Meanwhile, the modulation strategies of triboelectric properties of cellulosic triboelectric materials are presented. Furthermore, the design strategies of triboelectric materials such as surface functionalization, interfacial structure design, and vacuum-assisted self-assembly are systematically discussed. In particular, cellulosic self-powered wearable electronics in the fields of human energy harvesting, tactile sensing, health monitoring, human–machine interaction, and intelligent fire warning are outlined in detail. Finally, the current challenges and future development directions of cellulosic triboelectric materials for self-powered wearable electronics are discussed.
Highlights:
1 This review systematically discusses the interfacial properties of cellulosic material preparation processes, top-down, bottom-up, and composite processes.
2 The rational design strategies of cellulosic triboelectric materials are summarized in detail, and the effects of different design strategies on the surface charge characteristics and charge density of cellulosic triboelectric materials are discussed.
3 A comprehensive review of the research progress of cellulosic triboelectric nanogenerators in the field of self-powered wearable electronics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.A. Rogers, Wearable electronics: nanomesh on-skin electronics. Nat. Nanotechnol. 12(9), 839–840 (2017). https://doi.org/10.1038/nnano.2017.150
- C. Zhu, J. Wu, J. Yan, X. Liu, Advanced fiber materials for wearable electronics. Adv. Fiber Mater. 5, 12–35 (2022). https://doi.org/10.1007/s42765-022-00212-0
- C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), 1801072 (2019). https://doi.org/10.1002/adma.201801072
- J.R. Windmiller, J. Wang, Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25(1), 29–46 (2013). https://doi.org/10.1002/elan.201200349
- T. Wang, H. Yang, D. Qi, Z. Liu, P. Cai et al., Mechano-based transductive sensing for wearable healthcare. Small 14(11), 1702933 (2018). https://doi.org/10.1002/smll.201702933
- D.R. Seshadri, R.T. Li, J.E. Voos, J.R. Rowbottom, C.M. Alfes et al., Wearable sensors for monitoring the physiological and biochemical profile of the athlete. npj Digit. Med. 2(1), 72 (2019). https://doi.org/10.1038/s41746-019-0150-9
- H. Yin, Y. Cao, B. Marelli, X. Zeng, A.J. Mason et al., Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 33(20), 2007764 (2021). https://doi.org/10.1002/adma.202007764
- R. Kanan, O. Elhassan, R. Bensalem, An iot-based autonomous system for workers’ safety in construction sites with real-time alarming, monitoring, and positioning strategies. Autom. Constr. 88, 73–86 (2018). https://doi.org/10.1016/j.autcon.2017.12.033
- Z. Wu, Y. Wang, X. Liu, C. Lv, Y. Li et al., Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv. Mater. 31(9), 1800716 (2019). https://doi.org/10.1002/adma.201800716
- D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015). https://doi.org/10.1038/nchem.2085
- X. Pu, C. Zhang, Z.L. Wang, Triboelectric nanogenerators as wearable power sources and self-powered sensors. Natl. Sci. Rev. 10(1), nwac170 (2023). https://doi.org/10.1093/nsr/nwac170
- H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10(1), 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
- H. Zou, L. Guo, H. Xue, Y. Zhang, X. Shen et al., Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat. Commun. 11(1), 2093 (2020). https://doi.org/10.1038/s41467-020-15926-1
- Y. Feng, L. Zhang, Y. Zheng, D. Wang, F. Zhou et al., Leaves based triboelectric nanogenerator (teng) and teng tree for wind energy harvesting. Nano Energy 55, 260–268 (2019). https://doi.org/10.1016/j.nanoen.2018.10.075
- P. Wang, L. Pan, J. Wang, M. Xu, G. Dai et al., An ultra-low-friction triboelectric–electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano 12(9), 9433–9440 (2018). https://doi.org/10.1021/acsnano.8b04654
- H. Wang, J. Cheng, Z. Wang, L. Ji, Z.L. Wang, Triboelectric nanogenerators for human-health care. Sci. Bull. 66(5), 490–511 (2021). https://doi.org/10.1016/j.scib.2020.10.002
- Y. Tang, W. Xuan, C. Zhang, L. Xu, F. Liu et al., Fully self-powered instantaneous wireless traffic monitoring system based on triboelectric nanogenerator and magnetic resonance coupling. Nano Energy 89, 106429 (2021). https://doi.org/10.1016/j.nanoen.2021.106429
- C. Gao, T. Liu, B. Luo, C. Cai, W. Zhang et al., Cellulosic triboelectric materials for stable energy harvesting from hot and humid conditions. Nano Energy 111, 108426 (2023). https://doi.org/10.1016/j.nanoen.2023.108426
- J. Jeong, S. Jeon, X. Ma, Y.W. Kwon, D.-M. Shin et al., A sustainable and flexible microbrush-faced triboelectric generator for portable/wearable applications. Adv. Mater. 33(39), 2102530 (2021). https://doi.org/10.1002/adma.202102530
- K. Xu, Y. Lu, K. Takei, Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv. Mater. Technol. 4(3), 1800628 (2019). https://doi.org/10.1002/admt.201800628
- W. He, H. Wang, Y. Huang, T. He, F. Chi et al., Textile-based moisture power generator with dual asymmetric structure and high flexibility for wearable applications. Nano Energy 95, 107017 (2022). https://doi.org/10.1016/j.nanoen.2022.107017
- T. Shimura, S. Sato, P. Zalar, N. Matsuhisa, Engineering the comfort-of-wear for next generation wearables. Adv. Electron. Mater. (2022). https://doi.org/10.1002/aelm.202200512
- J. Zhang, S. Hu, Z. Shi, Y. Wang, Y. Lei et al., Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy 89, 106354 (2021). https://doi.org/10.1016/j.nanoen.2021.106354
- J. Mo, Y. Liu, Q. Fu, C. Cai, Y. Lu et al., Triboelectric nanogenerators for enhanced degradation of antibiotics via external electric field. Nano Energy 93, 106842 (2022). https://doi.org/10.1016/j.nanoen.2021.106842
- Y. Yang, Q. Huang, G.F. Payne, R. Sun, X. Wang, A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanops. Nanoscale 11(2), 725–732 (2019). https://doi.org/10.1039/C8NR07123C
- Y. Shao, C.-P. Feng, B.-W. Deng, B. Yin, M.-B. Yang, Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro-nano structure and dielectric constant. Nano Energy 62, 620–627 (2019). https://doi.org/10.1016/j.nanoen.2019.05.078
- Y. Song, Z. Shi, G.-H. Hu, C. Xiong, A. Isogai et al., Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: a review. J. Mater. Chem. A 9(4), 1910–1937 (2021). https://doi.org/10.1039/D0TA08642H
- R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011). https://doi.org/10.1039/C0CS00108B
- T. Park, N. Kim, D. Kim, S.-W. Kim, Y. Oh et al., An organic/inorganic nanocomposite of cellulose nanofibers and zno nanorods for highly sensitive, reliable, wireless, and wearable multifunctional sensor applications. ACS Appl. Mater. Interfaces 11(51), 48239–48248 (2019). https://doi.org/10.1021/acsami.9b17824
- G. Xiao, Y. Wang, H. Zhang, Z. Zhu, S. Fu, Cellulose nanocrystal mediated fast self-healing and shape memory conductive hydrogel for wearable strain sensors. Int. J. Biol. Macromol. 170, 272–283 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.156
- Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing et al., Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2d titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31(9), 3301–3312 (2019). https://doi.org/10.1021/acs.chemmater.9b00259
- Z. Li, Y. Zhang, Q. Huang, Z. Chen, W. Wang et al., Tailorable lignocellulose-based aerogel to achieve the balance between evaporation enthalpy and water transport rate for efficient solar evaporation. ACS Appl. Mater. Interfaces 15(9), 11827–11836 (2023). https://doi.org/10.1021/acsami.2c22615
- S. Fan, W. Chang, C. Fei, Z. Zhang, B. Hou et al., Stretchable and bendable textile matrix based on cellulose fibers for wearable self-powered glucose biosensors. Cellulose 29(16), 8919–8935 (2022). https://doi.org/10.1007/s10570-022-04820-2
- C. Wan, L. Zhang, K.-T. Yong, J. Li, Y. Wu, Recent progress in flexible nanocellulosic structures for wearable piezoresistive strain sensors. J. Mater. Chem. C 9(34), 11001–11029 (2021). https://doi.org/10.1039/D1TC02360H
- Y. Qin, W. Zhang, Y. Liu, J. Zhao, J. Yuan et al., Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy 106, 108079 (2023). https://doi.org/10.1016/j.nanoen.2022.108079
- D. Wang, D. Zhang, Y. Yang, Q. Mi, J. Zhang et al., Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like mxene/metal–organic framework-derived cuo nanohybrid ammonia sensor. ACS Nano 15(2), 2911–2919 (2021). https://doi.org/10.1021/acsnano.0c09015
- S. Jang, H. Kim, J.H. Oh, Simple and rapid fabrication of pencil-on-paper triboelectric nanogenerators with enhanced electrical performance. Nanoscale 9(35), 13034–13041 (2017). https://doi.org/10.1039/C7NR04610C
- C. Jiang, X. Li, Y. Yao, L. Lan, Y. Shao et al., A multifunctional and highly flexible triboelectric nanogenerator based on MXene-enabled porous film integrated with laser-induced graphene electrode. Nano Energy 66, 104121 (2019). https://doi.org/10.1016/j.nanoen.2019.104121
- J. Han, L. Kiss, H. Mei, A.M. Remete, M. Ponikvar-Svet et al., Chemical aspects of human and environmental overload with fluorine. Chem. Rev. 121(8), 4678–4742 (2021). https://doi.org/10.1021/acs.chemrev.0c01263
- X. Cheng, W. Tang, Y. Song, H. Chen, H. Zhang et al., Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy 61, 517–532 (2019). https://doi.org/10.1016/j.nanoen.2019.04.096
- K. Dong, Z. Wu, J. Deng, A.C. Wang, H. Zou et al., A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 30(43), 1804944 (2018). https://doi.org/10.1002/adma.201804944
- C. Zhang, J. Mo, Q. Fu, Y. Liu, S. Wang, S. Nie, Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy 81, 105637 (2021). https://doi.org/10.1016/j.nanoen.2020.105637
- S. Zhang, M. Chi, J. Mo, T. Liu, Y. Liu et al., Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nat. Commun. 13(1), 4168 (2022). https://doi.org/10.1038/s41467-022-31987-w
- Y. Luo, Z. Wang, J. Wang, X. Xiao, Q. Li et al., Triboelectric bending sensor based smart glove towards intuitive multi-dimensional human-machine interfaces. Nano Energy 89, 106330 (2021). https://doi.org/10.1016/j.nanoen.2021.106330
- K. Dong, Y.-C. Wang, J. Deng, Y. Dai, S.L. Zhang et al., A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 11(9), 9490–9499 (2017). https://doi.org/10.1021/acsnano.7b05317
- Z. Niu, W. Cheng, M. Cao, D. Wang, Q. Wang et al., Recent advances in cellulose-based flexible triboelectric nanogenerators. Nano Energy 87, 106175 (2021). https://doi.org/10.1016/j.nanoen.2021.106175
- S. Liang, Y. Wang, Q. Liu, T. Yuan, C. Yao, The recent progress in cellulose paper-based triboelectric nanogenerators. Adv. Sustain. Syst. 5(6), 2100034 (2021). https://doi.org/10.1002/adsu.202100034
- Y. Xu, Z. Bai, G. Xu, Constructing high-efficiency stretchable-breathable triboelectric fabric for biomechanical energy harvesting and intelligent sensing. Nano Energy 108, 108224 (2023). https://doi.org/10.1016/j.nanoen.2023.108224
- K. Shi, X. Huang, B. Sun, Z. Wu, J. He et al., Cellulose/BaTio3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy 57, 450–458 (2019). https://doi.org/10.1016/j.nanoen.2018.12.076
- D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu et al., Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33(28), 2000619 (2021). https://doi.org/10.1002/adma.202000619
- B. Ying, R. Zuo, Y. Wan, X. Liu, An ionic hydrogel-based antifreezing triboelectric nanogenerator. ACS Appl. Electron. Mater. 4(4), 1930–1938 (2022). https://doi.org/10.1021/acsaelm.2c00118
- H. He, J. Liu, Y. Wang, Y. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16(2), 2953–2967 (2022). https://doi.org/10.1021/acsnano.1c10144
- T. Zhang, Z. Wen, H. Lei, Z. Gao, Y. Chen et al., Surface-microengineering for high-performance triboelectric tactile sensor via dynamically assembled ferrofluid template. Nano Energy 87, 106215 (2021). https://doi.org/10.1016/j.nanoen.2021.106215
- R. Zhu, Z. Li, G. Deng, Y. Yu, J. Shui et al., Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 92, 106700 (2022). https://doi.org/10.1016/j.nanoen.2021.106700
- D. Kim, S. Lee, Y. Ko, C.H. Kwon, J. Cho, Layer-by-layer assembly-induced triboelectric nanogenerators with high and stable electric outputs in humid environments. Nano Energy 44, 228–239 (2018). https://doi.org/10.1016/j.nanoen.2017.12.001
- Q. Wang, X. Pan, J. Guo, L. Huang, L. Chen et al., Lignin and cellulose derivatives-induced hydrogel with asymmetrical adhesion, strength, and electriferous properties for wearable bioelectrodes and self-powered sensors. Chem. Eng. J. 414, 128903 (2021). https://doi.org/10.1016/j.cej.2021.128903
- J. Huang, Y. Hao, M. Zhao, W. Li, F. Huang, Q. Wei, All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for self-powered wearable sensors. ACS Appl. Mater. Interfaces 13(21), 24774–24784 (2021). https://doi.org/10.1021/acsami.1c03894
- C. Lin, H. Huang, H. Zhao, S. Cao, X. Ma, Acid- and alkali-resistant and high-performance cellulose paper-based triboelectric nanogenerator by controlling the surface hydrophobicity. ACS Sustain. Chem. Eng. 10(41), 13669–13679 (2022). https://doi.org/10.1021/acssuschemeng.2c03557
- Z. Bai, Y. Xu, J. Li, J. Zhu, C. Gao et al., An eco-friendly porous nanocomposite fabric-based triboelectric nanogenerator for efficient energy harvesting and motion sensing. ACS Appl. Mater. Interfaces 12(38), 42880–42890 (2020). https://doi.org/10.1021/acsami.0c12709
- S. Xu, H. Zhao, Q. Li, R. Zhang, S. Gao et al., Multi-dimensional, transparent and foldable cellulose-based triboelectric nanogenerator for touching password recognition. Nano Energy 98, 107307 (2022). https://doi.org/10.1016/j.nanoen.2022.107307
- T. Li, J. Zou, F. Xing, M. Zhang, X. Cao et al., From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design. ACS Nano 11(4), 3950–3956 (2017). https://doi.org/10.1021/acsnano.7b00396
- Y. Qin, J. Mo, Y. Liu, S. Zhang, J. Wang et al., Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 32, 2201846 (2022). https://doi.org/10.1002/adfm.202201846
- R. Cheng, K. Dong, L. Liu, C. Ning, P. Chen et al., Flame-retardant textile-based triboelectric nanogenerators for fire protection applications. ACS Nano 14(11), 15853–15863 (2020). https://doi.org/10.1021/acsnano.0c07148
- J. Huang, X. Yang, J. Yu, J. Han, C. Jia et al., A universal and arbitrary tactile interactive system based on self-powered optical communication. Nano Energy 69, 104419 (2020). https://doi.org/10.1016/j.nanoen.2019.104419
- Y. Song, M. Liu, J. Bao, Y. Hu, M. Xu et al., TOCN/copper calcium titanate composite aerogel films as high-performance triboelectric materials for energy harvesting. Carbohydr. Polym. 298, 120111 (2022). https://doi.org/10.1016/j.carbpol.2022.120111
- B. Wang, L. Dai, L.A. Hunter, L. Zhang, G. Yang et al., A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications. Carbohydr. Polym. 268, 118210 (2021). https://doi.org/10.1016/j.carbpol.2021.118210
- L. Lamanna, G. Pace, I.K. Ilic, P. Cataldi, F. Viola et al., Edible cellulose-based conductive composites for triboelectric nanogenerators and supercapacitors. Nano Energy 108, 108168 (2023). https://doi.org/10.1016/j.nanoen.2023.108168
- W. Zhang, J. Zhao, C. Cai, Y. Qin, X. Meng et al., Gas-sensitive cellulosic triboelectric materials for self-powered ammonia sensing. Adv. Sci. 9(30), 2203428 (2022). https://doi.org/10.1002/advs.202203428
- X. Yang, S.K. Biswas, J. Han, S. Tanpichai, M.-C. Li et al., Surface and interface engineering for nanocellulosic advanced materials. Adv. Mater. 33(28), 2002264 (2021). https://doi.org/10.1002/adma.202002264
- M.P. Kim, C.W. Ahn, Y. Lee, K. Kim, J. Park et al., Interfacial polarization-induced high-k polymer dielectric film for high-performance triboelectric devices. Nano Energy 82, 105697 (2021). https://doi.org/10.1016/j.nanoen.2020.105697
- V.A. Cao, S. Lee, M. Kim, M.M. Alam, P. Park et al., Output power density enhancement of triboelectric nanogenerators via ferroelectric polymer composite interfacial layers. Nano Energy 67, 104300 (2020). https://doi.org/10.1016/j.nanoen.2019.104300
- X. Xu, J. Li, X. Tao, Q. Yan, H. Wu et al., Study of interfacial design for direct-current tribovoltaic generators. Nano Energy 94, 106957 (2022). https://doi.org/10.1016/j.nanoen.2022.106957
- H. Chen, Y. Xu, J. Zhang, W. Wu, G. Song, Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure. Nano Energy 58, 304–311 (2019). https://doi.org/10.1016/j.nanoen.2019.01.029
- T. Jing, B. Xu, Y. Yang, C. Jiang, M. Wu, Interfacial modification boosted permittivity and triboelectric performance of liquid doping composites for high-performance flexible triboelectric nanogenerators. Nano Energy 78, 105374 (2020). https://doi.org/10.1016/j.nanoen.2020.105374
- Z. Liu, Y. Huang, Y. Shi, X. Tao, H. He et al., Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density. Nat. Commun. 13(1), 4083 (2022). https://doi.org/10.1038/s41467-022-31822-2
- H.-W. Park, N.D. Huynh, W. Kim, C. Lee, Y. Nam et al., Electron blocking layer-based interfacial design for highly-enhanced triboelectric nanogenerators. Nano Energy 50, 9–15 (2018). https://doi.org/10.1016/j.nanoen.2018.05.024
- C. Jia, C. Chen, Y. Kuang, K. Fu, Y. Wang et al., From wood to textiles: top-down assembly of aligned cellulose nanofibers. Adv. Mater. 30(30), 1801347 (2018). https://doi.org/10.1002/adma.201801347
- C. Zhang, W. Zhang, G. Du, Q. Fu, J. Mo et al., Superhydrophobic cellulosic triboelectric materials for distributed energy harvesting. Chem. Eng. J. 452, 139259 (2023). https://doi.org/10.1016/j.cej.2022.139259
- H.-Y. Mi, X. Jing, Z. Cai, Y. Liu, L.-S. Turng et al., Highly porous composite aerogel based triboelectric nanogenerators for high performance energy generation and versatile self-powered sensing. Nanoscale 10(48), 23131–23140 (2018). https://doi.org/10.1039/C8NR05872E
- J.-M. Malho, J. Brand, G. Pecastaings, J. Ruokolainen, A. Gröschel et al., Multifunctional stimuli-responsive cellulose nanocrystals via dual surface modification with genetically engineered elastin-like polypeptides and poly(acrylic acid). ACS Macro Lett. 7(6), 646–650 (2018). https://doi.org/10.1021/acsmacrolett.8b00321
- H. Tu, M. Zhu, B. Duan, L. Zhang, Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 33(28), 2000682 (2021). https://doi.org/10.1002/adma.202000682
- H. Huang, Z. Li, Y. Ma, M. Yao, S. Yao et al., High-performance arabinoglucuronoxylan-based biosurfactants for oily sludge separation. Carbohydr. Polym. 303, 120461 (2023). https://doi.org/10.1016/j.carbpol.2022.120461
- D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors et al., Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2011). https://doi.org/10.1002/anie.201001273
- H.P.S. Abdul Khalil, Y. Davoudpour, M.N. Islam, A. Mustapha, K. Sudesh et al., Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr. Polym. 99, 649–665 (2014). https://doi.org/10.1016/j.carbpol.2013.08.069
- J. Li, B. Liu, L. Liu, Y. Luo, F. Zeng et al., Pretreatment of poplar with eco-friendly levulinic acid to achieve efficient utilization of biomass. Bioresour. Technol. 376, 128855 (2023). https://doi.org/10.1016/j.biortech.2023.128855
- B. Liu, L. Liu, B. Deng, C. Huang, J. Zhu et al., Application and prospect of organic acid pretreatment in lignocellulosic biomass separation: a review. Int. J. Biol. Macromol. 222, 1400–1413 (2022). https://doi.org/10.1016/j.ijbiomac.2022.09.270
- K. Abe, S. Iwamoto, H. Yano, Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8(10), 3276–3278 (2007). https://doi.org/10.1021/bm700624p
- F. Hu, J. Zeng, Z. Cheng, X. Wang, B. Wang et al., Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper. Carbohydr. Polym. 254, 117474 (2021). https://doi.org/10.1016/j.carbpol.2020.117474
- I.A. Sacui, R.C. Nieuwendaal, D.J. Burnett, S.J. Stranick, M. Jorfi et al., Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl. Mater. Interfaces 6(9), 6127–6138 (2014). https://doi.org/10.1021/am500359f
- S. Ling, W. Chen, Y. Fan, K. Zheng, K. Jin et al., Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog. Polym. Sci. 85, 1–56 (2018). https://doi.org/10.1016/j.progpolymsci.2018.06.004
- T. Abitbol, A. Rivkin, Y. Cao, Y. Nevo, E. Abraham et al., Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 39, 76–88 (2016). https://doi.org/10.1016/j.copbio.2016.01.002
- S. Kalia, S. Boufi, A. Celli, S. Kango, Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym. Sci. 292(1), 5–31 (2014). https://doi.org/10.1007/s00396-013-3112-9
- T. Saito, S. Kimura, Y. Nishiyama, A. Isogai, Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromol 8(8), 2485–2491 (2007). https://doi.org/10.1021/bm0703970
- Y. Lu, Y. Lu, C. Jin, R. Gao, B. Liu et al., Natural wood structure inspires practical lithium–metal batteries. ACS Energy Lett. 6(6), 2103–2110 (2021). https://doi.org/10.1021/acsenergylett.1c00629
- T. Li, X. Li Sylvia, W. Kong, C. Chen, E. Hitz et al., A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 5(2), eaau4238 (2019). https://doi.org/10.1126/sciadv.aau4238
- Z. Wang, N. Li, L. Zong, J. Zhang, Recent advances in vacuum assisted self-assembly of cellulose nanocrystals. Curr. Opin. Solid State Mater. Sci. 23(3), 142–148 (2019). https://doi.org/10.1016/j.cossms.2019.03.001
- Q. Fu, K. Tu, C. Goldhahn, T. Keplinger, M. Adobes-Vidal et al., Luminescent and hydrophobic wood films as optical lighting materials. ACS Nano 14(10), 13775–13783 (2020). https://doi.org/10.1021/acsnano.0c06110
- C. Wan, Y. Jiao, W. Tian, L. Zhang, Y. Wu et al., A holocellulose framework with anisotropic microchannels for directional assembly of copper sulphide nanops for multifunctional applications. Chem. Eng. J. 393, 124637 (2020). https://doi.org/10.1016/j.cej.2020.124637
- H. Guan, Z. Cheng, X. Wang, Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano 12(10), 10365–10373 (2018). https://doi.org/10.1021/acsnano.8b05763
- C. Cai, J. Mo, Y. Lu, N. Zhang, Z. Wu et al., Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment. Nano Energy 83, 105833 (2021). https://doi.org/10.1016/j.nanoen.2021.105833
- J. Garemark, X. Yang, X. Sheng, O. Cheung, L. Sun et al., Top-down approach making anisotropic cellulose aerogels as universal substrates for multifunctionalization. ACS Nano 14(6), 7111–7120 (2020). https://doi.org/10.1021/acsnano.0c01888
- D. Cheng, P. Wei, L. Zhang, J. Cai, New approach for the fabrication of carboxymethyl cellulose nanofibrils and the reinforcement effect in water-borne polyurethane. ACS Sustain. Chem. Eng. 7(13), 11850–11860 (2019). https://doi.org/10.1021/acssuschemeng.9b02424
- S. Kobayashi, L.J. Hobson, J. Sakamoto, S. Kimura, J. Sugiyama et al., Formation and structure of artificial cellulose spherulites via enzymatic polymerization. Biomacromol 1(2), 168–173 (2000). https://doi.org/10.1021/bm990010w
- T. Serizawa, Y. Fukaya, T. Sawada, Self-assembly of cellulose oligomers into nanoribbon network structures based on kinetic control of enzymatic oligomerization. Langmuir 33(46), 13415–13422 (2017). https://doi.org/10.1021/acs.langmuir.7b03653
- J.-I. Kadokawa, Precision synthesis of functional polysaccharide materials by phosphorylase-catalyzed enzymatic reactions. Polymers 8(4), 138 (2016). https://doi.org/10.3390/polym8040138
- L. Wågberg, J. Erlandsson, The use of layer-by-layer self-assembly and nanocellulose to prepare advanced functional materials. Adv. Mater. 33(28), 2001474 (2021). https://doi.org/10.1002/adma.202001474
- D.-C. Wang, H.-Y. Yu, D. Qi, Y. Wu, L. Chen et al., Confined chemical transitions for direct extraction of conductive cellulose nanofibers with graphitized carbon shell at low temperature and pressure. J. Am. Chem. Soc. 143(30), 11620–11630 (2021). https://doi.org/10.1021/jacs.1c04710
- L. Liu, Z. Niu, L. Zhang, W. Zhou, X. Chen et al., Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv. Mater. 26(28), 4855–4862 (2014). https://doi.org/10.1002/adma.201401513
- Y. Qin, Z. Qin, Y. Liu, M. Cheng, P. Qian et al., Superparamagnetic iron oxide coated on the surface of cellulose nanospheres for the rapid removal of textile dye under mild condition. Appl. Surf. Sci. 357, 2103–2111 (2015). https://doi.org/10.1016/j.apsusc.2015.09.192
- J. Xiao, N. Xiao, K. Li, L. Zhang, X. Ma et al., Sodium metal anodes with self-correction function based on fluorine-superdoped CNTs/cellulose nanofibrils composite paper. Adv. Funct. Mater. 32, 2111133 (2022). https://doi.org/10.1002/adfm.202111133
- Y. Zhang, H. Yang, K. Cui, L. Zhang, J. Xu et al., Highly conductive and bendable gold networks attached on intertwined cellulose fibers for output controllable power paper. J. Mater. Chem. A 6(40), 19611–19620 (2018). https://doi.org/10.1039/C8TA08293F
- J. Fernandes Diniz, M. Gil, J. Castro, Hornification—its origin and interpretation in wood pulps. Wood Sci. Technol. 37(6), 489–494 (2004). https://doi.org/10.1007/s00226-003-0216-2
- P. Posada, J. Velásquez-Cock, C. Gómez-Hoyos, A.M. Serpa Guerra, S.V. Lyulin et al., Drying and redispersion of plant cellulose nanofibers for industrial applications: a review. Cellulose 27(18), 10649–10670 (2020). https://doi.org/10.1007/s10570-020-03348-7
- Y. Sato, Y. Kusaka, M. Kobayashi, Charging and aggregation behavior of cellulose nanofibers in aqueous solution. Langmuir 33(44), 12660–12669 (2017). https://doi.org/10.1021/acs.langmuir.7b02742
- Y. Chu, Y. Sun, W. Wu, H. Xiao, Dispersion properties of nanocellulose: a review. Carbohydr. Polym. 250, 116892 (2020). https://doi.org/10.1016/j.carbpol.2020.116892
- K.M.O. Håkansson, A.B. Fall, F. Lundell, S. Yu, C. Krywka et al., Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5(1), 4018 (2014). https://doi.org/10.1038/ncomms5018
- D. Ye, X. Lei, T. Li, Q. Cheng, C. Chang et al., Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films. ACS Nano 13(4), 4843–4853 (2019). https://doi.org/10.1021/acsnano.9b02081
- W. Bunriw, V. Harnchana, C. Chanthad, V.N. Huynh, Natural rubber-TiO2 nanocomposite film for triboelectric nanogenerator. Appl. Polym. 13(13), 2213 (2021). https://doi.org/10.3390/polym13132213
- Y. Jin, N. Xia, R.A. Gerhardt, Enhanced dielectric properties of polymer matrix composites with BaTio3 and mwcnt hybrid fillers using simple phase separation. Nano Energy 30, 407–416 (2016). https://doi.org/10.1016/j.nanoen.2016.10.033
- Y. Song, J. Bao, Y. Hu, M. Xu, Z. Yang et al., Ultra-porous cellulose nanofibril aerogel films as excellent triboelectric positive materials via direct freeze-drying of dispersion. Nano Energy 103, 107832 (2022). https://doi.org/10.1016/j.nanoen.2022.107832
- Y. Xu, W. Guo, S. Zhou, H. Yi, G. Yang et al., Bioinspired perspiration-wicking electronic skins for comfortable and reliable multimodal health monitoring. Adv. Funct. Mater. 32(23), 2200961 (2022). https://doi.org/10.1002/adfm.202200961
- F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu et al., Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018). https://doi.org/10.1021/acsami.7b15125
- K. Zhang, H. Liimatainen, Hierarchical assembly of nanocellulose-based filaments by interfacial complexation. Small 14(38), 1801937 (2018). https://doi.org/10.1002/smll.201801937
- C. Xu, Y. Zi, A.C. Wang, H. Zou, Y. Dai et al., On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 30(15), 1706790 (2018). https://doi.org/10.1002/adma.201706790
- C. Xu, A.C. Wang, H. Zou, B. Zhang, C. Zhang et al., Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification. Adv. Mater. 30(38), 1803968 (2018). https://doi.org/10.1002/adma.201803968
- Z. Bai, Y. Xu, Z. Zhang, J. Zhu, C. Gao et al., Highly flexible, porous electroactive biocomposite as attractive tribopositive material for advancing high-performance triboelectric nanogenerator. Nano Energy 75, 104884 (2020). https://doi.org/10.1016/j.nanoen.2020.104884
- Y. Liu, J. Mo, Q. Fu, Y. Lu, N. Zhang et al., Enhancement of triboelectric charge density by chemical functionalization. Adv. Funct. Mater. 30(50), 2004714 (2020). https://doi.org/10.1002/adfm.202004714
- R. Zhang, C. Dahlström, H. Zou, J. Jonzon, M. Hummelgård et al., Cellulose-based fully green triboelectric nanogenerators with output power density of 300 w m−2. Adv. Mater. 32(38), 2002824 (2020). https://doi.org/10.1002/adma.202002824
- K. Shi, H. Zou, B. Sun, P. Jiang, J. He et al., Dielectric modulated cellulose paper/pdms-based triboelectric nanogenerators for wireless transmission and electropolymerization applications. Adv. Funct. Mater. 30(4), 1904536 (2020). https://doi.org/10.1002/adfm.201904536
- S.A. Graham, B. Dudem, A.R. Mule, H. Patnam, J.S. Yu, Engineering squandered cotton into eco-benign microarchitectured triboelectric films for sustainable and highly efficient mechanical energy harvesting. Nano Energy 61, 505–516 (2019). https://doi.org/10.1016/j.nanoen.2019.04.081
- X. Qian, A. Lu, Transparent, robust, nondrying, and antifreezing cellulose organohydrogels for energy harvesting and sensing applications. ACS Appl. Polym. Mater. 3(8), 3747–3754 (2021). https://doi.org/10.1021/acsapm.1c00239
- B. Chen, N. Yang, Q. Jiang, W. Chen, Y. Yang, Transparent triboelectric nanogenerator-induced high voltage pulsed electric field for a self-powered handheld printer. Nano Energy 44, 468–475 (2018). https://doi.org/10.1016/j.nanoen.2017.12.026
- S. Wu, G. Li, W. Liu, D. Yu, G. Li et al., Fabrication of polyethyleneimine-paper composites with improved tribopositivity for triboelectric nanogenerators. Nano Energy 93, 106859 (2022). https://doi.org/10.1016/j.nanoen.2021.106859
- H.-Y. Mi, X. Jing, Q. Zheng, L. Fang, H.-X. Huang et al., High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing. Nano Energy 48, 327–336 (2018). https://doi.org/10.1016/j.nanoen.2018.03.050
- C. Yao, A. Hernandez, Y. Yu, Z. Cai, X. Wang, Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 30, 103–108 (2016). https://doi.org/10.1016/j.nanoen.2016.09.036
- Y. Feng, Y. Zheng, Z.U. Rahman, D. Wang, F. Zhou, W. Liu, Paper-based triboelectric nanogenerators and their application in self-powered anticorrosion and antifouling. J. Mater. Chem. A 4(46), 18022–18030 (2016). https://doi.org/10.1039/C6TA07288G
- K. Xia, C. Du, Z. Zhu, R. Wang, H. Zhang et al., Sliding-mode triboelectric nanogenerator based on paper and as a self-powered velocity and force sensor. Appl. Mater. Today 13, 190–197 (2018). https://doi.org/10.1016/j.apmt.2018.09.005
- C. Qian, L. Li, M. Gao, H. Yang, Z. Cai et al., All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy 63, 103885 (2019). https://doi.org/10.1016/j.nanoen.2019.103885
- A.F. Diaz, R.M. Felix-Navarro, A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrostat. 62(4), 277–290 (2004). https://doi.org/10.1016/j.elstat.2004.05.005
- X. Wang, C. Yao, F. Wang, Z. Li, Cellulose-based nanomaterials for energy applications. Small 13(42), 1702240 (2017). https://doi.org/10.1002/smll.201702240
- L. Gu, L. German, T. Li, J. Li, Y. Shao et al., Energy harvesting floor from commercial cellulosic materials for a self-powered wireless transmission sensor system. ACS Appl. Mater. Interfaces 13(4), 5133–5141 (2021). https://doi.org/10.1021/acsami.0c20703
- C. Yao, X. Yin, Y. Yu, Z. Cai, X. Wang, Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv. Funct. Mater. 27(30), 1700794 (2017). https://doi.org/10.1002/adfm.201700794
- S. Chen, J. Jiang, F. Xu, S. Gong, Crepe cellulose paper and nitrocellulose membrane-based triboelectric nanogenerators for energy harvesting and self-powered human-machine interaction. Nano Energy 61, 69–77 (2019). https://doi.org/10.1016/j.nanoen.2019.04.043
- Q. Zhu, T. Wang, X. Sun, Y. Wei, S. Zhang et al., Effects of fluorine-based modification on triboelectric properties of cellulose. Polymers 14(17), 3536 (2022). https://doi.org/10.3390/polym14173536
- J. Peng, H. Zhang, Q. Zheng, C.M. Clemons, R.C. Sabo et al., A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale 9(4), 1428–1433 (2017). https://doi.org/10.1039/C6NR07602E
- B. Yang, C. Yao, Y. Yu, Z. Li, X. Wang, Nature degradable, flexible, and transparent conductive substrates from green and earth-abundant materials. Sci. Rep. 7(1), 4936 (2017). https://doi.org/10.1038/s41598-017-04969-y
- A. Chandrasekhar, N.R. Alluri, B. Saravanakumar, S. Selvarajan, S.-J. Kim, A microcrystalline cellulose ingrained polydimethylsiloxane triboelectric nanogenerator as a self-powered locomotion detector. J. Mater. Chem. C 5(7), 1810–1815 (2017). https://doi.org/10.1039/C6TC05104A
- C. Li, P. Wang, D. Zhang, Self-healable, stretchable triboelectric nanogenerators based on flexible polyimide for energy harvesting and self-powered sensors. Nano Energy 109, 108285 (2023). https://doi.org/10.1016/j.nanoen.2023.108285
- G.-Z. Li, G.-G. Wang, D.-M. Ye, X.-W. Zhang, Z.-Q. Lin et al., High-performance transparent and flexible triboelectric nanogenerators based on pdms-ptfe composite films. Adv. Electron. Mater. 5(4), 1800846 (2019). https://doi.org/10.1002/aelm.201800846
- M. Wang, N. Zhang, Y. Tang, H. Zhang, C. Ning et al., Single-electrode triboelectric nanogenerators based on sponge-like porous PtFe thin films for mechanical energy harvesting and self-powered electronics. J. Mater. Chem. A 5(24), 12252–12257 (2017). https://doi.org/10.1039/C7TA02680C
- K. Li, Y.-S. Wu, Q. Liu, G.-G. Cheng, Z.-Q. Zhang et al., Rotational triboelectric nanogenerator based on a PDMs@cs composite material. J. Phys. Chem. C 122(43), 24578–24584 (2018). https://doi.org/10.1021/acs.jpcc.8b08361
- Z. Sha, C. Boyer, G. Li, Y. Yu, F.-M. Allioux et al., Electrospun liquid metal/pvdf-hfp nanofiber membranes with exceptional triboelectric performance. Nano Energy 92, 106713 (2022). https://doi.org/10.1016/j.nanoen.2021.106713
- Y. Chen, D. Li, Y. Xu, Z. Ling, H. Nawaz et al., Surface-microstructured cellulose films toward sensitive pressure sensors and efficient triboelectric nanogenerators. Int. J. Biol. Macromol. 208, 324–332 (2022). https://doi.org/10.1016/j.ijbiomac.2022.03.123
- X. Shi, S. Chen, H. Zhang, J. Jiang, Z. Ma, S. Gong, Portable self-charging power system via integration of a flexible paper-based triboelectric nanogenerator and supercapacitor. ACS Sustain. Chem. Eng. 7(22), 18657–18666 (2019). https://doi.org/10.1021/acssuschemeng.9b05129
- M. Li, Y. Jie, L.-H. Shao, Y. Guo, X. Cao et al., All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator. Nano Res. 12(8), 1831–1835 (2019). https://doi.org/10.1007/s12274-019-2443-3
- H.T. Baytekin, A.Z. Patashinski, M. Branicki, B. Baytekin, S. Soh et al., The mosaic of surface charge in contact electrification. Science 333(6040), 308–312 (2011). https://doi.org/10.1126/science.1201512
- Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang et al., Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 6(1), 8376 (2015). https://doi.org/10.1038/ncomms9376
- W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen et al., Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 10(1), 1426 (2019). https://doi.org/10.1038/s41467-019-09464-8
- S. Wang, Y. Zi, Y.S. Zhou, S. Li, F. Fan et al., Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J. Mater. Chem. A 4(10), 3728–3734 (2016). https://doi.org/10.1039/C5TA10239A
- J. Wang, C. Wu, Y. Dai, Z. Zhao, A. Wang et al., Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 8(1), 88 (2017). https://doi.org/10.1038/s41467-017-00131-4
- L. Zhang, Y. Liao, Y.-C. Wang, S. Zhang, W. Yang et al., Cellulose II aerogel-based triboelectric nanogenerator. Adv. Funct. Mater. 30(28), 2001763 (2020). https://doi.org/10.1002/adfm.202001763
- Y. Liu, Q. Fu, J. Mo, Y. Lu, C. Cai et al., Chemically tailored molecular surface modification of cellulose nanofibrils for manipulating the charge density of triboelectric nanogenerators. Nano Energy 89, 106369 (2021). https://doi.org/10.1016/j.nanoen.2021.106369
- S. Roy, H.-U. Ko, P.K. Maji, L. Van Hai, J. Kim, Large amplification of triboelectric property by allicin to develop high performance cellulosic triboelectric nanogenerator. Chem. Eng. J. 385, 123723 (2020). https://doi.org/10.1016/j.cej.2019.123723
- S. Sriphan, T. Charoonsuk, T. Maluangnont, P. Pakawanit, C. Rojviriya et al., Multifunctional nanomaterials modification of cellulose paper for efficient triboelectric nanogenerators. Adv. Mater. Technol. 5(5), 2000001 (2020). https://doi.org/10.1002/admt.202000001
- H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu et al., Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z
- P. Cui, K. Parida, M.-F. Lin, J. Xiong, G. Cai et al., Transparent, flexible cellulose nanofibril–phosphorene hybrid paper as triboelectric nanogenerator. Adv. Mater. Interfaces 4(22), 1700651 (2017). https://doi.org/10.1002/admi.201700651
- W.-C. Lin, S.-H. Lee, M. Karakachian, B.-Y. Yu, Y.-Y. Chen et al., Tuning the surface potential of gold substrates arbitrarily with self-assembled monolayers with mixed functional groups. Phys. Chem. Chem. Phys. 11(29), 6199–6204 (2009). https://doi.org/10.1039/B902044F
- S.-H. Shin, Y.E. Bae, H.K. Moon, J. Kim, S.-H. Choi et al., Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting. ACS Nano 11(6), 6131–6138 (2017). https://doi.org/10.1021/acsnano.7b02156
- S. Sriphan, T. Charoonsuk, T. Maluangnont, N. Vittayakorn, High-performance hybridized composited-based piezoelectric and triboelectric nanogenerators based on BaTiO3/PDMs composite film modified with Ti0.8O2 nanosheets and silver nanopowders cofillers. ACS Appl. Energy Mater. 2(5), 3840–3850 (2019). https://doi.org/10.1021/acsaem.9b00513
- C. Wang, H. Guo, P. Wang, J. Li, Y. Sun, D. Zhang, An advanced strategy to enhance teng output: reducing triboelectric charge decay. Adv. Mater. 35, 2209895 (2023). https://doi.org/10.1002/adma.202209895
- I.-W. Tcho, W.-G. Kim, S.-B. Jeon, S.-J. Park, B.J. Lee et al., Surface structural analysis of a friction layer for a triboelectric nanogenerator. Nano Energy 42, 34–42 (2017). https://doi.org/10.1016/j.nanoen.2017.10.037
- S. Adonijah Graham, B. Dudem, H. Patnam, A.R. Mule, J.S. Yu, Integrated design of highly porous cellulose-loaded polymer-based triboelectric films toward flexible, humidity-resistant, and sustainable mechanical energy harvesters. ACS Energy Lett. 5(7), 2140–2148 (2020). https://doi.org/10.1021/acsenergylett.0c00635
- Y.-Y. Ba, J.-F. Bao, H.-T. Deng, Z.-Y. Wang, X.-W. Li et al., Single-layer triboelectric nanogenerators based on ion-doped natural nanofibrils. ACS Appl. Mater. Interfaces 12(38), 42859–42867 (2020). https://doi.org/10.1021/acsami.0c11932
- H. Varghese, H.M.A. Hakkeem, K. Chauhan, E. Thouti, S. Pillai et al., A high-performance flexible triboelectric nanogenerator based on cellulose acetate nanofibers and micropatterned pdms films as mechanical energy harvester and self-powered vibrational sensor. Nano Energy 98, 107339 (2022). https://doi.org/10.1016/j.nanoen.2022.107339
- H. Guo, M.-H. Yeh, Y. Zi, Z. Wen, J. Chen et al., Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano 11(5), 4475–4482 (2017). https://doi.org/10.1021/acsnano.7b00866
- C. Zhang, X. Lin, N. Zhang, Y. Lu, Z. Wu et al., Chemically functionalized cellulose nanofibrils-based gear-like triboelectric nanogenerator for energy harvesting and sensing. Nano Energy 66, 104126 (2019). https://doi.org/10.1016/j.nanoen.2019.104126
- Z. Wei, J. Wang, Y. Liu, J. Yuan, T. Liu et al., Sustainable triboelectric materials for smart active sensing systems. Adv. Funct. Mater. 32(52), 2208277 (2022). https://doi.org/10.1002/adfm.202208277
- S. Nie, Q. Fu, X. Lin, C. Zhang, Y. Lu et al., Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chem. Eng. J. 404, 126512 (2021). https://doi.org/10.1016/j.cej.2020.126512
- S. Jakmuangpak, T. Prada, W. Mongkolthanaruk, V. Harnchana, S. Pinitsoontorn, Engineering bacterial cellulose films by nanocomposite approach and surface modification for biocompatible triboelectric nanogenerator. ACS Appl. Electron. Mater. 2(8), 2498–2506 (2020). https://doi.org/10.1021/acsaelm.0c00421
- E. Li, Y. Pan, C. Wang, C. Liu, C. Shen et al., Multifunctional and superhydrophobic cellulose composite paper for electromagnetic shielding, hydraulic triboelectric nanogenerator and joule heating. Appl. Chem. Eng. J. 420, 129864 (2021). https://doi.org/10.1016/j.cej.2021.129864
- L. Yao, Z. Zhou, Z. Zhang, X. Du, Q.-L. Zhang et al., Dyeing-inspired sustainable and low-cost modified cellulose-based teng for energy harvesting and sensing. ACS Sustain. Chem. Eng. 10(12), 3909–3919 (2022). https://doi.org/10.1021/acssuschemeng.1c08095
- S. Nie, C. Cai, X. Lin, C. Zhang, Y. Lu et al., Chemically functionalized cellulose nanofibrils for improving triboelectric charge density of a triboelectric nanogenerator. ACS Sustain. Chem. Eng. 8(50), 18678–18685 (2020). https://doi.org/10.1021/acssuschemeng.0c07531
- M. Sala de Medeiros, D. Chanci, R.V. Martinez, Moisture-insensitive, self-powered paper-based flexible electronics. Nano Energy 78, 105301 (2020). https://doi.org/10.1016/j.nanoen.2020.105301
- Y. Cheng, W. Zhu, X. Lu, C. Wang, Lightweight and flexible mxene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy 98, 107229 (2022). https://doi.org/10.1016/j.nanoen.2022.107229
- E.S. Choi, H.C. Kim, R.M. Muthoka, P.S. Panicker, D.O. Agumba et al., Aligned cellulose nanofiber composite made with electrospinning of cellulose nanofiber–polyvinyl alcohol and its vibration energy harvesting. Compos. Sci. Technol. 209, 108795 (2021). https://doi.org/10.1016/j.compscitech.2021.108795
- Y. Xu, Y. Song, F. Xu, Tempo oxidized cellulose nanofibers-based heterogenous membrane employed for concentration-gradient-driven energy harvesting. Nano Energy 79, 105468 (2021). https://doi.org/10.1016/j.nanoen.2020.105468
- T. Wu, Y. Song, Z. Shi, D. Liu, S. Chen et al., High-performance nanogenerators based on flexible cellulose nanofibril/MoS2 nanosheet composite piezoelectric films for energy harvesting. Nano Energy 80, 105541 (2021). https://doi.org/10.1016/j.nanoen.2020.105541
- Z. Wang, C. Chen, L. Fang, B. Cao, X. Tu et al., Biodegradable, conductive, moisture-proof, and dielectric enhanced cellulose-based triboelectric nanogenerator for self-powered human-machine interface sensing. Nano Energy 107, 108151 (2023). https://doi.org/10.1016/j.nanoen.2022.108151
- Z. Sheng, Z. Qiuxiao, W. Tingting, W. Xuchong, S. Xiaoping et al., Contact electrification property controlled by amino modification of cellulose fibers. Cellulose 29(6), 3195–3208 (2022). https://doi.org/10.1007/s10570-022-04500-1
- H. Liu, Q. Shu, H. Xiang, H. Wu, Z. Li et al., Fully degradable triboelectric nanogenerator using graphene composite paper to replace copper electrodes for higher output performance. Nano Energy 108, 108223 (2023). https://doi.org/10.1016/j.nanoen.2023.108223
- Q. Zhang, Q. Liang, Q. Liao, M. Ma, F. Gao et al., An amphiphobic hydraulic triboelectric nanogenerator for a self-cleaning and self-charging power system. Adv. Funct. Mater. 28(35), 1803117 (2018). https://doi.org/10.1002/adfm.201803117
- S. Nie, H. Guo, Y. Lu, J. Zhuo, J. Mo et al., Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting. Adv. Mater. Technol. 5(9), 2000454 (2020). https://doi.org/10.1002/admt.202000454
- Y. Zhong, H. Zhao, Y. Guo, P. Rui, S. Shi et al., An easily assembled electromagnetic-triboelectric hybrid nanogenerator driven by magnetic coupling for fluid energy harvesting and self-powered flow monitoring in a smart home/city. Adv. Mater. Technol. 4(12), 1900741 (2019). https://doi.org/10.1002/admt.201900741
- Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z
- G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan et al., Toward large-scale energy harvesting by a nanop-enhanced triboelectric nanogenerator. Nano Lett. 13(2), 847–853 (2013). https://doi.org/10.1021/nl4001053
- Z. Saadatnia, E. Esmailzadeh, H.E. Naguib, High performance triboelectric nanogenerator by hot embossing on self-assembled micro-ps. Adv. Eng. Mater. 21(1), 1700957 (2019). https://doi.org/10.1002/adem.201700957
- S. Lee, Y. Lee, D. Kim, Y. Yang, L. Lin et al., Triboelectric nanogenerator for harvesting pendulum oscillation energy. Nano Energy 2(6), 1113–1120 (2013). https://doi.org/10.1016/j.nanoen.2013.08.007
- X.-S. Zhang, M.-D. Han, R.-X. Wang, F.-Y. Zhu, Z.-H. Li et al., Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 13(3), 1168–1172 (2013). https://doi.org/10.1021/nl3045684
- J. Shao, X. Chen, X. Li, H. Tian, C. Wang et al., Nanoimprint lithography for the manufacturing of flexible electronics. Sci. China Technol. Sci. 62(2), 175–198 (2019). https://doi.org/10.1007/s11431-018-9386-9
- A.R. Mule, B. Dudem, S.A. Graham, J.S. Yu, Humidity sustained wearable pouch-type triboelectric nanogenerator for harvesting mechanical energy from human activities. Adv. Funct. Mater. 29(17), 1807779 (2019). https://doi.org/10.1002/adfm.201807779
- E. Blasco, J. Müller, P. Müller, V. Trouillet, M. Schön et al., Fabrication of conductive 3D gold-containing microstructures via direct laser writing. Adv. Mater. 32(14), 2001062 (2020). https://doi.org/10.1002/adma.202001062
- J. Huang, X. Fu, G. Liu, S. Xu, X. Li et al., Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing. Nano Energy 62, 638–644 (2019). https://doi.org/10.1016/j.nanoen.2019.05.081
- X. He, H. Zou, Z. Geng, X. Wang, W. Ding et al., A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv. Funct. Mater. 28(45), 1805540 (2018). https://doi.org/10.1002/adfm.201805540
- W. Zhang, X. Chen, J. Zhao, X. Wang, X. Li et al., Cellulose template-based triboelectric nanogenerators for self-powered sensing at high humidity. Nano Energy 108, 108196 (2023). https://doi.org/10.1016/j.nanoen.2023.108196
- Z. Ding, Z. Tian, X. Ji, D. Wang, X. Ci et al., Cellulose-based superhydrophobic wrinkled paper and electrospinning film as green tribolayer for water wave energy harvesting. Int. J. Biol. Macromol. 234, 122903 (2023). https://doi.org/10.1016/j.ijbiomac.2022.12.122
- X. Shen, W. Han, Y. Jiang, Q. Ding, X. Li et al., Punching pores on cellulose fiber paper as the spacer of triboelectric nanogenerator for monitoring human motion. Energy Rep. 6, 2851–2860 (2020). https://doi.org/10.1016/j.egyr.2020.10.011
- P. Rui, W. Zhang, Y. Zhong, X. Wei, Y. Guo et al., High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy 74, 104937 (2020). https://doi.org/10.1016/j.nanoen.2020.104937
- H. Yang, M. Deng, Q. Tang, W. He, C. Hu et al., A nonencapsulative pendulum-like paper–based hybrid nanogenerator for energy harvesting. Adv. Energy Mater. 9(33), 1901149 (2019). https://doi.org/10.1002/aenm.201901149
- X.-S. Zhang, M. Su, J. Brugger, B. Kim, Penciling a triboelectric nanogenerator on paper for autonomous power mems applications. Nano Energy 33, 393–401 (2017). https://doi.org/10.1016/j.nanoen.2017.01.053
- K.Y. Lee, J. Chun, J.-H. Lee, K.N. Kim, N.-R. Kang et al., Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 26(29), 5037–5042 (2014). https://doi.org/10.1002/adma.201401184
- S.C.B. Mannsfeld, B.C.K. Tee, R.M. Stoltenberg, C.V.H.H. Chen, S. Barman et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9(10), 859–864 (2010). https://doi.org/10.1038/nmat2834
- Q. Zheng, L. Fang, H. Guo, K. Yang, Z. Cai et al., Highly porous polymer aerogel film-based triboelectric nanogenerators. Adv. Funct. Mater. 28(13), 1706365 (2018). https://doi.org/10.1002/adfm.201706365
- X. Fan, J. Chen, J. Yang, P. Bai, Z. Li et al., Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 9(4), 4236–4243 (2015). https://doi.org/10.1021/acsnano.5b00618
- P.-K. Yang, Z.-H. Lin, K.C. Pradel, L. Lin, X. Li et al., Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 9(1), 901–907 (2015). https://doi.org/10.1021/nn506631t
- C. Wu, X. Wang, L. Lin, H. Guo, Z.L. Wang, Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano 10(4), 4652–4659 (2016). https://doi.org/10.1021/acsnano.6b00949
- I. Kim, H. Jeon, D. Kim, J. You, D. Kim, All-in-one cellulose based triboelectric nanogenerator for electronic paper using simple filtration process. Nano Energy 53, 975–981 (2018). https://doi.org/10.1016/j.nanoen.2018.09.060
- S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576–3583 (2013). https://doi.org/10.1039/C3EE42571A
- Z. Bai, Z. Zhang, J. Li, J. Guo, Textile-based triboelectric nanogenerators with high-performance via optimized functional elastomer composited tribomaterials as wearable power source. Nano Energy 65, 104012 (2019). https://doi.org/10.1016/j.nanoen.2019.104012
- T. Wang, S. Li, X. Tao, Q. Yan, X. Wang et al., Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring. Nano Energy 93, 106787 (2022). https://doi.org/10.1016/j.nanoen.2021.106787
- H. Oh, S.S. Kwak, B. Kim, E. Han, G.-H. Lim et al., Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators. Adv. Funct. Mater. 29(37), 1904066 (2019). https://doi.org/10.1002/adfm.201904066
- A. Rajabi-Abhari, J.-N. Kim, J. Lee, R. Tabassian, M. Mahato et al., Diatom bio-silica and cellulose nanofibril for bio-triboelectric nanogenerators and self-powered breath monitoring masks. ACS Appl. Mater. Interfaces 13(1), 219–232 (2021). https://doi.org/10.1021/acsami.0c18227
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : Mxenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- D. Lu, T. Liu, X. Meng, B. Luo, J. Yuan et al., Wearable triboelectric visual sensors for tactile perception. Adv. Mater. 35(7), 2209117 (2023). https://doi.org/10.1002/adma.202209117
- Q. He, Y. Wu, Z. Feng, W. Fan, Z. Lin et al., An all-textile triboelectric sensor for wearable teleoperated human–machine interaction. J. Mater. Chem. A 7(47), 26804–26811 (2019). https://doi.org/10.1039/C9TA11652D
- Z. Zhang, D. Yang, H. Yang, Y. Li, S. Lu et al., A hydrophobic sisal cellulose microcrystal film for fire alarm sensors. Nano Lett. 21(5), 2104–2110 (2021). https://doi.org/10.1021/acs.nanolett.0c04789
- X. Wang, X. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13(1), 64 (2021). https://doi.org/10.1007/s40820-021-00592-9
- N. Gogurla, B. Roy, J.-Y. Park, S. Kim, Skin-contact actuated single-electrode protein triboelectric nanogenerator and strain sensor for biomechanical energy harvesting and motion sensing. Nano Energy 62, 674–681 (2019). https://doi.org/10.1016/j.nanoen.2019.05.082
- L.-B. Huang, J.-C. Han, S. Chen, Z. Sun, X. Dai et al., 4D-printed self-recovered triboelectric nanogenerator for energy harvesting and self-powered sensor. Nano Energy 84, 105873 (2021). https://doi.org/10.1016/j.nanoen.2021.105873
- N. Wang, D. Yang, W. Zhang, M. Feng, Z. Li et al., Deep trap boosted ultrahigh triboelectric charge density in nanofibrous cellulose-based triboelectric nanogenerators. ACS Appl. Mater. Interfaces 15(1), 997–1009 (2023). https://doi.org/10.1021/acsami.2c16925
- C. Luo, Y. Shao, H. Yu, H. Ma, Y. Zhang et al., Improving the output performance of bacterial cellulose-based triboelectric nanogenerators by modulating the surface potential in a simple method. ACS Sustain. Chem. Eng. 10(39), 13050–13058 (2022). https://doi.org/10.1021/acssuschemeng.2c03189
- B. Fatma, S. Gupta, C. Chatterjee, R. Bhunia, V. Verma et al., Triboelectric generators made of mechanically robust pvdf films as self-powered autonomous sensors for wireless transmission based remote security systems. J. Mater. Chem. A 8(30), 15023–15033 (2020). https://doi.org/10.1039/D0TA04716C
- W. Zhang, Y. Lu, T. Liu, J. Zhao, Y. Liu et al., Spheres multiple physical network-based triboelectric materials for self-powered contactless sensing. Small 18(25), 2200577 (2022). https://doi.org/10.1002/smll.202200577
- J. Huang, Y. Hao, M. Zhao, H. Qiao, F. Huang et al., Biomass-based wearable and self-powered pressure sensor for human motion detection. Compos. Part A 146, 106412 (2021). https://doi.org/10.1016/j.compositesa.2021.106412
- J. Ma, T. Zhou, J. Bian, Y. Jie, X. Cao et al., Dopamine polymerization tunes triboelectric interface. Nano Energy 44, 199–207 (2018). https://doi.org/10.1016/j.nanoen.2017.11.056
- Q. Zhu, T. Wang, Y. Wei, X. Sun, S. Zhang et al., Low-cost, environmentally friendly and high-performance cellulose-based triboelectric nanogenerator for self-powered human motion monitoring. Cellulose 29(16), 8733–8747 (2022). https://doi.org/10.1007/s10570-022-04800-6
- X. Hong, C. Nugent, M. Mulvenna, S. McClean, B. Scotney et al., Evidential fusion of sensor data for activity recognition in smart homes. Pervasive Mob. Comput. 5(3), 236–252 (2009). https://doi.org/10.1016/j.pmcj.2008.05.002
- G. Duelen, H. Münch, D. Surdilovic, An advanced robot control system for manufacturing processes. CIRP Ann. 40(1), 387–390 (1991). https://doi.org/10.1016/S0007-8506(07)62013-7
- K. Chen, Y. Li, Z. Du, S. Hu, J. Huang et al., CoFe2O4 embedded bacterial cellulose for flexible, biodegradable, and self-powered electromagnetic sensor. Nano Energy 102, 107740 (2022). https://doi.org/10.1016/j.nanoen.2022.107740
- J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu et al., Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 1(10), 16138 (2016). https://doi.org/10.1038/nenergy.2016.138
- Y. Meng, J. Zhao, X. Yang, C. Zhao, S. Qin et al., Mechanosensation-active matrix based on direct-contact tribotronic planar graphene transistor array. ACS Nano 12(9), 9381–9389 (2018). https://doi.org/10.1021/acsnano.8b04490
- W. Chen, F. Feng, D. Chen, W. Lin, S.-C. Chen, Precision non-contact displacement sensor based on the near-field characteristics of fiber specklegrams. Sens. Actuator A 296, 1–6 (2019). https://doi.org/10.1016/j.sna.2019.06.010
- Y. Jie, H. Zhu, X. Cao, Y. Zhang, N. Wang et al., One-piece triboelectric nanosensor for self-triggered alarm system and latent fingerprint detection. ACS Nano 10(11), 10366–10372 (2016). https://doi.org/10.1021/acsnano.6b06100
- Y. Zhang, C. Zhang, Y. Wang, Recent progress in cellulose-based electrospun nanofibers as multifunctional materials. Nanoscale Adv. 3(21), 6040–6047 (2021). https://doi.org/10.1039/D1NA00508A
- Y. Li, M. Yao, Y. Luo, J. Li, Z. Wang et al., Polydopamine-reinforced hemicellulose-based multifunctional flexible hydrogels for human movement sensing and self-powered transdermal drug delivery. ACS Appl. Mater. Interfaces 15(4), 5883–5896 (2023). https://doi.org/10.1021/acsami.2c19949
- W. Fan, Q. He, K. Meng, X. Tan, Z. Zhou et al., Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 6(11), eaay2840 (2020). https://doi.org/10.1126/sciadv.aay2840
- J. Shi, S. Liu, L. Zhang, B. Yang, L. Shu et al., Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 32(5), 1901958 (2020). https://doi.org/10.1002/adma.201901958
- Y. Pang, X. Xu, S. Chen, Y. Fang, X. Shi et al., Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots. Nano Energy 96, 107137 (2022). https://doi.org/10.1016/j.nanoen.2022.107137
- Y. Yang, T. Cui, D. Li, S. Ji, Z. Chen et al., Breathable electronic skins for daily physiological signal monitoring. Nano-Micro Lett. 14(1), 161 (2022). https://doi.org/10.1007/s40820-022-00911-8
- A.W. Cindradewi, R. Bandi, C.-W. Park, J.-S. Park, E.-A. Lee et al., Preparation and characterization of cellulose acetate film reinforced with cellulose nanofibril. Polymers 13(17), 2990 (2021). https://doi.org/10.3390/polym13172990
- Q.-F. Guan, H.-B. Yang, Z.-M. Han, Z.-C. Ling, C.-H. Yin et al., Sustainable cellulose-nanofiber-based hydrogels. ACS Nano 15(5), 7889–7898 (2021). https://doi.org/10.1021/acsnano.1c01247
- V. Rahmanian, T. Pirzada, S. Wang, S.A. Khan, Cellulose-based hybrid aerogels: strategies toward design and functionality. Adv. Mater. 33(51), 2102892 (2021). https://doi.org/10.1002/adma.202102892
- J.-C. Yang, W. Liao, S.-B. Deng, Z.-J. Cao, Y.-Z. Wang, Flame retardation of cellulose-rich fabrics via a simplified layer-by-layer assembly. Carbohydr. Polym. 151, 434–440 (2016). https://doi.org/10.1016/j.carbpol.2016.05.087
- S. Sardana, H. Kaur, B. Arora, D.K. Aswal, A. Mahajan, Self-powered monitoring of ammonia using an MXene/TiO2/cellulose nanofiber heterojunction-based sensor driven by an electrospun triboelectric nanogenerator. ACS Sens. 7(1), 312–321 (2022). https://doi.org/10.1021/acssensors.1c02388
- Q. Fu, Y. Liu, J. Mo, Y. Lu, C. Cai et al., Improved capture and removal efficiency of gaseous acetaldehyde by a self-powered photocatalytic system with an external electric field. ACS Nano 15(6), 10577–10586 (2021). https://doi.org/10.1021/acsnano.1c03230
- J. Mo, C. Zhang, Y. Lu, Y. Liu, N. Zhang et al., Radial piston triboelectric nanogenerator-enhanced cellulose fiber air filter for self-powered particulate matter removal. Nano Energy 78, 105357 (2020). https://doi.org/10.1016/j.nanoen.2020.105357
- R. Wu, L. Ma, A. Patil, Z. Meng, S. Liu et al., Graphene decorated carbonized cellulose fabric for physiological signal monitoring and energy harvesting. J. Mater. Chem. A 8(25), 12665–12673 (2020). https://doi.org/10.1039/D0TA02221G
- Y. Bao, R. Wang, Y. Lu, W. Wu, Lignin biopolymer based triboelectric nanogenerators. APL Mater. 5(7), 074109 (2017). https://doi.org/10.1063/1.4984625
- N.R. Tanguy, M. Rana, A.A. Khan, X. Zhang, N. Tratnik et al., Natural lignocellulosic nanofibrils as tribonegative materials for self-powered wireless electronics. Nano Energy 98, 107337 (2022). https://doi.org/10.1016/j.nanoen.2022.107337
- Q. Zheng, X. Dai, Y. Wu, Q. Liang, Y. Wu et al., Self-powered high-resolution smart insole system for plantar pressure mapping. BMEMat 1(1), e12008 (2023). https://doi.org/10.1002/bmm2.12008
- Q. Fu, Y. Liu, T. Liu, J. Mo, W. Zhang et al., Air-permeable cellulosic triboelectric Materials for self-powered healthcare products. Nano Energy 102, 107739 (2022). https://doi.org/10.1016/j.nanoen.2022.107739
- S. Shen, J. Yi, Z. Sun, Z. Guo, T. He et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14(1), 225 (2022). https://doi.org/10.1007/s40820-022-00965-8
- K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13(1), 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
- S. Roy, T. Das, B. Dasgupta Ghosh, K.L. Goh, K. Sharma et al., From hazardous waste to green applications: selective surface functionalization of waste cigarette filters for high-performance robust triboelectric nanogenerators and Co2 adsorbents. ACS Appl. Mater. Interfaces 14(28), 31973–31985 (2022). https://doi.org/10.1021/acsami.2c06463
- H. Zheng, X. Han, Q. Wei, C. Zheng, C. Huang et al., Biomass-based flexible fire warning sensor with excellent flame retardancy and sensitivity. Chem. Eng. J. 437, 135412 (2022). https://doi.org/10.1016/j.cej.2022.135412
- X. Zhao, C. Zhao, Y. Jiang, X. Ji, F. Kong et al., Flexible cellulose nanofiber/Bi2Te3 composite film for wearable thermoelectric devices. J. Power Sources 479, 229044 (2020). https://doi.org/10.1016/j.jpowsour.2020.229044
- J. Zhao, W. Zhang, T. Liu, Y. Liu, Y. Qin et al., Hierarchical porous cellulosic triboelectric materials for extreme environmental conditions. Small Methods 6(9), 2200664 (2022). https://doi.org/10.1002/smtd.202200664
- J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng et al., Fully fabric-based triboelectric nanogenerators as self-powered human–machine interactive keyboards. Nano-Micro Lett. 13(1), 103 (2021). https://doi.org/10.1007/s40820-021-00621-7
- S.-B. Jeon, S.-J. Park, W.-G. Kim, I.-W. Tcho, I.-K. Jin et al., Self-powered wearable keyboard with fabric based triboelectric nanogenerator. Nano Energy 53, 596–603 (2018). https://doi.org/10.1016/j.nanoen.2018.09.024
- L.-B. Huang, X. Dai, Z. Sun, M.-C. Wong, S.-Y. Pang et al., Environment-resisted flexible high performance triboelectric nanogenerators based on ultrafast self-healing non-drying conductive organohydrogel. Nano Energy 82, 105724 (2021). https://doi.org/10.1016/j.nanoen.2020.105724
- L.-Y. Lv, C.-F. Cao, Y.-X. Qu, G.-D. Zhang, L. Zhao et al., Smart fire-warning materials and sensors: Design principle, performances, and applications. Mater. Sci. Eng. R Rep. 150, 100690 (2022). https://doi.org/10.1016/j.mser.2022.100690
- F. Dong, Z. Pang, S. Yang, Q. Lin, S. Song et al., Improving wastewater treatment by triboelectric-photo/electric coupling effect. ACS Nano 16(3), 3449–3475 (2022). https://doi.org/10.1021/acsnano.1c10755
- R. Wang, J. Ma, S. Ma, Q. Zhang, N. Li et al., A biodegradable cellulose-based flame-retardant triboelectric nanogenerator for fire warning. Chem. Eng. J. 450, 137985 (2022). https://doi.org/10.1016/j.cej.2022.137985
- M. Li, Z. Li, X. Ye, W. He, L. Qu, M. Tian, A smart self-powered rope for water/fire rescue. Adv. Funct. Mater. 33(3), 2210111 (2023). https://doi.org/10.1002/adfm.202210111
- R.K. Cheedarala, L.C. Duy, K.K. Ahn, Double characteristic BNO-SPI-TENGs for robust contact electrification by vertical contact separation mode through ion and electron charge transfer. Nano Energy 44, 430–437 (2018). https://doi.org/10.1016/j.nanoen.2017.12.019
- C. Cai, B. Luo, Y. Liu, Q. Fu, T. Liu et al., Advanced triboelectric materials for liquid energy harvesting and emerging application. Mater. Today 52, 299–326 (2022). https://doi.org/10.1016/j.mattod.2021.10.034
- X. Liu, J. Mo, W. Wu, H. Song, S. Nie, Triboelectric pulsed direct-current enhanced radical generation for efficient degradation of organic pollutants in wastewater. Appl. Catal. B 312, 121422 (2022). https://doi.org/10.1016/j.apcatb.2022.121422
References
J.A. Rogers, Wearable electronics: nanomesh on-skin electronics. Nat. Nanotechnol. 12(9), 839–840 (2017). https://doi.org/10.1038/nnano.2017.150
C. Zhu, J. Wu, J. Yan, X. Liu, Advanced fiber materials for wearable electronics. Adv. Fiber Mater. 5, 12–35 (2022). https://doi.org/10.1007/s42765-022-00212-0
C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), 1801072 (2019). https://doi.org/10.1002/adma.201801072
J.R. Windmiller, J. Wang, Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25(1), 29–46 (2013). https://doi.org/10.1002/elan.201200349
T. Wang, H. Yang, D. Qi, Z. Liu, P. Cai et al., Mechano-based transductive sensing for wearable healthcare. Small 14(11), 1702933 (2018). https://doi.org/10.1002/smll.201702933
D.R. Seshadri, R.T. Li, J.E. Voos, J.R. Rowbottom, C.M. Alfes et al., Wearable sensors for monitoring the physiological and biochemical profile of the athlete. npj Digit. Med. 2(1), 72 (2019). https://doi.org/10.1038/s41746-019-0150-9
H. Yin, Y. Cao, B. Marelli, X. Zeng, A.J. Mason et al., Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 33(20), 2007764 (2021). https://doi.org/10.1002/adma.202007764
R. Kanan, O. Elhassan, R. Bensalem, An iot-based autonomous system for workers’ safety in construction sites with real-time alarming, monitoring, and positioning strategies. Autom. Constr. 88, 73–86 (2018). https://doi.org/10.1016/j.autcon.2017.12.033
Z. Wu, Y. Wang, X. Liu, C. Lv, Y. Li et al., Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv. Mater. 31(9), 1800716 (2019). https://doi.org/10.1002/adma.201800716
D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015). https://doi.org/10.1038/nchem.2085
X. Pu, C. Zhang, Z.L. Wang, Triboelectric nanogenerators as wearable power sources and self-powered sensors. Natl. Sci. Rev. 10(1), nwac170 (2023). https://doi.org/10.1093/nsr/nwac170
H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10(1), 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
H. Zou, L. Guo, H. Xue, Y. Zhang, X. Shen et al., Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat. Commun. 11(1), 2093 (2020). https://doi.org/10.1038/s41467-020-15926-1
Y. Feng, L. Zhang, Y. Zheng, D. Wang, F. Zhou et al., Leaves based triboelectric nanogenerator (teng) and teng tree for wind energy harvesting. Nano Energy 55, 260–268 (2019). https://doi.org/10.1016/j.nanoen.2018.10.075
P. Wang, L. Pan, J. Wang, M. Xu, G. Dai et al., An ultra-low-friction triboelectric–electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano 12(9), 9433–9440 (2018). https://doi.org/10.1021/acsnano.8b04654
H. Wang, J. Cheng, Z. Wang, L. Ji, Z.L. Wang, Triboelectric nanogenerators for human-health care. Sci. Bull. 66(5), 490–511 (2021). https://doi.org/10.1016/j.scib.2020.10.002
Y. Tang, W. Xuan, C. Zhang, L. Xu, F. Liu et al., Fully self-powered instantaneous wireless traffic monitoring system based on triboelectric nanogenerator and magnetic resonance coupling. Nano Energy 89, 106429 (2021). https://doi.org/10.1016/j.nanoen.2021.106429
C. Gao, T. Liu, B. Luo, C. Cai, W. Zhang et al., Cellulosic triboelectric materials for stable energy harvesting from hot and humid conditions. Nano Energy 111, 108426 (2023). https://doi.org/10.1016/j.nanoen.2023.108426
J. Jeong, S. Jeon, X. Ma, Y.W. Kwon, D.-M. Shin et al., A sustainable and flexible microbrush-faced triboelectric generator for portable/wearable applications. Adv. Mater. 33(39), 2102530 (2021). https://doi.org/10.1002/adma.202102530
K. Xu, Y. Lu, K. Takei, Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv. Mater. Technol. 4(3), 1800628 (2019). https://doi.org/10.1002/admt.201800628
W. He, H. Wang, Y. Huang, T. He, F. Chi et al., Textile-based moisture power generator with dual asymmetric structure and high flexibility for wearable applications. Nano Energy 95, 107017 (2022). https://doi.org/10.1016/j.nanoen.2022.107017
T. Shimura, S. Sato, P. Zalar, N. Matsuhisa, Engineering the comfort-of-wear for next generation wearables. Adv. Electron. Mater. (2022). https://doi.org/10.1002/aelm.202200512
J. Zhang, S. Hu, Z. Shi, Y. Wang, Y. Lei et al., Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy 89, 106354 (2021). https://doi.org/10.1016/j.nanoen.2021.106354
J. Mo, Y. Liu, Q. Fu, C. Cai, Y. Lu et al., Triboelectric nanogenerators for enhanced degradation of antibiotics via external electric field. Nano Energy 93, 106842 (2022). https://doi.org/10.1016/j.nanoen.2021.106842
Y. Yang, Q. Huang, G.F. Payne, R. Sun, X. Wang, A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanops. Nanoscale 11(2), 725–732 (2019). https://doi.org/10.1039/C8NR07123C
Y. Shao, C.-P. Feng, B.-W. Deng, B. Yin, M.-B. Yang, Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro-nano structure and dielectric constant. Nano Energy 62, 620–627 (2019). https://doi.org/10.1016/j.nanoen.2019.05.078
Y. Song, Z. Shi, G.-H. Hu, C. Xiong, A. Isogai et al., Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: a review. J. Mater. Chem. A 9(4), 1910–1937 (2021). https://doi.org/10.1039/D0TA08642H
R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011). https://doi.org/10.1039/C0CS00108B
T. Park, N. Kim, D. Kim, S.-W. Kim, Y. Oh et al., An organic/inorganic nanocomposite of cellulose nanofibers and zno nanorods for highly sensitive, reliable, wireless, and wearable multifunctional sensor applications. ACS Appl. Mater. Interfaces 11(51), 48239–48248 (2019). https://doi.org/10.1021/acsami.9b17824
G. Xiao, Y. Wang, H. Zhang, Z. Zhu, S. Fu, Cellulose nanocrystal mediated fast self-healing and shape memory conductive hydrogel for wearable strain sensors. Int. J. Biol. Macromol. 170, 272–283 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.156
Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing et al., Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2d titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31(9), 3301–3312 (2019). https://doi.org/10.1021/acs.chemmater.9b00259
Z. Li, Y. Zhang, Q. Huang, Z. Chen, W. Wang et al., Tailorable lignocellulose-based aerogel to achieve the balance between evaporation enthalpy and water transport rate for efficient solar evaporation. ACS Appl. Mater. Interfaces 15(9), 11827–11836 (2023). https://doi.org/10.1021/acsami.2c22615
S. Fan, W. Chang, C. Fei, Z. Zhang, B. Hou et al., Stretchable and bendable textile matrix based on cellulose fibers for wearable self-powered glucose biosensors. Cellulose 29(16), 8919–8935 (2022). https://doi.org/10.1007/s10570-022-04820-2
C. Wan, L. Zhang, K.-T. Yong, J. Li, Y. Wu, Recent progress in flexible nanocellulosic structures for wearable piezoresistive strain sensors. J. Mater. Chem. C 9(34), 11001–11029 (2021). https://doi.org/10.1039/D1TC02360H
Y. Qin, W. Zhang, Y. Liu, J. Zhao, J. Yuan et al., Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy 106, 108079 (2023). https://doi.org/10.1016/j.nanoen.2022.108079
D. Wang, D. Zhang, Y. Yang, Q. Mi, J. Zhang et al., Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like mxene/metal–organic framework-derived cuo nanohybrid ammonia sensor. ACS Nano 15(2), 2911–2919 (2021). https://doi.org/10.1021/acsnano.0c09015
S. Jang, H. Kim, J.H. Oh, Simple and rapid fabrication of pencil-on-paper triboelectric nanogenerators with enhanced electrical performance. Nanoscale 9(35), 13034–13041 (2017). https://doi.org/10.1039/C7NR04610C
C. Jiang, X. Li, Y. Yao, L. Lan, Y. Shao et al., A multifunctional and highly flexible triboelectric nanogenerator based on MXene-enabled porous film integrated with laser-induced graphene electrode. Nano Energy 66, 104121 (2019). https://doi.org/10.1016/j.nanoen.2019.104121
J. Han, L. Kiss, H. Mei, A.M. Remete, M. Ponikvar-Svet et al., Chemical aspects of human and environmental overload with fluorine. Chem. Rev. 121(8), 4678–4742 (2021). https://doi.org/10.1021/acs.chemrev.0c01263
X. Cheng, W. Tang, Y. Song, H. Chen, H. Zhang et al., Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy 61, 517–532 (2019). https://doi.org/10.1016/j.nanoen.2019.04.096
K. Dong, Z. Wu, J. Deng, A.C. Wang, H. Zou et al., A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 30(43), 1804944 (2018). https://doi.org/10.1002/adma.201804944
C. Zhang, J. Mo, Q. Fu, Y. Liu, S. Wang, S. Nie, Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy 81, 105637 (2021). https://doi.org/10.1016/j.nanoen.2020.105637
S. Zhang, M. Chi, J. Mo, T. Liu, Y. Liu et al., Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nat. Commun. 13(1), 4168 (2022). https://doi.org/10.1038/s41467-022-31987-w
Y. Luo, Z. Wang, J. Wang, X. Xiao, Q. Li et al., Triboelectric bending sensor based smart glove towards intuitive multi-dimensional human-machine interfaces. Nano Energy 89, 106330 (2021). https://doi.org/10.1016/j.nanoen.2021.106330
K. Dong, Y.-C. Wang, J. Deng, Y. Dai, S.L. Zhang et al., A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 11(9), 9490–9499 (2017). https://doi.org/10.1021/acsnano.7b05317
Z. Niu, W. Cheng, M. Cao, D. Wang, Q. Wang et al., Recent advances in cellulose-based flexible triboelectric nanogenerators. Nano Energy 87, 106175 (2021). https://doi.org/10.1016/j.nanoen.2021.106175
S. Liang, Y. Wang, Q. Liu, T. Yuan, C. Yao, The recent progress in cellulose paper-based triboelectric nanogenerators. Adv. Sustain. Syst. 5(6), 2100034 (2021). https://doi.org/10.1002/adsu.202100034
Y. Xu, Z. Bai, G. Xu, Constructing high-efficiency stretchable-breathable triboelectric fabric for biomechanical energy harvesting and intelligent sensing. Nano Energy 108, 108224 (2023). https://doi.org/10.1016/j.nanoen.2023.108224
K. Shi, X. Huang, B. Sun, Z. Wu, J. He et al., Cellulose/BaTio3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy 57, 450–458 (2019). https://doi.org/10.1016/j.nanoen.2018.12.076
D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu et al., Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33(28), 2000619 (2021). https://doi.org/10.1002/adma.202000619
B. Ying, R. Zuo, Y. Wan, X. Liu, An ionic hydrogel-based antifreezing triboelectric nanogenerator. ACS Appl. Electron. Mater. 4(4), 1930–1938 (2022). https://doi.org/10.1021/acsaelm.2c00118
H. He, J. Liu, Y. Wang, Y. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16(2), 2953–2967 (2022). https://doi.org/10.1021/acsnano.1c10144
T. Zhang, Z. Wen, H. Lei, Z. Gao, Y. Chen et al., Surface-microengineering for high-performance triboelectric tactile sensor via dynamically assembled ferrofluid template. Nano Energy 87, 106215 (2021). https://doi.org/10.1016/j.nanoen.2021.106215
R. Zhu, Z. Li, G. Deng, Y. Yu, J. Shui et al., Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 92, 106700 (2022). https://doi.org/10.1016/j.nanoen.2021.106700
D. Kim, S. Lee, Y. Ko, C.H. Kwon, J. Cho, Layer-by-layer assembly-induced triboelectric nanogenerators with high and stable electric outputs in humid environments. Nano Energy 44, 228–239 (2018). https://doi.org/10.1016/j.nanoen.2017.12.001
Q. Wang, X. Pan, J. Guo, L. Huang, L. Chen et al., Lignin and cellulose derivatives-induced hydrogel with asymmetrical adhesion, strength, and electriferous properties for wearable bioelectrodes and self-powered sensors. Chem. Eng. J. 414, 128903 (2021). https://doi.org/10.1016/j.cej.2021.128903
J. Huang, Y. Hao, M. Zhao, W. Li, F. Huang, Q. Wei, All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for self-powered wearable sensors. ACS Appl. Mater. Interfaces 13(21), 24774–24784 (2021). https://doi.org/10.1021/acsami.1c03894
C. Lin, H. Huang, H. Zhao, S. Cao, X. Ma, Acid- and alkali-resistant and high-performance cellulose paper-based triboelectric nanogenerator by controlling the surface hydrophobicity. ACS Sustain. Chem. Eng. 10(41), 13669–13679 (2022). https://doi.org/10.1021/acssuschemeng.2c03557
Z. Bai, Y. Xu, J. Li, J. Zhu, C. Gao et al., An eco-friendly porous nanocomposite fabric-based triboelectric nanogenerator for efficient energy harvesting and motion sensing. ACS Appl. Mater. Interfaces 12(38), 42880–42890 (2020). https://doi.org/10.1021/acsami.0c12709
S. Xu, H. Zhao, Q. Li, R. Zhang, S. Gao et al., Multi-dimensional, transparent and foldable cellulose-based triboelectric nanogenerator for touching password recognition. Nano Energy 98, 107307 (2022). https://doi.org/10.1016/j.nanoen.2022.107307
T. Li, J. Zou, F. Xing, M. Zhang, X. Cao et al., From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design. ACS Nano 11(4), 3950–3956 (2017). https://doi.org/10.1021/acsnano.7b00396
Y. Qin, J. Mo, Y. Liu, S. Zhang, J. Wang et al., Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 32, 2201846 (2022). https://doi.org/10.1002/adfm.202201846
R. Cheng, K. Dong, L. Liu, C. Ning, P. Chen et al., Flame-retardant textile-based triboelectric nanogenerators for fire protection applications. ACS Nano 14(11), 15853–15863 (2020). https://doi.org/10.1021/acsnano.0c07148
J. Huang, X. Yang, J. Yu, J. Han, C. Jia et al., A universal and arbitrary tactile interactive system based on self-powered optical communication. Nano Energy 69, 104419 (2020). https://doi.org/10.1016/j.nanoen.2019.104419
Y. Song, M. Liu, J. Bao, Y. Hu, M. Xu et al., TOCN/copper calcium titanate composite aerogel films as high-performance triboelectric materials for energy harvesting. Carbohydr. Polym. 298, 120111 (2022). https://doi.org/10.1016/j.carbpol.2022.120111
B. Wang, L. Dai, L.A. Hunter, L. Zhang, G. Yang et al., A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications. Carbohydr. Polym. 268, 118210 (2021). https://doi.org/10.1016/j.carbpol.2021.118210
L. Lamanna, G. Pace, I.K. Ilic, P. Cataldi, F. Viola et al., Edible cellulose-based conductive composites for triboelectric nanogenerators and supercapacitors. Nano Energy 108, 108168 (2023). https://doi.org/10.1016/j.nanoen.2023.108168
W. Zhang, J. Zhao, C. Cai, Y. Qin, X. Meng et al., Gas-sensitive cellulosic triboelectric materials for self-powered ammonia sensing. Adv. Sci. 9(30), 2203428 (2022). https://doi.org/10.1002/advs.202203428
X. Yang, S.K. Biswas, J. Han, S. Tanpichai, M.-C. Li et al., Surface and interface engineering for nanocellulosic advanced materials. Adv. Mater. 33(28), 2002264 (2021). https://doi.org/10.1002/adma.202002264
M.P. Kim, C.W. Ahn, Y. Lee, K. Kim, J. Park et al., Interfacial polarization-induced high-k polymer dielectric film for high-performance triboelectric devices. Nano Energy 82, 105697 (2021). https://doi.org/10.1016/j.nanoen.2020.105697
V.A. Cao, S. Lee, M. Kim, M.M. Alam, P. Park et al., Output power density enhancement of triboelectric nanogenerators via ferroelectric polymer composite interfacial layers. Nano Energy 67, 104300 (2020). https://doi.org/10.1016/j.nanoen.2019.104300
X. Xu, J. Li, X. Tao, Q. Yan, H. Wu et al., Study of interfacial design for direct-current tribovoltaic generators. Nano Energy 94, 106957 (2022). https://doi.org/10.1016/j.nanoen.2022.106957
H. Chen, Y. Xu, J. Zhang, W. Wu, G. Song, Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure. Nano Energy 58, 304–311 (2019). https://doi.org/10.1016/j.nanoen.2019.01.029
T. Jing, B. Xu, Y. Yang, C. Jiang, M. Wu, Interfacial modification boosted permittivity and triboelectric performance of liquid doping composites for high-performance flexible triboelectric nanogenerators. Nano Energy 78, 105374 (2020). https://doi.org/10.1016/j.nanoen.2020.105374
Z. Liu, Y. Huang, Y. Shi, X. Tao, H. He et al., Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density. Nat. Commun. 13(1), 4083 (2022). https://doi.org/10.1038/s41467-022-31822-2
H.-W. Park, N.D. Huynh, W. Kim, C. Lee, Y. Nam et al., Electron blocking layer-based interfacial design for highly-enhanced triboelectric nanogenerators. Nano Energy 50, 9–15 (2018). https://doi.org/10.1016/j.nanoen.2018.05.024
C. Jia, C. Chen, Y. Kuang, K. Fu, Y. Wang et al., From wood to textiles: top-down assembly of aligned cellulose nanofibers. Adv. Mater. 30(30), 1801347 (2018). https://doi.org/10.1002/adma.201801347
C. Zhang, W. Zhang, G. Du, Q. Fu, J. Mo et al., Superhydrophobic cellulosic triboelectric materials for distributed energy harvesting. Chem. Eng. J. 452, 139259 (2023). https://doi.org/10.1016/j.cej.2022.139259
H.-Y. Mi, X. Jing, Z. Cai, Y. Liu, L.-S. Turng et al., Highly porous composite aerogel based triboelectric nanogenerators for high performance energy generation and versatile self-powered sensing. Nanoscale 10(48), 23131–23140 (2018). https://doi.org/10.1039/C8NR05872E
J.-M. Malho, J. Brand, G. Pecastaings, J. Ruokolainen, A. Gröschel et al., Multifunctional stimuli-responsive cellulose nanocrystals via dual surface modification with genetically engineered elastin-like polypeptides and poly(acrylic acid). ACS Macro Lett. 7(6), 646–650 (2018). https://doi.org/10.1021/acsmacrolett.8b00321
H. Tu, M. Zhu, B. Duan, L. Zhang, Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 33(28), 2000682 (2021). https://doi.org/10.1002/adma.202000682
H. Huang, Z. Li, Y. Ma, M. Yao, S. Yao et al., High-performance arabinoglucuronoxylan-based biosurfactants for oily sludge separation. Carbohydr. Polym. 303, 120461 (2023). https://doi.org/10.1016/j.carbpol.2022.120461
D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors et al., Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2011). https://doi.org/10.1002/anie.201001273
H.P.S. Abdul Khalil, Y. Davoudpour, M.N. Islam, A. Mustapha, K. Sudesh et al., Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr. Polym. 99, 649–665 (2014). https://doi.org/10.1016/j.carbpol.2013.08.069
J. Li, B. Liu, L. Liu, Y. Luo, F. Zeng et al., Pretreatment of poplar with eco-friendly levulinic acid to achieve efficient utilization of biomass. Bioresour. Technol. 376, 128855 (2023). https://doi.org/10.1016/j.biortech.2023.128855
B. Liu, L. Liu, B. Deng, C. Huang, J. Zhu et al., Application and prospect of organic acid pretreatment in lignocellulosic biomass separation: a review. Int. J. Biol. Macromol. 222, 1400–1413 (2022). https://doi.org/10.1016/j.ijbiomac.2022.09.270
K. Abe, S. Iwamoto, H. Yano, Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8(10), 3276–3278 (2007). https://doi.org/10.1021/bm700624p
F. Hu, J. Zeng, Z. Cheng, X. Wang, B. Wang et al., Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper. Carbohydr. Polym. 254, 117474 (2021). https://doi.org/10.1016/j.carbpol.2020.117474
I.A. Sacui, R.C. Nieuwendaal, D.J. Burnett, S.J. Stranick, M. Jorfi et al., Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl. Mater. Interfaces 6(9), 6127–6138 (2014). https://doi.org/10.1021/am500359f
S. Ling, W. Chen, Y. Fan, K. Zheng, K. Jin et al., Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog. Polym. Sci. 85, 1–56 (2018). https://doi.org/10.1016/j.progpolymsci.2018.06.004
T. Abitbol, A. Rivkin, Y. Cao, Y. Nevo, E. Abraham et al., Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 39, 76–88 (2016). https://doi.org/10.1016/j.copbio.2016.01.002
S. Kalia, S. Boufi, A. Celli, S. Kango, Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym. Sci. 292(1), 5–31 (2014). https://doi.org/10.1007/s00396-013-3112-9
T. Saito, S. Kimura, Y. Nishiyama, A. Isogai, Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromol 8(8), 2485–2491 (2007). https://doi.org/10.1021/bm0703970
Y. Lu, Y. Lu, C. Jin, R. Gao, B. Liu et al., Natural wood structure inspires practical lithium–metal batteries. ACS Energy Lett. 6(6), 2103–2110 (2021). https://doi.org/10.1021/acsenergylett.1c00629
T. Li, X. Li Sylvia, W. Kong, C. Chen, E. Hitz et al., A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 5(2), eaau4238 (2019). https://doi.org/10.1126/sciadv.aau4238
Z. Wang, N. Li, L. Zong, J. Zhang, Recent advances in vacuum assisted self-assembly of cellulose nanocrystals. Curr. Opin. Solid State Mater. Sci. 23(3), 142–148 (2019). https://doi.org/10.1016/j.cossms.2019.03.001
Q. Fu, K. Tu, C. Goldhahn, T. Keplinger, M. Adobes-Vidal et al., Luminescent and hydrophobic wood films as optical lighting materials. ACS Nano 14(10), 13775–13783 (2020). https://doi.org/10.1021/acsnano.0c06110
C. Wan, Y. Jiao, W. Tian, L. Zhang, Y. Wu et al., A holocellulose framework with anisotropic microchannels for directional assembly of copper sulphide nanops for multifunctional applications. Chem. Eng. J. 393, 124637 (2020). https://doi.org/10.1016/j.cej.2020.124637
H. Guan, Z. Cheng, X. Wang, Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano 12(10), 10365–10373 (2018). https://doi.org/10.1021/acsnano.8b05763
C. Cai, J. Mo, Y. Lu, N. Zhang, Z. Wu et al., Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment. Nano Energy 83, 105833 (2021). https://doi.org/10.1016/j.nanoen.2021.105833
J. Garemark, X. Yang, X. Sheng, O. Cheung, L. Sun et al., Top-down approach making anisotropic cellulose aerogels as universal substrates for multifunctionalization. ACS Nano 14(6), 7111–7120 (2020). https://doi.org/10.1021/acsnano.0c01888
D. Cheng, P. Wei, L. Zhang, J. Cai, New approach for the fabrication of carboxymethyl cellulose nanofibrils and the reinforcement effect in water-borne polyurethane. ACS Sustain. Chem. Eng. 7(13), 11850–11860 (2019). https://doi.org/10.1021/acssuschemeng.9b02424
S. Kobayashi, L.J. Hobson, J. Sakamoto, S. Kimura, J. Sugiyama et al., Formation and structure of artificial cellulose spherulites via enzymatic polymerization. Biomacromol 1(2), 168–173 (2000). https://doi.org/10.1021/bm990010w
T. Serizawa, Y. Fukaya, T. Sawada, Self-assembly of cellulose oligomers into nanoribbon network structures based on kinetic control of enzymatic oligomerization. Langmuir 33(46), 13415–13422 (2017). https://doi.org/10.1021/acs.langmuir.7b03653
J.-I. Kadokawa, Precision synthesis of functional polysaccharide materials by phosphorylase-catalyzed enzymatic reactions. Polymers 8(4), 138 (2016). https://doi.org/10.3390/polym8040138
L. Wågberg, J. Erlandsson, The use of layer-by-layer self-assembly and nanocellulose to prepare advanced functional materials. Adv. Mater. 33(28), 2001474 (2021). https://doi.org/10.1002/adma.202001474
D.-C. Wang, H.-Y. Yu, D. Qi, Y. Wu, L. Chen et al., Confined chemical transitions for direct extraction of conductive cellulose nanofibers with graphitized carbon shell at low temperature and pressure. J. Am. Chem. Soc. 143(30), 11620–11630 (2021). https://doi.org/10.1021/jacs.1c04710
L. Liu, Z. Niu, L. Zhang, W. Zhou, X. Chen et al., Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv. Mater. 26(28), 4855–4862 (2014). https://doi.org/10.1002/adma.201401513
Y. Qin, Z. Qin, Y. Liu, M. Cheng, P. Qian et al., Superparamagnetic iron oxide coated on the surface of cellulose nanospheres for the rapid removal of textile dye under mild condition. Appl. Surf. Sci. 357, 2103–2111 (2015). https://doi.org/10.1016/j.apsusc.2015.09.192
J. Xiao, N. Xiao, K. Li, L. Zhang, X. Ma et al., Sodium metal anodes with self-correction function based on fluorine-superdoped CNTs/cellulose nanofibrils composite paper. Adv. Funct. Mater. 32, 2111133 (2022). https://doi.org/10.1002/adfm.202111133
Y. Zhang, H. Yang, K. Cui, L. Zhang, J. Xu et al., Highly conductive and bendable gold networks attached on intertwined cellulose fibers for output controllable power paper. J. Mater. Chem. A 6(40), 19611–19620 (2018). https://doi.org/10.1039/C8TA08293F
J. Fernandes Diniz, M. Gil, J. Castro, Hornification—its origin and interpretation in wood pulps. Wood Sci. Technol. 37(6), 489–494 (2004). https://doi.org/10.1007/s00226-003-0216-2
P. Posada, J. Velásquez-Cock, C. Gómez-Hoyos, A.M. Serpa Guerra, S.V. Lyulin et al., Drying and redispersion of plant cellulose nanofibers for industrial applications: a review. Cellulose 27(18), 10649–10670 (2020). https://doi.org/10.1007/s10570-020-03348-7
Y. Sato, Y. Kusaka, M. Kobayashi, Charging and aggregation behavior of cellulose nanofibers in aqueous solution. Langmuir 33(44), 12660–12669 (2017). https://doi.org/10.1021/acs.langmuir.7b02742
Y. Chu, Y. Sun, W. Wu, H. Xiao, Dispersion properties of nanocellulose: a review. Carbohydr. Polym. 250, 116892 (2020). https://doi.org/10.1016/j.carbpol.2020.116892
K.M.O. Håkansson, A.B. Fall, F. Lundell, S. Yu, C. Krywka et al., Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5(1), 4018 (2014). https://doi.org/10.1038/ncomms5018
D. Ye, X. Lei, T. Li, Q. Cheng, C. Chang et al., Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films. ACS Nano 13(4), 4843–4853 (2019). https://doi.org/10.1021/acsnano.9b02081
W. Bunriw, V. Harnchana, C. Chanthad, V.N. Huynh, Natural rubber-TiO2 nanocomposite film for triboelectric nanogenerator. Appl. Polym. 13(13), 2213 (2021). https://doi.org/10.3390/polym13132213
Y. Jin, N. Xia, R.A. Gerhardt, Enhanced dielectric properties of polymer matrix composites with BaTio3 and mwcnt hybrid fillers using simple phase separation. Nano Energy 30, 407–416 (2016). https://doi.org/10.1016/j.nanoen.2016.10.033
Y. Song, J. Bao, Y. Hu, M. Xu, Z. Yang et al., Ultra-porous cellulose nanofibril aerogel films as excellent triboelectric positive materials via direct freeze-drying of dispersion. Nano Energy 103, 107832 (2022). https://doi.org/10.1016/j.nanoen.2022.107832
Y. Xu, W. Guo, S. Zhou, H. Yi, G. Yang et al., Bioinspired perspiration-wicking electronic skins for comfortable and reliable multimodal health monitoring. Adv. Funct. Mater. 32(23), 2200961 (2022). https://doi.org/10.1002/adfm.202200961
F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu et al., Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018). https://doi.org/10.1021/acsami.7b15125
K. Zhang, H. Liimatainen, Hierarchical assembly of nanocellulose-based filaments by interfacial complexation. Small 14(38), 1801937 (2018). https://doi.org/10.1002/smll.201801937
C. Xu, Y. Zi, A.C. Wang, H. Zou, Y. Dai et al., On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 30(15), 1706790 (2018). https://doi.org/10.1002/adma.201706790
C. Xu, A.C. Wang, H. Zou, B. Zhang, C. Zhang et al., Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification. Adv. Mater. 30(38), 1803968 (2018). https://doi.org/10.1002/adma.201803968
Z. Bai, Y. Xu, Z. Zhang, J. Zhu, C. Gao et al., Highly flexible, porous electroactive biocomposite as attractive tribopositive material for advancing high-performance triboelectric nanogenerator. Nano Energy 75, 104884 (2020). https://doi.org/10.1016/j.nanoen.2020.104884
Y. Liu, J. Mo, Q. Fu, Y. Lu, N. Zhang et al., Enhancement of triboelectric charge density by chemical functionalization. Adv. Funct. Mater. 30(50), 2004714 (2020). https://doi.org/10.1002/adfm.202004714
R. Zhang, C. Dahlström, H. Zou, J. Jonzon, M. Hummelgård et al., Cellulose-based fully green triboelectric nanogenerators with output power density of 300 w m−2. Adv. Mater. 32(38), 2002824 (2020). https://doi.org/10.1002/adma.202002824
K. Shi, H. Zou, B. Sun, P. Jiang, J. He et al., Dielectric modulated cellulose paper/pdms-based triboelectric nanogenerators for wireless transmission and electropolymerization applications. Adv. Funct. Mater. 30(4), 1904536 (2020). https://doi.org/10.1002/adfm.201904536
S.A. Graham, B. Dudem, A.R. Mule, H. Patnam, J.S. Yu, Engineering squandered cotton into eco-benign microarchitectured triboelectric films for sustainable and highly efficient mechanical energy harvesting. Nano Energy 61, 505–516 (2019). https://doi.org/10.1016/j.nanoen.2019.04.081
X. Qian, A. Lu, Transparent, robust, nondrying, and antifreezing cellulose organohydrogels for energy harvesting and sensing applications. ACS Appl. Polym. Mater. 3(8), 3747–3754 (2021). https://doi.org/10.1021/acsapm.1c00239
B. Chen, N. Yang, Q. Jiang, W. Chen, Y. Yang, Transparent triboelectric nanogenerator-induced high voltage pulsed electric field for a self-powered handheld printer. Nano Energy 44, 468–475 (2018). https://doi.org/10.1016/j.nanoen.2017.12.026
S. Wu, G. Li, W. Liu, D. Yu, G. Li et al., Fabrication of polyethyleneimine-paper composites with improved tribopositivity for triboelectric nanogenerators. Nano Energy 93, 106859 (2022). https://doi.org/10.1016/j.nanoen.2021.106859
H.-Y. Mi, X. Jing, Q. Zheng, L. Fang, H.-X. Huang et al., High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing. Nano Energy 48, 327–336 (2018). https://doi.org/10.1016/j.nanoen.2018.03.050
C. Yao, A. Hernandez, Y. Yu, Z. Cai, X. Wang, Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 30, 103–108 (2016). https://doi.org/10.1016/j.nanoen.2016.09.036
Y. Feng, Y. Zheng, Z.U. Rahman, D. Wang, F. Zhou, W. Liu, Paper-based triboelectric nanogenerators and their application in self-powered anticorrosion and antifouling. J. Mater. Chem. A 4(46), 18022–18030 (2016). https://doi.org/10.1039/C6TA07288G
K. Xia, C. Du, Z. Zhu, R. Wang, H. Zhang et al., Sliding-mode triboelectric nanogenerator based on paper and as a self-powered velocity and force sensor. Appl. Mater. Today 13, 190–197 (2018). https://doi.org/10.1016/j.apmt.2018.09.005
C. Qian, L. Li, M. Gao, H. Yang, Z. Cai et al., All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy 63, 103885 (2019). https://doi.org/10.1016/j.nanoen.2019.103885
A.F. Diaz, R.M. Felix-Navarro, A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrostat. 62(4), 277–290 (2004). https://doi.org/10.1016/j.elstat.2004.05.005
X. Wang, C. Yao, F. Wang, Z. Li, Cellulose-based nanomaterials for energy applications. Small 13(42), 1702240 (2017). https://doi.org/10.1002/smll.201702240
L. Gu, L. German, T. Li, J. Li, Y. Shao et al., Energy harvesting floor from commercial cellulosic materials for a self-powered wireless transmission sensor system. ACS Appl. Mater. Interfaces 13(4), 5133–5141 (2021). https://doi.org/10.1021/acsami.0c20703
C. Yao, X. Yin, Y. Yu, Z. Cai, X. Wang, Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv. Funct. Mater. 27(30), 1700794 (2017). https://doi.org/10.1002/adfm.201700794
S. Chen, J. Jiang, F. Xu, S. Gong, Crepe cellulose paper and nitrocellulose membrane-based triboelectric nanogenerators for energy harvesting and self-powered human-machine interaction. Nano Energy 61, 69–77 (2019). https://doi.org/10.1016/j.nanoen.2019.04.043
Q. Zhu, T. Wang, X. Sun, Y. Wei, S. Zhang et al., Effects of fluorine-based modification on triboelectric properties of cellulose. Polymers 14(17), 3536 (2022). https://doi.org/10.3390/polym14173536
J. Peng, H. Zhang, Q. Zheng, C.M. Clemons, R.C. Sabo et al., A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale 9(4), 1428–1433 (2017). https://doi.org/10.1039/C6NR07602E
B. Yang, C. Yao, Y. Yu, Z. Li, X. Wang, Nature degradable, flexible, and transparent conductive substrates from green and earth-abundant materials. Sci. Rep. 7(1), 4936 (2017). https://doi.org/10.1038/s41598-017-04969-y
A. Chandrasekhar, N.R. Alluri, B. Saravanakumar, S. Selvarajan, S.-J. Kim, A microcrystalline cellulose ingrained polydimethylsiloxane triboelectric nanogenerator as a self-powered locomotion detector. J. Mater. Chem. C 5(7), 1810–1815 (2017). https://doi.org/10.1039/C6TC05104A
C. Li, P. Wang, D. Zhang, Self-healable, stretchable triboelectric nanogenerators based on flexible polyimide for energy harvesting and self-powered sensors. Nano Energy 109, 108285 (2023). https://doi.org/10.1016/j.nanoen.2023.108285
G.-Z. Li, G.-G. Wang, D.-M. Ye, X.-W. Zhang, Z.-Q. Lin et al., High-performance transparent and flexible triboelectric nanogenerators based on pdms-ptfe composite films. Adv. Electron. Mater. 5(4), 1800846 (2019). https://doi.org/10.1002/aelm.201800846
M. Wang, N. Zhang, Y. Tang, H. Zhang, C. Ning et al., Single-electrode triboelectric nanogenerators based on sponge-like porous PtFe thin films for mechanical energy harvesting and self-powered electronics. J. Mater. Chem. A 5(24), 12252–12257 (2017). https://doi.org/10.1039/C7TA02680C
K. Li, Y.-S. Wu, Q. Liu, G.-G. Cheng, Z.-Q. Zhang et al., Rotational triboelectric nanogenerator based on a PDMs@cs composite material. J. Phys. Chem. C 122(43), 24578–24584 (2018). https://doi.org/10.1021/acs.jpcc.8b08361
Z. Sha, C. Boyer, G. Li, Y. Yu, F.-M. Allioux et al., Electrospun liquid metal/pvdf-hfp nanofiber membranes with exceptional triboelectric performance. Nano Energy 92, 106713 (2022). https://doi.org/10.1016/j.nanoen.2021.106713
Y. Chen, D. Li, Y. Xu, Z. Ling, H. Nawaz et al., Surface-microstructured cellulose films toward sensitive pressure sensors and efficient triboelectric nanogenerators. Int. J. Biol. Macromol. 208, 324–332 (2022). https://doi.org/10.1016/j.ijbiomac.2022.03.123
X. Shi, S. Chen, H. Zhang, J. Jiang, Z. Ma, S. Gong, Portable self-charging power system via integration of a flexible paper-based triboelectric nanogenerator and supercapacitor. ACS Sustain. Chem. Eng. 7(22), 18657–18666 (2019). https://doi.org/10.1021/acssuschemeng.9b05129
M. Li, Y. Jie, L.-H. Shao, Y. Guo, X. Cao et al., All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator. Nano Res. 12(8), 1831–1835 (2019). https://doi.org/10.1007/s12274-019-2443-3
H.T. Baytekin, A.Z. Patashinski, M. Branicki, B. Baytekin, S. Soh et al., The mosaic of surface charge in contact electrification. Science 333(6040), 308–312 (2011). https://doi.org/10.1126/science.1201512
Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang et al., Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 6(1), 8376 (2015). https://doi.org/10.1038/ncomms9376
W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen et al., Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 10(1), 1426 (2019). https://doi.org/10.1038/s41467-019-09464-8
S. Wang, Y. Zi, Y.S. Zhou, S. Li, F. Fan et al., Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J. Mater. Chem. A 4(10), 3728–3734 (2016). https://doi.org/10.1039/C5TA10239A
J. Wang, C. Wu, Y. Dai, Z. Zhao, A. Wang et al., Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 8(1), 88 (2017). https://doi.org/10.1038/s41467-017-00131-4
L. Zhang, Y. Liao, Y.-C. Wang, S. Zhang, W. Yang et al., Cellulose II aerogel-based triboelectric nanogenerator. Adv. Funct. Mater. 30(28), 2001763 (2020). https://doi.org/10.1002/adfm.202001763
Y. Liu, Q. Fu, J. Mo, Y. Lu, C. Cai et al., Chemically tailored molecular surface modification of cellulose nanofibrils for manipulating the charge density of triboelectric nanogenerators. Nano Energy 89, 106369 (2021). https://doi.org/10.1016/j.nanoen.2021.106369
S. Roy, H.-U. Ko, P.K. Maji, L. Van Hai, J. Kim, Large amplification of triboelectric property by allicin to develop high performance cellulosic triboelectric nanogenerator. Chem. Eng. J. 385, 123723 (2020). https://doi.org/10.1016/j.cej.2019.123723
S. Sriphan, T. Charoonsuk, T. Maluangnont, P. Pakawanit, C. Rojviriya et al., Multifunctional nanomaterials modification of cellulose paper for efficient triboelectric nanogenerators. Adv. Mater. Technol. 5(5), 2000001 (2020). https://doi.org/10.1002/admt.202000001
H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu et al., Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z
P. Cui, K. Parida, M.-F. Lin, J. Xiong, G. Cai et al., Transparent, flexible cellulose nanofibril–phosphorene hybrid paper as triboelectric nanogenerator. Adv. Mater. Interfaces 4(22), 1700651 (2017). https://doi.org/10.1002/admi.201700651
W.-C. Lin, S.-H. Lee, M. Karakachian, B.-Y. Yu, Y.-Y. Chen et al., Tuning the surface potential of gold substrates arbitrarily with self-assembled monolayers with mixed functional groups. Phys. Chem. Chem. Phys. 11(29), 6199–6204 (2009). https://doi.org/10.1039/B902044F
S.-H. Shin, Y.E. Bae, H.K. Moon, J. Kim, S.-H. Choi et al., Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting. ACS Nano 11(6), 6131–6138 (2017). https://doi.org/10.1021/acsnano.7b02156
S. Sriphan, T. Charoonsuk, T. Maluangnont, N. Vittayakorn, High-performance hybridized composited-based piezoelectric and triboelectric nanogenerators based on BaTiO3/PDMs composite film modified with Ti0.8O2 nanosheets and silver nanopowders cofillers. ACS Appl. Energy Mater. 2(5), 3840–3850 (2019). https://doi.org/10.1021/acsaem.9b00513
C. Wang, H. Guo, P. Wang, J. Li, Y. Sun, D. Zhang, An advanced strategy to enhance teng output: reducing triboelectric charge decay. Adv. Mater. 35, 2209895 (2023). https://doi.org/10.1002/adma.202209895
I.-W. Tcho, W.-G. Kim, S.-B. Jeon, S.-J. Park, B.J. Lee et al., Surface structural analysis of a friction layer for a triboelectric nanogenerator. Nano Energy 42, 34–42 (2017). https://doi.org/10.1016/j.nanoen.2017.10.037
S. Adonijah Graham, B. Dudem, H. Patnam, A.R. Mule, J.S. Yu, Integrated design of highly porous cellulose-loaded polymer-based triboelectric films toward flexible, humidity-resistant, and sustainable mechanical energy harvesters. ACS Energy Lett. 5(7), 2140–2148 (2020). https://doi.org/10.1021/acsenergylett.0c00635
Y.-Y. Ba, J.-F. Bao, H.-T. Deng, Z.-Y. Wang, X.-W. Li et al., Single-layer triboelectric nanogenerators based on ion-doped natural nanofibrils. ACS Appl. Mater. Interfaces 12(38), 42859–42867 (2020). https://doi.org/10.1021/acsami.0c11932
H. Varghese, H.M.A. Hakkeem, K. Chauhan, E. Thouti, S. Pillai et al., A high-performance flexible triboelectric nanogenerator based on cellulose acetate nanofibers and micropatterned pdms films as mechanical energy harvester and self-powered vibrational sensor. Nano Energy 98, 107339 (2022). https://doi.org/10.1016/j.nanoen.2022.107339
H. Guo, M.-H. Yeh, Y. Zi, Z. Wen, J. Chen et al., Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano 11(5), 4475–4482 (2017). https://doi.org/10.1021/acsnano.7b00866
C. Zhang, X. Lin, N. Zhang, Y. Lu, Z. Wu et al., Chemically functionalized cellulose nanofibrils-based gear-like triboelectric nanogenerator for energy harvesting and sensing. Nano Energy 66, 104126 (2019). https://doi.org/10.1016/j.nanoen.2019.104126
Z. Wei, J. Wang, Y. Liu, J. Yuan, T. Liu et al., Sustainable triboelectric materials for smart active sensing systems. Adv. Funct. Mater. 32(52), 2208277 (2022). https://doi.org/10.1002/adfm.202208277
S. Nie, Q. Fu, X. Lin, C. Zhang, Y. Lu et al., Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chem. Eng. J. 404, 126512 (2021). https://doi.org/10.1016/j.cej.2020.126512
S. Jakmuangpak, T. Prada, W. Mongkolthanaruk, V. Harnchana, S. Pinitsoontorn, Engineering bacterial cellulose films by nanocomposite approach and surface modification for biocompatible triboelectric nanogenerator. ACS Appl. Electron. Mater. 2(8), 2498–2506 (2020). https://doi.org/10.1021/acsaelm.0c00421
E. Li, Y. Pan, C. Wang, C. Liu, C. Shen et al., Multifunctional and superhydrophobic cellulose composite paper for electromagnetic shielding, hydraulic triboelectric nanogenerator and joule heating. Appl. Chem. Eng. J. 420, 129864 (2021). https://doi.org/10.1016/j.cej.2021.129864
L. Yao, Z. Zhou, Z. Zhang, X. Du, Q.-L. Zhang et al., Dyeing-inspired sustainable and low-cost modified cellulose-based teng for energy harvesting and sensing. ACS Sustain. Chem. Eng. 10(12), 3909–3919 (2022). https://doi.org/10.1021/acssuschemeng.1c08095
S. Nie, C. Cai, X. Lin, C. Zhang, Y. Lu et al., Chemically functionalized cellulose nanofibrils for improving triboelectric charge density of a triboelectric nanogenerator. ACS Sustain. Chem. Eng. 8(50), 18678–18685 (2020). https://doi.org/10.1021/acssuschemeng.0c07531
M. Sala de Medeiros, D. Chanci, R.V. Martinez, Moisture-insensitive, self-powered paper-based flexible electronics. Nano Energy 78, 105301 (2020). https://doi.org/10.1016/j.nanoen.2020.105301
Y. Cheng, W. Zhu, X. Lu, C. Wang, Lightweight and flexible mxene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy 98, 107229 (2022). https://doi.org/10.1016/j.nanoen.2022.107229
E.S. Choi, H.C. Kim, R.M. Muthoka, P.S. Panicker, D.O. Agumba et al., Aligned cellulose nanofiber composite made with electrospinning of cellulose nanofiber–polyvinyl alcohol and its vibration energy harvesting. Compos. Sci. Technol. 209, 108795 (2021). https://doi.org/10.1016/j.compscitech.2021.108795
Y. Xu, Y. Song, F. Xu, Tempo oxidized cellulose nanofibers-based heterogenous membrane employed for concentration-gradient-driven energy harvesting. Nano Energy 79, 105468 (2021). https://doi.org/10.1016/j.nanoen.2020.105468
T. Wu, Y. Song, Z. Shi, D. Liu, S. Chen et al., High-performance nanogenerators based on flexible cellulose nanofibril/MoS2 nanosheet composite piezoelectric films for energy harvesting. Nano Energy 80, 105541 (2021). https://doi.org/10.1016/j.nanoen.2020.105541
Z. Wang, C. Chen, L. Fang, B. Cao, X. Tu et al., Biodegradable, conductive, moisture-proof, and dielectric enhanced cellulose-based triboelectric nanogenerator for self-powered human-machine interface sensing. Nano Energy 107, 108151 (2023). https://doi.org/10.1016/j.nanoen.2022.108151
Z. Sheng, Z. Qiuxiao, W. Tingting, W. Xuchong, S. Xiaoping et al., Contact electrification property controlled by amino modification of cellulose fibers. Cellulose 29(6), 3195–3208 (2022). https://doi.org/10.1007/s10570-022-04500-1
H. Liu, Q. Shu, H. Xiang, H. Wu, Z. Li et al., Fully degradable triboelectric nanogenerator using graphene composite paper to replace copper electrodes for higher output performance. Nano Energy 108, 108223 (2023). https://doi.org/10.1016/j.nanoen.2023.108223
Q. Zhang, Q. Liang, Q. Liao, M. Ma, F. Gao et al., An amphiphobic hydraulic triboelectric nanogenerator for a self-cleaning and self-charging power system. Adv. Funct. Mater. 28(35), 1803117 (2018). https://doi.org/10.1002/adfm.201803117
S. Nie, H. Guo, Y. Lu, J. Zhuo, J. Mo et al., Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting. Adv. Mater. Technol. 5(9), 2000454 (2020). https://doi.org/10.1002/admt.202000454
Y. Zhong, H. Zhao, Y. Guo, P. Rui, S. Shi et al., An easily assembled electromagnetic-triboelectric hybrid nanogenerator driven by magnetic coupling for fluid energy harvesting and self-powered flow monitoring in a smart home/city. Adv. Mater. Technol. 4(12), 1900741 (2019). https://doi.org/10.1002/admt.201900741
Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z
G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan et al., Toward large-scale energy harvesting by a nanop-enhanced triboelectric nanogenerator. Nano Lett. 13(2), 847–853 (2013). https://doi.org/10.1021/nl4001053
Z. Saadatnia, E. Esmailzadeh, H.E. Naguib, High performance triboelectric nanogenerator by hot embossing on self-assembled micro-ps. Adv. Eng. Mater. 21(1), 1700957 (2019). https://doi.org/10.1002/adem.201700957
S. Lee, Y. Lee, D. Kim, Y. Yang, L. Lin et al., Triboelectric nanogenerator for harvesting pendulum oscillation energy. Nano Energy 2(6), 1113–1120 (2013). https://doi.org/10.1016/j.nanoen.2013.08.007
X.-S. Zhang, M.-D. Han, R.-X. Wang, F.-Y. Zhu, Z.-H. Li et al., Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 13(3), 1168–1172 (2013). https://doi.org/10.1021/nl3045684
J. Shao, X. Chen, X. Li, H. Tian, C. Wang et al., Nanoimprint lithography for the manufacturing of flexible electronics. Sci. China Technol. Sci. 62(2), 175–198 (2019). https://doi.org/10.1007/s11431-018-9386-9
A.R. Mule, B. Dudem, S.A. Graham, J.S. Yu, Humidity sustained wearable pouch-type triboelectric nanogenerator for harvesting mechanical energy from human activities. Adv. Funct. Mater. 29(17), 1807779 (2019). https://doi.org/10.1002/adfm.201807779
E. Blasco, J. Müller, P. Müller, V. Trouillet, M. Schön et al., Fabrication of conductive 3D gold-containing microstructures via direct laser writing. Adv. Mater. 32(14), 2001062 (2020). https://doi.org/10.1002/adma.202001062
J. Huang, X. Fu, G. Liu, S. Xu, X. Li et al., Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing. Nano Energy 62, 638–644 (2019). https://doi.org/10.1016/j.nanoen.2019.05.081
X. He, H. Zou, Z. Geng, X. Wang, W. Ding et al., A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv. Funct. Mater. 28(45), 1805540 (2018). https://doi.org/10.1002/adfm.201805540
W. Zhang, X. Chen, J. Zhao, X. Wang, X. Li et al., Cellulose template-based triboelectric nanogenerators for self-powered sensing at high humidity. Nano Energy 108, 108196 (2023). https://doi.org/10.1016/j.nanoen.2023.108196
Z. Ding, Z. Tian, X. Ji, D. Wang, X. Ci et al., Cellulose-based superhydrophobic wrinkled paper and electrospinning film as green tribolayer for water wave energy harvesting. Int. J. Biol. Macromol. 234, 122903 (2023). https://doi.org/10.1016/j.ijbiomac.2022.12.122
X. Shen, W. Han, Y. Jiang, Q. Ding, X. Li et al., Punching pores on cellulose fiber paper as the spacer of triboelectric nanogenerator for monitoring human motion. Energy Rep. 6, 2851–2860 (2020). https://doi.org/10.1016/j.egyr.2020.10.011
P. Rui, W. Zhang, Y. Zhong, X. Wei, Y. Guo et al., High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy 74, 104937 (2020). https://doi.org/10.1016/j.nanoen.2020.104937
H. Yang, M. Deng, Q. Tang, W. He, C. Hu et al., A nonencapsulative pendulum-like paper–based hybrid nanogenerator for energy harvesting. Adv. Energy Mater. 9(33), 1901149 (2019). https://doi.org/10.1002/aenm.201901149
X.-S. Zhang, M. Su, J. Brugger, B. Kim, Penciling a triboelectric nanogenerator on paper for autonomous power mems applications. Nano Energy 33, 393–401 (2017). https://doi.org/10.1016/j.nanoen.2017.01.053
K.Y. Lee, J. Chun, J.-H. Lee, K.N. Kim, N.-R. Kang et al., Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 26(29), 5037–5042 (2014). https://doi.org/10.1002/adma.201401184
S.C.B. Mannsfeld, B.C.K. Tee, R.M. Stoltenberg, C.V.H.H. Chen, S. Barman et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9(10), 859–864 (2010). https://doi.org/10.1038/nmat2834
Q. Zheng, L. Fang, H. Guo, K. Yang, Z. Cai et al., Highly porous polymer aerogel film-based triboelectric nanogenerators. Adv. Funct. Mater. 28(13), 1706365 (2018). https://doi.org/10.1002/adfm.201706365
X. Fan, J. Chen, J. Yang, P. Bai, Z. Li et al., Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 9(4), 4236–4243 (2015). https://doi.org/10.1021/acsnano.5b00618
P.-K. Yang, Z.-H. Lin, K.C. Pradel, L. Lin, X. Li et al., Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 9(1), 901–907 (2015). https://doi.org/10.1021/nn506631t
C. Wu, X. Wang, L. Lin, H. Guo, Z.L. Wang, Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano 10(4), 4652–4659 (2016). https://doi.org/10.1021/acsnano.6b00949
I. Kim, H. Jeon, D. Kim, J. You, D. Kim, All-in-one cellulose based triboelectric nanogenerator for electronic paper using simple filtration process. Nano Energy 53, 975–981 (2018). https://doi.org/10.1016/j.nanoen.2018.09.060
S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576–3583 (2013). https://doi.org/10.1039/C3EE42571A
Z. Bai, Z. Zhang, J. Li, J. Guo, Textile-based triboelectric nanogenerators with high-performance via optimized functional elastomer composited tribomaterials as wearable power source. Nano Energy 65, 104012 (2019). https://doi.org/10.1016/j.nanoen.2019.104012
T. Wang, S. Li, X. Tao, Q. Yan, X. Wang et al., Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring. Nano Energy 93, 106787 (2022). https://doi.org/10.1016/j.nanoen.2021.106787
H. Oh, S.S. Kwak, B. Kim, E. Han, G.-H. Lim et al., Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators. Adv. Funct. Mater. 29(37), 1904066 (2019). https://doi.org/10.1002/adfm.201904066
A. Rajabi-Abhari, J.-N. Kim, J. Lee, R. Tabassian, M. Mahato et al., Diatom bio-silica and cellulose nanofibril for bio-triboelectric nanogenerators and self-powered breath monitoring masks. ACS Appl. Mater. Interfaces 13(1), 219–232 (2021). https://doi.org/10.1021/acsami.0c18227
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : Mxenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
D. Lu, T. Liu, X. Meng, B. Luo, J. Yuan et al., Wearable triboelectric visual sensors for tactile perception. Adv. Mater. 35(7), 2209117 (2023). https://doi.org/10.1002/adma.202209117
Q. He, Y. Wu, Z. Feng, W. Fan, Z. Lin et al., An all-textile triboelectric sensor for wearable teleoperated human–machine interaction. J. Mater. Chem. A 7(47), 26804–26811 (2019). https://doi.org/10.1039/C9TA11652D
Z. Zhang, D. Yang, H. Yang, Y. Li, S. Lu et al., A hydrophobic sisal cellulose microcrystal film for fire alarm sensors. Nano Lett. 21(5), 2104–2110 (2021). https://doi.org/10.1021/acs.nanolett.0c04789
X. Wang, X. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13(1), 64 (2021). https://doi.org/10.1007/s40820-021-00592-9
N. Gogurla, B. Roy, J.-Y. Park, S. Kim, Skin-contact actuated single-electrode protein triboelectric nanogenerator and strain sensor for biomechanical energy harvesting and motion sensing. Nano Energy 62, 674–681 (2019). https://doi.org/10.1016/j.nanoen.2019.05.082
L.-B. Huang, J.-C. Han, S. Chen, Z. Sun, X. Dai et al., 4D-printed self-recovered triboelectric nanogenerator for energy harvesting and self-powered sensor. Nano Energy 84, 105873 (2021). https://doi.org/10.1016/j.nanoen.2021.105873
N. Wang, D. Yang, W. Zhang, M. Feng, Z. Li et al., Deep trap boosted ultrahigh triboelectric charge density in nanofibrous cellulose-based triboelectric nanogenerators. ACS Appl. Mater. Interfaces 15(1), 997–1009 (2023). https://doi.org/10.1021/acsami.2c16925
C. Luo, Y. Shao, H. Yu, H. Ma, Y. Zhang et al., Improving the output performance of bacterial cellulose-based triboelectric nanogenerators by modulating the surface potential in a simple method. ACS Sustain. Chem. Eng. 10(39), 13050–13058 (2022). https://doi.org/10.1021/acssuschemeng.2c03189
B. Fatma, S. Gupta, C. Chatterjee, R. Bhunia, V. Verma et al., Triboelectric generators made of mechanically robust pvdf films as self-powered autonomous sensors for wireless transmission based remote security systems. J. Mater. Chem. A 8(30), 15023–15033 (2020). https://doi.org/10.1039/D0TA04716C
W. Zhang, Y. Lu, T. Liu, J. Zhao, Y. Liu et al., Spheres multiple physical network-based triboelectric materials for self-powered contactless sensing. Small 18(25), 2200577 (2022). https://doi.org/10.1002/smll.202200577
J. Huang, Y. Hao, M. Zhao, H. Qiao, F. Huang et al., Biomass-based wearable and self-powered pressure sensor for human motion detection. Compos. Part A 146, 106412 (2021). https://doi.org/10.1016/j.compositesa.2021.106412
J. Ma, T. Zhou, J. Bian, Y. Jie, X. Cao et al., Dopamine polymerization tunes triboelectric interface. Nano Energy 44, 199–207 (2018). https://doi.org/10.1016/j.nanoen.2017.11.056
Q. Zhu, T. Wang, Y. Wei, X. Sun, S. Zhang et al., Low-cost, environmentally friendly and high-performance cellulose-based triboelectric nanogenerator for self-powered human motion monitoring. Cellulose 29(16), 8733–8747 (2022). https://doi.org/10.1007/s10570-022-04800-6
X. Hong, C. Nugent, M. Mulvenna, S. McClean, B. Scotney et al., Evidential fusion of sensor data for activity recognition in smart homes. Pervasive Mob. Comput. 5(3), 236–252 (2009). https://doi.org/10.1016/j.pmcj.2008.05.002
G. Duelen, H. Münch, D. Surdilovic, An advanced robot control system for manufacturing processes. CIRP Ann. 40(1), 387–390 (1991). https://doi.org/10.1016/S0007-8506(07)62013-7
K. Chen, Y. Li, Z. Du, S. Hu, J. Huang et al., CoFe2O4 embedded bacterial cellulose for flexible, biodegradable, and self-powered electromagnetic sensor. Nano Energy 102, 107740 (2022). https://doi.org/10.1016/j.nanoen.2022.107740
J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu et al., Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 1(10), 16138 (2016). https://doi.org/10.1038/nenergy.2016.138
Y. Meng, J. Zhao, X. Yang, C. Zhao, S. Qin et al., Mechanosensation-active matrix based on direct-contact tribotronic planar graphene transistor array. ACS Nano 12(9), 9381–9389 (2018). https://doi.org/10.1021/acsnano.8b04490
W. Chen, F. Feng, D. Chen, W. Lin, S.-C. Chen, Precision non-contact displacement sensor based on the near-field characteristics of fiber specklegrams. Sens. Actuator A 296, 1–6 (2019). https://doi.org/10.1016/j.sna.2019.06.010
Y. Jie, H. Zhu, X. Cao, Y. Zhang, N. Wang et al., One-piece triboelectric nanosensor for self-triggered alarm system and latent fingerprint detection. ACS Nano 10(11), 10366–10372 (2016). https://doi.org/10.1021/acsnano.6b06100
Y. Zhang, C. Zhang, Y. Wang, Recent progress in cellulose-based electrospun nanofibers as multifunctional materials. Nanoscale Adv. 3(21), 6040–6047 (2021). https://doi.org/10.1039/D1NA00508A
Y. Li, M. Yao, Y. Luo, J. Li, Z. Wang et al., Polydopamine-reinforced hemicellulose-based multifunctional flexible hydrogels for human movement sensing and self-powered transdermal drug delivery. ACS Appl. Mater. Interfaces 15(4), 5883–5896 (2023). https://doi.org/10.1021/acsami.2c19949
W. Fan, Q. He, K. Meng, X. Tan, Z. Zhou et al., Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 6(11), eaay2840 (2020). https://doi.org/10.1126/sciadv.aay2840
J. Shi, S. Liu, L. Zhang, B. Yang, L. Shu et al., Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 32(5), 1901958 (2020). https://doi.org/10.1002/adma.201901958
Y. Pang, X. Xu, S. Chen, Y. Fang, X. Shi et al., Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots. Nano Energy 96, 107137 (2022). https://doi.org/10.1016/j.nanoen.2022.107137
Y. Yang, T. Cui, D. Li, S. Ji, Z. Chen et al., Breathable electronic skins for daily physiological signal monitoring. Nano-Micro Lett. 14(1), 161 (2022). https://doi.org/10.1007/s40820-022-00911-8
A.W. Cindradewi, R. Bandi, C.-W. Park, J.-S. Park, E.-A. Lee et al., Preparation and characterization of cellulose acetate film reinforced with cellulose nanofibril. Polymers 13(17), 2990 (2021). https://doi.org/10.3390/polym13172990
Q.-F. Guan, H.-B. Yang, Z.-M. Han, Z.-C. Ling, C.-H. Yin et al., Sustainable cellulose-nanofiber-based hydrogels. ACS Nano 15(5), 7889–7898 (2021). https://doi.org/10.1021/acsnano.1c01247
V. Rahmanian, T. Pirzada, S. Wang, S.A. Khan, Cellulose-based hybrid aerogels: strategies toward design and functionality. Adv. Mater. 33(51), 2102892 (2021). https://doi.org/10.1002/adma.202102892
J.-C. Yang, W. Liao, S.-B. Deng, Z.-J. Cao, Y.-Z. Wang, Flame retardation of cellulose-rich fabrics via a simplified layer-by-layer assembly. Carbohydr. Polym. 151, 434–440 (2016). https://doi.org/10.1016/j.carbpol.2016.05.087
S. Sardana, H. Kaur, B. Arora, D.K. Aswal, A. Mahajan, Self-powered monitoring of ammonia using an MXene/TiO2/cellulose nanofiber heterojunction-based sensor driven by an electrospun triboelectric nanogenerator. ACS Sens. 7(1), 312–321 (2022). https://doi.org/10.1021/acssensors.1c02388
Q. Fu, Y. Liu, J. Mo, Y. Lu, C. Cai et al., Improved capture and removal efficiency of gaseous acetaldehyde by a self-powered photocatalytic system with an external electric field. ACS Nano 15(6), 10577–10586 (2021). https://doi.org/10.1021/acsnano.1c03230
J. Mo, C. Zhang, Y. Lu, Y. Liu, N. Zhang et al., Radial piston triboelectric nanogenerator-enhanced cellulose fiber air filter for self-powered particulate matter removal. Nano Energy 78, 105357 (2020). https://doi.org/10.1016/j.nanoen.2020.105357
R. Wu, L. Ma, A. Patil, Z. Meng, S. Liu et al., Graphene decorated carbonized cellulose fabric for physiological signal monitoring and energy harvesting. J. Mater. Chem. A 8(25), 12665–12673 (2020). https://doi.org/10.1039/D0TA02221G
Y. Bao, R. Wang, Y. Lu, W. Wu, Lignin biopolymer based triboelectric nanogenerators. APL Mater. 5(7), 074109 (2017). https://doi.org/10.1063/1.4984625
N.R. Tanguy, M. Rana, A.A. Khan, X. Zhang, N. Tratnik et al., Natural lignocellulosic nanofibrils as tribonegative materials for self-powered wireless electronics. Nano Energy 98, 107337 (2022). https://doi.org/10.1016/j.nanoen.2022.107337
Q. Zheng, X. Dai, Y. Wu, Q. Liang, Y. Wu et al., Self-powered high-resolution smart insole system for plantar pressure mapping. BMEMat 1(1), e12008 (2023). https://doi.org/10.1002/bmm2.12008
Q. Fu, Y. Liu, T. Liu, J. Mo, W. Zhang et al., Air-permeable cellulosic triboelectric Materials for self-powered healthcare products. Nano Energy 102, 107739 (2022). https://doi.org/10.1016/j.nanoen.2022.107739
S. Shen, J. Yi, Z. Sun, Z. Guo, T. He et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14(1), 225 (2022). https://doi.org/10.1007/s40820-022-00965-8
K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13(1), 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
S. Roy, T. Das, B. Dasgupta Ghosh, K.L. Goh, K. Sharma et al., From hazardous waste to green applications: selective surface functionalization of waste cigarette filters for high-performance robust triboelectric nanogenerators and Co2 adsorbents. ACS Appl. Mater. Interfaces 14(28), 31973–31985 (2022). https://doi.org/10.1021/acsami.2c06463
H. Zheng, X. Han, Q. Wei, C. Zheng, C. Huang et al., Biomass-based flexible fire warning sensor with excellent flame retardancy and sensitivity. Chem. Eng. J. 437, 135412 (2022). https://doi.org/10.1016/j.cej.2022.135412
X. Zhao, C. Zhao, Y. Jiang, X. Ji, F. Kong et al., Flexible cellulose nanofiber/Bi2Te3 composite film for wearable thermoelectric devices. J. Power Sources 479, 229044 (2020). https://doi.org/10.1016/j.jpowsour.2020.229044
J. Zhao, W. Zhang, T. Liu, Y. Liu, Y. Qin et al., Hierarchical porous cellulosic triboelectric materials for extreme environmental conditions. Small Methods 6(9), 2200664 (2022). https://doi.org/10.1002/smtd.202200664
J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng et al., Fully fabric-based triboelectric nanogenerators as self-powered human–machine interactive keyboards. Nano-Micro Lett. 13(1), 103 (2021). https://doi.org/10.1007/s40820-021-00621-7
S.-B. Jeon, S.-J. Park, W.-G. Kim, I.-W. Tcho, I.-K. Jin et al., Self-powered wearable keyboard with fabric based triboelectric nanogenerator. Nano Energy 53, 596–603 (2018). https://doi.org/10.1016/j.nanoen.2018.09.024
L.-B. Huang, X. Dai, Z. Sun, M.-C. Wong, S.-Y. Pang et al., Environment-resisted flexible high performance triboelectric nanogenerators based on ultrafast self-healing non-drying conductive organohydrogel. Nano Energy 82, 105724 (2021). https://doi.org/10.1016/j.nanoen.2020.105724
L.-Y. Lv, C.-F. Cao, Y.-X. Qu, G.-D. Zhang, L. Zhao et al., Smart fire-warning materials and sensors: Design principle, performances, and applications. Mater. Sci. Eng. R Rep. 150, 100690 (2022). https://doi.org/10.1016/j.mser.2022.100690
F. Dong, Z. Pang, S. Yang, Q. Lin, S. Song et al., Improving wastewater treatment by triboelectric-photo/electric coupling effect. ACS Nano 16(3), 3449–3475 (2022). https://doi.org/10.1021/acsnano.1c10755
R. Wang, J. Ma, S. Ma, Q. Zhang, N. Li et al., A biodegradable cellulose-based flame-retardant triboelectric nanogenerator for fire warning. Chem. Eng. J. 450, 137985 (2022). https://doi.org/10.1016/j.cej.2022.137985
M. Li, Z. Li, X. Ye, W. He, L. Qu, M. Tian, A smart self-powered rope for water/fire rescue. Adv. Funct. Mater. 33(3), 2210111 (2023). https://doi.org/10.1002/adfm.202210111
R.K. Cheedarala, L.C. Duy, K.K. Ahn, Double characteristic BNO-SPI-TENGs for robust contact electrification by vertical contact separation mode through ion and electron charge transfer. Nano Energy 44, 430–437 (2018). https://doi.org/10.1016/j.nanoen.2017.12.019
C. Cai, B. Luo, Y. Liu, Q. Fu, T. Liu et al., Advanced triboelectric materials for liquid energy harvesting and emerging application. Mater. Today 52, 299–326 (2022). https://doi.org/10.1016/j.mattod.2021.10.034
X. Liu, J. Mo, W. Wu, H. Song, S. Nie, Triboelectric pulsed direct-current enhanced radical generation for efficient degradation of organic pollutants in wastewater. Appl. Catal. B 312, 121422 (2022). https://doi.org/10.1016/j.apcatb.2022.121422