Gel-Based Triboelectric Nanogenerators for Flexible Sensing: Principles, Properties, and Applications
Corresponding Author: Shuangxi Nie
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 206
Abstract
The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable, portable, and self-powered flexible sensing devices. Triboelectric nanogenerators (TENGs) based on gel materials (with excellent conductivity, mechanical tunability, environmental adaptability, and biocompatibility) are considered an advanced approach for developing a new generation of flexible sensors. This review comprehensively summarizes the recent advances in gel-based TENGs for flexible sensors, covering their principles, properties, and applications. Based on the development requirements for flexible sensors, the working mechanism of gel-based TENGs and the characteristic advantages of gels are introduced. Design strategies for the performance optimization of hydrogel-, organogel-, and aerogel-based TENGs are systematically summarized. In addition, the applications of gel-based TENGs in human motion sensing, tactile sensing, health monitoring, environmental monitoring, human–machine interaction, and other related fields are summarized. Finally, the challenges of gel-based TENGs for flexible sensing are discussed, and feasible strategies are proposed to guide future research.
Highlights:
1 Typical structures/working mechanisms of gel-based triboelectric nanogenerators and performance advantages of gel materials reviewed.
2 Optimization of hydrogels, organogels, and aerogels for triboelectric nanogenerators in flexible sensing summarized.
3 Applications, challenges, and future development directions of gel-based triboelectric nanogenerators in flexible sensing are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.-T. Han, H. Peng, Q. Sun, S. Venkatesh, K.-S. Chung et al., An overview of the development of flexible sensors. Adv. Mater. 29(33), 1700375 (2017). https://doi.org/10.1002/adma.201700375
- W. Li, M. Xu, J. Gao, X. Zhang, H. Huang et al., Large-scale ultra-robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics. Adv. Mater. 35(8), 2207447 (2023). https://doi.org/10.1002/adma.202207447
- X. Wang, Z. Liu, T. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 1602790 (2017). https://doi.org/10.1002/smll.201602790
- Y.B. Wan, Y. Wang, C.F. Guo, Recent progresses on flexible tactile sensors. Mater. Today Phys. 1, 61–73 (2017). https://doi.org/10.1016/j.mtphys.2017.06.002
- H. Liu, M. Li, S. Liu, P. Jia, X. Guo et al., Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics. Mater. Horiz. 7(1), 203–213 (2020). https://doi.org/10.1039/C9MH01211G
- H. Li, Y. Ma, Y. Huang, Material innovation and mechanics design for substrates and encapsulation of flexible electronics: a review. Mater. Horiz. 8(2), 383–400 (2021). https://doi.org/10.1039/D0MH00483A
- W.N. Xiong, C. Zhu, D.L. Guo, C. Hou, Z.X. Yang et al., Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception. Nano Energy 90, 106550 (2021). https://doi.org/10.1016/j.nanoen.2021.106550
- W. Huang, X. Wang, J. Xia, Y. Li, L. Zhang et al., Flexible sensing enabled agri-food cold chain quality control: a review of mechanism analysis, emerging applications, and system integration. Trends in Food Sci. Technol. 133, 189–204 (2023). https://doi.org/10.1016/j.tifs.2023.02.010
- S. Lee, S. Franklin, F.A. Hassani, T. Yokota, M.O.G. Nayeem et al., Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370(6519), 966–970 (2020). https://doi.org/10.1126/science.abc9735
- M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara et al., An ultra-lightweight design for imperceptible plastic electronics. Nature 499(7459), 458–463 (2013). https://doi.org/10.1038/nature12314
- B. Zazoum, K.M. Batoo, M.A.A. Khan, Recent advances in flexible sensors and their applications. Sensors 22(12), 4653 (2022). https://doi.org/10.3390/s22124653
- Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo et al., Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 11(5), 4507–4513 (2017). https://doi.org/10.1021/acsnano.6b08027
- Y. Wan, Z. Qiu, J. Huang, J. Yang, Q. Wang et al., Natural plant materials as dielectric layer for highly sensitive flexible electronic skin. Small 14(35), 1801657 (2018). https://doi.org/10.1002/smll.201801657
- X. Li, Y. Wang, S. Sun, T. He, Q. Hu et al., Flexible and ultrasensitive piezoelectric composites based on highly (00l)-assembled BaTiO3 microplatelets for wearable electronics application. Adv. Mater. Technol. 4(12), 1900689 (2019). https://doi.org/10.1002/admt.201900689
- L. Guo, G. Wu, Q. Wang, T. Li, B. Yao et al., Advances in triboelectric pressure sensors. Sens. Actuators A 355, 114331 (2023). https://doi.org/10.1016/j.sna.2023.114331
- F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- S. Wang, Y. Xie, S. Niu, L. Lin, Z.L. Wang, Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26(18), 2818–2824 (2014). https://doi.org/10.1002/adma.201305303
- S. Wang, S. Niu, J. Yang, L. Lin, Z.L. Wang, Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. ACS Nano 8(12), 12004–12013 (2014). https://doi.org/10.1021/nn5054365
- B. Cao, P. Wang, P. Rui, X. Wei, Z. Wang et al., Broadband and output-controllable triboelectric nanogenerator enabled by coupling swing-rotation switching mechanism with potential energy storage/release strategy for low-frequency mechanical energy harvesting. Adv. Energy Mater. 12(46), 2270194 (2022). https://doi.org/10.1002/aenm.202270194
- L. He, C. Zhang, B. Zhang, O. Yang, W. Yuan et al., A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring. ACS Nano 16(4), 6244–6254 (2022). https://doi.org/10.1021/acsnano.1c11658
- Z. Ren, L. Wu, Y. Pang, W. Zhang, R. Yang, Strategies for effectively harvesting wind energy based on triboelectric nanogenerators. Nano Energy 100, 107522 (2022). https://doi.org/10.1016/j.nanoen.2022.107522
- Y.Q. Wang, X. Li, X. Yu, J.Y. Zhu, P. Shen et al., Driving-torque self-adjusted triboelectric nanogenerator for effective harvesting of random wind energy. Nano Energy 99, 107389 (2022). https://doi.org/10.1016/j.nanoen.2022.107389
- R. Xia, R. Zhang, Y. Jie, W. Zhao, X. Cao et al., Natural cotton-based triboelectric nanogenerator as a self-powered system for efficient use of water and wind energy. Nano Energy 92, 106685 (2022). https://doi.org/10.1016/j.nanoen.2021.106685
- Z.L. Wang, From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84(9), 096502 (2021). https://doi.org/10.1088/1361-6633/ac0a50
- B. Xu, W. Peng, J. He, Y. Zhang, X. Song et al., Liquid metal-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy 120, 109107 (2024). https://doi.org/10.1016/j.nanoen.2023.109107
- Y. Dai, K. Yu, H. Li, H. Zhu, J. Xie et al., Triboelectric negative air ion generators for efficient membrane fouling control. Chem. Eng. J. 481, 148581 (2024). https://doi.org/10.1016/j.cej.2024.148581
- M.S. Rasel, P. Maharjan, M. Salauddin, M.T. Rahman, H.O. Cho et al., An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 49, 603–613 (2018). https://doi.org/10.1016/j.nanoen.2018.04.060
- S.L. Zhang, Y.C. Lai, X. He, R. Liu, Y. Zi et al., Auxetic foam-based contact-mode triboelectric nanogenerator with highly sensitive self-powered strain sensing capabilities to monitor human body movement. Adv. Funct. Mater. 27(25), 1606695 (2017). https://doi.org/10.1002/adfm.201606695
- C.M. Lin, J.X. Lan, J. Yu, Z.F. Hua, H. Huang et al., Cocklebur-structured design of plant fibers for high-performance triboelectric nanogenerators and pressure sensors. Mater. Today Commun. 30, 103208 (2022). https://doi.org/10.1016/j.mtcomm.2022.103208
- R. Liu, X. Kuang, J. Deng, Y.-C. Wang, A.C. Wang et al., Shape memory polymers for body motion energy harvesting and self-powered mechanosensing. Adv. Mater. 30(8), 1705195 (2018). https://doi.org/10.1002/adma.201705195
- H.-Y. Mi, X. Jing, Q. Zheng, L. Fang, H.-X. Huang et al., High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing. Nano Energy 48, 327–336 (2018). https://doi.org/10.1016/j.nanoen.2018.03.050
- Z. Liu, H. Li, B. Shi, Y. Fan, Z.L. Wang et al., Wearable and implantable triboelectric nanogenerators. Adv. Funct. Mater. 29(20), 1808820 (2019). https://doi.org/10.1002/adfm.201808820
- H.H. Hsu, X. Zhang, K. Xu, Y. Wang, Q. Wang et al., Self-powered and plant-wearable hydrogel as led power supply and sensor for promoting and monitoring plant growth in smart farming. Chem. Eng. J. 422, 129499 (2021). https://doi.org/10.1016/j.cej.2021.129499
- B. Chen, W. Tang, Z.L. Wang, Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing. Mater. Today 50, 224–238 (2021). https://doi.org/10.1016/j.mattod.2021.05.017
- B. Chen, Z.L. Wang, Toward a new era of sustainable energy: Advanced triboelectric nanogenerator for harvesting high entropy energy. Small 18(43), 2107034 (2022). https://doi.org/10.1002/smll.202107034
- Y. Wang, J. Zhang, X. Jia, M. Chen, H. Wang et al., TENG-based self-powered device-the heart of life. Nano Energy 119, 109080 (2024). https://doi.org/10.1016/j.nanoen.2023.109080
- X. Meng, C. Cai, B. Luo, T. Liu, Y. Shao et al., Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nano-Micro Lett. 15(1), 124 (2023). https://doi.org/10.1007/s40820-023-01094-6
- L.Z. Rogovina, V.G. Vasil’ev, E.E. Braudo, Definition of the concept of polymer gel. Polym. Sci. Ser. C 50(1), 85–92 (2008). https://doi.org/10.1134/S1811238208010050
- M.A. Kuzina, D.D. Kartsev, A.V. Stratonovich, P.A. Levkin, Organogels versus hydrogels: advantages, challenges, and applications. Adv. Funct. Mater. 33, 2301421 (2023). https://doi.org/10.1002/adfm.202301421
- Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356(6337), eaaf3627 (2017). https://doi.org/10.1126/science.aaf3627
- L. Zeng, X. Lin, P. Li, F.-Q. Liu, H. Guo et al., Recent advances of organogels: from fabrications and functions to applications. Polym. Sci. Ser. C 159, 106417 (2021). https://doi.org/10.1016/j.porgcoat.2021.106417
- J. Yang, Y. Li, Y. Zheng, Y. Xu, Z. Zheng et al., Versatile aerogels for sensors. Small 15(41), 1902826 (2019). https://doi.org/10.1002/smll.201902826
- W.X. Huang, Q.L. Ding, H. Wang, Z.X. Wu, Y.B. Luo et al., Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nat. Commun. 14(1), 5221 (2023). https://doi.org/10.1038/s41467-023-40953-z
- X. Geng, S. Li, L. Mawella-Vithanage, T. Ma, M. Kilani et al., Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nat. Commun. 12(1), 4895 (2021). https://doi.org/10.1038/s41467-021-25192-4
- J. Kim, H. Yoo, V.A. Pham Ba, N. Shin, S. Hong, Dye-functionalized sol-gel matrix on carbon nanotubes for refreshable and flexible gas sensors. Sci. Rep. 8(1), 11958 (2018). https://doi.org/10.1038/s41598-018-30481-y
- K. Yoshida, T. Hayashi, M. Takinoue, H. Onoe, Repeatable detection of Ag+ ions using a DNA aptamer-linked hydrogel biochemical sensor integrated with microfluidic heating system. Sci. Rep. 12(1), 9692 (2022). https://doi.org/10.1038/s41598-022-13970-z
- H. Im, T. Kim, H. Song, J. Choi, J.S. Park et al., High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes. Nat. Commun. 7(1), 10600 (2016). https://doi.org/10.1038/ncomms10600
- T. Sekitani, T. Yokota, K. Kuribara, M. Kaltenbrunner, T. Fukushima et al., Ultraflexible organic amplifier with biocompatible gel electrodes. Nat. Commun. 7(1), 11425 (2016). https://doi.org/10.1038/ncomms11425
- K. Pang, X. Song, Z. Xu, X. Liu, Y. Liu et al., Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 6(46), eabd4045 (2020). https://doi.org/10.1126/sciadv.abd4045
- Y. Cai, J. Shen, C.-W. Yang, Y. Wan, H.-L. Tang et al., Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 6(48), eabb5367 (2020). https://doi.org/10.1126/sciadv.abb5367
- M.T.I. Mredha, Y. Lee, A.V. Rama Varma, T. Gupta, R.R. Manimel Wadu et al., Tardigrade-inspired extremotolerant glycerogels. NPG Asia Mater. 15(1), 22 (2023). https://doi.org/10.1038/s41427-023-00472-1
- H. Na, Y.-W. Kang, C.S. Park, S. Jung, H.-Y. Kim et al., Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 376(6590), 301–307 (2022). https://doi.org/10.1126/science.abm7862
- H. Machrafi, F. Iermano, S. Temsamani, I. Bobinac, C.S. Iorio, Enhanced electrical conductivity and stretchability of ionic-liquid PEDOT:PSS air-cathodes for aluminium-air batteries with long lifetime and high specific energy. Sci. Rep. 12(1), 22107 (2022). https://doi.org/10.1038/s41598-022-26546-8
- S. Oh, J.-I. Cho, B.H. Lee, S. Seo, J.-H. Lee et al., Flexible artificial Si-In-Zn-O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation. Sci. Adv. 7(44), eabg9450 (2021). https://doi.org/10.1126/sciadv.abg9450
- A.K. Mishra, T.J. Wallin, W. Pan, P. Xu, K. Wang et al., Autonomic perspiration in 3D-printed hydrogel actuators. Sci. Robot. 5(38), e3aaz918 (2020). https://doi.org/10.1126/scirobotics.aaz3918
- C. Ni, D. Chen, Y. Yin, X. Wen, X. Chen et al., Shape memory polymer with programmable recovery onset. Nature 622, 748 (2023). https://doi.org/10.1038/s41586-023-06520-8
- H. Cao, L.X. Duan, Y. Zhang, J. Cao, K. Zhang, Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Sig. Transduct. Target. Ther. 6(1), 426 (2021). https://doi.org/10.1038/s41392-021-00830-x
- A. Matsumoto, M. Tanaka, H. Matsumoto, K. Ochi, Y. Moro-oka et al., Synthetic “smart gel” provides glucose-responsive insulin delivery in diabetic mice. Sci. Adv. 3(11), eaaq0723 (2017). https://doi.org/10.1126/sciadv.aaq0723
- M. Carone, M.R. Spalinger, R.A. Gaultney, R. Mezzenga, K. Hlavačková et al., Temperature-triggered in situ forming lipid mesophase gel for local treatment of ulcerative colitis. Nat. Commun. 14(1), 3489 (2023). https://doi.org/10.1038/s41467-023-39013-3
- G. Chen, F. Wang, X. Zhang, Y. Shang, Y. Zhao, Living microecological hydrogels for wound healing. Sci. Adv. 9(21), eadg3478 (2023). https://doi.org/10.1126/sciadv.adg3478
- Z. Xiong, S. Achavananthadith, S. Lian, L.E. Madden, Z.X. Ong et al., A wireless and battery-free wound infection sensor based on DNA hydrogel. Sci. Adv. 7(47), eabj1617 (2021). https://doi.org/10.1126/sciadv.abj1617
- R. Xie, Z. Liang, Y. Ai, W. Zheng, J. Xiong et al., Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes. Nat. Protoc. 16(2), 937–964 (2020). https://doi.org/10.1038/s41596-020-00442-9
- C.S. O’Bryan, T. Bhattacharjee, S. Hart, C.P. Kabb, K.D. Schulze et al., Self-assembled micro-organogels for 3D printing silicone structures. Sci. Adv. 3(5), e1602800 (2017). https://doi.org/10.1126/sciadv.1602800
- J. Tang, Y. He, D. Xu, W. Zhang, Y. Hu et al., Tough, rapid self-recovery and responsive organogel-based ionotronic for intelligent continuous passive motion system. npj Flexible Electron. 7(1), 28 (2023). https://doi.org/10.1038/s41528-023-00259-y
- W. Xu, L.-B. Huang, M.-C. Wong, L. Chen, G. Bai et al., Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors. Adv. Energy Mater. 7(1), 1601529 (2017). https://doi.org/10.1002/aenm.201601529
- F.G. Torres, O.P. Troncoso, G.E. De-la-Torre, Hydrogel-based triboelectric nanogenerators: properties, performance, and applications. Int. J. Energy Res. 46(5), 5603–5624 (2022). https://doi.org/10.1002/er.7585
- Y. Qin, W. Zhang, Y. Liu, J. Zhao, J. Yuan et al., Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy 106, 108079 (2023). https://doi.org/10.1016/j.nanoen.2022.108079
- S.J. Wang, X. Jing, H.Y. Mi, Z. Chen, J. Zou et al., Development and applications of hydrogel-based triboelectric nanogenerators: A mini-review. Polymers 14(7), 1452 (2022). https://doi.org/10.3390/polym14071452
- S. Korkmaz, İA. Kariper, Aerogel based nanogenerators: Production methods, characterizations and applications. Int. J. Energy Res. 44(14), 11088–11110 (2020). https://doi.org/10.1002/er.5694
- M.M. Rastegardoost, O.A. Tafreshi, Z. Saadatnia, S. Ghaffari-Mosanenzadeh, C.B. Park et al., Recent advances on porous materials and structures for high-performance triboelectric nanogenerators. Nano Energy 111, 108365 (2023). https://doi.org/10.1016/j.nanoen.2023.108365
- Y. Wu, Y. Luo, T.J. Cuthbert, A.V. Shokurov, P.K. Chu et al., Hydrogels as soft ionic conductors in flexible and wearable triboelectric nanogenerators. Adv. Sci. 9(11), 2106008 (2022). https://doi.org/10.1002/advs.202106008
- A. Ahmed, M.F. El-Kady, I. Hassan, A. Negm, A.M. Pourrahimi et al., Fire-retardant, self-extinguishing triboelectric nanogenerators. Nano Energy 59, 336 (2019). https://doi.org/10.1016/j.nanoen.2019.02.026
- Z. Saadatnia, S.G. Mosanenzadeh, T. Li, E. Esmailzadeh, H.E. Naguib, Polyurethane aerogel-based triboelectric nanogenerator for high performance energy harvesting and biomechanical sensing. Nano Energy 65, 104019 (2019). https://doi.org/10.1016/j.nanoen.2019.104019
- H. He, J. Liu, Y. Wang, Y. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16(2), 2953–2967 (2022). https://doi.org/10.1021/acsnano.1c10144
- H. Sun, Y. Zhao, S. Jiao, C. Wang, Y. Jia et al., Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv. Funct. Mater. 31(24), 2101696 (2021). https://doi.org/10.1002/adfm.202101696
- F. Sheng, B. Zhang, Y. Zhang, Y. Li, R. Cheng et al., Ultrastretchable organogel/silicone fiber-helical sensors for self-powered implantable ligament strain monitoring. ACS Nano 16(7), 10958–10967 (2022). https://doi.org/10.1021/acsnano.2c03365
- T. Jing, B. Xu, Y. Yang, Organogel electrode based continuous fiber with large-scale production for stretchable triboelectric nanogenerator textiles. Nano Energy 84, 105867 (2021). https://doi.org/10.1016/j.nanoen.2021.105867
- T. Jing, S. Wang, H. Yuan, Y. Yang, M. Xue et al., Interfacial roughness enhanced gel/elastomer interfacial bonding enables robust and stretchable triboelectric nanogenerator for reliable energy harvesting. Small 19, 2206528 (2023). https://doi.org/10.1002/smll.202206528
- Y. Ren, J. Guo, Z. Liu, Z. Sun, Y. Wu et al., Ionic liquid–based click-ionogels. Sci. Adv. 5(8), eaax0648 (2019). https://doi.org/10.1126/sciadv.aax0648
- K. Hu, Z. Zhao, Y. Wang, L. Yu, K. Liu et al., A tough organohydrogel-based multiresponsive sensor for a triboelectric nanogenerator and supercapacitor toward wearable intelligent devices. J. Mater. Chem. A 10(22), 12092–12103 (2022). https://doi.org/10.1039/D2TA01503J
- M. Zhang, R. Yu, X. Tao, Y. He, X. Li et al., Mechanically robust and highly conductive ionogels for soft ionotronics. Adv. Funct. Mater. 33(10), 2208083 (2023). https://doi.org/10.1002/adfm.202208083
- L. Sun, H. Huang, Q. Ding, Y. Guo, W. Sun et al., Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv. Fiber Mater. 4(1), 98–107 (2022). https://doi.org/10.1007/s42765-021-00086-8
- W. Zhan, H. Zhang, X. Lyu, Z.-Z. Luo, Y. Yu et al., An ultra-tough and super-stretchable ionogel with multi functions towards flexible iontronics. Sci. China Mater. 66(4), 1539–1550 (2023). https://doi.org/10.1007/s40843-022-2286-5
- Q. Zheng, L. Fang, H. Guo, K. Yang, Z. Cai et al., Highly porous polymer aerogel film-based triboelectric nanogenerators. Adv. Funct. Mater. 28(13), 1706365 (2018). https://doi.org/10.1002/adfm.201706365
- Y. Mi, Z. Zhao, H. Wu, Y. Lu, N. Wang, Porous polymer materials in triboelectric nanogenerators: a review. Polymers 15(22), 4383 (2023). https://doi.org/10.3390/polym15224383
- B. Luo, C. Cai, T. Liu, X. Meng, X. Zhuang et al., Multiscale structural nanocellulosic triboelectric aerogels induced by hofmeister effect. Adv. Funct. Mater. 33, 2306810 (2023). https://doi.org/10.1002/adfm.202306810
- Y. Luo, M. Yu, Y. Zhang, Y. Wang, L. Long et al., Highly sensitive strain sensor and self-powered triboelectric nanogenerator using a fully physical crosslinked double-network conductive hydrogel. Nano Energy 104, 107955 (2022). https://doi.org/10.1016/j.nanoen.2022.107955
- Z. Wang, C. Chen, L. Fang, B. Cao, X. Tu et al., Biodegradable, conductive, moisture-proof, and dielectric enhanced cellulose-based triboelectric nanogenerator for self-powered human-machine interface sensing. Nano Energy 107, 108151 (2023). https://doi.org/10.1016/j.nanoen.2022.108151
- X. Pu, M. Liu, X. Chen, J. Sun, C. Du et al., Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017). https://doi.org/10.1126/sciadv.1700015
- M. Chi, S. Zhang, T. Liu, Y. Liu, B. Luo et al., Tunable anisotropic structural aramid triboelectric aerogels enabled by magnetic manipulation. Adv. Funct. Mater. 33, 2310280 (2023). https://doi.org/10.1002/adfm.202310280
- Y. Qin, J. Mo, Y. Liu, S. Zhang, J. Wang et al., Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 32(27), 2201846 (2022). https://doi.org/10.1002/adfm.202201846
- Q. Fu, Y. Liu, T. Liu, J. Mo, W. Zhang et al., Air-permeable cellulosic triboelectric materials for self-powered healthcare products. Nano Energy 102, 107739 (2022). https://doi.org/10.1016/j.nanoen.2022.107739
- D. Wang, D. Zhang, M. Tang, H. Zhang, T. Sun et al., Ethylene chlorotrifluoroethylene/hydrogel-based liquid-solid triboelectric nanogenerator driven self-powered MXene based sensor system for marine environmental monitoring. Nano Energy 100, 107509 (2022). https://doi.org/10.1016/j.nanoen.2022.107509
- H. He, Y. Qin, J. Liu, Y. Wang, J. Wang et al., A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene silver nanowires aerogel fiber for fire protection used in firefighting clothing. Chem. Eng. J. 460, 141661 (2023). https://doi.org/10.1016/j.cej.2023.141661
- J. Yang, J. An, Y. Sun, J. Zhang, L. Zu et al., Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human-machine interaction in nursing and patient safety. Nano Energy 97, 107199 (2022). https://doi.org/10.1016/j.nanoen.2022.107199
- Z. Xu, F. Zhou, H. Yan, G. Gao, H. Li et al., Anti-freezing organohydrogel triboelectric nanogenerator toward highly efficient and flexible human-machine interaction at −30 °C. Nano Energy 90, 106614 (2021). https://doi.org/10.1016/j.nanoen.2021.106614
- S.-H. Jeong, Y. Lee, M.-G. Lee, W.J. Song, J.-U. Park et al., Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator. Nano Energy 79, 105463 (2021). https://doi.org/10.1016/j.nanoen.2020.105463
- Y. Li, Z. Tian, X.Z. Gao, H.Y. Zhao, X. Li et al., All-weather self-powered intelligent traffic monitoring system based on a conjunction of self-healable piezoresistive sensors and triboelectric nanogenerators. Adv. Funct. Mater. 33, 2308845 (2023). https://doi.org/10.1002/adfm.202308845
- M.T. Rahman, M.S. Rahman, H. Kumar, K. Kim, S. Kim, Metal-organic framework reinforced highly stretchable and durable conductive hydrogel-based triboelectric nanogenerator for biomotion sensing and wearable human-machine interfaces. Adv. Funct. Mater. 33, 2303471 (2023). https://doi.org/10.1002/adfm.202303471
- D. Sun, Y. Feng, S. Sun, J. Yu, S. Jia et al., Transparent, self-adhesive, conductive organohydrogels with fast gelation from lignin-based self-catalytic system for extreme environment-resistant triboelectric nanogenerators. Adv. Funct. Mater. 32(28), 2201335 (2022). https://doi.org/10.1002/adfm.202201335
- S. Hasan, A.Z. Kouzani, S. Adams, J. Long, M.A.P. Mahmud, Comparative study on the contact-separation mode triboelectric nanogenerator. J. Electrost. 116, 103685 (2022). https://doi.org/10.1016/j.elstat.2022.103685
- Y. Shao, G. Du, B. Luo, T. Liu, J. Zhao et al., A tough monolithic-integrated triboelectric bioplastic enabled by dynamic covalent chemistry. Adv. Mater. 36, 2311993 (2024). https://doi.org/10.1002/adma.202311993
- Q. Tang, Z. Wang, W. Chang, J. Sun, W. He et al., Interface static friction enabled ultra-durable and high output sliding mode triboelectric nanogenerator. Adv. Funct. Mater. 32(26), 2202055 (2022). https://doi.org/10.1002/adfm.202202055
- W. Akram, Q. Chen, G. Xia, J. Fang, A review of single electrode triboelectric nanogenerators. Nano Energy 106, 108043 (2023). https://doi.org/10.1016/j.nanoen.2022.108043
- W. Paosangthong, M. Wagih, R. Torah, S. Beeby, Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure. Nano Energy 66, 104148 (2019). https://doi.org/10.1016/j.nanoen.2019.104148
- Y. Wu, T.J. Cuthbert, Y. Luo, P.K. Chu, C. Menon, Cross-link-dependent ionogel-based triboelectric nanogenerators with slippery and antireflective properties. Small 19(24), 2301381 (2023). https://doi.org/10.1002/smll.202301381
- L.-B. Huang, W. Xu, G. Bai, M.-C. Wong, Z. Yang et al., Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 30, 36–42 (2016). https://doi.org/10.1016/j.nanoen.2016.09.032
- Y. Xu, W. Yang, X. Lu, Y. Yang, J. Li et al., Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring. ACS Nano 15(10), 16368–16375 (2021). https://doi.org/10.1021/acsnano.1c05685
- H. Yang, M. Deng, Q. Tang, W. He, C. Hu et al., A nonencapsulative pendulum-like paper–based hybrid nanogenerator for energy harvesting. Adv. Energy Mater. 9(33), 1901149 (2019). https://doi.org/10.1002/aenm.201901149
- R. Walden, I. Aazem, A. Babu, S.C. Pillai, Textile-triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices. Chem. Eng. J. 451, 138741 (2023). https://doi.org/10.1016/j.cej.2022.138741
- M. Zhu, J. Zhang, Z. Wang, X. Yu, Y. Zhang et al., Double-blade structured triboelectric–electromagnetic hybrid generator with aerodynamic enhancement for breeze energy harvesting. Appl. Energy 326, 119970 (2022). https://doi.org/10.1016/j.apenergy.2022.119970
- K. Zhao, C. Liu, T. Shao, Y. Fan, R. Chen et al., Enhanced thermoelectric performance of Bi2Te3 by carbon nanotubes and silicate aerogel co-doping toward ocean energy harvesting. Mater. Today Sustain. 23, 100476 (2023). https://doi.org/10.1016/j.mtsust.2023.100476
- C. Shan, W. He, H. Wu, S. Fu, K. Li et al., Dual mode TENG with self-voltage multiplying circuit for blue energy harvesting and water wave monitoring. Adv. Funct. Mater. 33(47), 2305768 (2023). https://doi.org/10.1002/adfm.202305768
- C. Liu, J. Liu, J. Liu, C. Zhao, B. Shan et al., A wind-driven rotational direct current triboelectric nanogenerator for self-powered inactivation of seawater microorganisms. Mater. Today Energy 26, 100991 (2022). https://doi.org/10.1016/j.mtener.2022.100991
- S. Shen, J. Fu, J. Yi, L. Ma, F. Sheng et al., High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13(1), 194 (2021). https://doi.org/10.1007/s40820-021-00695-3
- D. Tan, Q. Zeng, X. Wang, S. Yuan, Y. Luo et al., Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 14(1), 124 (2022). https://doi.org/10.1007/s40820-022-00866-w
- H. Guo, X. Pu, J. Chen, Y. Meng, M.-H. Yeh et al., A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3(20), eaat2516 (2018). https://doi.org/10.1126/scirobotics.aat2516
- M. Ma, Z. Zhang, Z. Zhao, Q. Liao, Z. Kang et al., Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric multi-effect coupling mechanism. Nano Energy 66, 104105 (2019). https://doi.org/10.1016/j.nanoen.2019.104105
- M. Mariello, L. Fachechi, F. Guido, M. De Vittorio, Conformal, ultra-thin skin-contact-actuated hybrid piezo/triboelectric wearable sensor based on aln and parylene-encapsulated elastomeric blend. Adv. Funct. Mater. 31(27), 2101047 (2021). https://doi.org/10.1002/adfm.202101047
- Y. Xi, P. Tan, Z. Li, Y. Fan, Self-powered wearable iot sensors as human-machine interfaces. Soft Sci. (2023). https://doi.org/10.20517/ss.2023.13
- F. Xing, Z. Ou, X. Gao, B. Chen, Z.L. Wang, Harvesting electrical energy from high temperature environment by aerogel nano-covered triboelectric yarns. Adv. Funct. Mater. 32(49), 2205275 (2022). https://doi.org/10.1002/adfm.202205275
- H. Luo, J. Du, P. Yang, Y. Shi, Z. Liu et al., Human–machine interaction via dual modes of voice and gesture enabled by triboelectric nanogenerator and machine learning. ACS Appl. Mater. Interfaces 15(13), 17009–17018 (2023). https://doi.org/10.1021/acsami.3c00566
- Y. Song, J. Min, Y. Yu, H. Wang, Y. Yang et al., Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 6(40), eaay9842 (2020). https://doi.org/10.1126/sciadv.aay9842
- X. Wei, B. Wang, Z. Wu, Z.L. Wang, An open-environment tactile sensing system: toward simple and efficient material identification. Adv. Mater. 34(29), 2203073 (2022). https://doi.org/10.1002/adma.202203073
- Y.-J. Fan, M.-Z. Huang, Y.-C. Hsiao, Y.-W. Huang, C.-Z. Deng et al., Enhancing the sensitivity of portable biosensors based on self-powered ion concentration polarization and electrical kinetic trapping. Nano Energy 69, 104407 (2020). https://doi.org/10.1016/j.nanoen.2019.104407
- Z. Wen, Q. Shen, X. Sun, Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 9(4), 45 (2017). https://doi.org/10.1007/s40820-017-0146-4
- S. Shen, J. Yi, Z. Sun, Z. Guo, T. He et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14(1), 225 (2022). https://doi.org/10.1007/s40820-022-00965-8
- B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15(1), 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
- H. Lei, H. Ji, X. Liu, B. Lu, L. Xie et al., Self-assembled porous-reinforcement microstructure-based flexible triboelectric patch for remote healthcare. Nano-Micro Lett. 15(1), 109 (2023). https://doi.org/10.1007/s40820-023-01081-x
- Y. Zhu, B. Luo, X. Zou, T. Liu, S. Zhang et al., Triboelectric probes integrated with deep learning for real-time online monitoring of suspensions in liquid transport. Nano Energy 122, 109340 (2024). https://doi.org/10.1016/j.nanoen.2024.109340
- Y. Zhu, Y. Xia, M. Wu, W. Guo, C. Jia et al., Wearable, freezing-tolerant, and self-powered electroluminescence system for long-term cold-resistant displays. Nano Energy 98, 107309 (2022). https://doi.org/10.1016/j.nanoen.2022.107309
- Y.-W. Cai, X.-N. Zhang, G.-G. Wang, G.-Z. Li, D.-Q. Zhao et al., A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for e-skin. Nano Energy 81, 105663 (2021). https://doi.org/10.1016/j.nanoen.2020.105663
- Y.-W. Cai, G.-G. Wang, Y.-C. Mei, D.-Q. Zhao, J.-J. Peng et al., Self-healable, super-stretchable and shape-adaptive triboelectric nanogenerator based on double cross-linked PDMS for electronic skins. Nano Energy 102, 107683 (2022). https://doi.org/10.1016/j.nanoen.2022.107683
- H.L. Wang, Z.H. Guo, X. Pu, Z.L. Wang, Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nano-Micro Lett. 14(1), 86 (2022). https://doi.org/10.1007/s40820-022-00834-4
- C. Cai, X. Meng, L. Zhang, B. Luo, Y. Liu et al., High strength and toughness polymeric triboelectric materials enabled by dense crystal-domain cross-linking. Nano Lett. 24(12), 3826–3834 (2024). https://doi.org/10.1021/acs.nanolett.4c00918
- S. Hu, J. Han, Z. Shi, K. Chen, N. Xu et al., Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett. 14(1), 115 (2022). https://doi.org/10.1007/s40820-022-00858-w
- Y. Liu, C. Zhao, Y. Xiong, J. Yang, H. Jiao et al., Versatile ion-gel fibrous membrane for energy-harvesting iontronic skin. Adv. Funct. Mater. 33(37), 2303723 (2023). https://doi.org/10.1002/adfm.202303723
- F. Wu, C. Li, Y. Yin, R. Cao, H. Li et al., A flexible, lightweight, and wearable triboelectric nanogenerator for energy harvesting and self-powered sensing. Adv. Mater. Technol. 4(1), 1800216 (2018). https://doi.org/10.1002/admt.201800216
- Y. Lee, S.H. Cha, Y.-W. Kim, D. Choi, J.-Y. Sun, Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nat. Commun. 9(1), 1804 (2018). https://doi.org/10.1038/s41467-018-03954-x
- M. Wu, X. Wang, Y. Xia, Y. Zhu, S. Zhu et al., Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 95, 106967 (2022). https://doi.org/10.1016/j.nanoen.2022.106967
- H. Kim, S. Choi, Y. Hong, J. Chung, J. Choi et al., Biocompatible and biodegradable triboelectric nanogenerators based on hyaluronic acid hydrogel film. Appl. Mater. Today 22, 100920 (2021). https://doi.org/10.1016/j.apmt.2020.100920
- J. Yue, C. Li, X. Ji, Y. Tao, J. Lu et al., Highly tough and conductive hydrogel based on defect-patched reduction graphene oxide for high-performance self-powered flexible sensing micro-system. Chem. Eng. J. 466, 143358 (2023). https://doi.org/10.1016/j.cej.2023.143358
- R. Li, Z. Xu, L. Li, J. Wei, W. Wang et al., Breakage-resistant hydrogel electrode enables ultrahigh mechanical reliability for triboelectric nanogenerators. Chem. Eng. J. 454, 140261 (2023). https://doi.org/10.1016/j.cej.2022.140261
- X. Guo, F. Yang, X. Sun, Y. Bai, G. Liu et al., Anti-freezing self-adhesive self-healing degradable touch panel with ultra-stretchable performance based on transparent triboelectric nanogenerators. Adv. Funct. Mater. 32(31), 2201230 (2022). https://doi.org/10.1002/adfm.202201230
- T. Liu, M. Liu, S. Dou, J. Sun, Z. Cong et al., Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 12(3), 2818–2826 (2018). https://doi.org/10.1021/acsnano.8b00108
- P. Chen, Q. Wang, X. Wan, M. Yang, C. Liu et al., Wireless electrical stimulation of the vagus nerves by ultrasound-responsive programmable hydrogel nanogenerators for anti-inflammatory therapy in sepsis. Nano Energy 89, 106327 (2021). https://doi.org/10.1016/j.nanoen.2021.106327
- P. Kanokpaka, Y.-H. Chang, C.-C. Chang, M. Rinawati, P.-C. Wang et al., Enabling glucose adaptive self-healing hydrogel based triboelectric biosensor for tracking a human perspiration. Nano Energy 112, 108513 (2023). https://doi.org/10.1016/j.nanoen.2023.108513
- T. Jing, B. Xu, Y. Yang, M. Li, Y. Gao, Organogel electrode enables highly transparent and stretchable triboelectric nanogenerators of high power density for robust and reliable energy harvesting. Nano Energy 78, 105373 (2020). https://doi.org/10.1016/j.nanoen.2020.105373
- P. Cui, Y. Ge, X. Yao, J. Wang, J. Zhang et al., Slippery contact on organogel enabling droplet energy harvest. Nano Energy 109, 108286 (2023). https://doi.org/10.1016/j.nanoen.2023.108286
- T. Huang, Y. Long, Z. Dong, Q. Hua, J. Niu et al., Ultralight, elastic, hybrid aerogel for flexible/wearable piezoresistive sensor and solid–solid/gas–solid coupled triboelectric nanogenerator. Adv. Sci. 9(34), 2204519 (2022). https://doi.org/10.1002/advs.202204519
- Z. Qian, R. Li, J. Guo, Z. Wang, X. Li et al., Triboelectric nanogenerators made of polybenzazole aerogels as fire-resistant negative tribo-materials. Nano Energy 64, 103900 (2019). https://doi.org/10.1016/j.nanoen.2019.103900
- C. Gao, W. Zhang, T. Liu, B. Luo, C. Cai et al., Hierarchical porous triboelectric aerogels enabled by heterointerface engineering. Nano Energy 121, 109223 (2024). https://doi.org/10.1016/j.nanoen.2023.109223
- Y. Long, B. Jiang, T. Huang, Y. Liu, J. Niu et al., Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics. Adv. Funct. Mater. 33(41), 2304625 (2023). https://doi.org/10.1002/adfm.202304625
- K. Banaś, J. Harasym, Natural gums as oleogelators. Int. J. Mol. Sci. 22(23), 12977 (2021). https://doi.org/10.3390/ijms222312977
- S. Sivakanthan, S. Fawzia, T. Madhujith, A. Karim, Synergistic effects of oleogelators in tailoring the properties of oleogels: a review. Rev. Food Sci. Food Saf. 21(4), 3507–3539 (2022). https://doi.org/10.1111/1541-4337.12966
- Y. Wang, X. Yao, S. Wu, Q. Li, J. Lv et al., Bioinspired solid organogel materials with a regenerable sacrificial alkane surface layer. Adv. Mater. 29(26), 1700865 (2017). https://doi.org/10.1002/adma.201700865
- B. Yiming, X. Guo, N. Ali, N. Zhang, X. Zhang et al., Ambiently and mechanically stable ionogels for soft ionotronics. Adv. Funct. Mater. 31(33), 2102773 (2021). https://doi.org/10.1002/adfm.202102773
- Z. Gao, T. Xu, X. Miao, J. Lu, X. Zhu et al., A thermal-driven self-replenishing slippery coating. Surf. Interfaces 24, 101022 (2021). https://doi.org/10.1016/j.surfin.2021.101022
- C. Urata, H. Nagashima, B.D. Hatton, A. Hozumi, Transparent organogel films showing extremely efficient and durable anti-icing performance. ACS Appl. Mater. Interfaces 13(24), 28925–28937 (2021). https://doi.org/10.1021/acsami.1c06815
- Y. Bai, L. Xu, S.Q. Lin, J.J. Luo, H.F. Qin et al., Charge pumping strategy for rotation and sliding type triboelectric nanogenerators. Adv. Energy Mater. 10(21), 2000605 (2020). https://doi.org/10.1002/aenm.202000605
- Y. Qian, J. Nie, X. Ma, Z. Ren, J. Tian et al., Octopus tentacles inspired triboelectric nanogenerators for harvesting mechanical energy from highly wetted surface. Nano Energy 60, 493–502 (2019). https://doi.org/10.1016/j.nanoen.2019.03.068
- Z. Zhou, W. Yuan, Functionally integrated conductive organohydrogel sensor for wearable motion detection, triboelectric nanogenerator and non-contact sensing. Compos. A 172, 107603 (2023). https://doi.org/10.1016/j.compositesa.2023.107603
- B. Wang, L. Dai, L.A. Hunter, L. Zhang, G. Yang et al., A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications. Carbohydr. Polym. 268, 118210 (2021). https://doi.org/10.1016/j.carbpol.2021.118210
- D. Yang, Y. Ni, X. Kong, S. Li, X. Chen et al., Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment. ACS Nano 15(9), 14653–14661 (2021). https://doi.org/10.1021/acsnano.1c04384
- C. Qian, L. Li, M. Gao, H. Yang, Z. Cai et al., All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy 64, 103885 (2019). https://doi.org/10.1016/j.nanoen.2019.103885
- Y. Cheng, W. Zhu, X. Lu, C. Wang, Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy 98, 107229 (2022). https://doi.org/10.1016/j.nanoen.2022.107229
- Z. Saadatnia, S.G. Mosanenzadeh, E. Esmailzadeh, H.E. Naguib, A high performance triboelectric nanogenerator using porous polyimide aerogel film. Sci. Rep. 9, 1370 (2019). https://doi.org/10.1038/s41598-018-38121-1
- Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z
- F.G. Torres, O.P. Troncoso, G.E. De-la-Torre, Hydrogel-based triboelectric nanogenerators: properties, performance, and applications. Int. J. Energy Res. 46(5), 5603–5624 (2021). https://doi.org/10.1002/er.7585
- Y. Zhang, Y. Tan, J. Lao, H. Gao, J. Yu, Hydrogels for flexible electronics. ACS Nano 17(11), 9681–9693 (2023). https://doi.org/10.1021/acsnano.3c02897
- L. Hu, P.L. Chee, S. Sugiarto, Y. Yu, C. Shi et al., Hydrogel-based flexible electronics. Adv. Mater. 35(14), 2205326 (2023). https://doi.org/10.1002/adma.202205326
- Y. Yang, L. Sha, H. Zhao, Z. Guo, M. Wu et al., Recent advances in cellulose microgels: preparations and functionalized applications. Adv. Colloid Interface Sci. 311, 102815 (2023). https://doi.org/10.1016/j.cis.2022.102815
- H. Yin, F. Liu, T. Abdiryim, X. Liu, Self-healing hydrogels: from synthesis to multiple applications. ACS Mater. Lett. 5(7), 1787–1830 (2023). https://doi.org/10.1021/acsmaterialslett.3c00320
- Y. Ohm, C. Pan, M.J. Ford, X. Huang, J. Liao et al., Publisher correction: an electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat. Electron. 4(4), 313–313 (2021). https://doi.org/10.1038/s41928-021-00571-3
- H. Peng, Y. Xin, J. Xu, H. Liu, J. Zhang, Ultra-stretchable hydrogels with reactive liquid metals as asymmetric force-sensors. Mater. Horiz. 6(3), 618–625 (2019). https://doi.org/10.1039/C8MH01561A
- M. Wang, H. Chen, X. Li, G. Wang, C. Peng et al., An extremely transparent and multi-responsive healable hydrogel strain sensor. J. Mater. Chem. A 10(45), 24096–24105 (2022). https://doi.org/10.1039/D2TA06218F
- J. Park, N. Jeon, S. Lee, G. Choe, E. Lee et al., Conductive hydrogel constructs with three-dimensionally connected graphene networks for biomedical applications. Chem. Eng. J. 446, 137344 (2022). https://doi.org/10.1016/j.cej.2022.137344
- X. Sui, H. Guo, C. Cai, Q. Li, C. Wen et al., Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities. Chem. Eng. J. 419, 129478 (2021). https://doi.org/10.1016/j.cej.2021.129478
- X. Yao, S. Zhang, L. Qian, N. Wei, V. Nica et al., Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors. Adv. Funct. Mater. 32(33), 2204565 (2022). https://doi.org/10.1002/adfm.202204565
- B. Zhou, Y. Li, Y. Chen, C. Gao, J. Li et al., In situ synthesis of highly stretchable, freeze-tolerant silk-polyelectrolyte double-network hydrogels for multifunctional flexible sensing. Chem. Eng. J. 446, 137405 (2022). https://doi.org/10.1016/j.cej.2022.137405
- D.L. Gan, L. Han, M.H. Wang, W.S. Xing, T. Xu et al., Conductive and tough hydrogels based on biopolymer molecular templates for controlling in situ formation of polypyrrole nanorods. ACS Appl. Mater. Interfaces 10(42), 36218–36228 (2018). https://doi.org/10.1021/acsami.8b10280
- X. Guo, A. Facchetti, The journey of conducting polymers from discovery to application. Nat. Mater. 19(9), 922–928 (2020). https://doi.org/10.1038/s41563-020-0778-5
- X. Luo, L. Zhu, Y.C. Wang, J. Li, J. Nie et al., A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 31(38), 2104928 (2021). https://doi.org/10.1002/adfm.202104928
- Y.- Ba, J.-F. Bao, X.-T. Liu, X.-W. Li, H.-T. Deng, D.-l Wen, X.-S. Zhang, Electron-ion coupling mechanism to construct stable output performance nanogenerator. Research (2021). https://doi.org/10.34133/2021/9817062
- S. Fuchs, K. Shariati, M. Ma, Specialty tough hydrogels and their biomedical applications. Adv. Healthc. Mater. 9(2), 1901396 (2020). https://doi.org/10.1002/adhm.201901396
- C.W. Peak, J.J. Wilker, G. Schmidt, A review on tough and sticky hydrogels. Colloid Polym. Sci. 291(9), 2031–2047 (2013). https://doi.org/10.1007/s00396-013-3021-y
- F. Yang, J. Zhao, W.J. Koshut, J. Watt, J.C. Riboh et al., A synthetic hydrogel composite with the mechanical behavior and durability of cartilage. Adv. Funct. Mater. 30(36), 2003451 (2020). https://doi.org/10.1002/adfm.202003451
- J. Li, Z. Suo, J.J. Vlassak, Stiff, strong, and tough hydrogels with good chemical stability. J. Mater. Chem. B 2(39), 6708–6713 (2014). https://doi.org/10.1039/C4TB01194E
- Z. Wang, Y. Cong, J. Fu, Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J. Mater. Chem. B 8(16), 3437–3459 (2020). https://doi.org/10.1039/C9TB02570G
- Y. Han, K. Zhao, G. Chen, R.A. Li, C. Zhou et al., A mechanically strong and self-adhesive all-solid-state ionic conductor based on the double-network strategy. J. Mater. Chem. A 11(36), 19637–19644 (2023). https://doi.org/10.1039/D3TA02874G
- J. Kim, G. Zhang, M. Shi, Z. Suo, Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374(6564), 212–216 (2021). https://doi.org/10.1126/science.abg6320
- L.-B. Huang, X. Dai, Z. Sun, M.-C. Wong, S.-Y. Pang et al., Environment-resisted flexible high performance triboelectric nanogenerators based on ultrafast self-healing non-drying conductive organohydrogel. Nano Energy 82, 105724 (2021). https://doi.org/10.1016/j.nanoen.2020.105724
- A. Khan, S. Ginnaram, C.-H. Wu, H.-W. Lu, Y.-F. Pu et al., Fully self-healable, highly stretchable, and anti-freezing supramolecular gels for energy-harvesting triboelectric nanogenerator and self-powered wearable electronics. Nano Energy 90, 106525 (2021). https://doi.org/10.1016/j.nanoen.2021.106525
- Y.C. Lai, H.M. Wu, H.C. Lin, C.L. Chang, H.H. Chou et al., Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv. Funct. Mater. 29(40), 1904626 (2019). https://doi.org/10.1002/adfm.201904626
- X. Jing, P. Feng, Z. Chen, Z. Xie, H. Li et al., Highly stretchable, self-healable, freezing-tolerant, and transparent polyacrylic acid/nanochitin composite hydrogel for self-powered multifunctional sensors. ACS Sustain. Chem. Eng. 9(28), 9209–9220 (2021). https://doi.org/10.1021/acssuschemeng.1c00949
- L. Jiang, C. Liu, K. Mayumi, K. Kato, H. Yokoyama et al., Highly stretchable and instantly recoverable slide-ring gels consisting of enzymatically synthesized polyrotaxane with low host coverage. Chem. Mater. 30(15), 5013–5019 (2018). https://doi.org/10.1021/acs.chemmater.8b01208
- D. Bao, Z. Wen, J. Shi, L. Xie, H. Jiang et al., An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature. J. Mater. Chem. A 8(27), 13787–13794 (2020). https://doi.org/10.1039/D0TA03215H
- X. Dai, Y. Long, B. Jiang, W. Guo, W. Sha et al., Ultra-antifreeze, ultra-stretchable, transparent, and conductive hydrogel for multi-functional flexible electronics as strain sensor and triboelectric nanogenerator. Nano Res. 15(6), 5461–5468 (2022). https://doi.org/10.1007/s12274-022-4153-5
- Z. Liu, Y. Faraj, X.J. Ju, W. Wang, R. Xie et al., Nanocomposite smart hydrogels with improved responsiveness and mechanical properties: a mini review. J. Polym. Sci. Part B Polym. Phys. 56(19), 1306–1313 (2018). https://doi.org/10.1002/polb.24723
- F.G. Downs, D.J. Lunn, M.J. Booth, J.B. Sauer, W.J. Ramsay et al., Multi-responsive hydrogel structures from patterned droplet networks. Nat. Chem. 12(4), 363–371 (2020). https://doi.org/10.1038/s41557-020-0444-1
- C. Li, G.C. Lau, H. Yuan, A. Aggarwal, V.L. Dominguez et al., Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Sci. Robot. 5(49), eabb9822 (2020). https://doi.org/10.1126/scirobotics.abb9822
- H. Zhao, S. Pan, A. Natalia, X. Wu, C.-A.J. Ong et al., A hydrogel-based mechanical metamaterial for the interferometric profiling of extracellular vesicles in patient samples. Nat. Biomed. Eng. 7(2), 135–148 (2022). https://doi.org/10.1038/s41551-022-00954-7
- R. Wang, X. Jin, Q. Wang, Q. Zhang, H. Yuan et al., A transparent, flexible triboelectric nanogenerator for anti-counterfeiting based on photothermal effect. Matter 6(5), 1514–1529 (2023). https://doi.org/10.1016/j.matt.2023.02.013
- P. Terech, R.G. Weiss, Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97(8), 3133–3160 (1997). https://doi.org/10.1021/cr9700282
- J.V. Alemán, A.V. Chadwick, J. He, M. Hess, K. Horie et al., Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl. Chem. 79(10), 1801–1829 (2007). https://doi.org/10.1351/pac200779101801
- Z. Luo, W. Li, J. Yan, J. Sun, Roles of ionic liquids in adjusting nature of ionogels: a mini review. Adv. Funct. Mater. 32(32), 2203988 (2022). https://doi.org/10.1002/adfm.202203988
- Y. Wu, J. Qu, X. Zhang, K. Ao, Z. Zhou et al., Biomechanical energy harvesters based on ionic conductive organohydrogels via the hofmeister effect and electrostatic interaction. ACS Nano 15(8), 13427–13435 (2021). https://doi.org/10.1021/acsnano.1c03830
- J. Liu, B. Zhang, P. Zhang, K. Zhao, Z. Lu et al., Protein crystallization-mediated self-strengthening of high-performance printable conducting organohydrogels. ACS Nano 16(11), 17998–18008 (2022). https://doi.org/10.1021/acsnano.2c07823
- Y. Zhang, Q. Song, Y. Tian, G. Zhao, Y. Zhou, Insights into biomacromolecule-based alcogels: a review on their synthesis, characteristics and applications. Food Hydrocoll. 128, 107574 (2022). https://doi.org/10.1016/j.foodhyd.2022.107574
- G. Choudhary, J. Dhariwal, M. Saha, S. Trivedi, M.K. Banjare et al., Ionic liquids: environmentally sustainable materials for energy conversion and storage applications. Environ. Sci. Pollut. Res. 31, 10296–10316 (2024). https://doi.org/10.1007/s11356-023-25468-w
- D. Wang, S. Zhao, R. Yin, L. Li, Z. Lou et al., Recent advanced applications of ion-gel in ionic-gated transistor. npj Flex. Electron. 5(1), 13 (2021). https://doi.org/10.1038/s41528-021-00110-2
- K.S. Egorova, E.G. Gordeev, V.P. Ananikov, Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev. 117(10), 7132–7189 (2017). https://doi.org/10.1021/acs.chemrev.6b00562
- Y. Gao, W. Zhang, L. Li, Z. Wang, Y. Shu et al., Ionic liquid-based gels for biomedical applications. Chem. Eng. J. 452, 139248 (2023). https://doi.org/10.1016/j.cej.2022.139248
- M. Wang, P. Zhang, M. Shamsi, J.L. Thelen, W. Qian et al., Tough and stretchable ionogels by in situ phase separation. Nat. Mater. 21(3), 359–365 (2022). https://doi.org/10.1038/s41563-022-01195-4
- Q. Ding, Z. Wu, K. Tao, Y. Wei, W. Wang et al., Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. Mater. Horiz. 9(5), 1356–1386 (2022). https://doi.org/10.1039/D1MH01871J
- D. Zhang, Y. Liu, Y. Liu, Y. Peng, Y. Tang et al., A general crosslinker strategy to realize intrinsic frozen resistance of hydrogels. Adv. Mater. 33(42), 2104006 (2021). https://doi.org/10.1002/adma.202104006
- Z. He, C. Wu, M. Hua, S. Wu, D. Wu et al., Bioinspired multifunctional anti-icing hydrogel. Matter 2(3), 723–734 (2020). https://doi.org/10.1016/j.matt.2019.12.017
- Z. Wu, W. Shi, H. Ding, B. Zhong, W. Huang et al., Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing. J. Mater. Chem. C 9(39), 13668–13679 (2021). https://doi.org/10.1039/D1TC02506F
- J.-Y. Yu, S.E. Moon, J.H. Kim, S.M. Kang, Ultrasensitive and highly stretchable multiple-crosslinked ionic hydrogel sensors with long-term stability. Nano-Micro Lett. 15(1), 51 (2023). https://doi.org/10.1007/s40820-023-01015-7
- L. Zhu, J. Xu, J. Song, M. Qin, S. Gu et al., Transparent, stretchable and anti-freezing hybrid double-network organohydrogels. Sci. China Mater. 65(8), 2207–2216 (2022). https://doi.org/10.1007/s40843-021-1961-1
- X. Zhang, C. Cui, S. Chen, L. Meng, H. Zhao et al., Adhesive ionohydrogels based on ionic liquid/water binary solvents with freezing tolerance for flexible ionotronic devices. Chem. Mater. 34(3), 1065–1077 (2022). https://doi.org/10.1021/acs.chemmater.1c03386
- L. Sun, S. Chen, Y. Guo, J. Song, L. Zhang et al., Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range. Nano Energy 63, 103847 (2019). https://doi.org/10.1016/j.nanoen.2019.06.043
- J. Shen, Z. Li, J. Yu, B. Ding, Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 40, 282–288 (2017). https://doi.org/10.1016/j.nanoen.2017.08.035
- B. Jiang, Y. Long, X. Pu, W. Hu, Z.L. Wang, A stretchable, harsh condition-resistant and ambient-stable hydrogel and its applications in triboelectric nanogenerator. Nano Energy 86, 106086 (2021). https://doi.org/10.1016/j.nanoen.2021.106086
- H. Li, F. Xu, J. Wang, J. Zhang, H. Wang et al., Self-healing fluorinated poly(urethane urea) for mechanically and environmentally stable, high performance, and versatile fully self-healing triboelectric nanogenerators. Nano Energy 108, 108243 (2023). https://doi.org/10.1016/j.nanoen.2023.108243
- X. Li, J. Tao, X. Wang, J. Zhu, C. Pan et al., Networks of high performance triboelectric nanogenerators based on liquid–solid interface contact electrification for harvesting low-frequency blue energy. Adv. Energy Mater. 8, 1800705 (2018). https://doi.org/10.1002/aenm.201800705
- S.S. Sonu, N. Rai, I. Chauhan, Multifunctional aerogels: a comprehensive review on types, synthesis and applications of aerogels. J. Sol-Gel Sci. Technol. 105(2), 324–336 (2023). https://doi.org/10.1007/s10971-022-06026-1
- H. Zhuo, Y. Hu, X. Tong, Z. Chen, L. Zhong et al., A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv. Mater. 30(18), 1706705 (2018). https://doi.org/10.1002/adma.201706705
- L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14(8), 10633–10647 (2020). https://doi.org/10.1021/acsnano.0c04888
- C.-Y. Huang, J.-F. Feng, G.-C. Li, L.-G. Liao, S.-T. Fan et al., Thermally insulating composite aerogel with both active absorption and passive insulation functions based on azobenzene-modified chitosan/oligomeric β-cyclodextrin. Chem. Eng. J. 457, 141202 (2023). https://doi.org/10.1016/j.cej.2022.141202
- L. Feng, P. Wei, Q. Song, J. Zhang, Q. Fu et al., Superelastic, highly conductive, superhydrophobic, and powerful electromagnetic shielding hybrid aerogels built from orthogonal graphene and boron nitride nanoribbons. ACS Nano 16(10), 17049–17061 (2022). https://doi.org/10.1021/acsnano.2c07187
- J. Zheng, T. Hang, Z. Li, W. He, S. Jiang et al., High-performance and multifunctional conductive aerogel films for outstanding electromagnetic interference shielding, Joule heating and energy harvesting. Chem. Eng. J. 471, 144548 (2023). https://doi.org/10.1016/j.cej.2023.144548
- T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15(1), 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
- R.W. Pekala, F.M. Kong, A synthetic route to organic aerogels-mechanism, structure, and properties. J. Phys. Colloques 24, C4 (1989). https://doi.org/10.1051/jphyscol:1989406
- F. Guo, Y. Jiang, Z. Xu, Y. Xiao, B. Fang et al., Highly stretchable carbon aerogels. Nat. Commun. 9(1), 881 (2018). https://doi.org/10.1038/s41467-018-03268-y
- S. Cui, L. Zhou, D. Liu, S. Li, L. Liu et al., Improving performance of triboelectric nanogenerators by dielectric enhancement effect. Matter 5(1), 180–193 (2022). https://doi.org/10.1016/j.matt.2021.10.019
- G. Du, J. Wang, Y. Liu, J. Yuan, T. Liu et al., Fabrication of advanced cellulosic triboelectric materials via dielectric modulation. Adv. Sci. 10(15), 2206243 (2023). https://doi.org/10.1002/advs.202206243
- V. Rahmanian, T. Pirzada, S. Wang, S.A. Khan, Cellulose-based hybrid aerogels: strategies toward design and functionality. Adv. Mater. 33(51), 2102892 (2021). https://doi.org/10.1002/adma.202102892
- H.-Y. Mi, X. Jing, Z. Cai, Y. Liu, L.-S. Turng et al., Highly porous composite aerogel based triboelectric nanogenerators for high performance energy generation and versatile self-powered sensing. Nanoscale 10, 23131–23140 (2018). https://doi.org/10.1039/c8nr05872e
- L. Zhang, Y. Liao, Y.C. Wang, S.V. Zhang, W.Q. Yang et al., Cellulose II aerogel-based triboelectric nanogenerator. Adv. Funct. Mater. 30(28), 2001763 (2020). https://doi.org/10.1002/adfm.202001763
- S. Zhu, Y. Liu, G. Du, Y. Shao, Z. Wei et al., Customizing temperature-resistant cellulosic triboelectric materials for energy harvesting and emerging applications. Nano Energy 124, 109449 (2024). https://doi.org/10.1016/j.nanoen.2024.109449
- S. Wu, D. Chen, W. Han, Y. Xie, G. Zhao et al., Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 446, 137093 (2022). https://doi.org/10.1016/j.cej.2022.137093
- L. Su, H. Wang, M. Niu, S. Dai, Z. Cai et al., Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci. Adv. 6(26), eaay6689 (2020). https://doi.org/10.1126/sciadv.aay6689
- X. Zhang, X. Cheng, Y. Si, J. Yu, B. Ding, Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation. Chem. Eng. J. 433, 133628 (2022). https://doi.org/10.1016/j.cej.2021.133628
- Z.L. Yu, B. Qin, Z.Y. Ma, J. Huang, S.C. Li et al., Superelastic hard carbon nanofiber aerogels. Adv. Mater. 31(23), 1900651 (2019). https://doi.org/10.1002/adma.201900651
- X. Shi, X. Fan, Y. Zhu, Y. Liu, P. Wu et al., Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat. Commun. 13(1), 1119 (2022). https://doi.org/10.1038/s41467-022-28760-4
- Z. Jin, F. Zhao, Y. Lei, Y.-C. Wang, Hydrogel-based triboelectric devices for energy-harvesting and wearable sensing applications. Nano Energy 95, 106988 (2022). https://doi.org/10.1016/j.nanoen.2022.106988
- Y. Long, Y. Chen, Y. Liu, G. Chen, W. Guo et al., A flexible triboelectric nanogenerator based on a super-stretchable and self-healable hydrogel as the electrode. Nanoscale 12(24), 12753–12759 (2020). https://doi.org/10.1039/D0NR02967J
- F. He, X. You, H. Gong, Y. Yang, T. Bai et al., Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl. Mater. Interfaces 12(5), 6442–6450 (2020). https://doi.org/10.1021/acsami.9b19721
- F. Sheng, J. Yi, S. Shen, R. Cheng, C. Ning et al., Self-powered smart arm training band sensor based on extremely stretchable hydrogel conductors. ACS Appl. Mater. Interfaces 13(37), 44868–44877 (2021). https://doi.org/10.1021/acsami.1c12378
- H. Zhang, K. Xue, X. Xu, X. Wang, B. Wang et al., Green and low-cost alkali-polyphenol synergetic self-catalysis system access to fast gelation of self-healable and self-adhesive conductive hydrogels for self-powered triboelectric nanogenerators. Small 20(10), 2305502 (2024). https://doi.org/10.1002/smll.202305502
- J. Zhao, W. Zhang, T. Liu, B. Luo, Y. Qin et al., Multiscale structural triboelectric aerogels enabled by self-assembly driven supramolecular winding. Adv. Funct. Mater. 34, 2400476 (2024). https://doi.org/10.1002/adfm.202400476
- D.W. Kim, J.H. Lee, J.K. Kim, U. Jeong, Material aspects of triboelectric energy generation and sensors. NPG Asia Mater. 12(1), 6 (2020). https://doi.org/10.1038/s41427-019-0176-0
- Y. Feng, J. Yu, D. Sun, C. Dang, W. Ren et al., Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing. Nano Energy 98, 107284 (2022). https://doi.org/10.1016/j.nanoen.2022.107284
- M. Kim, C. Choi, J.P. Lee, J. Kim, C. Cha, Multiscale engineering of nanofiber-aerogel composite nanogenerator with tunable triboelectric performance based on multifunctional polysuccinimide. Small 18(36), 2107316 (2022). https://doi.org/10.1002/smll.202107316
- Y. Liu, T.H. Wong, X. Huang, C.K. Yiu, Y. Gao et al., Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy 99, 107442 (2022). https://doi.org/10.1016/j.nanoen.2022.107442
- H. Park, S.J. Oh, D. Kim, M. Kim, C. Lee et al., Plasticized PVC-gel single layer-based stretchable triboelectric nanogenerator for harvesting mechanical energy and tactile sensing. Adv. Sci. 9(22), 2201070 (2022). https://doi.org/10.1002/advs.202201070
- G. Zhao, Y. Zhang, N. Shi, Z. Liu, X. Zhang et al., Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 59, 302–310 (2019). https://doi.org/10.1016/j.nanoen.2019.02.054
- F. Yi, Z. Zhang, Z. Kang, Q. Liao, Y. Zhang, Recent advances in triboelectric nanogenerator-based health monitoring. Adv. Funct. Mater. 29(41), 1808849 (2019). https://doi.org/10.1002/adfm.201808849
- F. Gao, C. Liu, L. Zhang, T. Liu, Z. Wang et al., Wearable and flexible electrochemical sensors for sweat analysis: a review. Microsyst. Nanoeng. 9(1), 1 (2023). https://doi.org/10.1038/s41378-022-00443-6
- Z. Bai, X. Wang, M. Huang, Y. Feng, S. Sun et al., Smart battery-free and wireless bioelectronic platform based on a nature-skin-derived organohydrogel for chronic wound diagnosis, assessment, and accelerated healing. Nano Energy 118, 108989 (2023). https://doi.org/10.1016/j.nanoen.2023.108989
- J.-N. Kim, J. Lee, H. Lee, I.-K. Oh, Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at parkinson disease. Nano Energy 82, 105705 (2021). https://doi.org/10.1016/j.nanoen.2020.105705
- X. Cao, Y. Xiong, J. Sun, X. Xie, Q. Sun et al., Multidiscipline applications of triboelectric nanogenerators for the intelligent era of internet of things. Nano-Micro Lett. 15(1), 14 (2023). https://doi.org/10.1007/s40820-022-00981-8
- C. Zhang, M. Wang, C. Jiang, P. Zhu, B. Sun et al., Highly adhesive and self-healing γ-PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics. Nano Energy 95, 106991 (2022). https://doi.org/10.1016/j.nanoen.2022.106991
- H. Zhang, D. Zhang, Z. Wang, G. Xi, R. Mao et al., Ultrastretchable, self-healing conductive hydrogel-based triboelectric nanogenerators for human–computer interaction. ACS Appl. Mater. Interfaces 15(4), 5128–5138 (2023). https://doi.org/10.1021/acsami.2c17904
- A. Yu, M. Zhu, C. Chen, Y. Li, H. Cui et al., Implantable flexible sensors for health monitoring. Adv. Healthc. Mater. 13(2), 2302460 (2024). https://doi.org/10.1002/adhm.202302460
- X. Lu, L. Zheng, H. Zhang, W. Wang, Z.L. Wang et al., Stretchable, transparent triboelectric nanogenerator as a highly sensitive self-powered sensor for driver fatigue and distraction monitoring. Nano Energy 78, 105359 (2020). https://doi.org/10.1016/j.nanoen.2020.105359
- S. Nie, C. Chen, C. Zhu, Advanced biomass materials: Progress in the applications for energy, environmental, and emerging fields. Front. Chem. Sci. Eng. 17(7), 795–797 (2023). https://doi.org/10.1007/s11705-023-2336-6
- X. Li, J. Wang, Y. Liu, T. Zhao, B. Luo et al., Lightweight and strong cellulosic triboelectric materials enabled by cell wall nanoengineering. Nano Lett. 24(10), 3273–3281 (2024). https://doi.org/10.1021/acs.nanolett.4c00458
- H. Park, S.-J. Oh, M. Kim, C. Lee, H. Joo et al., Plasticizer structural effect for sustainable and high-performance PVC gel-based triboelectric nanogenerators. Nano Energy 114, 108615 (2023). https://doi.org/10.1016/j.nanoen.2023.108615
- H.-Y. Mi, X. Jing, Y. Wang, X. Shi, H. Li et al., Poly[(butyl acrylate)-co-(butyl methacrylate)] as transparent tribopositive material for high-performance hydrogel-based triboelectric nanogenerators. ACS Appl. Polym. Mater. 2(11), 5219–5227 (2020). https://doi.org/10.1021/acsapm.0c00363
- J. Zou, X. Jing, Z. Chen, S.J. Wang, X.S. Hu et al., Multifunctional organohydrogel with ultralow-hysteresis, ultrafast-response, and whole-strain-range linearity for self-powered sensors. Adv. Funct. Mater. 33(15), 2213895 (2023). https://doi.org/10.1002/adfm.202213895
- T. Huang, Y. Long, B. Zhao, Q. Hua, Z.L. Wang et al., Hybrid aerogel triboelectric nanogenerator based on the synergistic effect of solid–solid/gas–solid triboelectricity and piezoelectric polarization. ACS Appl. Mater. Interfaces 15(22), 26682–26690 (2023). https://doi.org/10.1021/acsami.3c02969
- Z. Wang, Z. Liu, G. Zhao, Z. Zhang, X. Zhao et al., Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors. ACS Nano 16(1), 1661–1670 (2022). https://doi.org/10.1021/acsnano.1c10678
- Z. Yu, Y. Zhang, Y. Wang, J. Zheng, Y. Fu et al., Integrated piezo-tribo hybrid acoustic-driven nanogenerator based on porous MWCNTs/PVDF-TrFE aerogel bulk with embedded PDMS tympanum structure for broadband sound energy harvesting. Nano Energy 97, 107205 (2022). https://doi.org/10.1016/j.nanoen.2022.107205
- K. Shi, X. Huang, B. Sun, Z. Wu, J. He et al., Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy 57, 450–458 (2019). https://doi.org/10.1016/j.nanoen.2018.12.076
- J.X. Liu, G. Liu, Z.H. Guo, W. Hu, C. Zhang et al., Electret elastomer-based stretchable triboelectric nanogenerators with autonomously managed power supplies for self-charging systems. Chem. Eng. J. 462, 142167 (2023). https://doi.org/10.1016/j.cej.2023.142167
- J.H. Lee, Y.S. Park, S. Cho, I.S. Kang, J.K. Kim et al., Output voltage modulation in triboelectric nanogenerator by printed ion gel capacitors. Nano Energy 54, 367–374 (2018). https://doi.org/10.1016/j.nanoen.2018.10.016
- H. Zhang, X. Gong, X. Li, Material selection and per
References
S.-T. Han, H. Peng, Q. Sun, S. Venkatesh, K.-S. Chung et al., An overview of the development of flexible sensors. Adv. Mater. 29(33), 1700375 (2017). https://doi.org/10.1002/adma.201700375
W. Li, M. Xu, J. Gao, X. Zhang, H. Huang et al., Large-scale ultra-robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics. Adv. Mater. 35(8), 2207447 (2023). https://doi.org/10.1002/adma.202207447
X. Wang, Z. Liu, T. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 1602790 (2017). https://doi.org/10.1002/smll.201602790
Y.B. Wan, Y. Wang, C.F. Guo, Recent progresses on flexible tactile sensors. Mater. Today Phys. 1, 61–73 (2017). https://doi.org/10.1016/j.mtphys.2017.06.002
H. Liu, M. Li, S. Liu, P. Jia, X. Guo et al., Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics. Mater. Horiz. 7(1), 203–213 (2020). https://doi.org/10.1039/C9MH01211G
H. Li, Y. Ma, Y. Huang, Material innovation and mechanics design for substrates and encapsulation of flexible electronics: a review. Mater. Horiz. 8(2), 383–400 (2021). https://doi.org/10.1039/D0MH00483A
W.N. Xiong, C. Zhu, D.L. Guo, C. Hou, Z.X. Yang et al., Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception. Nano Energy 90, 106550 (2021). https://doi.org/10.1016/j.nanoen.2021.106550
W. Huang, X. Wang, J. Xia, Y. Li, L. Zhang et al., Flexible sensing enabled agri-food cold chain quality control: a review of mechanism analysis, emerging applications, and system integration. Trends in Food Sci. Technol. 133, 189–204 (2023). https://doi.org/10.1016/j.tifs.2023.02.010
S. Lee, S. Franklin, F.A. Hassani, T. Yokota, M.O.G. Nayeem et al., Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370(6519), 966–970 (2020). https://doi.org/10.1126/science.abc9735
M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara et al., An ultra-lightweight design for imperceptible plastic electronics. Nature 499(7459), 458–463 (2013). https://doi.org/10.1038/nature12314
B. Zazoum, K.M. Batoo, M.A.A. Khan, Recent advances in flexible sensors and their applications. Sensors 22(12), 4653 (2022). https://doi.org/10.3390/s22124653
Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo et al., Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 11(5), 4507–4513 (2017). https://doi.org/10.1021/acsnano.6b08027
Y. Wan, Z. Qiu, J. Huang, J. Yang, Q. Wang et al., Natural plant materials as dielectric layer for highly sensitive flexible electronic skin. Small 14(35), 1801657 (2018). https://doi.org/10.1002/smll.201801657
X. Li, Y. Wang, S. Sun, T. He, Q. Hu et al., Flexible and ultrasensitive piezoelectric composites based on highly (00l)-assembled BaTiO3 microplatelets for wearable electronics application. Adv. Mater. Technol. 4(12), 1900689 (2019). https://doi.org/10.1002/admt.201900689
L. Guo, G. Wu, Q. Wang, T. Li, B. Yao et al., Advances in triboelectric pressure sensors. Sens. Actuators A 355, 114331 (2023). https://doi.org/10.1016/j.sna.2023.114331
F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
S. Wang, Y. Xie, S. Niu, L. Lin, Z.L. Wang, Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26(18), 2818–2824 (2014). https://doi.org/10.1002/adma.201305303
S. Wang, S. Niu, J. Yang, L. Lin, Z.L. Wang, Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. ACS Nano 8(12), 12004–12013 (2014). https://doi.org/10.1021/nn5054365
B. Cao, P. Wang, P. Rui, X. Wei, Z. Wang et al., Broadband and output-controllable triboelectric nanogenerator enabled by coupling swing-rotation switching mechanism with potential energy storage/release strategy for low-frequency mechanical energy harvesting. Adv. Energy Mater. 12(46), 2270194 (2022). https://doi.org/10.1002/aenm.202270194
L. He, C. Zhang, B. Zhang, O. Yang, W. Yuan et al., A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring. ACS Nano 16(4), 6244–6254 (2022). https://doi.org/10.1021/acsnano.1c11658
Z. Ren, L. Wu, Y. Pang, W. Zhang, R. Yang, Strategies for effectively harvesting wind energy based on triboelectric nanogenerators. Nano Energy 100, 107522 (2022). https://doi.org/10.1016/j.nanoen.2022.107522
Y.Q. Wang, X. Li, X. Yu, J.Y. Zhu, P. Shen et al., Driving-torque self-adjusted triboelectric nanogenerator for effective harvesting of random wind energy. Nano Energy 99, 107389 (2022). https://doi.org/10.1016/j.nanoen.2022.107389
R. Xia, R. Zhang, Y. Jie, W. Zhao, X. Cao et al., Natural cotton-based triboelectric nanogenerator as a self-powered system for efficient use of water and wind energy. Nano Energy 92, 106685 (2022). https://doi.org/10.1016/j.nanoen.2021.106685
Z.L. Wang, From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84(9), 096502 (2021). https://doi.org/10.1088/1361-6633/ac0a50
B. Xu, W. Peng, J. He, Y. Zhang, X. Song et al., Liquid metal-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy 120, 109107 (2024). https://doi.org/10.1016/j.nanoen.2023.109107
Y. Dai, K. Yu, H. Li, H. Zhu, J. Xie et al., Triboelectric negative air ion generators for efficient membrane fouling control. Chem. Eng. J. 481, 148581 (2024). https://doi.org/10.1016/j.cej.2024.148581
M.S. Rasel, P. Maharjan, M. Salauddin, M.T. Rahman, H.O. Cho et al., An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 49, 603–613 (2018). https://doi.org/10.1016/j.nanoen.2018.04.060
S.L. Zhang, Y.C. Lai, X. He, R. Liu, Y. Zi et al., Auxetic foam-based contact-mode triboelectric nanogenerator with highly sensitive self-powered strain sensing capabilities to monitor human body movement. Adv. Funct. Mater. 27(25), 1606695 (2017). https://doi.org/10.1002/adfm.201606695
C.M. Lin, J.X. Lan, J. Yu, Z.F. Hua, H. Huang et al., Cocklebur-structured design of plant fibers for high-performance triboelectric nanogenerators and pressure sensors. Mater. Today Commun. 30, 103208 (2022). https://doi.org/10.1016/j.mtcomm.2022.103208
R. Liu, X. Kuang, J. Deng, Y.-C. Wang, A.C. Wang et al., Shape memory polymers for body motion energy harvesting and self-powered mechanosensing. Adv. Mater. 30(8), 1705195 (2018). https://doi.org/10.1002/adma.201705195
H.-Y. Mi, X. Jing, Q. Zheng, L. Fang, H.-X. Huang et al., High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing. Nano Energy 48, 327–336 (2018). https://doi.org/10.1016/j.nanoen.2018.03.050
Z. Liu, H. Li, B. Shi, Y. Fan, Z.L. Wang et al., Wearable and implantable triboelectric nanogenerators. Adv. Funct. Mater. 29(20), 1808820 (2019). https://doi.org/10.1002/adfm.201808820
H.H. Hsu, X. Zhang, K. Xu, Y. Wang, Q. Wang et al., Self-powered and plant-wearable hydrogel as led power supply and sensor for promoting and monitoring plant growth in smart farming. Chem. Eng. J. 422, 129499 (2021). https://doi.org/10.1016/j.cej.2021.129499
B. Chen, W. Tang, Z.L. Wang, Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing. Mater. Today 50, 224–238 (2021). https://doi.org/10.1016/j.mattod.2021.05.017
B. Chen, Z.L. Wang, Toward a new era of sustainable energy: Advanced triboelectric nanogenerator for harvesting high entropy energy. Small 18(43), 2107034 (2022). https://doi.org/10.1002/smll.202107034
Y. Wang, J. Zhang, X. Jia, M. Chen, H. Wang et al., TENG-based self-powered device-the heart of life. Nano Energy 119, 109080 (2024). https://doi.org/10.1016/j.nanoen.2023.109080
X. Meng, C. Cai, B. Luo, T. Liu, Y. Shao et al., Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nano-Micro Lett. 15(1), 124 (2023). https://doi.org/10.1007/s40820-023-01094-6
L.Z. Rogovina, V.G. Vasil’ev, E.E. Braudo, Definition of the concept of polymer gel. Polym. Sci. Ser. C 50(1), 85–92 (2008). https://doi.org/10.1134/S1811238208010050
M.A. Kuzina, D.D. Kartsev, A.V. Stratonovich, P.A. Levkin, Organogels versus hydrogels: advantages, challenges, and applications. Adv. Funct. Mater. 33, 2301421 (2023). https://doi.org/10.1002/adfm.202301421
Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356(6337), eaaf3627 (2017). https://doi.org/10.1126/science.aaf3627
L. Zeng, X. Lin, P. Li, F.-Q. Liu, H. Guo et al., Recent advances of organogels: from fabrications and functions to applications. Polym. Sci. Ser. C 159, 106417 (2021). https://doi.org/10.1016/j.porgcoat.2021.106417
J. Yang, Y. Li, Y. Zheng, Y. Xu, Z. Zheng et al., Versatile aerogels for sensors. Small 15(41), 1902826 (2019). https://doi.org/10.1002/smll.201902826
W.X. Huang, Q.L. Ding, H. Wang, Z.X. Wu, Y.B. Luo et al., Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nat. Commun. 14(1), 5221 (2023). https://doi.org/10.1038/s41467-023-40953-z
X. Geng, S. Li, L. Mawella-Vithanage, T. Ma, M. Kilani et al., Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nat. Commun. 12(1), 4895 (2021). https://doi.org/10.1038/s41467-021-25192-4
J. Kim, H. Yoo, V.A. Pham Ba, N. Shin, S. Hong, Dye-functionalized sol-gel matrix on carbon nanotubes for refreshable and flexible gas sensors. Sci. Rep. 8(1), 11958 (2018). https://doi.org/10.1038/s41598-018-30481-y
K. Yoshida, T. Hayashi, M. Takinoue, H. Onoe, Repeatable detection of Ag+ ions using a DNA aptamer-linked hydrogel biochemical sensor integrated with microfluidic heating system. Sci. Rep. 12(1), 9692 (2022). https://doi.org/10.1038/s41598-022-13970-z
H. Im, T. Kim, H. Song, J. Choi, J.S. Park et al., High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes. Nat. Commun. 7(1), 10600 (2016). https://doi.org/10.1038/ncomms10600
T. Sekitani, T. Yokota, K. Kuribara, M. Kaltenbrunner, T. Fukushima et al., Ultraflexible organic amplifier with biocompatible gel electrodes. Nat. Commun. 7(1), 11425 (2016). https://doi.org/10.1038/ncomms11425
K. Pang, X. Song, Z. Xu, X. Liu, Y. Liu et al., Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 6(46), eabd4045 (2020). https://doi.org/10.1126/sciadv.abd4045
Y. Cai, J. Shen, C.-W. Yang, Y. Wan, H.-L. Tang et al., Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 6(48), eabb5367 (2020). https://doi.org/10.1126/sciadv.abb5367
M.T.I. Mredha, Y. Lee, A.V. Rama Varma, T. Gupta, R.R. Manimel Wadu et al., Tardigrade-inspired extremotolerant glycerogels. NPG Asia Mater. 15(1), 22 (2023). https://doi.org/10.1038/s41427-023-00472-1
H. Na, Y.-W. Kang, C.S. Park, S. Jung, H.-Y. Kim et al., Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 376(6590), 301–307 (2022). https://doi.org/10.1126/science.abm7862
H. Machrafi, F. Iermano, S. Temsamani, I. Bobinac, C.S. Iorio, Enhanced electrical conductivity and stretchability of ionic-liquid PEDOT:PSS air-cathodes for aluminium-air batteries with long lifetime and high specific energy. Sci. Rep. 12(1), 22107 (2022). https://doi.org/10.1038/s41598-022-26546-8
S. Oh, J.-I. Cho, B.H. Lee, S. Seo, J.-H. Lee et al., Flexible artificial Si-In-Zn-O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation. Sci. Adv. 7(44), eabg9450 (2021). https://doi.org/10.1126/sciadv.abg9450
A.K. Mishra, T.J. Wallin, W. Pan, P. Xu, K. Wang et al., Autonomic perspiration in 3D-printed hydrogel actuators. Sci. Robot. 5(38), e3aaz918 (2020). https://doi.org/10.1126/scirobotics.aaz3918
C. Ni, D. Chen, Y. Yin, X. Wen, X. Chen et al., Shape memory polymer with programmable recovery onset. Nature 622, 748 (2023). https://doi.org/10.1038/s41586-023-06520-8
H. Cao, L.X. Duan, Y. Zhang, J. Cao, K. Zhang, Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Sig. Transduct. Target. Ther. 6(1), 426 (2021). https://doi.org/10.1038/s41392-021-00830-x
A. Matsumoto, M. Tanaka, H. Matsumoto, K. Ochi, Y. Moro-oka et al., Synthetic “smart gel” provides glucose-responsive insulin delivery in diabetic mice. Sci. Adv. 3(11), eaaq0723 (2017). https://doi.org/10.1126/sciadv.aaq0723
M. Carone, M.R. Spalinger, R.A. Gaultney, R. Mezzenga, K. Hlavačková et al., Temperature-triggered in situ forming lipid mesophase gel for local treatment of ulcerative colitis. Nat. Commun. 14(1), 3489 (2023). https://doi.org/10.1038/s41467-023-39013-3
G. Chen, F. Wang, X. Zhang, Y. Shang, Y. Zhao, Living microecological hydrogels for wound healing. Sci. Adv. 9(21), eadg3478 (2023). https://doi.org/10.1126/sciadv.adg3478
Z. Xiong, S. Achavananthadith, S. Lian, L.E. Madden, Z.X. Ong et al., A wireless and battery-free wound infection sensor based on DNA hydrogel. Sci. Adv. 7(47), eabj1617 (2021). https://doi.org/10.1126/sciadv.abj1617
R. Xie, Z. Liang, Y. Ai, W. Zheng, J. Xiong et al., Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes. Nat. Protoc. 16(2), 937–964 (2020). https://doi.org/10.1038/s41596-020-00442-9
C.S. O’Bryan, T. Bhattacharjee, S. Hart, C.P. Kabb, K.D. Schulze et al., Self-assembled micro-organogels for 3D printing silicone structures. Sci. Adv. 3(5), e1602800 (2017). https://doi.org/10.1126/sciadv.1602800
J. Tang, Y. He, D. Xu, W. Zhang, Y. Hu et al., Tough, rapid self-recovery and responsive organogel-based ionotronic for intelligent continuous passive motion system. npj Flexible Electron. 7(1), 28 (2023). https://doi.org/10.1038/s41528-023-00259-y
W. Xu, L.-B. Huang, M.-C. Wong, L. Chen, G. Bai et al., Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors. Adv. Energy Mater. 7(1), 1601529 (2017). https://doi.org/10.1002/aenm.201601529
F.G. Torres, O.P. Troncoso, G.E. De-la-Torre, Hydrogel-based triboelectric nanogenerators: properties, performance, and applications. Int. J. Energy Res. 46(5), 5603–5624 (2022). https://doi.org/10.1002/er.7585
Y. Qin, W. Zhang, Y. Liu, J. Zhao, J. Yuan et al., Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy 106, 108079 (2023). https://doi.org/10.1016/j.nanoen.2022.108079
S.J. Wang, X. Jing, H.Y. Mi, Z. Chen, J. Zou et al., Development and applications of hydrogel-based triboelectric nanogenerators: A mini-review. Polymers 14(7), 1452 (2022). https://doi.org/10.3390/polym14071452
S. Korkmaz, İA. Kariper, Aerogel based nanogenerators: Production methods, characterizations and applications. Int. J. Energy Res. 44(14), 11088–11110 (2020). https://doi.org/10.1002/er.5694
M.M. Rastegardoost, O.A. Tafreshi, Z. Saadatnia, S. Ghaffari-Mosanenzadeh, C.B. Park et al., Recent advances on porous materials and structures for high-performance triboelectric nanogenerators. Nano Energy 111, 108365 (2023). https://doi.org/10.1016/j.nanoen.2023.108365
Y. Wu, Y. Luo, T.J. Cuthbert, A.V. Shokurov, P.K. Chu et al., Hydrogels as soft ionic conductors in flexible and wearable triboelectric nanogenerators. Adv. Sci. 9(11), 2106008 (2022). https://doi.org/10.1002/advs.202106008
A. Ahmed, M.F. El-Kady, I. Hassan, A. Negm, A.M. Pourrahimi et al., Fire-retardant, self-extinguishing triboelectric nanogenerators. Nano Energy 59, 336 (2019). https://doi.org/10.1016/j.nanoen.2019.02.026
Z. Saadatnia, S.G. Mosanenzadeh, T. Li, E. Esmailzadeh, H.E. Naguib, Polyurethane aerogel-based triboelectric nanogenerator for high performance energy harvesting and biomechanical sensing. Nano Energy 65, 104019 (2019). https://doi.org/10.1016/j.nanoen.2019.104019
H. He, J. Liu, Y. Wang, Y. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16(2), 2953–2967 (2022). https://doi.org/10.1021/acsnano.1c10144
H. Sun, Y. Zhao, S. Jiao, C. Wang, Y. Jia et al., Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv. Funct. Mater. 31(24), 2101696 (2021). https://doi.org/10.1002/adfm.202101696
F. Sheng, B. Zhang, Y. Zhang, Y. Li, R. Cheng et al., Ultrastretchable organogel/silicone fiber-helical sensors for self-powered implantable ligament strain monitoring. ACS Nano 16(7), 10958–10967 (2022). https://doi.org/10.1021/acsnano.2c03365
T. Jing, B. Xu, Y. Yang, Organogel electrode based continuous fiber with large-scale production for stretchable triboelectric nanogenerator textiles. Nano Energy 84, 105867 (2021). https://doi.org/10.1016/j.nanoen.2021.105867
T. Jing, S. Wang, H. Yuan, Y. Yang, M. Xue et al., Interfacial roughness enhanced gel/elastomer interfacial bonding enables robust and stretchable triboelectric nanogenerator for reliable energy harvesting. Small 19, 2206528 (2023). https://doi.org/10.1002/smll.202206528
Y. Ren, J. Guo, Z. Liu, Z. Sun, Y. Wu et al., Ionic liquid–based click-ionogels. Sci. Adv. 5(8), eaax0648 (2019). https://doi.org/10.1126/sciadv.aax0648
K. Hu, Z. Zhao, Y. Wang, L. Yu, K. Liu et al., A tough organohydrogel-based multiresponsive sensor for a triboelectric nanogenerator and supercapacitor toward wearable intelligent devices. J. Mater. Chem. A 10(22), 12092–12103 (2022). https://doi.org/10.1039/D2TA01503J
M. Zhang, R. Yu, X. Tao, Y. He, X. Li et al., Mechanically robust and highly conductive ionogels for soft ionotronics. Adv. Funct. Mater. 33(10), 2208083 (2023). https://doi.org/10.1002/adfm.202208083
L. Sun, H. Huang, Q. Ding, Y. Guo, W. Sun et al., Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv. Fiber Mater. 4(1), 98–107 (2022). https://doi.org/10.1007/s42765-021-00086-8
W. Zhan, H. Zhang, X. Lyu, Z.-Z. Luo, Y. Yu et al., An ultra-tough and super-stretchable ionogel with multi functions towards flexible iontronics. Sci. China Mater. 66(4), 1539–1550 (2023). https://doi.org/10.1007/s40843-022-2286-5
Q. Zheng, L. Fang, H. Guo, K. Yang, Z. Cai et al., Highly porous polymer aerogel film-based triboelectric nanogenerators. Adv. Funct. Mater. 28(13), 1706365 (2018). https://doi.org/10.1002/adfm.201706365
Y. Mi, Z. Zhao, H. Wu, Y. Lu, N. Wang, Porous polymer materials in triboelectric nanogenerators: a review. Polymers 15(22), 4383 (2023). https://doi.org/10.3390/polym15224383
B. Luo, C. Cai, T. Liu, X. Meng, X. Zhuang et al., Multiscale structural nanocellulosic triboelectric aerogels induced by hofmeister effect. Adv. Funct. Mater. 33, 2306810 (2023). https://doi.org/10.1002/adfm.202306810
Y. Luo, M. Yu, Y. Zhang, Y. Wang, L. Long et al., Highly sensitive strain sensor and self-powered triboelectric nanogenerator using a fully physical crosslinked double-network conductive hydrogel. Nano Energy 104, 107955 (2022). https://doi.org/10.1016/j.nanoen.2022.107955
Z. Wang, C. Chen, L. Fang, B. Cao, X. Tu et al., Biodegradable, conductive, moisture-proof, and dielectric enhanced cellulose-based triboelectric nanogenerator for self-powered human-machine interface sensing. Nano Energy 107, 108151 (2023). https://doi.org/10.1016/j.nanoen.2022.108151
X. Pu, M. Liu, X. Chen, J. Sun, C. Du et al., Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017). https://doi.org/10.1126/sciadv.1700015
M. Chi, S. Zhang, T. Liu, Y. Liu, B. Luo et al., Tunable anisotropic structural aramid triboelectric aerogels enabled by magnetic manipulation. Adv. Funct. Mater. 33, 2310280 (2023). https://doi.org/10.1002/adfm.202310280
Y. Qin, J. Mo, Y. Liu, S. Zhang, J. Wang et al., Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 32(27), 2201846 (2022). https://doi.org/10.1002/adfm.202201846
Q. Fu, Y. Liu, T. Liu, J. Mo, W. Zhang et al., Air-permeable cellulosic triboelectric materials for self-powered healthcare products. Nano Energy 102, 107739 (2022). https://doi.org/10.1016/j.nanoen.2022.107739
D. Wang, D. Zhang, M. Tang, H. Zhang, T. Sun et al., Ethylene chlorotrifluoroethylene/hydrogel-based liquid-solid triboelectric nanogenerator driven self-powered MXene based sensor system for marine environmental monitoring. Nano Energy 100, 107509 (2022). https://doi.org/10.1016/j.nanoen.2022.107509
H. He, Y. Qin, J. Liu, Y. Wang, J. Wang et al., A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene silver nanowires aerogel fiber for fire protection used in firefighting clothing. Chem. Eng. J. 460, 141661 (2023). https://doi.org/10.1016/j.cej.2023.141661
J. Yang, J. An, Y. Sun, J. Zhang, L. Zu et al., Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human-machine interaction in nursing and patient safety. Nano Energy 97, 107199 (2022). https://doi.org/10.1016/j.nanoen.2022.107199
Z. Xu, F. Zhou, H. Yan, G. Gao, H. Li et al., Anti-freezing organohydrogel triboelectric nanogenerator toward highly efficient and flexible human-machine interaction at −30 °C. Nano Energy 90, 106614 (2021). https://doi.org/10.1016/j.nanoen.2021.106614
S.-H. Jeong, Y. Lee, M.-G. Lee, W.J. Song, J.-U. Park et al., Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator. Nano Energy 79, 105463 (2021). https://doi.org/10.1016/j.nanoen.2020.105463
Y. Li, Z. Tian, X.Z. Gao, H.Y. Zhao, X. Li et al., All-weather self-powered intelligent traffic monitoring system based on a conjunction of self-healable piezoresistive sensors and triboelectric nanogenerators. Adv. Funct. Mater. 33, 2308845 (2023). https://doi.org/10.1002/adfm.202308845
M.T. Rahman, M.S. Rahman, H. Kumar, K. Kim, S. Kim, Metal-organic framework reinforced highly stretchable and durable conductive hydrogel-based triboelectric nanogenerator for biomotion sensing and wearable human-machine interfaces. Adv. Funct. Mater. 33, 2303471 (2023). https://doi.org/10.1002/adfm.202303471
D. Sun, Y. Feng, S. Sun, J. Yu, S. Jia et al., Transparent, self-adhesive, conductive organohydrogels with fast gelation from lignin-based self-catalytic system for extreme environment-resistant triboelectric nanogenerators. Adv. Funct. Mater. 32(28), 2201335 (2022). https://doi.org/10.1002/adfm.202201335
S. Hasan, A.Z. Kouzani, S. Adams, J. Long, M.A.P. Mahmud, Comparative study on the contact-separation mode triboelectric nanogenerator. J. Electrost. 116, 103685 (2022). https://doi.org/10.1016/j.elstat.2022.103685
Y. Shao, G. Du, B. Luo, T. Liu, J. Zhao et al., A tough monolithic-integrated triboelectric bioplastic enabled by dynamic covalent chemistry. Adv. Mater. 36, 2311993 (2024). https://doi.org/10.1002/adma.202311993
Q. Tang, Z. Wang, W. Chang, J. Sun, W. He et al., Interface static friction enabled ultra-durable and high output sliding mode triboelectric nanogenerator. Adv. Funct. Mater. 32(26), 2202055 (2022). https://doi.org/10.1002/adfm.202202055
W. Akram, Q. Chen, G. Xia, J. Fang, A review of single electrode triboelectric nanogenerators. Nano Energy 106, 108043 (2023). https://doi.org/10.1016/j.nanoen.2022.108043
W. Paosangthong, M. Wagih, R. Torah, S. Beeby, Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure. Nano Energy 66, 104148 (2019). https://doi.org/10.1016/j.nanoen.2019.104148
Y. Wu, T.J. Cuthbert, Y. Luo, P.K. Chu, C. Menon, Cross-link-dependent ionogel-based triboelectric nanogenerators with slippery and antireflective properties. Small 19(24), 2301381 (2023). https://doi.org/10.1002/smll.202301381
L.-B. Huang, W. Xu, G. Bai, M.-C. Wong, Z. Yang et al., Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 30, 36–42 (2016). https://doi.org/10.1016/j.nanoen.2016.09.032
Y. Xu, W. Yang, X. Lu, Y. Yang, J. Li et al., Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring. ACS Nano 15(10), 16368–16375 (2021). https://doi.org/10.1021/acsnano.1c05685
H. Yang, M. Deng, Q. Tang, W. He, C. Hu et al., A nonencapsulative pendulum-like paper–based hybrid nanogenerator for energy harvesting. Adv. Energy Mater. 9(33), 1901149 (2019). https://doi.org/10.1002/aenm.201901149
R. Walden, I. Aazem, A. Babu, S.C. Pillai, Textile-triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices. Chem. Eng. J. 451, 138741 (2023). https://doi.org/10.1016/j.cej.2022.138741
M. Zhu, J. Zhang, Z. Wang, X. Yu, Y. Zhang et al., Double-blade structured triboelectric–electromagnetic hybrid generator with aerodynamic enhancement for breeze energy harvesting. Appl. Energy 326, 119970 (2022). https://doi.org/10.1016/j.apenergy.2022.119970
K. Zhao, C. Liu, T. Shao, Y. Fan, R. Chen et al., Enhanced thermoelectric performance of Bi2Te3 by carbon nanotubes and silicate aerogel co-doping toward ocean energy harvesting. Mater. Today Sustain. 23, 100476 (2023). https://doi.org/10.1016/j.mtsust.2023.100476
C. Shan, W. He, H. Wu, S. Fu, K. Li et al., Dual mode TENG with self-voltage multiplying circuit for blue energy harvesting and water wave monitoring. Adv. Funct. Mater. 33(47), 2305768 (2023). https://doi.org/10.1002/adfm.202305768
C. Liu, J. Liu, J. Liu, C. Zhao, B. Shan et al., A wind-driven rotational direct current triboelectric nanogenerator for self-powered inactivation of seawater microorganisms. Mater. Today Energy 26, 100991 (2022). https://doi.org/10.1016/j.mtener.2022.100991
S. Shen, J. Fu, J. Yi, L. Ma, F. Sheng et al., High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13(1), 194 (2021). https://doi.org/10.1007/s40820-021-00695-3
D. Tan, Q. Zeng, X. Wang, S. Yuan, Y. Luo et al., Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 14(1), 124 (2022). https://doi.org/10.1007/s40820-022-00866-w
H. Guo, X. Pu, J. Chen, Y. Meng, M.-H. Yeh et al., A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3(20), eaat2516 (2018). https://doi.org/10.1126/scirobotics.aat2516
M. Ma, Z. Zhang, Z. Zhao, Q. Liao, Z. Kang et al., Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric multi-effect coupling mechanism. Nano Energy 66, 104105 (2019). https://doi.org/10.1016/j.nanoen.2019.104105
M. Mariello, L. Fachechi, F. Guido, M. De Vittorio, Conformal, ultra-thin skin-contact-actuated hybrid piezo/triboelectric wearable sensor based on aln and parylene-encapsulated elastomeric blend. Adv. Funct. Mater. 31(27), 2101047 (2021). https://doi.org/10.1002/adfm.202101047
Y. Xi, P. Tan, Z. Li, Y. Fan, Self-powered wearable iot sensors as human-machine interfaces. Soft Sci. (2023). https://doi.org/10.20517/ss.2023.13
F. Xing, Z. Ou, X. Gao, B. Chen, Z.L. Wang, Harvesting electrical energy from high temperature environment by aerogel nano-covered triboelectric yarns. Adv. Funct. Mater. 32(49), 2205275 (2022). https://doi.org/10.1002/adfm.202205275
H. Luo, J. Du, P. Yang, Y. Shi, Z. Liu et al., Human–machine interaction via dual modes of voice and gesture enabled by triboelectric nanogenerator and machine learning. ACS Appl. Mater. Interfaces 15(13), 17009–17018 (2023). https://doi.org/10.1021/acsami.3c00566
Y. Song, J. Min, Y. Yu, H. Wang, Y. Yang et al., Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 6(40), eaay9842 (2020). https://doi.org/10.1126/sciadv.aay9842
X. Wei, B. Wang, Z. Wu, Z.L. Wang, An open-environment tactile sensing system: toward simple and efficient material identification. Adv. Mater. 34(29), 2203073 (2022). https://doi.org/10.1002/adma.202203073
Y.-J. Fan, M.-Z. Huang, Y.-C. Hsiao, Y.-W. Huang, C.-Z. Deng et al., Enhancing the sensitivity of portable biosensors based on self-powered ion concentration polarization and electrical kinetic trapping. Nano Energy 69, 104407 (2020). https://doi.org/10.1016/j.nanoen.2019.104407
Z. Wen, Q. Shen, X. Sun, Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 9(4), 45 (2017). https://doi.org/10.1007/s40820-017-0146-4
S. Shen, J. Yi, Z. Sun, Z. Guo, T. He et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14(1), 225 (2022). https://doi.org/10.1007/s40820-022-00965-8
B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15(1), 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
H. Lei, H. Ji, X. Liu, B. Lu, L. Xie et al., Self-assembled porous-reinforcement microstructure-based flexible triboelectric patch for remote healthcare. Nano-Micro Lett. 15(1), 109 (2023). https://doi.org/10.1007/s40820-023-01081-x
Y. Zhu, B. Luo, X. Zou, T. Liu, S. Zhang et al., Triboelectric probes integrated with deep learning for real-time online monitoring of suspensions in liquid transport. Nano Energy 122, 109340 (2024). https://doi.org/10.1016/j.nanoen.2024.109340
Y. Zhu, Y. Xia, M. Wu, W. Guo, C. Jia et al., Wearable, freezing-tolerant, and self-powered electroluminescence system for long-term cold-resistant displays. Nano Energy 98, 107309 (2022). https://doi.org/10.1016/j.nanoen.2022.107309
Y.-W. Cai, X.-N. Zhang, G.-G. Wang, G.-Z. Li, D.-Q. Zhao et al., A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for e-skin. Nano Energy 81, 105663 (2021). https://doi.org/10.1016/j.nanoen.2020.105663
Y.-W. Cai, G.-G. Wang, Y.-C. Mei, D.-Q. Zhao, J.-J. Peng et al., Self-healable, super-stretchable and shape-adaptive triboelectric nanogenerator based on double cross-linked PDMS for electronic skins. Nano Energy 102, 107683 (2022). https://doi.org/10.1016/j.nanoen.2022.107683
H.L. Wang, Z.H. Guo, X. Pu, Z.L. Wang, Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nano-Micro Lett. 14(1), 86 (2022). https://doi.org/10.1007/s40820-022-00834-4
C. Cai, X. Meng, L. Zhang, B. Luo, Y. Liu et al., High strength and toughness polymeric triboelectric materials enabled by dense crystal-domain cross-linking. Nano Lett. 24(12), 3826–3834 (2024). https://doi.org/10.1021/acs.nanolett.4c00918
S. Hu, J. Han, Z. Shi, K. Chen, N. Xu et al., Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett. 14(1), 115 (2022). https://doi.org/10.1007/s40820-022-00858-w
Y. Liu, C. Zhao, Y. Xiong, J. Yang, H. Jiao et al., Versatile ion-gel fibrous membrane for energy-harvesting iontronic skin. Adv. Funct. Mater. 33(37), 2303723 (2023). https://doi.org/10.1002/adfm.202303723
F. Wu, C. Li, Y. Yin, R. Cao, H. Li et al., A flexible, lightweight, and wearable triboelectric nanogenerator for energy harvesting and self-powered sensing. Adv. Mater. Technol. 4(1), 1800216 (2018). https://doi.org/10.1002/admt.201800216
Y. Lee, S.H. Cha, Y.-W. Kim, D. Choi, J.-Y. Sun, Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nat. Commun. 9(1), 1804 (2018). https://doi.org/10.1038/s41467-018-03954-x
M. Wu, X. Wang, Y. Xia, Y. Zhu, S. Zhu et al., Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 95, 106967 (2022). https://doi.org/10.1016/j.nanoen.2022.106967
H. Kim, S. Choi, Y. Hong, J. Chung, J. Choi et al., Biocompatible and biodegradable triboelectric nanogenerators based on hyaluronic acid hydrogel film. Appl. Mater. Today 22, 100920 (2021). https://doi.org/10.1016/j.apmt.2020.100920
J. Yue, C. Li, X. Ji, Y. Tao, J. Lu et al., Highly tough and conductive hydrogel based on defect-patched reduction graphene oxide for high-performance self-powered flexible sensing micro-system. Chem. Eng. J. 466, 143358 (2023). https://doi.org/10.1016/j.cej.2023.143358
R. Li, Z. Xu, L. Li, J. Wei, W. Wang et al., Breakage-resistant hydrogel electrode enables ultrahigh mechanical reliability for triboelectric nanogenerators. Chem. Eng. J. 454, 140261 (2023). https://doi.org/10.1016/j.cej.2022.140261
X. Guo, F. Yang, X. Sun, Y. Bai, G. Liu et al., Anti-freezing self-adhesive self-healing degradable touch panel with ultra-stretchable performance based on transparent triboelectric nanogenerators. Adv. Funct. Mater. 32(31), 2201230 (2022). https://doi.org/10.1002/adfm.202201230
T. Liu, M. Liu, S. Dou, J. Sun, Z. Cong et al., Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 12(3), 2818–2826 (2018). https://doi.org/10.1021/acsnano.8b00108
P. Chen, Q. Wang, X. Wan, M. Yang, C. Liu et al., Wireless electrical stimulation of the vagus nerves by ultrasound-responsive programmable hydrogel nanogenerators for anti-inflammatory therapy in sepsis. Nano Energy 89, 106327 (2021). https://doi.org/10.1016/j.nanoen.2021.106327
P. Kanokpaka, Y.-H. Chang, C.-C. Chang, M. Rinawati, P.-C. Wang et al., Enabling glucose adaptive self-healing hydrogel based triboelectric biosensor for tracking a human perspiration. Nano Energy 112, 108513 (2023). https://doi.org/10.1016/j.nanoen.2023.108513
T. Jing, B. Xu, Y. Yang, M. Li, Y. Gao, Organogel electrode enables highly transparent and stretchable triboelectric nanogenerators of high power density for robust and reliable energy harvesting. Nano Energy 78, 105373 (2020). https://doi.org/10.1016/j.nanoen.2020.105373
P. Cui, Y. Ge, X. Yao, J. Wang, J. Zhang et al., Slippery contact on organogel enabling droplet energy harvest. Nano Energy 109, 108286 (2023). https://doi.org/10.1016/j.nanoen.2023.108286
T. Huang, Y. Long, Z. Dong, Q. Hua, J. Niu et al., Ultralight, elastic, hybrid aerogel for flexible/wearable piezoresistive sensor and solid–solid/gas–solid coupled triboelectric nanogenerator. Adv. Sci. 9(34), 2204519 (2022). https://doi.org/10.1002/advs.202204519
Z. Qian, R. Li, J. Guo, Z. Wang, X. Li et al., Triboelectric nanogenerators made of polybenzazole aerogels as fire-resistant negative tribo-materials. Nano Energy 64, 103900 (2019). https://doi.org/10.1016/j.nanoen.2019.103900
C. Gao, W. Zhang, T. Liu, B. Luo, C. Cai et al., Hierarchical porous triboelectric aerogels enabled by heterointerface engineering. Nano Energy 121, 109223 (2024). https://doi.org/10.1016/j.nanoen.2023.109223
Y. Long, B. Jiang, T. Huang, Y. Liu, J. Niu et al., Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics. Adv. Funct. Mater. 33(41), 2304625 (2023). https://doi.org/10.1002/adfm.202304625
K. Banaś, J. Harasym, Natural gums as oleogelators. Int. J. Mol. Sci. 22(23), 12977 (2021). https://doi.org/10.3390/ijms222312977
S. Sivakanthan, S. Fawzia, T. Madhujith, A. Karim, Synergistic effects of oleogelators in tailoring the properties of oleogels: a review. Rev. Food Sci. Food Saf. 21(4), 3507–3539 (2022). https://doi.org/10.1111/1541-4337.12966
Y. Wang, X. Yao, S. Wu, Q. Li, J. Lv et al., Bioinspired solid organogel materials with a regenerable sacrificial alkane surface layer. Adv. Mater. 29(26), 1700865 (2017). https://doi.org/10.1002/adma.201700865
B. Yiming, X. Guo, N. Ali, N. Zhang, X. Zhang et al., Ambiently and mechanically stable ionogels for soft ionotronics. Adv. Funct. Mater. 31(33), 2102773 (2021). https://doi.org/10.1002/adfm.202102773
Z. Gao, T. Xu, X. Miao, J. Lu, X. Zhu et al., A thermal-driven self-replenishing slippery coating. Surf. Interfaces 24, 101022 (2021). https://doi.org/10.1016/j.surfin.2021.101022
C. Urata, H. Nagashima, B.D. Hatton, A. Hozumi, Transparent organogel films showing extremely efficient and durable anti-icing performance. ACS Appl. Mater. Interfaces 13(24), 28925–28937 (2021). https://doi.org/10.1021/acsami.1c06815
Y. Bai, L. Xu, S.Q. Lin, J.J. Luo, H.F. Qin et al., Charge pumping strategy for rotation and sliding type triboelectric nanogenerators. Adv. Energy Mater. 10(21), 2000605 (2020). https://doi.org/10.1002/aenm.202000605
Y. Qian, J. Nie, X. Ma, Z. Ren, J. Tian et al., Octopus tentacles inspired triboelectric nanogenerators for harvesting mechanical energy from highly wetted surface. Nano Energy 60, 493–502 (2019). https://doi.org/10.1016/j.nanoen.2019.03.068
Z. Zhou, W. Yuan, Functionally integrated conductive organohydrogel sensor for wearable motion detection, triboelectric nanogenerator and non-contact sensing. Compos. A 172, 107603 (2023). https://doi.org/10.1016/j.compositesa.2023.107603
B. Wang, L. Dai, L.A. Hunter, L. Zhang, G. Yang et al., A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications. Carbohydr. Polym. 268, 118210 (2021). https://doi.org/10.1016/j.carbpol.2021.118210
D. Yang, Y. Ni, X. Kong, S. Li, X. Chen et al., Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment. ACS Nano 15(9), 14653–14661 (2021). https://doi.org/10.1021/acsnano.1c04384
C. Qian, L. Li, M. Gao, H. Yang, Z. Cai et al., All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy 64, 103885 (2019). https://doi.org/10.1016/j.nanoen.2019.103885
Y. Cheng, W. Zhu, X. Lu, C. Wang, Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy 98, 107229 (2022). https://doi.org/10.1016/j.nanoen.2022.107229
Z. Saadatnia, S.G. Mosanenzadeh, E. Esmailzadeh, H.E. Naguib, A high performance triboelectric nanogenerator using porous polyimide aerogel film. Sci. Rep. 9, 1370 (2019). https://doi.org/10.1038/s41598-018-38121-1
Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z
F.G. Torres, O.P. Troncoso, G.E. De-la-Torre, Hydrogel-based triboelectric nanogenerators: properties, performance, and applications. Int. J. Energy Res. 46(5), 5603–5624 (2021). https://doi.org/10.1002/er.7585
Y. Zhang, Y. Tan, J. Lao, H. Gao, J. Yu, Hydrogels for flexible electronics. ACS Nano 17(11), 9681–9693 (2023). https://doi.org/10.1021/acsnano.3c02897
L. Hu, P.L. Chee, S. Sugiarto, Y. Yu, C. Shi et al., Hydrogel-based flexible electronics. Adv. Mater. 35(14), 2205326 (2023). https://doi.org/10.1002/adma.202205326
Y. Yang, L. Sha, H. Zhao, Z. Guo, M. Wu et al., Recent advances in cellulose microgels: preparations and functionalized applications. Adv. Colloid Interface Sci. 311, 102815 (2023). https://doi.org/10.1016/j.cis.2022.102815
H. Yin, F. Liu, T. Abdiryim, X. Liu, Self-healing hydrogels: from synthesis to multiple applications. ACS Mater. Lett. 5(7), 1787–1830 (2023). https://doi.org/10.1021/acsmaterialslett.3c00320
Y. Ohm, C. Pan, M.J. Ford, X. Huang, J. Liao et al., Publisher correction: an electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat. Electron. 4(4), 313–313 (2021). https://doi.org/10.1038/s41928-021-00571-3
H. Peng, Y. Xin, J. Xu, H. Liu, J. Zhang, Ultra-stretchable hydrogels with reactive liquid metals as asymmetric force-sensors. Mater. Horiz. 6(3), 618–625 (2019). https://doi.org/10.1039/C8MH01561A
M. Wang, H. Chen, X. Li, G. Wang, C. Peng et al., An extremely transparent and multi-responsive healable hydrogel strain sensor. J. Mater. Chem. A 10(45), 24096–24105 (2022). https://doi.org/10.1039/D2TA06218F
J. Park, N. Jeon, S. Lee, G. Choe, E. Lee et al., Conductive hydrogel constructs with three-dimensionally connected graphene networks for biomedical applications. Chem. Eng. J. 446, 137344 (2022). https://doi.org/10.1016/j.cej.2022.137344
X. Sui, H. Guo, C. Cai, Q. Li, C. Wen et al., Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities. Chem. Eng. J. 419, 129478 (2021). https://doi.org/10.1016/j.cej.2021.129478
X. Yao, S. Zhang, L. Qian, N. Wei, V. Nica et al., Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors. Adv. Funct. Mater. 32(33), 2204565 (2022). https://doi.org/10.1002/adfm.202204565
B. Zhou, Y. Li, Y. Chen, C. Gao, J. Li et al., In situ synthesis of highly stretchable, freeze-tolerant silk-polyelectrolyte double-network hydrogels for multifunctional flexible sensing. Chem. Eng. J. 446, 137405 (2022). https://doi.org/10.1016/j.cej.2022.137405
D.L. Gan, L. Han, M.H. Wang, W.S. Xing, T. Xu et al., Conductive and tough hydrogels based on biopolymer molecular templates for controlling in situ formation of polypyrrole nanorods. ACS Appl. Mater. Interfaces 10(42), 36218–36228 (2018). https://doi.org/10.1021/acsami.8b10280
X. Guo, A. Facchetti, The journey of conducting polymers from discovery to application. Nat. Mater. 19(9), 922–928 (2020). https://doi.org/10.1038/s41563-020-0778-5
X. Luo, L. Zhu, Y.C. Wang, J. Li, J. Nie et al., A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 31(38), 2104928 (2021). https://doi.org/10.1002/adfm.202104928
Y.- Ba, J.-F. Bao, X.-T. Liu, X.-W. Li, H.-T. Deng, D.-l Wen, X.-S. Zhang, Electron-ion coupling mechanism to construct stable output performance nanogenerator. Research (2021). https://doi.org/10.34133/2021/9817062
S. Fuchs, K. Shariati, M. Ma, Specialty tough hydrogels and their biomedical applications. Adv. Healthc. Mater. 9(2), 1901396 (2020). https://doi.org/10.1002/adhm.201901396
C.W. Peak, J.J. Wilker, G. Schmidt, A review on tough and sticky hydrogels. Colloid Polym. Sci. 291(9), 2031–2047 (2013). https://doi.org/10.1007/s00396-013-3021-y
F. Yang, J. Zhao, W.J. Koshut, J. Watt, J.C. Riboh et al., A synthetic hydrogel composite with the mechanical behavior and durability of cartilage. Adv. Funct. Mater. 30(36), 2003451 (2020). https://doi.org/10.1002/adfm.202003451
J. Li, Z. Suo, J.J. Vlassak, Stiff, strong, and tough hydrogels with good chemical stability. J. Mater. Chem. B 2(39), 6708–6713 (2014). https://doi.org/10.1039/C4TB01194E
Z. Wang, Y. Cong, J. Fu, Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J. Mater. Chem. B 8(16), 3437–3459 (2020). https://doi.org/10.1039/C9TB02570G
Y. Han, K. Zhao, G. Chen, R.A. Li, C. Zhou et al., A mechanically strong and self-adhesive all-solid-state ionic conductor based on the double-network strategy. J. Mater. Chem. A 11(36), 19637–19644 (2023). https://doi.org/10.1039/D3TA02874G
J. Kim, G. Zhang, M. Shi, Z. Suo, Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374(6564), 212–216 (2021). https://doi.org/10.1126/science.abg6320
L.-B. Huang, X. Dai, Z. Sun, M.-C. Wong, S.-Y. Pang et al., Environment-resisted flexible high performance triboelectric nanogenerators based on ultrafast self-healing non-drying conductive organohydrogel. Nano Energy 82, 105724 (2021). https://doi.org/10.1016/j.nanoen.2020.105724
A. Khan, S. Ginnaram, C.-H. Wu, H.-W. Lu, Y.-F. Pu et al., Fully self-healable, highly stretchable, and anti-freezing supramolecular gels for energy-harvesting triboelectric nanogenerator and self-powered wearable electronics. Nano Energy 90, 106525 (2021). https://doi.org/10.1016/j.nanoen.2021.106525
Y.C. Lai, H.M. Wu, H.C. Lin, C.L. Chang, H.H. Chou et al., Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv. Funct. Mater. 29(40), 1904626 (2019). https://doi.org/10.1002/adfm.201904626
X. Jing, P. Feng, Z. Chen, Z. Xie, H. Li et al., Highly stretchable, self-healable, freezing-tolerant, and transparent polyacrylic acid/nanochitin composite hydrogel for self-powered multifunctional sensors. ACS Sustain. Chem. Eng. 9(28), 9209–9220 (2021). https://doi.org/10.1021/acssuschemeng.1c00949
L. Jiang, C. Liu, K. Mayumi, K. Kato, H. Yokoyama et al., Highly stretchable and instantly recoverable slide-ring gels consisting of enzymatically synthesized polyrotaxane with low host coverage. Chem. Mater. 30(15), 5013–5019 (2018). https://doi.org/10.1021/acs.chemmater.8b01208
D. Bao, Z. Wen, J. Shi, L. Xie, H. Jiang et al., An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature. J. Mater. Chem. A 8(27), 13787–13794 (2020). https://doi.org/10.1039/D0TA03215H
X. Dai, Y. Long, B. Jiang, W. Guo, W. Sha et al., Ultra-antifreeze, ultra-stretchable, transparent, and conductive hydrogel for multi-functional flexible electronics as strain sensor and triboelectric nanogenerator. Nano Res. 15(6), 5461–5468 (2022). https://doi.org/10.1007/s12274-022-4153-5
Z. Liu, Y. Faraj, X.J. Ju, W. Wang, R. Xie et al., Nanocomposite smart hydrogels with improved responsiveness and mechanical properties: a mini review. J. Polym. Sci. Part B Polym. Phys. 56(19), 1306–1313 (2018). https://doi.org/10.1002/polb.24723
F.G. Downs, D.J. Lunn, M.J. Booth, J.B. Sauer, W.J. Ramsay et al., Multi-responsive hydrogel structures from patterned droplet networks. Nat. Chem. 12(4), 363–371 (2020). https://doi.org/10.1038/s41557-020-0444-1
C. Li, G.C. Lau, H. Yuan, A. Aggarwal, V.L. Dominguez et al., Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Sci. Robot. 5(49), eabb9822 (2020). https://doi.org/10.1126/scirobotics.abb9822
H. Zhao, S. Pan, A. Natalia, X. Wu, C.-A.J. Ong et al., A hydrogel-based mechanical metamaterial for the interferometric profiling of extracellular vesicles in patient samples. Nat. Biomed. Eng. 7(2), 135–148 (2022). https://doi.org/10.1038/s41551-022-00954-7
R. Wang, X. Jin, Q. Wang, Q. Zhang, H. Yuan et al., A transparent, flexible triboelectric nanogenerator for anti-counterfeiting based on photothermal effect. Matter 6(5), 1514–1529 (2023). https://doi.org/10.1016/j.matt.2023.02.013
P. Terech, R.G. Weiss, Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97(8), 3133–3160 (1997). https://doi.org/10.1021/cr9700282
J.V. Alemán, A.V. Chadwick, J. He, M. Hess, K. Horie et al., Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl. Chem. 79(10), 1801–1829 (2007). https://doi.org/10.1351/pac200779101801
Z. Luo, W. Li, J. Yan, J. Sun, Roles of ionic liquids in adjusting nature of ionogels: a mini review. Adv. Funct. Mater. 32(32), 2203988 (2022). https://doi.org/10.1002/adfm.202203988
Y. Wu, J. Qu, X. Zhang, K. Ao, Z. Zhou et al., Biomechanical energy harvesters based on ionic conductive organohydrogels via the hofmeister effect and electrostatic interaction. ACS Nano 15(8), 13427–13435 (2021). https://doi.org/10.1021/acsnano.1c03830
J. Liu, B. Zhang, P. Zhang, K. Zhao, Z. Lu et al., Protein crystallization-mediated self-strengthening of high-performance printable conducting organohydrogels. ACS Nano 16(11), 17998–18008 (2022). https://doi.org/10.1021/acsnano.2c07823
Y. Zhang, Q. Song, Y. Tian, G. Zhao, Y. Zhou, Insights into biomacromolecule-based alcogels: a review on their synthesis, characteristics and applications. Food Hydrocoll. 128, 107574 (2022). https://doi.org/10.1016/j.foodhyd.2022.107574
G. Choudhary, J. Dhariwal, M. Saha, S. Trivedi, M.K. Banjare et al., Ionic liquids: environmentally sustainable materials for energy conversion and storage applications. Environ. Sci. Pollut. Res. 31, 10296–10316 (2024). https://doi.org/10.1007/s11356-023-25468-w
D. Wang, S. Zhao, R. Yin, L. Li, Z. Lou et al., Recent advanced applications of ion-gel in ionic-gated transistor. npj Flex. Electron. 5(1), 13 (2021). https://doi.org/10.1038/s41528-021-00110-2
K.S. Egorova, E.G. Gordeev, V.P. Ananikov, Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev. 117(10), 7132–7189 (2017). https://doi.org/10.1021/acs.chemrev.6b00562
Y. Gao, W. Zhang, L. Li, Z. Wang, Y. Shu et al., Ionic liquid-based gels for biomedical applications. Chem. Eng. J. 452, 139248 (2023). https://doi.org/10.1016/j.cej.2022.139248
M. Wang, P. Zhang, M. Shamsi, J.L. Thelen, W. Qian et al., Tough and stretchable ionogels by in situ phase separation. Nat. Mater. 21(3), 359–365 (2022). https://doi.org/10.1038/s41563-022-01195-4
Q. Ding, Z. Wu, K. Tao, Y. Wei, W. Wang et al., Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. Mater. Horiz. 9(5), 1356–1386 (2022). https://doi.org/10.1039/D1MH01871J
D. Zhang, Y. Liu, Y. Liu, Y. Peng, Y. Tang et al., A general crosslinker strategy to realize intrinsic frozen resistance of hydrogels. Adv. Mater. 33(42), 2104006 (2021). https://doi.org/10.1002/adma.202104006
Z. He, C. Wu, M. Hua, S. Wu, D. Wu et al., Bioinspired multifunctional anti-icing hydrogel. Matter 2(3), 723–734 (2020). https://doi.org/10.1016/j.matt.2019.12.017
Z. Wu, W. Shi, H. Ding, B. Zhong, W. Huang et al., Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing. J. Mater. Chem. C 9(39), 13668–13679 (2021). https://doi.org/10.1039/D1TC02506F
J.-Y. Yu, S.E. Moon, J.H. Kim, S.M. Kang, Ultrasensitive and highly stretchable multiple-crosslinked ionic hydrogel sensors with long-term stability. Nano-Micro Lett. 15(1), 51 (2023). https://doi.org/10.1007/s40820-023-01015-7
L. Zhu, J. Xu, J. Song, M. Qin, S. Gu et al., Transparent, stretchable and anti-freezing hybrid double-network organohydrogels. Sci. China Mater. 65(8), 2207–2216 (2022). https://doi.org/10.1007/s40843-021-1961-1
X. Zhang, C. Cui, S. Chen, L. Meng, H. Zhao et al., Adhesive ionohydrogels based on ionic liquid/water binary solvents with freezing tolerance for flexible ionotronic devices. Chem. Mater. 34(3), 1065–1077 (2022). https://doi.org/10.1021/acs.chemmater.1c03386
L. Sun, S. Chen, Y. Guo, J. Song, L. Zhang et al., Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range. Nano Energy 63, 103847 (2019). https://doi.org/10.1016/j.nanoen.2019.06.043
J. Shen, Z. Li, J. Yu, B. Ding, Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 40, 282–288 (2017). https://doi.org/10.1016/j.nanoen.2017.08.035
B. Jiang, Y. Long, X. Pu, W. Hu, Z.L. Wang, A stretchable, harsh condition-resistant and ambient-stable hydrogel and its applications in triboelectric nanogenerator. Nano Energy 86, 106086 (2021). https://doi.org/10.1016/j.nanoen.2021.106086
H. Li, F. Xu, J. Wang, J. Zhang, H. Wang et al., Self-healing fluorinated poly(urethane urea) for mechanically and environmentally stable, high performance, and versatile fully self-healing triboelectric nanogenerators. Nano Energy 108, 108243 (2023). https://doi.org/10.1016/j.nanoen.2023.108243
X. Li, J. Tao, X. Wang, J. Zhu, C. Pan et al., Networks of high performance triboelectric nanogenerators based on liquid–solid interface contact electrification for harvesting low-frequency blue energy. Adv. Energy Mater. 8, 1800705 (2018). https://doi.org/10.1002/aenm.201800705
S.S. Sonu, N. Rai, I. Chauhan, Multifunctional aerogels: a comprehensive review on types, synthesis and applications of aerogels. J. Sol-Gel Sci. Technol. 105(2), 324–336 (2023). https://doi.org/10.1007/s10971-022-06026-1
H. Zhuo, Y. Hu, X. Tong, Z. Chen, L. Zhong et al., A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv. Mater. 30(18), 1706705 (2018). https://doi.org/10.1002/adma.201706705
L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14(8), 10633–10647 (2020). https://doi.org/10.1021/acsnano.0c04888
C.-Y. Huang, J.-F. Feng, G.-C. Li, L.-G. Liao, S.-T. Fan et al., Thermally insulating composite aerogel with both active absorption and passive insulation functions based on azobenzene-modified chitosan/oligomeric β-cyclodextrin. Chem. Eng. J. 457, 141202 (2023). https://doi.org/10.1016/j.cej.2022.141202
L. Feng, P. Wei, Q. Song, J. Zhang, Q. Fu et al., Superelastic, highly conductive, superhydrophobic, and powerful electromagnetic shielding hybrid aerogels built from orthogonal graphene and boron nitride nanoribbons. ACS Nano 16(10), 17049–17061 (2022). https://doi.org/10.1021/acsnano.2c07187
J. Zheng, T. Hang, Z. Li, W. He, S. Jiang et al., High-performance and multifunctional conductive aerogel films for outstanding electromagnetic interference shielding, Joule heating and energy harvesting. Chem. Eng. J. 471, 144548 (2023). https://doi.org/10.1016/j.cej.2023.144548
T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15(1), 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
R.W. Pekala, F.M. Kong, A synthetic route to organic aerogels-mechanism, structure, and properties. J. Phys. Colloques 24, C4 (1989). https://doi.org/10.1051/jphyscol:1989406
F. Guo, Y. Jiang, Z. Xu, Y. Xiao, B. Fang et al., Highly stretchable carbon aerogels. Nat. Commun. 9(1), 881 (2018). https://doi.org/10.1038/s41467-018-03268-y
S. Cui, L. Zhou, D. Liu, S. Li, L. Liu et al., Improving performance of triboelectric nanogenerators by dielectric enhancement effect. Matter 5(1), 180–193 (2022). https://doi.org/10.1016/j.matt.2021.10.019
G. Du, J. Wang, Y. Liu, J. Yuan, T. Liu et al., Fabrication of advanced cellulosic triboelectric materials via dielectric modulation. Adv. Sci. 10(15), 2206243 (2023). https://doi.org/10.1002/advs.202206243
V. Rahmanian, T. Pirzada, S. Wang, S.A. Khan, Cellulose-based hybrid aerogels: strategies toward design and functionality. Adv. Mater. 33(51), 2102892 (2021). https://doi.org/10.1002/adma.202102892
H.-Y. Mi, X. Jing, Z. Cai, Y. Liu, L.-S. Turng et al., Highly porous composite aerogel based triboelectric nanogenerators for high performance energy generation and versatile self-powered sensing. Nanoscale 10, 23131–23140 (2018). https://doi.org/10.1039/c8nr05872e
L. Zhang, Y. Liao, Y.C. Wang, S.V. Zhang, W.Q. Yang et al., Cellulose II aerogel-based triboelectric nanogenerator. Adv. Funct. Mater. 30(28), 2001763 (2020). https://doi.org/10.1002/adfm.202001763
S. Zhu, Y. Liu, G. Du, Y. Shao, Z. Wei et al., Customizing temperature-resistant cellulosic triboelectric materials for energy harvesting and emerging applications. Nano Energy 124, 109449 (2024). https://doi.org/10.1016/j.nanoen.2024.109449
S. Wu, D. Chen, W. Han, Y. Xie, G. Zhao et al., Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 446, 137093 (2022). https://doi.org/10.1016/j.cej.2022.137093
L. Su, H. Wang, M. Niu, S. Dai, Z. Cai et al., Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci. Adv. 6(26), eaay6689 (2020). https://doi.org/10.1126/sciadv.aay6689
X. Zhang, X. Cheng, Y. Si, J. Yu, B. Ding, Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation. Chem. Eng. J. 433, 133628 (2022). https://doi.org/10.1016/j.cej.2021.133628
Z.L. Yu, B. Qin, Z.Y. Ma, J. Huang, S.C. Li et al., Superelastic hard carbon nanofiber aerogels. Adv. Mater. 31(23), 1900651 (2019). https://doi.org/10.1002/adma.201900651
X. Shi, X. Fan, Y. Zhu, Y. Liu, P. Wu et al., Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat. Commun. 13(1), 1119 (2022). https://doi.org/10.1038/s41467-022-28760-4
Z. Jin, F. Zhao, Y. Lei, Y.-C. Wang, Hydrogel-based triboelectric devices for energy-harvesting and wearable sensing applications. Nano Energy 95, 106988 (2022). https://doi.org/10.1016/j.nanoen.2022.106988
Y. Long, Y. Chen, Y. Liu, G. Chen, W. Guo et al., A flexible triboelectric nanogenerator based on a super-stretchable and self-healable hydrogel as the electrode. Nanoscale 12(24), 12753–12759 (2020). https://doi.org/10.1039/D0NR02967J
F. He, X. You, H. Gong, Y. Yang, T. Bai et al., Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl. Mater. Interfaces 12(5), 6442–6450 (2020). https://doi.org/10.1021/acsami.9b19721
F. Sheng, J. Yi, S. Shen, R. Cheng, C. Ning et al., Self-powered smart arm training band sensor based on extremely stretchable hydrogel conductors. ACS Appl. Mater. Interfaces 13(37), 44868–44877 (2021). https://doi.org/10.1021/acsami.1c12378
H. Zhang, K. Xue, X. Xu, X. Wang, B. Wang et al., Green and low-cost alkali-polyphenol synergetic self-catalysis system access to fast gelation of self-healable and self-adhesive conductive hydrogels for self-powered triboelectric nanogenerators. Small 20(10), 2305502 (2024). https://doi.org/10.1002/smll.202305502
J. Zhao, W. Zhang, T. Liu, B. Luo, Y. Qin et al., Multiscale structural triboelectric aerogels enabled by self-assembly driven supramolecular winding. Adv. Funct. Mater. 34, 2400476 (2024). https://doi.org/10.1002/adfm.202400476
D.W. Kim, J.H. Lee, J.K. Kim, U. Jeong, Material aspects of triboelectric energy generation and sensors. NPG Asia Mater. 12(1), 6 (2020). https://doi.org/10.1038/s41427-019-0176-0
Y. Feng, J. Yu, D. Sun, C. Dang, W. Ren et al., Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing. Nano Energy 98, 107284 (2022). https://doi.org/10.1016/j.nanoen.2022.107284
M. Kim, C. Choi, J.P. Lee, J. Kim, C. Cha, Multiscale engineering of nanofiber-aerogel composite nanogenerator with tunable triboelectric performance based on multifunctional polysuccinimide. Small 18(36), 2107316 (2022). https://doi.org/10.1002/smll.202107316
Y. Liu, T.H. Wong, X. Huang, C.K. Yiu, Y. Gao et al., Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy 99, 107442 (2022). https://doi.org/10.1016/j.nanoen.2022.107442
H. Park, S.J. Oh, D. Kim, M. Kim, C. Lee et al., Plasticized PVC-gel single layer-based stretchable triboelectric nanogenerator for harvesting mechanical energy and tactile sensing. Adv. Sci. 9(22), 2201070 (2022). https://doi.org/10.1002/advs.202201070
G. Zhao, Y. Zhang, N. Shi, Z. Liu, X. Zhang et al., Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 59, 302–310 (2019). https://doi.org/10.1016/j.nanoen.2019.02.054
F. Yi, Z. Zhang, Z. Kang, Q. Liao, Y. Zhang, Recent advances in triboelectric nanogenerator-based health monitoring. Adv. Funct. Mater. 29(41), 1808849 (2019). https://doi.org/10.1002/adfm.201808849
F. Gao, C. Liu, L. Zhang, T. Liu, Z. Wang et al., Wearable and flexible electrochemical sensors for sweat analysis: a review. Microsyst. Nanoeng. 9(1), 1 (2023). https://doi.org/10.1038/s41378-022-00443-6
Z. Bai, X. Wang, M. Huang, Y. Feng, S. Sun et al., Smart battery-free and wireless bioelectronic platform based on a nature-skin-derived organohydrogel for chronic wound diagnosis, assessment, and accelerated healing. Nano Energy 118, 108989 (2023). https://doi.org/10.1016/j.nanoen.2023.108989
J.-N. Kim, J. Lee, H. Lee, I.-K. Oh, Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at parkinson disease. Nano Energy 82, 105705 (2021). https://doi.org/10.1016/j.nanoen.2020.105705
X. Cao, Y. Xiong, J. Sun, X. Xie, Q. Sun et al., Multidiscipline applications of triboelectric nanogenerators for the intelligent era of internet of things. Nano-Micro Lett. 15(1), 14 (2023). https://doi.org/10.1007/s40820-022-00981-8
C. Zhang, M. Wang, C. Jiang, P. Zhu, B. Sun et al., Highly adhesive and self-healing γ-PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics. Nano Energy 95, 106991 (2022). https://doi.org/10.1016/j.nanoen.2022.106991
H. Zhang, D. Zhang, Z. Wang, G. Xi, R. Mao et al., Ultrastretchable, self-healing conductive hydrogel-based triboelectric nanogenerators for human–computer interaction. ACS Appl. Mater. Interfaces 15(4), 5128–5138 (2023). https://doi.org/10.1021/acsami.2c17904
A. Yu, M. Zhu, C. Chen, Y. Li, H. Cui et al., Implantable flexible sensors for health monitoring. Adv. Healthc. Mater. 13(2), 2302460 (2024). https://doi.org/10.1002/adhm.202302460
X. Lu, L. Zheng, H. Zhang, W. Wang, Z.L. Wang et al., Stretchable, transparent triboelectric nanogenerator as a highly sensitive self-powered sensor for driver fatigue and distraction monitoring. Nano Energy 78, 105359 (2020). https://doi.org/10.1016/j.nanoen.2020.105359
S. Nie, C. Chen, C. Zhu, Advanced biomass materials: Progress in the applications for energy, environmental, and emerging fields. Front. Chem. Sci. Eng. 17(7), 795–797 (2023). https://doi.org/10.1007/s11705-023-2336-6
X. Li, J. Wang, Y. Liu, T. Zhao, B. Luo et al., Lightweight and strong cellulosic triboelectric materials enabled by cell wall nanoengineering. Nano Lett. 24(10), 3273–3281 (2024). https://doi.org/10.1021/acs.nanolett.4c00458
H. Park, S.-J. Oh, M. Kim, C. Lee, H. Joo et al., Plasticizer structural effect for sustainable and high-performance PVC gel-based triboelectric nanogenerators. Nano Energy 114, 108615 (2023). https://doi.org/10.1016/j.nanoen.2023.108615
H.-Y. Mi, X. Jing, Y. Wang, X. Shi, H. Li et al., Poly[(butyl acrylate)-co-(butyl methacrylate)] as transparent tribopositive material for high-performance hydrogel-based triboelectric nanogenerators. ACS Appl. Polym. Mater. 2(11), 5219–5227 (2020). https://doi.org/10.1021/acsapm.0c00363
J. Zou, X. Jing, Z. Chen, S.J. Wang, X.S. Hu et al., Multifunctional organohydrogel with ultralow-hysteresis, ultrafast-response, and whole-strain-range linearity for self-powered sensors. Adv. Funct. Mater. 33(15), 2213895 (2023). https://doi.org/10.1002/adfm.202213895
T. Huang, Y. Long, B. Zhao, Q. Hua, Z.L. Wang et al., Hybrid aerogel triboelectric nanogenerator based on the synergistic effect of solid–solid/gas–solid triboelectricity and piezoelectric polarization. ACS Appl. Mater. Interfaces 15(22), 26682–26690 (2023). https://doi.org/10.1021/acsami.3c02969
Z. Wang, Z. Liu, G. Zhao, Z. Zhang, X. Zhao et al., Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors. ACS Nano 16(1), 1661–1670 (2022). https://doi.org/10.1021/acsnano.1c10678
Z. Yu, Y. Zhang, Y. Wang, J. Zheng, Y. Fu et al., Integrated piezo-tribo hybrid acoustic-driven nanogenerator based on porous MWCNTs/PVDF-TrFE aerogel bulk with embedded PDMS tympanum structure for broadband sound energy harvesting. Nano Energy 97, 107205 (2022). https://doi.org/10.1016/j.nanoen.2022.107205
K. Shi, X. Huang, B. Sun, Z. Wu, J. He et al., Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy 57, 450–458 (2019). https://doi.org/10.1016/j.nanoen.2018.12.076
J.X. Liu, G. Liu, Z.H. Guo, W. Hu, C. Zhang et al., Electret elastomer-based stretchable triboelectric nanogenerators with autonomously managed power supplies for self-charging systems. Chem. Eng. J. 462, 142167 (2023). https://doi.org/10.1016/j.cej.2023.142167
J.H. Lee, Y.S. Park, S. Cho, I.S. Kang, J.K. Kim et al., Output voltage modulation in triboelectric nanogenerator by printed ion gel capacitors. Nano Energy 54, 367–374 (2018). https://doi.org/10.1016/j.nanoen.2018.10.016
H. Zhang, X. Gong, X. Li, Material selection and per