Zinc–Bromine Rechargeable Batteries: From Device Configuration, Electrochemistry, Material to Performance Evaluation
Corresponding Author: Bin Luo
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 209
Abstract
Zinc–bromine rechargeable batteries (ZBRBs) are one of the most powerful candidates for next-generation energy storage due to their potentially lower material cost, deep discharge capability, non-flammable electrolytes, relatively long lifetime and good reversibility. However, many opportunities remain to improve the efficiency and stability of these batteries for long-life operation. Here, we discuss the device configurations, working mechanisms and performance evaluation of ZBRBs. Both non-flow (static) and flow-type cells are highlighted in detail in this review. The fundamental electrochemical aspects, including the key challenges and promising solutions, are discussed, with particular attention paid to zinc and bromine half-cells, as their performance plays a critical role in determining the electrochemical performance of the battery system. The following sections examine the key performance metrics of ZBRBs and assessment methods using various ex situ and in situ/operando techniques. The review concludes with insights into future developments and prospects for high-performance ZBRBs.
Highlights:
1 A comprehensive discussion of the recent advances in zinc–bromine rechargeable batteries with flow or non-flow electrolytes is presented.
2 The fundamental electrochemical aspects including the key challenges and promising solutions in both zinc and bromine half-cells are reviewed.
3 The key performance metrics of ZBRBs and assessment methods using various ex situ and in situ/operando techniques are also discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11(10), 2696–2767 (2018). https://doi.org/10.1039/c8ee01419a
- P. Leung, X.H. Li, C.P. de Leon, L. Berlouis, C.T.J. Low et al., Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2(27), 10125–10156 (2012). https://doi.org/10.1039/c2ra21342g
- C. Chen, C.S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15(1), 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- X. Li, F. Chen, B. Zhao, S. Zhang, X. Zheng et al., Ultrafast synthesis of metal-layered hydroxides in a dozen seconds for high-performance aqueous Zn (micro-) battery. Nano-Micro Lett. 15(1), 32 (2023). https://doi.org/10.1007/s40820-022-01004-2
- A. Castillo, D.F. Gayme, Grid-scale energy storage applications in renewable energy integration: a survey. Energy Convers. Manag. 87, 885–894 (2014). https://doi.org/10.1016/j.enconman.2014.07.063
- S. Ahmed, A. Mahmood, A. Hasan, G.A.S. Sidhu, M.F.U. Butt, A comparative review of china, india and pakistan renewable energy sectors and sharing opportunities. Renew. Sustain. Energy Rev. 57, 216–225 (2016). https://doi.org/10.1016/j.rser.2015.12.191
- C. Wu, X. Tong, Y. Ai, D.S. Liu, P. Yu et al., A review: enhanced anodes of Li/Na-ion batteries based on yolk–shell structured nanomaterials. Nano-Micro Lett. 10(3), 40 (2018). https://doi.org/10.1007/s40820-018-0194-4
- W. Wang, Q.T. Luo, B. Li, X.L. Wei, L.Y. Li et al., Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23(8), 970–986 (2013). https://doi.org/10.1002/adfm.201200694
- R.J. Ye, D. Henkensmeier, S.J. Yoon, Z.F. Huang, D.K. Kim et al., Redox flow batteries for energy storage: a technology review. J. Electrochem. Energy Convers. Storage 15(1), 21 (2018). https://doi.org/10.1115/1.4037248
- L. Gao, Z. Li, Y. Zou, S. Yin, P. Peng et al., A high-performance aqueous zinc-bromine static battery. iScience 23(8), 101348 (2020). https://doi.org/10.1016/j.isci.2020.101348
- S. Biswas, A. Senju, R. Mohr, T. Hodson, N. Karthikeyan et al., Minimal architecture zinc-bromine battery for low cost electrochemical energy storage. Energy Environ. Sci. 10(1), 114–120 (2017). https://doi.org/10.1039/c6ee02782b
- S. Barnartt, D.A. Forejt, Bromine-zinc secondary cells. J. Electrochem. Soc. 111(11), 1201 (1964). https://doi.org/10.1149/1.2425960
- P.C. Butler, P.A. Eidler, P.G. Grimes, S.E. Klassen, R.C. Miles, in Handbook of Batteries. ed. by D. By Linden, T. Reddy (McGraw-Hill Professional, New York, 2001), pp.1263–1284
- C. Dai, L. Hu, X. Jin, Y. Wang, R. Wang et al., Fast constructing polarity-switchable zinc-bromine microbatteries with high areal energy density. Sci. Adv. 8(28), eabo6688 (2022). https://doi.org/10.1126/sciadv.abo6688
- B. Plackett, A conversation with thomas maschmeyer. ACS Cent. Sci. 7(12), 1957–1958 (2021). https://doi.org/10.1021/acscentsci.1c01426
- J.H. Lee, Y. Byun, G.H. Jeong, C. Choi, J. Kwen et al., High-energy efficiency membraneless flowless Zn–Br battery: utilizing the electrochemical-chemical growth of polybromides. Adv. Mater. 31(52), e1904524 (2019). https://doi.org/10.1002/adma.201904524
- X.W. Chen, B.J. Hopkins, A. Helal, F.Y. Fan, K.C. Smith et al., A low-dissipation, pumpless, gravity-induced flow battery. Energy Environ. Sci. 9(5), 1760–1770 (2016). https://doi.org/10.1039/c6ee00874g
- W.A. Braff, M.Z. Bazant, C.R. Buie, Membrane-less hydrogen bromine flow battery. Nat. Commun. 4(1), 2346 (2013). https://doi.org/10.1038/ncomms3346
- Y.X. Yao, J.F. Lei, Y. Shi, F. Ai, Y.C. Lu, Assessment methods and performance metrics for redox flow batteries. Nat. Energy 6(6), 582–588 (2021). https://doi.org/10.1038/s41560-020-00772-8
- K. Likit-anurak, K. Uthaichana, K. Punyawudho, Y. Khunatorn, The performance and efficiency of organic electrolyte redox flow battery prototype, in 2017 2nd International Conference on Advances on Clean Energy Research (Icacer 2017), vol. 118 (2017), pp. 54–62. https://doi.org/10.1016/j.egypro.2017.07.012
- M. Mourshed, S.M.R. Niya, R. Ojha, G. Rosengarten, J. Andrews et al., Carbon-based slurry electrodes for energy storage and power supply systems. Energy Storage Mater. 40, 461–489 (2021). https://doi.org/10.1016/j.ensm.2021.05.032
- K. Lourenssen, J. Williams, F. Ahmadpour, R. Clemmer, S. Tasnim, Vanadium redox flow batteries: a comprehensive review. J. Energy Storage 25, 100844 (2019). https://doi.org/10.1016/j.est.2019.100844
- A. Cunha, J. Martins, N. Rodrigues, F.P. Brito, Vanadium redox flow batteries: a technology review. Int. J. Energy Res. 39(7), 889–918 (2015). https://doi.org/10.1002/er.3260
- J. Houser, A. Pezeshki, J.T. Clement, D. Aaron, M.M. Mench, Architecture for improved mass transport and system performance in redox flow batteries. J. Power Sources 351, 96–105 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.083
- S. Suresh, T. Kesavan, Y. Munaiah, I. Arulraj, S. Dheenadayalan et al., Zinc-bromine hybrid flow battery: effect of zinc utilization and performance characteristics. RSC Adv. 4(71), 37947–37953 (2014). https://doi.org/10.1039/c4ra05946h
- C.P. De Leon, A. Frías-Ferrer, J. González-García, D. Szánto, F.C. Walsh, Redox flow cells for energy conversion. J. Power Sources 160(1), 716–732 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.095
- M. Skyllas-Kazacos, M.H. Chakrabarti, S.A. Hajimolana, F.S. Mjalli, M. Saleem, Progress in flow battery research and development. J. Electrochem. Soc. 158(8), R55–R79 (2011). https://doi.org/10.1149/1.3599565
- A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications. Electrochim. Acta 101, 27–40 (2013). https://doi.org/10.1016/j.electacta.2012.09.067
- L.H. Thaller, Electrically rechargeable redox flow cells, in 9th Intersociety Energy Conversion Engineering Conference (1974), pp. 924–928
- Z.Y. Wang, L.Y.S. Tam, Y.C. Lu, Flexible solid flow electrodes for high-energy scalable energy storage. Joule 3(7), 1677–1688 (2019). https://doi.org/10.1016/j.joule.2019.05.015
- M. Park, J. Ryu, W. Wang, J. Cho, Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2(1), 1–18 (2016). https://doi.org/10.1038/natrevmats.2016.80
- Y.K. Zeng, X.L. Zhou, L. An, L. Wei, T.S. Zhao, A high-performance flow-field structured iron-chromium redox flow battery. J. Power Sources 324, 738–744 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.138
- K. Gong, X.Y. Ma, K.M. Conforti, K.J. Kuttler, J.B. Grunewald et al., A zinc-iron redox-flow battery under $100 per kWh of system capital cost. Energy Environ. Sci. 8(10), 2941–2945 (2015). https://doi.org/10.1039/c5ee02315g
- Z.J. Li, G.M. Weng, Q.L. Zou, G.T. Cong, Y.C. Lu, A high-energy and low-cost polysulfide/iodide redox flow battery. Nano Energy 30, 283–292 (2016). https://doi.org/10.1016/j.nanoen.2016.09.043
- C. Wang, Q. Lai, P. Xu, D. Zheng, X. Li et al., Cage-like porous carbon with superhigh activity and Br(2)-complex-entrapping capability for bromine-based flow batteries. Adv. Mater. 29(22), 1605815 (2017). https://doi.org/10.1002/adma.201605815
- L. Wei, T.S. Zhao, L. Zeng, X.L. Zhou, Y.K. Zeng, Copper nanop-deposited graphite felt electrodes for all vanadium redox flow batteries. Appl. Energy 180, 386–391 (2016). https://doi.org/10.1016/j.apenergy.2016.07.134
- C. Minke, T. Turek, Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries—a review. J. Power Sources 376, 66–81 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.058
- D.G. Kwabi, Y. Ji, M.J. Aziz, Electrolyte lifetime in aqueous organic redox flow batteries: a critical review. Chem. Rev. 120(14), 6467–6489 (2020). https://doi.org/10.1021/acs.chemrev.9b00599
- X. Ke, J.M. Prahl, J.I.D. Alexander, J.S. Wainright, T.A. Zawodzinski et al., Rechargeable redox flow batteries: flow fields, stacks and design considerations. Chem. Soc. Rev. 47(23), 8721–8743 (2018). https://doi.org/10.1039/c8cs00072g
- K.J. Kim, M.S. Park, Y.J. Kim, J.H. Kim, S.X. Dou et al., A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 3(33), 16913–16933 (2015). https://doi.org/10.1039/c5ta02613j
- L. Joerissen, J. Garche, C. Fabjan, G. Tomazic, Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems. J. Power Sources 127(1–2), 98–104 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.066
- J.A. Luo, B. Hu, M.W. Hu, Y. Zhao, T.L. Liu, Status and prospects of organic redox flow batteries toward sustainable energy storage. ACS Energy Lett. 4(9), 2220–2240 (2019). https://doi.org/10.1021/acsenergylett.9b01332
- J. Winsberg, T. Hagemann, T. Janoschka, M.D. Hager, U.S. Schubert, Redox-flow batteries: from metals to organic redox-active materials. Angew. Chem. Int. Ed. 56(3), 686–711 (2017). https://doi.org/10.1002/anie.201604925
- V. Singh, S. Kim, J. Kang, H.R. Byon, Aqueous organic redox flow batteries. Nano Res. 12(9), 1988–2001 (2019). https://doi.org/10.1007/s12274-019-2355-2
- T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern et al., An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527(7576), 78–81 (2015). https://doi.org/10.1038/nature15746
- B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt et al., A metal-free organic–inorganic aqueous flow battery. Nature 505(7482), 195–198 (2014). https://doi.org/10.1038/nature12909
- H.N. Chen, G.T. Cong, Y.C. Lu, Recent progress in organic redox flow batteries: active materials, electrolytes and membranes. J. Energy Chem. 27(5), 1304–1325 (2018). https://doi.org/10.1016/j.jechem.2018.02.009
- Y.K. Zeng, T.S. Zhao, L. An, X.L. Zhou, L. Wei, A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. J. Power Sources 300, 438–443 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.100
- Y.K. Zeng, T.S. Zhao, X.L. Zhou, L. Zeng, L. Wei, The effects of design parameters on the charge–discharge performance of iron-chromium redox flow batteries. Appl. Energy 182, 204–209 (2016). https://doi.org/10.1016/j.apenergy.2016.08.135
- C.Y. Sun, H. Zhang, Investigation of nafion series membranes on the performance of iron-chromium redox flow battery. Int. J. Energy Res. 43(14), 8739–8752 (2019). https://doi.org/10.1002/er.4875
- S.L. Chang, J.Y. Ye, W. Zhou, C. Wu, M. Ding et al., A low-cost speek-k type membrane for neutral aqueous zinc-iron redox flow battery. Surf. Coat. Technol. 358, 190–194 (2019). https://doi.org/10.1016/j.surfcoat.2018.11.028
- Z. Yuan, Y. Duan, T. Liu, H. Zhang, X. Li, Toward a low-cost alkaline zinc-iron flow battery with a polybenzimidazole custom membrane for stationary energy storage. iScience 3, 40–49 (2018). https://doi.org/10.1016/j.isci.2018.04.006
- K. Amini, M.D. Pritzker, In situ polarization study of zinc-cerium redox flow batteries. J. Power Sources 471, 228463 (2020). https://doi.org/10.1016/j.jpowsour.2020.228463
- D.P. Trudgeon, K.P. Qiu, X.H. Li, T. Mallick, O.O. Taiwo et al., Screening of effective electrolyte additives for zinc-based redox flow battery systems. J. Power Sources 412(44–54 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.030
- L.F. Arenas, A. Loh, D.P. Trudgeon, X.H. Li, C.P. de Leon et al., The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage. Renew. Sustain. Energy Rev. 90, 992–1016 (2018). https://doi.org/10.1016/j.rser.2018.03.016
- G.L. Soloveichik, Flow batteries: current status and trends. Chem. Rev. 115(20), 11533–11558 (2015). https://doi.org/10.1021/cr500720t
- G.M. Weng, Z.J. Li, G.T. Cong, Y.C. Zhou, Y.C. Lu, Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries. Energy Environ. Sci. 10(3), 735–741 (2017). https://doi.org/10.1039/c6ee03554j
- E. Sánchez-Díez, E. Ventosa, M. Guarnieri, A. Trovò, C. Flox et al., Redox flow batteries: status and perspective towards sustainable stationary energy storage. J. Power Sources 481, 228804 (2021). https://doi.org/10.1016/j.jpowsour.2020.228804
- L.Y. Li, S. Kim, W. Wang, M. Vijayakumar, Z.M. Nie et al., A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv. Energy Mater. 1(3), 394–400 (2011). https://doi.org/10.1002/aenm.201100008
- Z. Yuan, Y. Yin, C. Xie, H. Zhang, Y. Yao et al., Advanced materials for zinc-based flow battery: development and challenge. Adv. Mater. 31(50), e1902025 (2019). https://doi.org/10.1002/adma.201902025
- N.A. Sepulveda, J.D. Jenkins, A. Edington, D.S. Mallapragada, R.K. Lester, The design space for long-duration energy storage in decarbonized power systems. Nat. Energy 6(5), 506 (2021). https://doi.org/10.1038/s41560-021-00796-8
- H.-T. Kim, J.-H. Lee, D.S. Kim, J.H. Yang, in Batteries: Present and Future Energy Storage Challenges. ed. by S. Passerini, D. Bresser, A. Moretti, A. Varzi (Wiley, Berlin, 2020), pp.311–340
- G.P. Rajarathnam, T.K. Ellis, A.P. Adams, B. Soltani, R.W. Zhou et al., Chemical speciation of zinc-halide complexes in zinc/bromine flow battery electrolytes. J. Electrochem. Soc. 168(7), 10 (2021). https://doi.org/10.1149/1945-7111/ac1034
- K. Periyapperuma, Y.F. Zhang, D.R. MacFarlane, M. Forsyth, C. Pozo-Gonzalo et al., Towards higher energy density redox-flow batteries: imidazolium ionic liquid for Zn electrochemistry in flow environment. ChemElectroChem 4(5), 1051–1058 (2017). https://doi.org/10.1002/celc.201600875
- P. Xu, T. Li, Q. Zheng, H. Zhang, Y. Yin et al., A low-cost bromine-fixed additive enables a high capacity retention zinc–bromine batteries. J. Energy Chem. 65, 89–93 (2022). https://doi.org/10.1016/j.jechem.2021.05.036
- Z.C. Xu, Q. Fan, Y. Li, J. Wang, P.D. Lund, Review of zinc dendrite formation in zinc bromine redox flow battery. Renew. Sustain. Energy Rev. 127, 109838 (2020). https://doi.org/10.1016/j.rser.2020.109838
- G.P. Rajarathnam, A.M. Vassallo, The Zinc/Bromine Flow Battery: Materials Challenges and Practical Solutions for Technology Advancement (Springer, Singapore, 2016), pp.1–28
- Accelerating a Carbon-Free Future (Redflow Limited, 2023). https://redflow.com/. Accessed 2 March 2023
- The Future of Storage is Long (Primuspower, 2023). https://primuspower.com/en/. Accessed 3 March 2023
- P. Lex, J. Matthews, Recent developments in zinc/bromine battery technology at johnson controls, in IEEE 35th International Power Sources Symposium (1992), pp. 88–92
- Q.Z. Lai, H.M. Zhang, X.F. Li, L.Q. Zhang, Y.H. Cheng, A novel single flow zinc–bromine battery with improved energy density. J. Power Sources 235, 1–4 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.193
- W.I. Jang, J.W. Lee, Y.M. Baek, O.O. Park, Development of a pp/carbon/cnt composite electrode for the zinc/bromine redox flow battery. Macromol. Res. 24(3), 276–281 (2016). https://doi.org/10.1007/s13233-016-4037-1
- S.S. Abd El Rehim, S.M. Abd El Wahaab, E.E. Fouad, H.H. Hassan, Effect of some variables on the electroplating of zinc from acidic acetate baths. J. Appl. Electrochem. 24(4), 350–354 (1994). https://doi.org/10.1007/bf00242065
- H. Ohtaki, T. Radnai, Structure and dynamics of hydrated ions. Chem. Rev. 93(3), 1157–1204 (1993). https://doi.org/10.1021/cr00019a014
- L. Guo, H. Guo, H. Huang, S. Tao, Y. Cheng, Inhibition of zinc dendrites in zinc-based flow batteries. Front. Chem. 8, 557 (2020). https://doi.org/10.3389/fchem.2020.00557
- K.L. Wang, P.C. Pei, Z. Ma, H.C. Chen, H.C. Xu et al., Dendrite growth in the recharging process of zinc–air batteries. J. Mater. Chem. A 3(45), 22648–22655 (2015). https://doi.org/10.1039/c5ta06366c
- H.R. Jiang, M.C. Wu, Y.X. Ren, W. Shyy, T.S. Zhao, Towards a uniform distribution of zinc in the negative electrode for zinc bromine flow batteries. Appl. Energy 213, 366–374 (2018). https://doi.org/10.1016/j.apenergy.2018.01.061
- Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31(36), e1903675 (2019). https://doi.org/10.1002/adma.201903675
- K.E. Sun, T.K. Hoang, T.N. Doan, Y. Yu, X. Zhu et al., Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl. Mater. Interfaces 9(11), 9681–9687 (2017). https://doi.org/10.1021/acsami.6b16560
- W. Lu, C. Xie, H. Zhang, X. Li, Inhibition of zinc dendrite growth in zinc-based batteries. Chemsuschem 11(23), 3996–4006 (2018). https://doi.org/10.1002/cssc.201801657
- J.L. Ortiz-Aparicio, Y. Meas, G. Trejo, R. Ortega, T.W. Chapman et al., Effects of organic additives on zinc electrodeposition from alkaline electrolytes. J. Appl. Electrochem. 43(3), 289–300 (2013). https://doi.org/10.1007/s10800-012-0518-x
- J.N. Hao, X.L. Li, S.L. Zhang, F.H. Yang, X.H. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
- L. Chladil, O. Cech, J. Smejkal, P. Vanysek, Study of zinc deposited in the presence of organic additives for zinc-based secondary batteries. J. Energy Storage 21, 295–300 (2019). https://doi.org/10.1016/j.est.2018.12.001
- A.K. Worku, Engineering techniques to dendrite free zinc-based rechargeable batteries. Front. Chem. 10, 1018461 (2022). https://doi.org/10.3389/fchem.2022.1018461
- R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15(1), 81 (2023). https://doi.org/10.1007/s40820-023-01050-4
- Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14(1), 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
- H. Meng, Q. Ran, T.Y. Dai, H. Shi, S.P. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14(1), 128 (2022). https://doi.org/10.1007/s40820-022-00867-9
- S.Y. Xie, Y. Li, X. Li, Y.J. Zhou, Z.Q. Dang et al., Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 14(1), 39 (2022). https://doi.org/10.1007/s40820-021-00783-4
- Y.Y. Wang, Y.J. Chen, W. Liu, X.Y. Ni, P. Qing et al., Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J. Mater. Chem. A 9(13), 8452–8461 (2021). https://doi.org/10.1039/d0ta12177k
- B. Li, X.T. Zhang, T.L. Wang, Z.X. He, B.A. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2022). https://doi.org/10.1007/s40820-021-00764-7
- K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid–electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13(1), 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
- Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
- X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14(1), 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
- K.N. Zhao, C.X. Wang, Y.H. Yu, M.Y. Yan, Q.L. Wei et al., Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Inter. 5(16), 1800848 (2018). https://doi.org/10.1002/admi.201800848
- F. Ganne, C. Cachet, G. Maurin, R. Wiart, E. Chauveau et al., Impedance spectroscopy and modelling of zinc deposition in chloride electrolyte containing a commercial additive. J. Appl. Electrochem. 30(6), 665–673 (2000). https://doi.org/10.1023/A:1004096822969
- K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4417 (2004). https://doi.org/10.1021/cr030203g
- H.R. Jiang, W. Shyy, M.C. Wu, L. Wei, T.S. Zhao, Highly active, bi-functional and metal-free B4C-nanop-modified graphite felt electrodes for vanadium redox flow batteries. J. Power Sources 365, 34–42 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.075
- Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Correction to: interface engineering of CoS/COO@n-doped graphene nanocomposite for high-performance rechargeable Zn–air batteries. Nano-Micro Lett. 13(1), 97 (2021). https://doi.org/10.1007/s40820-021-00608-4
- J. Jiang, G. Nie, P. Nie, Z. Li, Z. Pan et al., Nanohollow carbon for rechargeable batteries: ongoing progresses and challenges. Nano-Micro Lett. 12(1), 183 (2020). https://doi.org/10.1007/s40820-020-00521-2
- X. Xu, Y. Xu, J. Zhang, Y. Zhong, Z. Li et al., Quasi-solid electrolyte interphase boosting charge and mass transfer for dendrite-free zinc battery. Nano-Micro Lett. 15(1), 56 (2023). https://doi.org/10.1007/s40820-023-01031-7
- N. Wang, H. Wan, J. Duan, X. Wang, L. Tao et al., A review of zinc-based battery from alkaline to acid. Mater. Today Adv. 11, 100149 (2021). https://doi.org/10.1016/j.mtadv.2021.100149
- R. Putt, Assessment of Technical and Economic Feasibility of Zinc/Bromine Batteries for Utility Load Leveling. Final Report Gould (Gould, Inc., Rolling Meadows, 1979). https://doi.org/10.2172/6106713
- M. Wang, Y. Meng, K. Li, T. Ahmad, N. Chen et al., Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience 2(5), 509–517 (2022). https://doi.org/10.1016/j.esci.2022.04.003
- H. Jia, M.H. Qiu, C.X. Tang, H.Q. Liu, S.H. Fu et al., Nano-scale BN interface for ultra-stable and wide temperature range tolerable Zn anode. EcoMat 4(3), e12190 (2022). https://doi.org/10.1002/eom2.12190
- W. Shang, Q. Li, F. Jiang, B. Huang, J. Song et al., Boosting Zn||I(2) battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14(1), 82 (2022). https://doi.org/10.1007/s40820-022-00825-5
- Z.X. Wu, X.H. Yuan, M.J.H. Jiang, L.L. Wang, Q.H. Huang et al., Zinc–carbon paper composites as anodes for Zn-ion batteries: key impacts on their electrochemical behaviors. Energy Fuels 34(10), 13118–13125 (2020). https://doi.org/10.1021/acs.energyfuels.0c02367
- M. Li, Q. He, Z.L. Li, Q. Li, Y.X. Zhang et al., A novel dendrite-free Mn2+/Zn2+ hybrid battery with 2.3 V voltage window and 11000-cycle lifespan. Adv. Energy Mater. 9(29), 1901469 (2019). https://doi.org/10.1002/aenm.201901469
- L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142(51), 21404–21409 (2020). https://doi.org/10.1021/jacs.0c09794
- C. Zhang, W. Shin, L.D. Zhu, C. Chen, J.C. Neuefeind et al., The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free. Carbon Energy 3(2), 339–348 (2021). https://doi.org/10.1002/cey2.70
- J. Llopis, M. Vàzquez, Study of the impedance of a platinum electrode in the system Br2/Br− (HClO4, aq.). I. Influence of the surface state. Electrochim. Acta 6(1–4), 167–176 (1962). https://doi.org/10.1016/0013-4686(62)87034-0
- F. Magno, G.-A. Mazzocchin, G. Bontempelli, Electrochemical behaviour of the bromide ion at a platinum electrode in acetonitrile solvent. J. Electroanal. Chem. Interfacial Electrochem. 47(3), 461–468 (1973). https://doi.org/10.1016/s0022-0728(73)80199-8
- K.J. Cathro, K. Cedzynska, D.C. Constable, P.M. Hoobin, Selection of quaternary ammonium bromides for use in zinc bromine cells. J. Power Sources 18(4), 349–370 (1986). https://doi.org/10.1016/0378-7753(86)80091-X
- R.E. White, S.E. Lorimer, A model of the bromine bromide electrode-reaction at a rotating-disk electrode. J. Electrochem. Soc. 130(5), 1096–1103 (1983). https://doi.org/10.1149/1.2119890
- Y. Popat, D. Trudgeon, C.P. Zhang, F.C. Walsh, P. Connor et al., Carbon materials as positive electrodes in bromine-based flow batteries. ChemPlusChem 87(1), 16 (2022). https://doi.org/10.1002/cplu.202100441
- L.J.J. Janssen, J.G. Hoogland, Mechanism of bromine evolution at a graphite electrode. Electrochim. Acta 15(10), 1677 (1970). https://doi.org/10.1016/0013-4686(70)80088-3
- M. Mastragostino, C. Gramellini, Kinetic study of the electrochemical processes of the bromine/bromine aqueous system on vitreous carbon electrodes. Electrochim. Acta 30(3), 373–380 (1985). https://doi.org/10.1016/0013-4686(85)80198-5
- W.L. Wu, S.C. Xu, Z.R. Lin, L. Lin, R.H. He et al., A polybromide confiner with selective bromide conduction for high performance aqueous zinc–bromine batteries. Energy Storage Mater. 49, 11–18 (2022). https://doi.org/10.1016/j.ensm.2022.03.052
- F. Yu, L. Pang, X.X. Wang, E.R. Waclawik, F.X. Wang et al., Aqueous alkaline–acid hybrid electrolyte for zinc–bromine battery with 3 V voltage window. Energy Storage Mater. 19, 56–61 (2019). https://doi.org/10.1016/j.ensm.2019.02.024
- E. Lancry, B.-Z. Magnes, I. Ben-David, M. Freiberg, New bromine complexing agents for bromide based batteries. ECS Trans. 53(7), 107–115 (2013). https://doi.org/10.1149/05307.0107ecst
- H.J. Lee, D.W. Kim, J.H. Yang, Estimation of state-of-charge for zinc–bromine flow batteries by in situ raman spectroscopy. J. Electrochem. Soc. 164(4), A754–A759 (2017). https://doi.org/10.1149/2.1231704jes
- M. Kim, D. Yun, J. Jeon, Effect of a bromine complex agent on electrochemical performances of zinc electrodeposition and electrodissolution in zinc–bromide flow battery. J. Power Sources 438, 7 (2019). https://doi.org/10.1016/j.jpowsour.2019.227020
- K.S. Archana, R.P. Naresh, H. Enale, V. Rajendran, A.M.V. Mohan et al., Effect of positive electrode modification on the performance of zinc–bromine redox flow batteries. J. Energy Storage 29, 101462 (2020). https://doi.org/10.1016/j.est.2020.101462
- J.D. Jeon, H.S. Yang, J. Shim, H.S. Kim, J.H. Yang, Dual function of quaternary ammonium in Zn/Br redox flow battery: capturing the bromine and lowering the charge transfer resistance. Electrochim. Acta 127, 397–402 (2014). https://doi.org/10.1016/j.electacta.2014.02.073
- M.C. Wu, T.S. Zhao, H.R. Jiang, Y.K. Zeng, Y.X. Ren, High-performance zinc bromine flow battery via improved design of electrolyte and electrode. J. Power Sources 355, 62–68 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.058
- M.C. Wu, T.S. Zhao, R.H. Zhang, L. Wei, H.R. Jiang, Carbonized tubular polypyrrole with a high activity for the Br2/B− redox reaction in zinc–bromine flow batteries. Electrochim. Acta 284, 569–576 (2018). https://doi.org/10.1016/j.electacta.2018.07.192
- I. Vogel, A. Möbius, On some problems of the zinc–bromine system as an electric energy storage system of higher efficiency—I. Kinetics of the bromine electrode. Electrochim. Acta 36(9), 1403–1408 (1991). https://doi.org/10.1016/0013-4686(91)85326-3
- C.H. Wang, X.F. Li, X.L. Xi, P.C. Xu, Q.Z. Lai et al., Relationship between activity and structure of carbon materials for Br2/Br− in zinc bromine flow batteries. RSC Adv. 6(46), 40169–40174 (2016). https://doi.org/10.1039/c6ra03712g
- M.C. Wu, T.S. Zhao, L. Wei, H.R. Jiang, R.H. Zhang, Improved electrolyte for zinc–bromine flow batteries. J. Power Sources 384, 232–239 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.006
- L. Hua, W. Lu, T. Li, P. Xu, H. Zhang et al., A highly selective porous composite membrane with bromine capturing ability for a bromine-based flow battery. Mater. Today Energy 21, 100763 (2021). https://doi.org/10.1016/j.mtener.2021.100763
- Q. Xu, T.S. Zhao, Fundamental models for flow batteries. Prog. Energy Combust. Sci. 49, 40–58 (2015). https://doi.org/10.1016/j.pecs.2015.02.001
- M.Q. Li, H. Su, Q.G. Qiu, G. Zhao, Y. Sun et al., A quaternized polysulfone membrane for zinc–bromine redox flow battery. J. Chem. 2014, 6 (2014). https://doi.org/10.1155/2014/321629
- C. Chakkaravarthy, A.K.A. Waheed, H.V.K. Udupa, Zinc–air alkaline batteries—a review. J. Power Sources 6(3), 203–228 (1981). https://doi.org/10.1016/0378-7753(81)80027-4
- M.T. Tsehaye, F. Alloin, C. Iojoiu, R.A. Tufa, D. Aili et al., Membranes for zinc–air batteries: recent progress, challenges and perspectives. J. Power Sources 475, 23 (2020). https://doi.org/10.1016/j.jpowsour.2020.228689
- R. Kim, H.G. Kim, G. Doo, C. Choi, S. Kim et al., Ultrathin nafion-filled porous membrane for zinc/bromine redox flow batteries. Sci. Rep. 7(1), 10503 (2017). https://doi.org/10.1038/s41598-017-10850-9
- C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development. Nat. Mater. 16(1), 45–56 (2017). https://doi.org/10.1038/Nmat4777
- M. Li, L. Ran, R. Knibbe, Zn electrodeposition by an in situ electrochemical liquid phase transmission electron microscope. J. Phys. Chem. Lett. 12(2), 913–918 (2021). https://doi.org/10.1021/acs.jpclett.0c03475
- J.H. Park, D. Steingart, B. Koel, Visualizing zinc dendrites in minimal architecture zinc bromine batteries via in-house transmission X-ray microscopy. Microsc. Microanal. 27(S1), 2448–2451 (2021). https://doi.org/10.1017/s1431927621008758
- W. Kautek, A. Conradi, C. Fabjan, G. Bauer, In situ ftir spectroscopy of the Zn–Br battery bromine storage complex at glassy carbon electrodes. Electrochim. Acta 47(5), 815–823 (2001). https://doi.org/10.1016/S0013-4686(01)00762-9
- O. Nolte, I.A. Volodin, C. Stolze, M.D. Hager, U.S. Schubert, Trust is good, control is better: a review on monitoring and characterization techniques for flow battery electrolytes. Mater. Horiz. 8(7), 1866–1925 (2021). https://doi.org/10.1039/d0mh01632b
- J. Geiser, H. Natter, R. Hempelmann, B. Morgenstern, K. Hegetschweiler, Photometrical determination of the state-of-charge in vanadium redox flow batteries part I: in combination with potentiometric titration. Z. Phys. Chem. Int. J. Res. Phys. Chem. Chem. Phys. 233(12), 1683–1694 (2019). https://doi.org/10.1515/zpch-2019-1379
- D.G. Kwabi, A.A. Wong, M.J. Aziz, Rational evaluation and cycle life improvement of quinone-based aqueous flow batteries guided by in-line optical spectrophotometry. J. Electrochem. Soc. 165(9), A1770–A1776 (2018). https://doi.org/10.1149/2.0791809jes
- S. Park, H. Kim, J. Chae, J. Chang, Electrochemical generation of single emulsion droplets and in situ observation of collisions on an ultramicroelectrode. J. Phys. Chem. C 120(7), 3922–3928 (2016). https://doi.org/10.1021/acs.jpcc.5b12029
- J. Xiao, Q.Y. Li, Y.J. Bi, M. Cai, B. Dunn et al., Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5(8), 561–568 (2020). https://doi.org/10.1038/s41560-020-0648-z
- R. Darling, K. Gallagher, W. Xie, L. Su, F. Brushett, Transport property requirements for flow battery separators. J. Electrochem. Soc. 163(1), A5029–A5040 (2015). https://doi.org/10.1149/2.0051601jes
- D. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 45(1–2), 67–86 (1999). https://doi.org/10.1016/S0013-4686(99)00194-2
- C.X. Xie, T.Y. Li, C.Z. Deng, Y. Song, H.M. Zhang et al., A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy Environ. Sci. 13(1), 135–143 (2020). https://doi.org/10.1039/c9ee03702k
- C.X. Xie, Y. Liu, W.J. Lu, H.M. Zhang, X.F. Li, Highly stable zinc–iodine single flow batteries with super high energy density for stationary energy storage. Energy Environ. Sci. 12(6), 1834–1839 (2019). https://doi.org/10.1039/c8ee02825g
- T.I. Evans, R.E. White, A review of mathematical-modeling of the zinc bromine flow cell and battery. J. Electrochem. Soc. 134(11), 2725–2733 (1987). https://doi.org/10.1149/1.2100277
- J. Holmes, R.E. White, P.G. Grimes, R.J. Bellows, in Electrochemical Cell Design. ed. by R.E. White (Springer, New York, 1984), pp.293–309
- B. Koo, D. Lee, J. Yi, C.B. Shin, D.J. Kim et al., Modeling the performance of a zinc/bromine flow battery. Energies 12(6), 1159 (2019). https://doi.org/10.3390/en12061159
- A.A. Shah, H. Al-Fetlawi, F.C. Walsh, Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery. Electrochim. Acta 55(3), 1125–1139 (2010). https://doi.org/10.1016/j.electacta.2009.10.022
- M. Schneider, G.P. Rajarathnam, M.E. Easton, A.F. Masters, T. Maschmeyer et al., The influence of novel bromine sequestration agents on zinc/bromine flow battery performance. RSC Adv. 6(112), 110548–110556 (2016). https://doi.org/10.1039/c6ra23446a
- S.J. Jin, Y. Jing, D.G. Kwabi, Y.L. Ji, L.C. Tong et al., A water-miscible quinone flow battery with high volumetric capacity and energy density. ACS Energy Lett. 4(6), 1342–1348 (2019). https://doi.org/10.1021/acsenergylett.9b00739
- B. Sundén, Hydrogen, Batteries and Fuel Cells (Elsevier, London, 2019), pp.57–79
References
T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11(10), 2696–2767 (2018). https://doi.org/10.1039/c8ee01419a
P. Leung, X.H. Li, C.P. de Leon, L. Berlouis, C.T.J. Low et al., Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2(27), 10125–10156 (2012). https://doi.org/10.1039/c2ra21342g
C. Chen, C.S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15(1), 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
X. Li, F. Chen, B. Zhao, S. Zhang, X. Zheng et al., Ultrafast synthesis of metal-layered hydroxides in a dozen seconds for high-performance aqueous Zn (micro-) battery. Nano-Micro Lett. 15(1), 32 (2023). https://doi.org/10.1007/s40820-022-01004-2
A. Castillo, D.F. Gayme, Grid-scale energy storage applications in renewable energy integration: a survey. Energy Convers. Manag. 87, 885–894 (2014). https://doi.org/10.1016/j.enconman.2014.07.063
S. Ahmed, A. Mahmood, A. Hasan, G.A.S. Sidhu, M.F.U. Butt, A comparative review of china, india and pakistan renewable energy sectors and sharing opportunities. Renew. Sustain. Energy Rev. 57, 216–225 (2016). https://doi.org/10.1016/j.rser.2015.12.191
C. Wu, X. Tong, Y. Ai, D.S. Liu, P. Yu et al., A review: enhanced anodes of Li/Na-ion batteries based on yolk–shell structured nanomaterials. Nano-Micro Lett. 10(3), 40 (2018). https://doi.org/10.1007/s40820-018-0194-4
W. Wang, Q.T. Luo, B. Li, X.L. Wei, L.Y. Li et al., Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23(8), 970–986 (2013). https://doi.org/10.1002/adfm.201200694
R.J. Ye, D. Henkensmeier, S.J. Yoon, Z.F. Huang, D.K. Kim et al., Redox flow batteries for energy storage: a technology review. J. Electrochem. Energy Convers. Storage 15(1), 21 (2018). https://doi.org/10.1115/1.4037248
L. Gao, Z. Li, Y. Zou, S. Yin, P. Peng et al., A high-performance aqueous zinc-bromine static battery. iScience 23(8), 101348 (2020). https://doi.org/10.1016/j.isci.2020.101348
S. Biswas, A. Senju, R. Mohr, T. Hodson, N. Karthikeyan et al., Minimal architecture zinc-bromine battery for low cost electrochemical energy storage. Energy Environ. Sci. 10(1), 114–120 (2017). https://doi.org/10.1039/c6ee02782b
S. Barnartt, D.A. Forejt, Bromine-zinc secondary cells. J. Electrochem. Soc. 111(11), 1201 (1964). https://doi.org/10.1149/1.2425960
P.C. Butler, P.A. Eidler, P.G. Grimes, S.E. Klassen, R.C. Miles, in Handbook of Batteries. ed. by D. By Linden, T. Reddy (McGraw-Hill Professional, New York, 2001), pp.1263–1284
C. Dai, L. Hu, X. Jin, Y. Wang, R. Wang et al., Fast constructing polarity-switchable zinc-bromine microbatteries with high areal energy density. Sci. Adv. 8(28), eabo6688 (2022). https://doi.org/10.1126/sciadv.abo6688
B. Plackett, A conversation with thomas maschmeyer. ACS Cent. Sci. 7(12), 1957–1958 (2021). https://doi.org/10.1021/acscentsci.1c01426
J.H. Lee, Y. Byun, G.H. Jeong, C. Choi, J. Kwen et al., High-energy efficiency membraneless flowless Zn–Br battery: utilizing the electrochemical-chemical growth of polybromides. Adv. Mater. 31(52), e1904524 (2019). https://doi.org/10.1002/adma.201904524
X.W. Chen, B.J. Hopkins, A. Helal, F.Y. Fan, K.C. Smith et al., A low-dissipation, pumpless, gravity-induced flow battery. Energy Environ. Sci. 9(5), 1760–1770 (2016). https://doi.org/10.1039/c6ee00874g
W.A. Braff, M.Z. Bazant, C.R. Buie, Membrane-less hydrogen bromine flow battery. Nat. Commun. 4(1), 2346 (2013). https://doi.org/10.1038/ncomms3346
Y.X. Yao, J.F. Lei, Y. Shi, F. Ai, Y.C. Lu, Assessment methods and performance metrics for redox flow batteries. Nat. Energy 6(6), 582–588 (2021). https://doi.org/10.1038/s41560-020-00772-8
K. Likit-anurak, K. Uthaichana, K. Punyawudho, Y. Khunatorn, The performance and efficiency of organic electrolyte redox flow battery prototype, in 2017 2nd International Conference on Advances on Clean Energy Research (Icacer 2017), vol. 118 (2017), pp. 54–62. https://doi.org/10.1016/j.egypro.2017.07.012
M. Mourshed, S.M.R. Niya, R. Ojha, G. Rosengarten, J. Andrews et al., Carbon-based slurry electrodes for energy storage and power supply systems. Energy Storage Mater. 40, 461–489 (2021). https://doi.org/10.1016/j.ensm.2021.05.032
K. Lourenssen, J. Williams, F. Ahmadpour, R. Clemmer, S. Tasnim, Vanadium redox flow batteries: a comprehensive review. J. Energy Storage 25, 100844 (2019). https://doi.org/10.1016/j.est.2019.100844
A. Cunha, J. Martins, N. Rodrigues, F.P. Brito, Vanadium redox flow batteries: a technology review. Int. J. Energy Res. 39(7), 889–918 (2015). https://doi.org/10.1002/er.3260
J. Houser, A. Pezeshki, J.T. Clement, D. Aaron, M.M. Mench, Architecture for improved mass transport and system performance in redox flow batteries. J. Power Sources 351, 96–105 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.083
S. Suresh, T. Kesavan, Y. Munaiah, I. Arulraj, S. Dheenadayalan et al., Zinc-bromine hybrid flow battery: effect of zinc utilization and performance characteristics. RSC Adv. 4(71), 37947–37953 (2014). https://doi.org/10.1039/c4ra05946h
C.P. De Leon, A. Frías-Ferrer, J. González-García, D. Szánto, F.C. Walsh, Redox flow cells for energy conversion. J. Power Sources 160(1), 716–732 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.095
M. Skyllas-Kazacos, M.H. Chakrabarti, S.A. Hajimolana, F.S. Mjalli, M. Saleem, Progress in flow battery research and development. J. Electrochem. Soc. 158(8), R55–R79 (2011). https://doi.org/10.1149/1.3599565
A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications. Electrochim. Acta 101, 27–40 (2013). https://doi.org/10.1016/j.electacta.2012.09.067
L.H. Thaller, Electrically rechargeable redox flow cells, in 9th Intersociety Energy Conversion Engineering Conference (1974), pp. 924–928
Z.Y. Wang, L.Y.S. Tam, Y.C. Lu, Flexible solid flow electrodes for high-energy scalable energy storage. Joule 3(7), 1677–1688 (2019). https://doi.org/10.1016/j.joule.2019.05.015
M. Park, J. Ryu, W. Wang, J. Cho, Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2(1), 1–18 (2016). https://doi.org/10.1038/natrevmats.2016.80
Y.K. Zeng, X.L. Zhou, L. An, L. Wei, T.S. Zhao, A high-performance flow-field structured iron-chromium redox flow battery. J. Power Sources 324, 738–744 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.138
K. Gong, X.Y. Ma, K.M. Conforti, K.J. Kuttler, J.B. Grunewald et al., A zinc-iron redox-flow battery under $100 per kWh of system capital cost. Energy Environ. Sci. 8(10), 2941–2945 (2015). https://doi.org/10.1039/c5ee02315g
Z.J. Li, G.M. Weng, Q.L. Zou, G.T. Cong, Y.C. Lu, A high-energy and low-cost polysulfide/iodide redox flow battery. Nano Energy 30, 283–292 (2016). https://doi.org/10.1016/j.nanoen.2016.09.043
C. Wang, Q. Lai, P. Xu, D. Zheng, X. Li et al., Cage-like porous carbon with superhigh activity and Br(2)-complex-entrapping capability for bromine-based flow batteries. Adv. Mater. 29(22), 1605815 (2017). https://doi.org/10.1002/adma.201605815
L. Wei, T.S. Zhao, L. Zeng, X.L. Zhou, Y.K. Zeng, Copper nanop-deposited graphite felt electrodes for all vanadium redox flow batteries. Appl. Energy 180, 386–391 (2016). https://doi.org/10.1016/j.apenergy.2016.07.134
C. Minke, T. Turek, Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries—a review. J. Power Sources 376, 66–81 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.058
D.G. Kwabi, Y. Ji, M.J. Aziz, Electrolyte lifetime in aqueous organic redox flow batteries: a critical review. Chem. Rev. 120(14), 6467–6489 (2020). https://doi.org/10.1021/acs.chemrev.9b00599
X. Ke, J.M. Prahl, J.I.D. Alexander, J.S. Wainright, T.A. Zawodzinski et al., Rechargeable redox flow batteries: flow fields, stacks and design considerations. Chem. Soc. Rev. 47(23), 8721–8743 (2018). https://doi.org/10.1039/c8cs00072g
K.J. Kim, M.S. Park, Y.J. Kim, J.H. Kim, S.X. Dou et al., A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 3(33), 16913–16933 (2015). https://doi.org/10.1039/c5ta02613j
L. Joerissen, J. Garche, C. Fabjan, G. Tomazic, Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems. J. Power Sources 127(1–2), 98–104 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.066
J.A. Luo, B. Hu, M.W. Hu, Y. Zhao, T.L. Liu, Status and prospects of organic redox flow batteries toward sustainable energy storage. ACS Energy Lett. 4(9), 2220–2240 (2019). https://doi.org/10.1021/acsenergylett.9b01332
J. Winsberg, T. Hagemann, T. Janoschka, M.D. Hager, U.S. Schubert, Redox-flow batteries: from metals to organic redox-active materials. Angew. Chem. Int. Ed. 56(3), 686–711 (2017). https://doi.org/10.1002/anie.201604925
V. Singh, S. Kim, J. Kang, H.R. Byon, Aqueous organic redox flow batteries. Nano Res. 12(9), 1988–2001 (2019). https://doi.org/10.1007/s12274-019-2355-2
T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern et al., An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527(7576), 78–81 (2015). https://doi.org/10.1038/nature15746
B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt et al., A metal-free organic–inorganic aqueous flow battery. Nature 505(7482), 195–198 (2014). https://doi.org/10.1038/nature12909
H.N. Chen, G.T. Cong, Y.C. Lu, Recent progress in organic redox flow batteries: active materials, electrolytes and membranes. J. Energy Chem. 27(5), 1304–1325 (2018). https://doi.org/10.1016/j.jechem.2018.02.009
Y.K. Zeng, T.S. Zhao, L. An, X.L. Zhou, L. Wei, A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. J. Power Sources 300, 438–443 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.100
Y.K. Zeng, T.S. Zhao, X.L. Zhou, L. Zeng, L. Wei, The effects of design parameters on the charge–discharge performance of iron-chromium redox flow batteries. Appl. Energy 182, 204–209 (2016). https://doi.org/10.1016/j.apenergy.2016.08.135
C.Y. Sun, H. Zhang, Investigation of nafion series membranes on the performance of iron-chromium redox flow battery. Int. J. Energy Res. 43(14), 8739–8752 (2019). https://doi.org/10.1002/er.4875
S.L. Chang, J.Y. Ye, W. Zhou, C. Wu, M. Ding et al., A low-cost speek-k type membrane for neutral aqueous zinc-iron redox flow battery. Surf. Coat. Technol. 358, 190–194 (2019). https://doi.org/10.1016/j.surfcoat.2018.11.028
Z. Yuan, Y. Duan, T. Liu, H. Zhang, X. Li, Toward a low-cost alkaline zinc-iron flow battery with a polybenzimidazole custom membrane for stationary energy storage. iScience 3, 40–49 (2018). https://doi.org/10.1016/j.isci.2018.04.006
K. Amini, M.D. Pritzker, In situ polarization study of zinc-cerium redox flow batteries. J. Power Sources 471, 228463 (2020). https://doi.org/10.1016/j.jpowsour.2020.228463
D.P. Trudgeon, K.P. Qiu, X.H. Li, T. Mallick, O.O. Taiwo et al., Screening of effective electrolyte additives for zinc-based redox flow battery systems. J. Power Sources 412(44–54 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.030
L.F. Arenas, A. Loh, D.P. Trudgeon, X.H. Li, C.P. de Leon et al., The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage. Renew. Sustain. Energy Rev. 90, 992–1016 (2018). https://doi.org/10.1016/j.rser.2018.03.016
G.L. Soloveichik, Flow batteries: current status and trends. Chem. Rev. 115(20), 11533–11558 (2015). https://doi.org/10.1021/cr500720t
G.M. Weng, Z.J. Li, G.T. Cong, Y.C. Zhou, Y.C. Lu, Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries. Energy Environ. Sci. 10(3), 735–741 (2017). https://doi.org/10.1039/c6ee03554j
E. Sánchez-Díez, E. Ventosa, M. Guarnieri, A. Trovò, C. Flox et al., Redox flow batteries: status and perspective towards sustainable stationary energy storage. J. Power Sources 481, 228804 (2021). https://doi.org/10.1016/j.jpowsour.2020.228804
L.Y. Li, S. Kim, W. Wang, M. Vijayakumar, Z.M. Nie et al., A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv. Energy Mater. 1(3), 394–400 (2011). https://doi.org/10.1002/aenm.201100008
Z. Yuan, Y. Yin, C. Xie, H. Zhang, Y. Yao et al., Advanced materials for zinc-based flow battery: development and challenge. Adv. Mater. 31(50), e1902025 (2019). https://doi.org/10.1002/adma.201902025
N.A. Sepulveda, J.D. Jenkins, A. Edington, D.S. Mallapragada, R.K. Lester, The design space for long-duration energy storage in decarbonized power systems. Nat. Energy 6(5), 506 (2021). https://doi.org/10.1038/s41560-021-00796-8
H.-T. Kim, J.-H. Lee, D.S. Kim, J.H. Yang, in Batteries: Present and Future Energy Storage Challenges. ed. by S. Passerini, D. Bresser, A. Moretti, A. Varzi (Wiley, Berlin, 2020), pp.311–340
G.P. Rajarathnam, T.K. Ellis, A.P. Adams, B. Soltani, R.W. Zhou et al., Chemical speciation of zinc-halide complexes in zinc/bromine flow battery electrolytes. J. Electrochem. Soc. 168(7), 10 (2021). https://doi.org/10.1149/1945-7111/ac1034
K. Periyapperuma, Y.F. Zhang, D.R. MacFarlane, M. Forsyth, C. Pozo-Gonzalo et al., Towards higher energy density redox-flow batteries: imidazolium ionic liquid for Zn electrochemistry in flow environment. ChemElectroChem 4(5), 1051–1058 (2017). https://doi.org/10.1002/celc.201600875
P. Xu, T. Li, Q. Zheng, H. Zhang, Y. Yin et al., A low-cost bromine-fixed additive enables a high capacity retention zinc–bromine batteries. J. Energy Chem. 65, 89–93 (2022). https://doi.org/10.1016/j.jechem.2021.05.036
Z.C. Xu, Q. Fan, Y. Li, J. Wang, P.D. Lund, Review of zinc dendrite formation in zinc bromine redox flow battery. Renew. Sustain. Energy Rev. 127, 109838 (2020). https://doi.org/10.1016/j.rser.2020.109838
G.P. Rajarathnam, A.M. Vassallo, The Zinc/Bromine Flow Battery: Materials Challenges and Practical Solutions for Technology Advancement (Springer, Singapore, 2016), pp.1–28
Accelerating a Carbon-Free Future (Redflow Limited, 2023). https://redflow.com/. Accessed 2 March 2023
The Future of Storage is Long (Primuspower, 2023). https://primuspower.com/en/. Accessed 3 March 2023
P. Lex, J. Matthews, Recent developments in zinc/bromine battery technology at johnson controls, in IEEE 35th International Power Sources Symposium (1992), pp. 88–92
Q.Z. Lai, H.M. Zhang, X.F. Li, L.Q. Zhang, Y.H. Cheng, A novel single flow zinc–bromine battery with improved energy density. J. Power Sources 235, 1–4 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.193
W.I. Jang, J.W. Lee, Y.M. Baek, O.O. Park, Development of a pp/carbon/cnt composite electrode for the zinc/bromine redox flow battery. Macromol. Res. 24(3), 276–281 (2016). https://doi.org/10.1007/s13233-016-4037-1
S.S. Abd El Rehim, S.M. Abd El Wahaab, E.E. Fouad, H.H. Hassan, Effect of some variables on the electroplating of zinc from acidic acetate baths. J. Appl. Electrochem. 24(4), 350–354 (1994). https://doi.org/10.1007/bf00242065
H. Ohtaki, T. Radnai, Structure and dynamics of hydrated ions. Chem. Rev. 93(3), 1157–1204 (1993). https://doi.org/10.1021/cr00019a014
L. Guo, H. Guo, H. Huang, S. Tao, Y. Cheng, Inhibition of zinc dendrites in zinc-based flow batteries. Front. Chem. 8, 557 (2020). https://doi.org/10.3389/fchem.2020.00557
K.L. Wang, P.C. Pei, Z. Ma, H.C. Chen, H.C. Xu et al., Dendrite growth in the recharging process of zinc–air batteries. J. Mater. Chem. A 3(45), 22648–22655 (2015). https://doi.org/10.1039/c5ta06366c
H.R. Jiang, M.C. Wu, Y.X. Ren, W. Shyy, T.S. Zhao, Towards a uniform distribution of zinc in the negative electrode for zinc bromine flow batteries. Appl. Energy 213, 366–374 (2018). https://doi.org/10.1016/j.apenergy.2018.01.061
Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31(36), e1903675 (2019). https://doi.org/10.1002/adma.201903675
K.E. Sun, T.K. Hoang, T.N. Doan, Y. Yu, X. Zhu et al., Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl. Mater. Interfaces 9(11), 9681–9687 (2017). https://doi.org/10.1021/acsami.6b16560
W. Lu, C. Xie, H. Zhang, X. Li, Inhibition of zinc dendrite growth in zinc-based batteries. Chemsuschem 11(23), 3996–4006 (2018). https://doi.org/10.1002/cssc.201801657
J.L. Ortiz-Aparicio, Y. Meas, G. Trejo, R. Ortega, T.W. Chapman et al., Effects of organic additives on zinc electrodeposition from alkaline electrolytes. J. Appl. Electrochem. 43(3), 289–300 (2013). https://doi.org/10.1007/s10800-012-0518-x
J.N. Hao, X.L. Li, S.L. Zhang, F.H. Yang, X.H. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
L. Chladil, O. Cech, J. Smejkal, P. Vanysek, Study of zinc deposited in the presence of organic additives for zinc-based secondary batteries. J. Energy Storage 21, 295–300 (2019). https://doi.org/10.1016/j.est.2018.12.001
A.K. Worku, Engineering techniques to dendrite free zinc-based rechargeable batteries. Front. Chem. 10, 1018461 (2022). https://doi.org/10.3389/fchem.2022.1018461
R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15(1), 81 (2023). https://doi.org/10.1007/s40820-023-01050-4
Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14(1), 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
H. Meng, Q. Ran, T.Y. Dai, H. Shi, S.P. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14(1), 128 (2022). https://doi.org/10.1007/s40820-022-00867-9
S.Y. Xie, Y. Li, X. Li, Y.J. Zhou, Z.Q. Dang et al., Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 14(1), 39 (2022). https://doi.org/10.1007/s40820-021-00783-4
Y.Y. Wang, Y.J. Chen, W. Liu, X.Y. Ni, P. Qing et al., Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J. Mater. Chem. A 9(13), 8452–8461 (2021). https://doi.org/10.1039/d0ta12177k
B. Li, X.T. Zhang, T.L. Wang, Z.X. He, B.A. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2022). https://doi.org/10.1007/s40820-021-00764-7
K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid–electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13(1), 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14(1), 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
K.N. Zhao, C.X. Wang, Y.H. Yu, M.Y. Yan, Q.L. Wei et al., Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Inter. 5(16), 1800848 (2018). https://doi.org/10.1002/admi.201800848
F. Ganne, C. Cachet, G. Maurin, R. Wiart, E. Chauveau et al., Impedance spectroscopy and modelling of zinc deposition in chloride electrolyte containing a commercial additive. J. Appl. Electrochem. 30(6), 665–673 (2000). https://doi.org/10.1023/A:1004096822969
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4417 (2004). https://doi.org/10.1021/cr030203g
H.R. Jiang, W. Shyy, M.C. Wu, L. Wei, T.S. Zhao, Highly active, bi-functional and metal-free B4C-nanop-modified graphite felt electrodes for vanadium redox flow batteries. J. Power Sources 365, 34–42 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.075
Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Correction to: interface engineering of CoS/COO@n-doped graphene nanocomposite for high-performance rechargeable Zn–air batteries. Nano-Micro Lett. 13(1), 97 (2021). https://doi.org/10.1007/s40820-021-00608-4
J. Jiang, G. Nie, P. Nie, Z. Li, Z. Pan et al., Nanohollow carbon for rechargeable batteries: ongoing progresses and challenges. Nano-Micro Lett. 12(1), 183 (2020). https://doi.org/10.1007/s40820-020-00521-2
X. Xu, Y. Xu, J. Zhang, Y. Zhong, Z. Li et al., Quasi-solid electrolyte interphase boosting charge and mass transfer for dendrite-free zinc battery. Nano-Micro Lett. 15(1), 56 (2023). https://doi.org/10.1007/s40820-023-01031-7
N. Wang, H. Wan, J. Duan, X. Wang, L. Tao et al., A review of zinc-based battery from alkaline to acid. Mater. Today Adv. 11, 100149 (2021). https://doi.org/10.1016/j.mtadv.2021.100149
R. Putt, Assessment of Technical and Economic Feasibility of Zinc/Bromine Batteries for Utility Load Leveling. Final Report Gould (Gould, Inc., Rolling Meadows, 1979). https://doi.org/10.2172/6106713
M. Wang, Y. Meng, K. Li, T. Ahmad, N. Chen et al., Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience 2(5), 509–517 (2022). https://doi.org/10.1016/j.esci.2022.04.003
H. Jia, M.H. Qiu, C.X. Tang, H.Q. Liu, S.H. Fu et al., Nano-scale BN interface for ultra-stable and wide temperature range tolerable Zn anode. EcoMat 4(3), e12190 (2022). https://doi.org/10.1002/eom2.12190
W. Shang, Q. Li, F. Jiang, B. Huang, J. Song et al., Boosting Zn||I(2) battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14(1), 82 (2022). https://doi.org/10.1007/s40820-022-00825-5
Z.X. Wu, X.H. Yuan, M.J.H. Jiang, L.L. Wang, Q.H. Huang et al., Zinc–carbon paper composites as anodes for Zn-ion batteries: key impacts on their electrochemical behaviors. Energy Fuels 34(10), 13118–13125 (2020). https://doi.org/10.1021/acs.energyfuels.0c02367
M. Li, Q. He, Z.L. Li, Q. Li, Y.X. Zhang et al., A novel dendrite-free Mn2+/Zn2+ hybrid battery with 2.3 V voltage window and 11000-cycle lifespan. Adv. Energy Mater. 9(29), 1901469 (2019). https://doi.org/10.1002/aenm.201901469
L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142(51), 21404–21409 (2020). https://doi.org/10.1021/jacs.0c09794
C. Zhang, W. Shin, L.D. Zhu, C. Chen, J.C. Neuefeind et al., The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free. Carbon Energy 3(2), 339–348 (2021). https://doi.org/10.1002/cey2.70
J. Llopis, M. Vàzquez, Study of the impedance of a platinum electrode in the system Br2/Br− (HClO4, aq.). I. Influence of the surface state. Electrochim. Acta 6(1–4), 167–176 (1962). https://doi.org/10.1016/0013-4686(62)87034-0
F. Magno, G.-A. Mazzocchin, G. Bontempelli, Electrochemical behaviour of the bromide ion at a platinum electrode in acetonitrile solvent. J. Electroanal. Chem. Interfacial Electrochem. 47(3), 461–468 (1973). https://doi.org/10.1016/s0022-0728(73)80199-8
K.J. Cathro, K. Cedzynska, D.C. Constable, P.M. Hoobin, Selection of quaternary ammonium bromides for use in zinc bromine cells. J. Power Sources 18(4), 349–370 (1986). https://doi.org/10.1016/0378-7753(86)80091-X
R.E. White, S.E. Lorimer, A model of the bromine bromide electrode-reaction at a rotating-disk electrode. J. Electrochem. Soc. 130(5), 1096–1103 (1983). https://doi.org/10.1149/1.2119890
Y. Popat, D. Trudgeon, C.P. Zhang, F.C. Walsh, P. Connor et al., Carbon materials as positive electrodes in bromine-based flow batteries. ChemPlusChem 87(1), 16 (2022). https://doi.org/10.1002/cplu.202100441
L.J.J. Janssen, J.G. Hoogland, Mechanism of bromine evolution at a graphite electrode. Electrochim. Acta 15(10), 1677 (1970). https://doi.org/10.1016/0013-4686(70)80088-3
M. Mastragostino, C. Gramellini, Kinetic study of the electrochemical processes of the bromine/bromine aqueous system on vitreous carbon electrodes. Electrochim. Acta 30(3), 373–380 (1985). https://doi.org/10.1016/0013-4686(85)80198-5
W.L. Wu, S.C. Xu, Z.R. Lin, L. Lin, R.H. He et al., A polybromide confiner with selective bromide conduction for high performance aqueous zinc–bromine batteries. Energy Storage Mater. 49, 11–18 (2022). https://doi.org/10.1016/j.ensm.2022.03.052
F. Yu, L. Pang, X.X. Wang, E.R. Waclawik, F.X. Wang et al., Aqueous alkaline–acid hybrid electrolyte for zinc–bromine battery with 3 V voltage window. Energy Storage Mater. 19, 56–61 (2019). https://doi.org/10.1016/j.ensm.2019.02.024
E. Lancry, B.-Z. Magnes, I. Ben-David, M. Freiberg, New bromine complexing agents for bromide based batteries. ECS Trans. 53(7), 107–115 (2013). https://doi.org/10.1149/05307.0107ecst
H.J. Lee, D.W. Kim, J.H. Yang, Estimation of state-of-charge for zinc–bromine flow batteries by in situ raman spectroscopy. J. Electrochem. Soc. 164(4), A754–A759 (2017). https://doi.org/10.1149/2.1231704jes
M. Kim, D. Yun, J. Jeon, Effect of a bromine complex agent on electrochemical performances of zinc electrodeposition and electrodissolution in zinc–bromide flow battery. J. Power Sources 438, 7 (2019). https://doi.org/10.1016/j.jpowsour.2019.227020
K.S. Archana, R.P. Naresh, H. Enale, V. Rajendran, A.M.V. Mohan et al., Effect of positive electrode modification on the performance of zinc–bromine redox flow batteries. J. Energy Storage 29, 101462 (2020). https://doi.org/10.1016/j.est.2020.101462
J.D. Jeon, H.S. Yang, J. Shim, H.S. Kim, J.H. Yang, Dual function of quaternary ammonium in Zn/Br redox flow battery: capturing the bromine and lowering the charge transfer resistance. Electrochim. Acta 127, 397–402 (2014). https://doi.org/10.1016/j.electacta.2014.02.073
M.C. Wu, T.S. Zhao, H.R. Jiang, Y.K. Zeng, Y.X. Ren, High-performance zinc bromine flow battery via improved design of electrolyte and electrode. J. Power Sources 355, 62–68 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.058
M.C. Wu, T.S. Zhao, R.H. Zhang, L. Wei, H.R. Jiang, Carbonized tubular polypyrrole with a high activity for the Br2/B− redox reaction in zinc–bromine flow batteries. Electrochim. Acta 284, 569–576 (2018). https://doi.org/10.1016/j.electacta.2018.07.192
I. Vogel, A. Möbius, On some problems of the zinc–bromine system as an electric energy storage system of higher efficiency—I. Kinetics of the bromine electrode. Electrochim. Acta 36(9), 1403–1408 (1991). https://doi.org/10.1016/0013-4686(91)85326-3
C.H. Wang, X.F. Li, X.L. Xi, P.C. Xu, Q.Z. Lai et al., Relationship between activity and structure of carbon materials for Br2/Br− in zinc bromine flow batteries. RSC Adv. 6(46), 40169–40174 (2016). https://doi.org/10.1039/c6ra03712g
M.C. Wu, T.S. Zhao, L. Wei, H.R. Jiang, R.H. Zhang, Improved electrolyte for zinc–bromine flow batteries. J. Power Sources 384, 232–239 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.006
L. Hua, W. Lu, T. Li, P. Xu, H. Zhang et al., A highly selective porous composite membrane with bromine capturing ability for a bromine-based flow battery. Mater. Today Energy 21, 100763 (2021). https://doi.org/10.1016/j.mtener.2021.100763
Q. Xu, T.S. Zhao, Fundamental models for flow batteries. Prog. Energy Combust. Sci. 49, 40–58 (2015). https://doi.org/10.1016/j.pecs.2015.02.001
M.Q. Li, H. Su, Q.G. Qiu, G. Zhao, Y. Sun et al., A quaternized polysulfone membrane for zinc–bromine redox flow battery. J. Chem. 2014, 6 (2014). https://doi.org/10.1155/2014/321629
C. Chakkaravarthy, A.K.A. Waheed, H.V.K. Udupa, Zinc–air alkaline batteries—a review. J. Power Sources 6(3), 203–228 (1981). https://doi.org/10.1016/0378-7753(81)80027-4
M.T. Tsehaye, F. Alloin, C. Iojoiu, R.A. Tufa, D. Aili et al., Membranes for zinc–air batteries: recent progress, challenges and perspectives. J. Power Sources 475, 23 (2020). https://doi.org/10.1016/j.jpowsour.2020.228689
R. Kim, H.G. Kim, G. Doo, C. Choi, S. Kim et al., Ultrathin nafion-filled porous membrane for zinc/bromine redox flow batteries. Sci. Rep. 7(1), 10503 (2017). https://doi.org/10.1038/s41598-017-10850-9
C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development. Nat. Mater. 16(1), 45–56 (2017). https://doi.org/10.1038/Nmat4777
M. Li, L. Ran, R. Knibbe, Zn electrodeposition by an in situ electrochemical liquid phase transmission electron microscope. J. Phys. Chem. Lett. 12(2), 913–918 (2021). https://doi.org/10.1021/acs.jpclett.0c03475
J.H. Park, D. Steingart, B. Koel, Visualizing zinc dendrites in minimal architecture zinc bromine batteries via in-house transmission X-ray microscopy. Microsc. Microanal. 27(S1), 2448–2451 (2021). https://doi.org/10.1017/s1431927621008758
W. Kautek, A. Conradi, C. Fabjan, G. Bauer, In situ ftir spectroscopy of the Zn–Br battery bromine storage complex at glassy carbon electrodes. Electrochim. Acta 47(5), 815–823 (2001). https://doi.org/10.1016/S0013-4686(01)00762-9
O. Nolte, I.A. Volodin, C. Stolze, M.D. Hager, U.S. Schubert, Trust is good, control is better: a review on monitoring and characterization techniques for flow battery electrolytes. Mater. Horiz. 8(7), 1866–1925 (2021). https://doi.org/10.1039/d0mh01632b
J. Geiser, H. Natter, R. Hempelmann, B. Morgenstern, K. Hegetschweiler, Photometrical determination of the state-of-charge in vanadium redox flow batteries part I: in combination with potentiometric titration. Z. Phys. Chem. Int. J. Res. Phys. Chem. Chem. Phys. 233(12), 1683–1694 (2019). https://doi.org/10.1515/zpch-2019-1379
D.G. Kwabi, A.A. Wong, M.J. Aziz, Rational evaluation and cycle life improvement of quinone-based aqueous flow batteries guided by in-line optical spectrophotometry. J. Electrochem. Soc. 165(9), A1770–A1776 (2018). https://doi.org/10.1149/2.0791809jes
S. Park, H. Kim, J. Chae, J. Chang, Electrochemical generation of single emulsion droplets and in situ observation of collisions on an ultramicroelectrode. J. Phys. Chem. C 120(7), 3922–3928 (2016). https://doi.org/10.1021/acs.jpcc.5b12029
J. Xiao, Q.Y. Li, Y.J. Bi, M. Cai, B. Dunn et al., Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5(8), 561–568 (2020). https://doi.org/10.1038/s41560-020-0648-z
R. Darling, K. Gallagher, W. Xie, L. Su, F. Brushett, Transport property requirements for flow battery separators. J. Electrochem. Soc. 163(1), A5029–A5040 (2015). https://doi.org/10.1149/2.0051601jes
D. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 45(1–2), 67–86 (1999). https://doi.org/10.1016/S0013-4686(99)00194-2
C.X. Xie, T.Y. Li, C.Z. Deng, Y. Song, H.M. Zhang et al., A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy Environ. Sci. 13(1), 135–143 (2020). https://doi.org/10.1039/c9ee03702k
C.X. Xie, Y. Liu, W.J. Lu, H.M. Zhang, X.F. Li, Highly stable zinc–iodine single flow batteries with super high energy density for stationary energy storage. Energy Environ. Sci. 12(6), 1834–1839 (2019). https://doi.org/10.1039/c8ee02825g
T.I. Evans, R.E. White, A review of mathematical-modeling of the zinc bromine flow cell and battery. J. Electrochem. Soc. 134(11), 2725–2733 (1987). https://doi.org/10.1149/1.2100277
J. Holmes, R.E. White, P.G. Grimes, R.J. Bellows, in Electrochemical Cell Design. ed. by R.E. White (Springer, New York, 1984), pp.293–309
B. Koo, D. Lee, J. Yi, C.B. Shin, D.J. Kim et al., Modeling the performance of a zinc/bromine flow battery. Energies 12(6), 1159 (2019). https://doi.org/10.3390/en12061159
A.A. Shah, H. Al-Fetlawi, F.C. Walsh, Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery. Electrochim. Acta 55(3), 1125–1139 (2010). https://doi.org/10.1016/j.electacta.2009.10.022
M. Schneider, G.P. Rajarathnam, M.E. Easton, A.F. Masters, T. Maschmeyer et al., The influence of novel bromine sequestration agents on zinc/bromine flow battery performance. RSC Adv. 6(112), 110548–110556 (2016). https://doi.org/10.1039/c6ra23446a
S.J. Jin, Y. Jing, D.G. Kwabi, Y.L. Ji, L.C. Tong et al., A water-miscible quinone flow battery with high volumetric capacity and energy density. ACS Energy Lett. 4(6), 1342–1348 (2019). https://doi.org/10.1021/acsenergylett.9b00739
B. Sundén, Hydrogen, Batteries and Fuel Cells (Elsevier, London, 2019), pp.57–79