Fibrous MXene Aerogels with Tunable Pore Structures for High-Efficiency Desalination of Contaminated Seawater
Corresponding Author: Yi‑Tao Liu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 71
Abstract
The seawater desalination based on solar-driven interfacial evaporation has emerged as a promising technique to alleviate the global crisis on freshwater shortage. However, achieving high desalination performance on actual, oil-contaminated seawater remains a critical challenge, because the transport channels and evaporation interfaces of the current solar evaporators are easily blocked by the oil slicks, resulting in undermined evaporation rate and conversion efficiency. Herein, we propose a facile strategy for fabricating a modularized solar evaporator based on flexible MXene aerogels with arbitrarily tunable, highly ordered cellular/lamellar pore structures for high-efficiency oil interception and desalination. The core design is the creation of 1D fibrous MXenes with sufficiently large aspect ratios, whose superior flexibility and plentiful link forms lay the basis for controllable 3D assembly into more complicated pore structures. The cellular pore structure is responsible for effective contaminants rejection due to the multi-sieving effect achieved by the omnipresent, isotropic wall apertures together with underwater superhydrophobicity, while the lamellar pore structure is favorable for rapid evaporation due to the presence of continuous, large-area evaporation channels. The modularized solar evaporator delivers the best evaporation rate (1.48 kg m−2 h−1) and conversion efficiency (92.08%) among all MXene-based desalination materials on oil-contaminated seawater.
Highlights:
1 The super-elastic and robust MXene aerogels are created herein by assembling the 1D fibrous MXenes with sufficiently large aspect ratios and superior flexibility.
2 The underlying regulatory mechanism and a complete diagram for the pore structure evolution of MXene aerogels are revealed for the first time, which are particularly instructive for future structure-specific designs.
3 Fibrous MXene aerogels exhibit 8.3% plastic deformation at the 1000th compressions and achieve high evaporation rate (1.48 kg m−2 h−1) and light to thermal conversion efficiency (92.08%) on oil-contaminated seawater.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Rousi, K. Kornhuber, G. Beobide-Arsuaga, F. Luo, D. Coumou, Accelerated western european heatwave trends linked to more-persistent double jets over Eurasia. Nat. Commun. 13, 3851 (2022). https://doi.org/10.1038/s41467-022-31432-y
- Z. Wang, J. Zheng, W. Lin, Y. Wang, Unprecedented heatwave in western north america during late June of 2021: roles of atmospheric circulation and global warming. Adv. Atmos. Sci. 40, 14–28 (2023). https://doi.org/10.1007/s00376-022-2078-2
- M. Elimelech, W. Phillip, The future of seawater desalination: energy, technology, and the environment. Science 333(6043), 712–717 (2011). https://doi.org/10.1126/science.1200488
- E. Chiavazzo, M. Morciano, F. Viglino, M. Fasano, P. Asinari, Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 1, 763–772 (2018). https://doi.org/10.1038/s41893-018-0186-x
- P. Tao, G. Ni, C. Song, W. Shang, J. Wu et al., Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018). https://doi.org/10.1038/s41560-018-0260-7
- T. Gao, Y. Wang, X. Wu, P. Wu, X. Yang et al., More from less: improving solar steam generation by selectively removing a portion of evaporation surface. Sci. Bull. 67, 1572–1580 (2022). https://doi.org/10.1016/j.scib.2022.07.004
- P. Wu, X. Wu, Y. Wang, H. Xu, O. Gary, Towards sustainable saline agriculture: interfacial solar evaporation for simultaneous seawater desalination and saline soil remediation. Water Res. 212, 118099 (2022). https://doi.org/10.1016/j.watres.2022.118099
- X. Wu, G. Chen, O. Gary, D. Chu, H. Xu, Photothermal materials: a key platform enabling highly efficient water evaporation driven by solar energy. Mater. Today Energy 12, 277–296 (2019). https://doi.org/10.1016/j.mtener.2019.02.001
- A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011). https://doi.org/10.1038/NMAT3064
- X. Wu, G. Chen, W. Zhang, X. Liu, H. Xu, A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Adv. Sustain. Syst. 1(10), 1700046 (2017). https://doi.org/10.1002/adsu.201700105
- R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11(4), 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
- F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4
- J. Orangi, M. Beidaghi, A review of the effects of electrode fabrication and assembly processes on the structure and electrochemical performance of 2D MXenes. Adv. Funct. Mater. 30(47), 2005305 (2022). https://doi.org/10.1002/adfm.202005305
- C. Xu, J. Zhang, M. Shahriari-Khalaji, M. Gao, X. Yu et al., Fibrous aerogels for solar vapor generation. Front. Chem. 10, 843070 (2022). https://doi.org/10.3389/fchem.2022.843070
- Q. Zhang, G. Yi, Z. Fu, H. Yu, S. Chen et al., Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 13(11), 13196–13207 (2019). https://doi.org/10.1021/acsnano.9b06180
- X. Wu, B. Han, H. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
- Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano Micro. Lett. 14, 56 (2022). https://doi.org/10.1007/s40820-022-00796-7
- M. Han, X. Yin, K. Hantanasirisakul, X. Li, A. Iqbal et al., Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7(10), 1900267 (2019). https://doi.org/10.1002/adom.201900267
- A. Sreedhar, J.S. Noh, Advancements in solar desalination of seawater by various Ti3C2 MXene based morphologies for freshwater generation: a review. Catalysts 11, 1435 (2021). https://doi.org/10.3390/catal11121435
- M. Cheryan, N. Rajagopalan, Membrane processing of oily streams Wastewater treatment and waste reduction. J. Membr. Sci. 151, 13–28 (1998). https://doi.org/10.1016/S0376-7388(98)00190-2
- Z. Wang, M. Han, F. He, S. Peng, S.B. Darling et al., Versatile coating with multifunctional performance for solar steam generation. Nano Energy 74, 104886 (2020). https://doi.org/10.1016/j.nanoen.2020.104886
- S. Zhao, M. Xia, Y. Zhang, Q. Hasi, J. Xu et al., Novel oil-repellent photothermal materials based on copper foam for efficient solar steam generation. Sol. Energy Mater. Sol. Cells 225, 111058 (2021). https://doi.org/10.1016/j.solmat.2021.111058
- L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
- L. Pu, Y. Liu, L. Li, C. Zhang, P. Ma et al., Polyimide nanofiber-reinforced Ti3C2Tx aerogel with “lamella-pillar” microporosity for high-performance piezoresistive strain sensing and electromagnetic wave absorption. ACS Appl. Mater. Interfaces 13(39), 47134–47146 (2021). https://doi.org/10.1021/acsami.1c13863
- J. Zhang, L. Liu, Y. Si, J. Yu, B. Ding, Electrospun nanofibrous membranes: an effective arsenal for the purification of emulsified oily wastewater. Adv. Funct. Mater. 30(25), 2002192 (2020). https://doi.org/10.1002/adfm.202002192
- Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014). https://doi.org/10.1038/ncomms6802
- C. Liu, S. Wang, N. Wang, J. Yu, Y. Liu et al., From 1D nanofibers to 3D nanofibrous aerogels: a marvellous evolution of electrospun SiO2 nanofibers for emerging applications. Nano Micro. Lett. 14, 194 (2022). https://doi.org/10.1007/s40820-022-00937-y
- Z. Anna, A. Mohammad, N. Pawel, P. Francesca, D. Luciano et al., Nanotechnology transition roadmap toward multifunctional stimuli-responsive face masks. ACS Appl. Mater. Interfaces 14(41), 46123–46144 (2022). https://doi.org/10.1021/acsami.2c10335
- X. He, S. Jin, L. Miao, Y. Cai, Y. Hou et al., A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes. Angew. Chem. Int. Ed. 59(38), 16705–16711 (2020). https://doi.org/10.1002/anie.202006783
- M. Yan, F. Wang, C. Han, X. Ma, X. Xu, Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance. J. Am. Chem. Soc. 135(48), 18176–18182 (2013). https://doi.org/10.1021/ja409027s
- Y. Si, X. Wang, L. Dou, J. Yu, B. Ding, Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 4, eaas8925 (2018). https://doi.org/10.1126/sciadv.aas8925
- S. Hong, Y.S. Na, S. Choi, I.T. Song, W.Y. Kim et al., Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv. Funct. Mater. 22(22), 4711–4717 (2012). https://doi.org/10.1002/adfm.201201156
- A. Rozmysłowska, T. Wojciechowski, W. Ziemkowska, L. Chlubny, A. Olszyna et al., Colloidal properties and stability of 2D Ti3C2 and Ti2C MXenes in water. Int. J. Electrochem. Sci. 13, 10837–10847 (2018). https://doi.org/10.20964/2018.11.56
- Z. Mohamad, J. Liu, Transition metal-mediated DNA adsorption on polydopamine nanops. Langmuir 36, 3260–3267 (2020). https://doi.org/10.1021/acs.langmuir.0c00046
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
- A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32, 3480–3488 (2020). https://doi.org/10.1021/acs.chemmater.0c00359
- X. Feng, Z. Yu, R. Long, Y. Sun, M. Wang et al., Polydopamine intimate contacted two-dimensional/two-dimensional ultrathin nylon basement membrane supported RGO/PDA/MXene composite material for oil-water separation and dye removal. Sep. Purif. Technol. 247, 116945 (2020). https://doi.org/10.1016/j.seppur.2020.116945
- J. Saiz-Poseu, J. Mancebo-Aracil, F. Nador, F. Busque, D. Ruiz-Molina, The chemistry behind catechol-based adhesion. Angew. Chem. Int. Ed. 58(3), 696–714 (2019). https://doi.org/10.1002/anie.201801063
- G. Lee, T. Yun, H. Kim, I.H. Kim, J. Choi et al., Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano 14(9), 11722–11732 (2020). https://doi.org/10.1021/acsnano.0c04411
- S. Yamamoto, H. Bluhm, K. Andersson, G. Ketteler, H. Ogasawara et al., In situ X-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions. J. Phys. Condes. Matter 20, 184025 (2008). https://doi.org/10.1088/0953-8984/20/18/184025
- J. Stevens, S. Byard, C. Seaton, G. Sadiq, R. Davey, Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid-base complexes. R. Chem. Phys. 16, 1150–1160 (2014). https://doi.org/10.1039/c3cp53907e
- T. Park, S. Yu, M. Koo, H. Kim, E.H. Kim et al., Shape-adaptable 2D titanium carbide (MXene) heater. ACS Nano 13(6), 6835–6844 (2019). https://doi.org/10.1021/acsnano.9b01602
- A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman et al., Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 4, eaat0491 (2018). https://doi.org/10.1126/sciadv.aat0491
- G. Wegst, M. Schecter, A. Donius, P. Hunger, Biomaterials by freeze casting. Philos. Trans. R. Soc. A 368, 2099–2121 (2010). https://doi.org/10.1098/rsta.2010.0014
- D. Uhlmann, B. Chalmers, Interaction between ps and a solid-liquid interface. J. Appl. Phys. 35, 2986–2993 (1964). https://doi.org/10.1063/1.1713142
- S. Tomotika, T. Aoi, An expansion formula for the drag on a circular cylinder moving through a viscous fluid at small Reynolds numbers. Q. J. Mech. Appl. Math. 4, 401–406 (1951). https://doi.org/10.1093/qjmam/4.4.401
- G. Lipp, C. Korber, On the engulfment of spherical-ps by a moving ice liquid interface. J. Cryst. Growth 130, 475–489 (1993). https://doi.org/10.1016/0022-0248(93)90536-6
- S. Peppin, M. Worster, J. Wettlaufer, Morphological instability in freezing colloidal suspensions. Philos. Trans. R. Soc. A 463, 723–733 (2007). https://doi.org/10.1098/rspa.2006.1790
- F. Wu, S. Qiang, X. Zhang, F. Wang, X. Yin et al., The rising of flexible and elastic ceramic fiber materials: fundamental concept, design principle, and toughening mechanism. Adv. Funct. Mater. 32(45), 2207130 (2022). https://doi.org/10.1002/adfm.202207130
- C. Cai, Z. Wei, Y. Huang, Y. Fu, Wood-inspired superelastic MXene aerogels with superior photothermal conversion and durable superhydrophobicity for clean-up of super-viscous crude oil. Chem. Eng. J. 421, 127772 (2021). https://doi.org/10.1016/j.cej.2020.127772
- Y. Dai, X. Wu, Z. Liu, H. Zhang, Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Pt. B Eng. 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
- H. Tetik, J. Orangi, G. Yang, K. Zhao, S.B. Mujib et al., 3D Printed MXene aerogels with truly 3D macrostructure and highly engineered microstructure for enhanced electrical and electrochemical performance. Adv. Mater. 34(2), 2104980 (2022). https://doi.org/10.1002/adma.202104980
- L. Dou, X. Zhang, H. Shan, X. Cheng, Y. Si et al., Interweaved cellular structured ceramic nanofibrous aerogels with superior bendability and compressibility. Adv. Funct. Mater. 30(49), 2005928 (2020). https://doi.org/10.1002/adfm.202005928
- J. Ge, D. Zong, Q. Jin, J. Yu, B. Ding, Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions. Adv. Funct. Mater. 28(10), 1705051 (2018). https://doi.org/10.1002/adfm.201705051
- H. Ren, M. Tang, B. Guan, K. Wang, J. Yang et al., Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29(38), 1702590 (2017). https://doi.org/10.1002/adma.201702590
- X. Wang, Q. Liu, S. Wu, B. Xu, H. Xu, Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion. Adv. Mater. 31(19), 1807716 (2019). https://doi.org/10.1002/adma.201807716
- C. Xing, D. Huang, S. Chen, Q. Huang, C. Zhou et al., Engineering lateral heterojunction of selenium-coated tellurium nanomaterials toward highly efficient solar desalination. Adv. Sci. 6(19), 1900531 (2019). https://doi.org/10.1002/advs.201900531
- X. Ma, W. Fang, Y. Guo, Z. Li, D. Chen et al., Hierarchical porous SWCNT stringed carbon polyhedrons and PSS threaded MOF bilayer membrane for efficient solar vapor generation. Small 15(15), 1900354 (2019). https://doi.org/10.1002/smll.201900354
- Q. Jiang, L. Tian, K. Liu, S. Tadepalli, R. Raliya et al., Bilayered biofoam for highly efficient solar steam generation. Adv. Mater. 28(42), 9400–9407 (2016). https://doi.org/10.1002/adma.201601819
- X. Fan, Y. Yang, X. Shi, Y. Liu, H. Li et al., A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance. Adv. Funct. Mater. 30(52), 2007110 (2020). https://doi.org/10.1002/adfm.202007110
- K. Li, T. Chang, Z. Li, H. Yang, F. Fu et al., Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 9(34), 1901687 (2019). https://doi.org/10.1002/aenm.201901687
- X. Ming, A. Guo, Q. Zhang, Z. Guo, F. Yu et al., 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification. Carbon 167, 285–295 (2020). https://doi.org/10.1016/j.carbon.2020.06.023
- X. Zhao, L. Peng, C. Tang, J. Pu, X. Jun et al., All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro-thermal conversion by MXene-based aerogels. Mater. Horiz. 7(3), 855–865 (2020). https://doi.org/10.1039/c9mh01443h
- Z. Wang, K. Yu, S. Gong, H. Mao, R. Huang et al., Cu3BiS3/MXenes with excellent solar-thermal conversion for continuous and efficient seawater desalination. ACS Appl. Mater. Interfaces 13(14), 16246–16258 (2021). https://doi.org/10.1021/acsami.0c22761
- X. Zhao, X. Zha, L. Tang, J. Pu, K. Ke et al., Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 13, 255–264 (2020). https://doi.org/10.1007/s12274-019-2608-0
- R. Xu, N. Wei, Z. Li, X. Song, Q. Li et al., Construction of hierarchical 2D/2D Ti3C2/MoS2 nanocomposites for high-efficiency solar steam generation. J. Colloid Interface Sci. 584, 125–133 (2021). https://doi.org/10.1016/j.jcis.2020.09.052
- Y. Wang, Q. Qi, J. Fan, W. Wang, D. Yu, Simple and robust MXene/carbon nanotubes/cotton fabrics for textile wastewater purification via solar-driven interfacial water evaporation. Sep. Purif. Technol. 254, 117615 (2021). https://doi.org/10.1016/j.seppur.2020.117615
- X. Zhao, X. Zha, J. Pu, L. Bai, R. Bao et al., Macroporous three-dimensional MXene architectures for highly efficient solar steam generation electronic (ESI) available. J. Mater. Chem. A 7(17), 10446–10455 (2019). https://doi.org/10.1039/c9ta00176j
- M. Jacobson (ed.), 100% Clean, Renewable Energy and Storage for Everything (Cambridge University Press, New York, 2020). https://doi.org/10.1017/9781108786713
- S. Huan, X. Liu, Development status of seawater desalination industry and dynamically comparative analysis of its production cost. J. Econ. Water Resour. 40, 28–33 (2022). https://doi.org/10.1088/1755-1315/772/1/012085
References
E. Rousi, K. Kornhuber, G. Beobide-Arsuaga, F. Luo, D. Coumou, Accelerated western european heatwave trends linked to more-persistent double jets over Eurasia. Nat. Commun. 13, 3851 (2022). https://doi.org/10.1038/s41467-022-31432-y
Z. Wang, J. Zheng, W. Lin, Y. Wang, Unprecedented heatwave in western north america during late June of 2021: roles of atmospheric circulation and global warming. Adv. Atmos. Sci. 40, 14–28 (2023). https://doi.org/10.1007/s00376-022-2078-2
M. Elimelech, W. Phillip, The future of seawater desalination: energy, technology, and the environment. Science 333(6043), 712–717 (2011). https://doi.org/10.1126/science.1200488
E. Chiavazzo, M. Morciano, F. Viglino, M. Fasano, P. Asinari, Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 1, 763–772 (2018). https://doi.org/10.1038/s41893-018-0186-x
P. Tao, G. Ni, C. Song, W. Shang, J. Wu et al., Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018). https://doi.org/10.1038/s41560-018-0260-7
T. Gao, Y. Wang, X. Wu, P. Wu, X. Yang et al., More from less: improving solar steam generation by selectively removing a portion of evaporation surface. Sci. Bull. 67, 1572–1580 (2022). https://doi.org/10.1016/j.scib.2022.07.004
P. Wu, X. Wu, Y. Wang, H. Xu, O. Gary, Towards sustainable saline agriculture: interfacial solar evaporation for simultaneous seawater desalination and saline soil remediation. Water Res. 212, 118099 (2022). https://doi.org/10.1016/j.watres.2022.118099
X. Wu, G. Chen, O. Gary, D. Chu, H. Xu, Photothermal materials: a key platform enabling highly efficient water evaporation driven by solar energy. Mater. Today Energy 12, 277–296 (2019). https://doi.org/10.1016/j.mtener.2019.02.001
A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011). https://doi.org/10.1038/NMAT3064
X. Wu, G. Chen, W. Zhang, X. Liu, H. Xu, A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Adv. Sustain. Syst. 1(10), 1700046 (2017). https://doi.org/10.1002/adsu.201700105
R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11(4), 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4
J. Orangi, M. Beidaghi, A review of the effects of electrode fabrication and assembly processes on the structure and electrochemical performance of 2D MXenes. Adv. Funct. Mater. 30(47), 2005305 (2022). https://doi.org/10.1002/adfm.202005305
C. Xu, J. Zhang, M. Shahriari-Khalaji, M. Gao, X. Yu et al., Fibrous aerogels for solar vapor generation. Front. Chem. 10, 843070 (2022). https://doi.org/10.3389/fchem.2022.843070
Q. Zhang, G. Yi, Z. Fu, H. Yu, S. Chen et al., Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 13(11), 13196–13207 (2019). https://doi.org/10.1021/acsnano.9b06180
X. Wu, B. Han, H. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano Micro. Lett. 14, 56 (2022). https://doi.org/10.1007/s40820-022-00796-7
M. Han, X. Yin, K. Hantanasirisakul, X. Li, A. Iqbal et al., Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7(10), 1900267 (2019). https://doi.org/10.1002/adom.201900267
A. Sreedhar, J.S. Noh, Advancements in solar desalination of seawater by various Ti3C2 MXene based morphologies for freshwater generation: a review. Catalysts 11, 1435 (2021). https://doi.org/10.3390/catal11121435
M. Cheryan, N. Rajagopalan, Membrane processing of oily streams Wastewater treatment and waste reduction. J. Membr. Sci. 151, 13–28 (1998). https://doi.org/10.1016/S0376-7388(98)00190-2
Z. Wang, M. Han, F. He, S. Peng, S.B. Darling et al., Versatile coating with multifunctional performance for solar steam generation. Nano Energy 74, 104886 (2020). https://doi.org/10.1016/j.nanoen.2020.104886
S. Zhao, M. Xia, Y. Zhang, Q. Hasi, J. Xu et al., Novel oil-repellent photothermal materials based on copper foam for efficient solar steam generation. Sol. Energy Mater. Sol. Cells 225, 111058 (2021). https://doi.org/10.1016/j.solmat.2021.111058
L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
L. Pu, Y. Liu, L. Li, C. Zhang, P. Ma et al., Polyimide nanofiber-reinforced Ti3C2Tx aerogel with “lamella-pillar” microporosity for high-performance piezoresistive strain sensing and electromagnetic wave absorption. ACS Appl. Mater. Interfaces 13(39), 47134–47146 (2021). https://doi.org/10.1021/acsami.1c13863
J. Zhang, L. Liu, Y. Si, J. Yu, B. Ding, Electrospun nanofibrous membranes: an effective arsenal for the purification of emulsified oily wastewater. Adv. Funct. Mater. 30(25), 2002192 (2020). https://doi.org/10.1002/adfm.202002192
Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014). https://doi.org/10.1038/ncomms6802
C. Liu, S. Wang, N. Wang, J. Yu, Y. Liu et al., From 1D nanofibers to 3D nanofibrous aerogels: a marvellous evolution of electrospun SiO2 nanofibers for emerging applications. Nano Micro. Lett. 14, 194 (2022). https://doi.org/10.1007/s40820-022-00937-y
Z. Anna, A. Mohammad, N. Pawel, P. Francesca, D. Luciano et al., Nanotechnology transition roadmap toward multifunctional stimuli-responsive face masks. ACS Appl. Mater. Interfaces 14(41), 46123–46144 (2022). https://doi.org/10.1021/acsami.2c10335
X. He, S. Jin, L. Miao, Y. Cai, Y. Hou et al., A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes. Angew. Chem. Int. Ed. 59(38), 16705–16711 (2020). https://doi.org/10.1002/anie.202006783
M. Yan, F. Wang, C. Han, X. Ma, X. Xu, Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance. J. Am. Chem. Soc. 135(48), 18176–18182 (2013). https://doi.org/10.1021/ja409027s
Y. Si, X. Wang, L. Dou, J. Yu, B. Ding, Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 4, eaas8925 (2018). https://doi.org/10.1126/sciadv.aas8925
S. Hong, Y.S. Na, S. Choi, I.T. Song, W.Y. Kim et al., Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv. Funct. Mater. 22(22), 4711–4717 (2012). https://doi.org/10.1002/adfm.201201156
A. Rozmysłowska, T. Wojciechowski, W. Ziemkowska, L. Chlubny, A. Olszyna et al., Colloidal properties and stability of 2D Ti3C2 and Ti2C MXenes in water. Int. J. Electrochem. Sci. 13, 10837–10847 (2018). https://doi.org/10.20964/2018.11.56
Z. Mohamad, J. Liu, Transition metal-mediated DNA adsorption on polydopamine nanops. Langmuir 36, 3260–3267 (2020). https://doi.org/10.1021/acs.langmuir.0c00046
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32, 3480–3488 (2020). https://doi.org/10.1021/acs.chemmater.0c00359
X. Feng, Z. Yu, R. Long, Y. Sun, M. Wang et al., Polydopamine intimate contacted two-dimensional/two-dimensional ultrathin nylon basement membrane supported RGO/PDA/MXene composite material for oil-water separation and dye removal. Sep. Purif. Technol. 247, 116945 (2020). https://doi.org/10.1016/j.seppur.2020.116945
J. Saiz-Poseu, J. Mancebo-Aracil, F. Nador, F. Busque, D. Ruiz-Molina, The chemistry behind catechol-based adhesion. Angew. Chem. Int. Ed. 58(3), 696–714 (2019). https://doi.org/10.1002/anie.201801063
G. Lee, T. Yun, H. Kim, I.H. Kim, J. Choi et al., Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano 14(9), 11722–11732 (2020). https://doi.org/10.1021/acsnano.0c04411
S. Yamamoto, H. Bluhm, K. Andersson, G. Ketteler, H. Ogasawara et al., In situ X-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions. J. Phys. Condes. Matter 20, 184025 (2008). https://doi.org/10.1088/0953-8984/20/18/184025
J. Stevens, S. Byard, C. Seaton, G. Sadiq, R. Davey, Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid-base complexes. R. Chem. Phys. 16, 1150–1160 (2014). https://doi.org/10.1039/c3cp53907e
T. Park, S. Yu, M. Koo, H. Kim, E.H. Kim et al., Shape-adaptable 2D titanium carbide (MXene) heater. ACS Nano 13(6), 6835–6844 (2019). https://doi.org/10.1021/acsnano.9b01602
A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman et al., Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 4, eaat0491 (2018). https://doi.org/10.1126/sciadv.aat0491
G. Wegst, M. Schecter, A. Donius, P. Hunger, Biomaterials by freeze casting. Philos. Trans. R. Soc. A 368, 2099–2121 (2010). https://doi.org/10.1098/rsta.2010.0014
D. Uhlmann, B. Chalmers, Interaction between ps and a solid-liquid interface. J. Appl. Phys. 35, 2986–2993 (1964). https://doi.org/10.1063/1.1713142
S. Tomotika, T. Aoi, An expansion formula for the drag on a circular cylinder moving through a viscous fluid at small Reynolds numbers. Q. J. Mech. Appl. Math. 4, 401–406 (1951). https://doi.org/10.1093/qjmam/4.4.401
G. Lipp, C. Korber, On the engulfment of spherical-ps by a moving ice liquid interface. J. Cryst. Growth 130, 475–489 (1993). https://doi.org/10.1016/0022-0248(93)90536-6
S. Peppin, M. Worster, J. Wettlaufer, Morphological instability in freezing colloidal suspensions. Philos. Trans. R. Soc. A 463, 723–733 (2007). https://doi.org/10.1098/rspa.2006.1790
F. Wu, S. Qiang, X. Zhang, F. Wang, X. Yin et al., The rising of flexible and elastic ceramic fiber materials: fundamental concept, design principle, and toughening mechanism. Adv. Funct. Mater. 32(45), 2207130 (2022). https://doi.org/10.1002/adfm.202207130
C. Cai, Z. Wei, Y. Huang, Y. Fu, Wood-inspired superelastic MXene aerogels with superior photothermal conversion and durable superhydrophobicity for clean-up of super-viscous crude oil. Chem. Eng. J. 421, 127772 (2021). https://doi.org/10.1016/j.cej.2020.127772
Y. Dai, X. Wu, Z. Liu, H. Zhang, Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Pt. B Eng. 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
H. Tetik, J. Orangi, G. Yang, K. Zhao, S.B. Mujib et al., 3D Printed MXene aerogels with truly 3D macrostructure and highly engineered microstructure for enhanced electrical and electrochemical performance. Adv. Mater. 34(2), 2104980 (2022). https://doi.org/10.1002/adma.202104980
L. Dou, X. Zhang, H. Shan, X. Cheng, Y. Si et al., Interweaved cellular structured ceramic nanofibrous aerogels with superior bendability and compressibility. Adv. Funct. Mater. 30(49), 2005928 (2020). https://doi.org/10.1002/adfm.202005928
J. Ge, D. Zong, Q. Jin, J. Yu, B. Ding, Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions. Adv. Funct. Mater. 28(10), 1705051 (2018). https://doi.org/10.1002/adfm.201705051
H. Ren, M. Tang, B. Guan, K. Wang, J. Yang et al., Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29(38), 1702590 (2017). https://doi.org/10.1002/adma.201702590
X. Wang, Q. Liu, S. Wu, B. Xu, H. Xu, Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion. Adv. Mater. 31(19), 1807716 (2019). https://doi.org/10.1002/adma.201807716
C. Xing, D. Huang, S. Chen, Q. Huang, C. Zhou et al., Engineering lateral heterojunction of selenium-coated tellurium nanomaterials toward highly efficient solar desalination. Adv. Sci. 6(19), 1900531 (2019). https://doi.org/10.1002/advs.201900531
X. Ma, W. Fang, Y. Guo, Z. Li, D. Chen et al., Hierarchical porous SWCNT stringed carbon polyhedrons and PSS threaded MOF bilayer membrane for efficient solar vapor generation. Small 15(15), 1900354 (2019). https://doi.org/10.1002/smll.201900354
Q. Jiang, L. Tian, K. Liu, S. Tadepalli, R. Raliya et al., Bilayered biofoam for highly efficient solar steam generation. Adv. Mater. 28(42), 9400–9407 (2016). https://doi.org/10.1002/adma.201601819
X. Fan, Y. Yang, X. Shi, Y. Liu, H. Li et al., A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance. Adv. Funct. Mater. 30(52), 2007110 (2020). https://doi.org/10.1002/adfm.202007110
K. Li, T. Chang, Z. Li, H. Yang, F. Fu et al., Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 9(34), 1901687 (2019). https://doi.org/10.1002/aenm.201901687
X. Ming, A. Guo, Q. Zhang, Z. Guo, F. Yu et al., 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification. Carbon 167, 285–295 (2020). https://doi.org/10.1016/j.carbon.2020.06.023
X. Zhao, L. Peng, C. Tang, J. Pu, X. Jun et al., All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro-thermal conversion by MXene-based aerogels. Mater. Horiz. 7(3), 855–865 (2020). https://doi.org/10.1039/c9mh01443h
Z. Wang, K. Yu, S. Gong, H. Mao, R. Huang et al., Cu3BiS3/MXenes with excellent solar-thermal conversion for continuous and efficient seawater desalination. ACS Appl. Mater. Interfaces 13(14), 16246–16258 (2021). https://doi.org/10.1021/acsami.0c22761
X. Zhao, X. Zha, L. Tang, J. Pu, K. Ke et al., Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 13, 255–264 (2020). https://doi.org/10.1007/s12274-019-2608-0
R. Xu, N. Wei, Z. Li, X. Song, Q. Li et al., Construction of hierarchical 2D/2D Ti3C2/MoS2 nanocomposites for high-efficiency solar steam generation. J. Colloid Interface Sci. 584, 125–133 (2021). https://doi.org/10.1016/j.jcis.2020.09.052
Y. Wang, Q. Qi, J. Fan, W. Wang, D. Yu, Simple and robust MXene/carbon nanotubes/cotton fabrics for textile wastewater purification via solar-driven interfacial water evaporation. Sep. Purif. Technol. 254, 117615 (2021). https://doi.org/10.1016/j.seppur.2020.117615
X. Zhao, X. Zha, J. Pu, L. Bai, R. Bao et al., Macroporous three-dimensional MXene architectures for highly efficient solar steam generation electronic (ESI) available. J. Mater. Chem. A 7(17), 10446–10455 (2019). https://doi.org/10.1039/c9ta00176j
M. Jacobson (ed.), 100% Clean, Renewable Energy and Storage for Everything (Cambridge University Press, New York, 2020). https://doi.org/10.1017/9781108786713
S. Huan, X. Liu, Development status of seawater desalination industry and dynamically comparative analysis of its production cost. J. Econ. Water Resour. 40, 28–33 (2022). https://doi.org/10.1088/1755-1315/772/1/012085