From 1D Nanofibers to 3D Nanofibrous Aerogels: A Marvellous Evolution of Electrospun SiO2 Nanofibers for Emerging Applications
Corresponding Author: Bin Ding
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 194
Abstract
One-dimensional (1D) SiO2 nanofibers (SNFs), one of the most popular inorganic nanomaterials, have aroused widespread attention because of their excellent chemical stability, as well as unique optical and thermal characteristics. Electrospinning is a straightforward and versatile method to prepare 1D SNFs with programmable structures, manageable dimensions, and modifiable properties, which hold great potential in many cutting-edge applications including aerospace, nanodevice, and energy. In this review, substantial advances in the structural design, controllable synthesis, and multifunctional applications of electrospun SNFs are highlighted. We begin with a brief introduction to the fundamental principles, available raw materials, and typical apparatus of electrospun SNFs. We then discuss the strategies for preparing SNFs with diverse structures in detail, especially stressing the newly emerging three-dimensional SiO2 nanofibrous aerogels. We continue with focus on major breakthroughs about brittleness-to-flexibility transition of SNFs and the means to achieve their mechanical reinforcement. In addition, we showcase recent applications enabled by electrospun SNFs, with particular emphasis on physical protection, health care and water treatment. In the end, we summarize this review and provide some perspectives on the future development direction of electrospun SNFs.
Highlights:
1 The synthetic strategies of electrospun SiO2 nanofibers with diverse structures and their three-dimensional (3D) assemblies are reviewed in detail.
2 The brittleness-to-flexibility transition of SiO2 nanofibers and the means of mechanical strengthening are discussed.
3 The multifunctional applications of 3D SiO2 nanofibrous aerogels are emphasized, and the challenges and opportunities for their future development are prospected.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.D. Lavender, The importance of silica to the modern world. Indoor Built Environ. 8(2), 89–93 (1999). https://doi.org/10.1177/1420326X9900800203
- R.Y. Ning, Discussion of silica speciation, fouling, control and maximum reduction. Desalination 151(1), 67–73 (2003). https://doi.org/10.1016/S0011-9164(02)00973-6
- S.S. Hossain, L. Mathur, P.K. Roy, Rice husk/rice husk ash as an alternative source of silica in ceramics: a review. J. Asian Ceram. Soc. 6(4), 299–313 (2018). https://doi.org/10.1080/21870764.2018.1539210
- T.A. Saleh, Nanomaterials: classification, properties, and environmental toxicities. Environ. Technol. Innov. 20, 101067 (2020). https://doi.org/10.1016/j.eti.2020.101067
- Z. Zhang, Y. Ouyang, Y. Cheng, J. Chen, N. Li et al., Size-dependent phononic thermal transport in low-dimensional nanomaterials. Phys. Rep. 860, 1–26 (2020). https://doi.org/10.1016/j.physrep.2020.03.001
- W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
- A. Meddahi-Pellé, A. Legrand, A. Marcellan, L. Louedec, D. Letourneur et al., Organ repair, hemostasis, and in vivo bonding of medical devices by aqueous solutions of nanops. Angew. Chem. Int. Ed. 53(25), 6369–6373 (2014). https://doi.org/10.1002/anie.201401043
- L. Zhang, B. Liu, S. Dong, Bifunctional nanostructure of magnetic core luminescent shell and its application as solid-state electrochemiluminescence sensor material. J. Phys. Chem. B 111(35), 10448–10452 (2007). https://doi.org/10.1021/jp0734427
- M. Kosari, U. Anjum, S. Xi, A.M.H. Lim, A.M. Seayad et al., Revamping SiO2 spheres by core-shell porosity endowment to construct a mazelike nanoreactor for enhanced catalysis in CO2 hydrogenation to methanol. Adv. Funct. Mater. 31(47), 2102896 (2021). https://doi.org/10.1002/adfm.202102896
- S. Ding, L. Zhang, Y. Li, L. Hou, Fabrication of a novel polyvinylidene fluoride membrane via binding SiO2 nanops and a copper ferrocyanide layer onto a membrane surface for selective removal of cesium. J. Hazard. Mater. 368, 292–299 (2019). https://doi.org/10.1016/j.jhazmat.2019.01.065
- M. Maeda, Y. Nishimura, N. Kumagai, H. Hayashi, T. Hatayama et al., Dysregulation of the immune system caused by silica and asbestos. J. Immunotoxicol. 7(4), 268–278 (2010). https://doi.org/10.3109/1547691X.2010.512579
- S.G. Higgins, M. Becce, A. Belessiotis-Richards, H. Seong, J.E. Sero et al., High-aspect-ratio nanostructured surfaces as biological metamaterials. Adv. Mater. 32(9), 1903862 (2020). https://doi.org/10.1002/adma.201903862
- T. Zhao, X. Zhang, R. Lin, L. Chen, C. Sun et al., Surface-confined winding assembly of mesoporous nanorods. J. Am. Chem. Soc. 142(48), 20359–20367 (2020). https://doi.org/10.1021/jacs.0c08277
- C. Deng, Q. Zhang, C. Fu, F. Zhou, W. Yang et al., Template-free synthesis of chemically asymmetric silica nanotubes for selective cargo loading and sustained drug release. Chem. Mat. 31(11), 4291–4298 (2019). https://doi.org/10.1021/acs.chemmater.9b01530
- S. Liu, H. Shan, S. Xia, J. Yan, J. Yu et al., Polymer template synthesis of flexible SiO2 nanofibers to upgrade composite electrolytes. ACS Appl. Mater. Interfaces 12(28), 31439–31447 (2020). https://doi.org/10.1021/acsami.0c06922
- H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha et al., Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett. 10(10), 4242–4248 (2010). https://doi.org/10.1021/nl102725k
- Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14, 26 (2022). https://doi.org/10.1007/s40820-021-00767-4
- W. Huang, Y. Xiao, X. Shi, Construction of electrospun organic/inorganic hybrid nanofibers for drug delivery and tissue engineering applications. Adv. Fiber Mater. 1, 32–45 (2019). https://doi.org/10.1007/s42765-019-00007-w
- G. Nie, Z. Zhang, T. Wang, C. Wang, Z. Kou, Electrospun one-dimensional electrocatalysts for oxygen reduction reaction: insights into structure-activity relationship. ACS Appl. Mater. Interfaces 13(32), 37961–37978 (2021). https://doi.org/10.1021/acsami.1c08798
- Z. Zhang, X. Wu, Z. Kou, N. Song, G. Nie et al., Rational design of electrospun nanofiber-typed electrocatalysts for water splitting: a review. Chem. Eng. J. 428, 131133 (2022). https://doi.org/10.1016/j.cej.2021.131133
- X. Li, W. Chen, Q. Qian, H. Huang, Y. Chen et al., Electrospinning-based strategies for battery materials. Adv. Energy Mater. 11(2), 2000845 (2021). https://doi.org/10.1002/aenm.202000845
- L. Zhang, H. Zhao, S. Xu, Q. Liu, T. Li et al., Recent advances in 1D electrospun nanocatalysts for electrochemical water splitting. Small Struct. 2(2), 2000048 (2021). https://doi.org/10.1002/sstr.202000048
- Y. Zhang, X. Liu, L. Zeng, J. Zhang, J. Zuo et al., Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv. Funct. Mater. 29(36), 1903279 (2019). https://doi.org/10.1002/adfm.201903279
- X. Wang, J. Yu, G. Sun, B. Ding, Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. Mater. Today 19(7), 403–414 (2016). https://doi.org/10.1016/j.mattod.2015.11.010
- J. Yu, C. Wang, S. Li, N. Liu, J. Zhu et al., Li+-containing, continuous silica nanofibers for high Li+ conductivity in composite polymer electrolyte. Small 15(44), 1902729 (2019). https://doi.org/10.1002/smll.201902729
- L. Dou, Y. Si, J. Yu, B. Ding, Semi-template based, biomimetic-architectured, and mechanically robust ceramic nanofibrous aerogels for thermal insulation. Nano Res. 15, 5581–5589 (2022). https://doi.org/10.1007/s12274-022-4194-9
- I. Das, G. De, L. Hupa, P.K. Vallittu, Porous SiO2 nanofiber grafted novel bioactive glass-ceramic coating: a structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant. Mater. Sci. Eng. C 62, 206–214 (2016). https://doi.org/10.1016/j.msec.2016.01.053
- J. Kameoka, S.S. Verbridge, H. Liu, D.A. Czaplewski, H.G. Craighead, Fabrication of suspended silica glass nanofibers from polymeric materials using a scanned electrospinning source. Nano Lett. 4(11), 2105–2108 (2004). https://doi.org/10.1021/nl048840p
- M. Dirican, O. Yildiz, Y. Lu, X. Fang, H. Jiang et al., Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium-ion batteries. Electrochim. Acta 169, 52–60 (2015). https://doi.org/10.1016/j.electacta.2015.04.035
- J. Zhou, Y. Nie, C. Jin, J.X.J. Zhang, Engineering biomimetic extracellular matrix with silica nanofibers: from 1D material to 3D network. ACS Biomater. Sci. Eng. 8(6), 2258–2280 (2022). https://doi.org/10.1021/acsbiomaterials.1c01525
- C. Shao, H. Kim, J. Gong, D. Lee, A novel method for making silica nanofibres by using electrospun fibres of polyvinylalcohol/silica composite as precursor. Nanotechnology 13(5), 635–637 (2002). https://doi.org/10.1088/0957-4484/13/5/319
- J. Song, R. Guan, M. Xie, P. Dong, X. Yang et al., Advances in electrospun TiO2 nanofibers: design, construction, and applications. Chem. Eng. J. 431, 134343 (2022). https://doi.org/10.1016/j.cej.2021.134343
- X. Tang, Y. Yu, Electrospinning preparation and characterization of alumina nanofibers with high aspect ratio. Ceram. Int. 41(8), 9232–9238 (2015). https://doi.org/10.1016/j.ceramint.2015.04.157
- F. Xu, H. Tan, J. Fan, B. Cheng, J. Yu et al., Electrospun TiO2-based photocatalysts. Sol. RRL 5(6), 2000571 (2021). https://doi.org/10.1002/solr.202000571
- Z. Ma, W. Chen, Z. Hu, X. Pan, M. Peng et al., Luffa-sponge-like glass-TiO2 composite fibers as efficient photocatalysts for environmental remediation. ACS Appl. Mater. Interfaces 5(15), 7527–7536 (2013). https://doi.org/10.1021/am401827k
- M. Zhou, J. Zhou, R. Li, E. Xie, Preparation of aligned ultra-long and diameter-controlled silicon oxide nanotubes by plasma enhanced chemical vapor deposition using electrospun PVP nanofiber template. Nanoscale Res. Lett. 5(2), 279 (2010). https://doi.org/10.1007/s11671-009-9476-6
- Y. Wang, H. Huang, Y. Zhao, Z. Feng, H. Fan et al., Self-assembly of ultralight and compressible inorganic sponges with hierarchical porosity by electrospinning. Ceram. Int. 46(1), 768–774 (2020). https://doi.org/10.1016/j.ceramint.2019.09.031
- C. Liao, Z. Ma, G. Dong, J. Qiu, Flexible porous SiO2-Bi2WO6 nanofibers film for visible-light photocatalytic water purification. J. Am. Ceram. Soc. 98(3), 957–964 (2015). https://doi.org/10.1111/jace.13388
- X. Song, W. Liu, J. Wang, S. Xu, B. Liu et al., Highly aligned continuous mullite nanofibers: conjugate electrospinning fabrication, microstructure and mechanical properties. Mater. Lett. 212, 20–24 (2018). https://doi.org/10.1016/j.matlet.2017.10.055
- Y. Si, X. Wang, L. Dou, J. Yu, B. Ding, Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 4(4), 8925 (2018). https://doi.org/10.1126/sciadv.aas8925
- C. Burger, B.S. Hsiao, B. Chu, Nanofibrous materials and their applications. Annu. Rev. Mater. Res. 36(1), 333–368 (2006). https://doi.org/10.1146/annurev.matsci.36.011205.123537
- D. Li, J.T. McCann, Y. Xia, M. Marquez, Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J. Am. Ceram. Soc. 89(6), 1861–1869 (2006). https://doi.org/10.1111/j.1551-2916.2006.00989.x
- Y. Si, X. Mao, H. Zheng, J. Yu, B. Ding, Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation. RSC Adv. 5(8), 6027–6032 (2015). https://doi.org/10.1039/C4RA12271B
- M. Shahhosseininia, S. Bazgir, M.D. Joupari, Fabrication and investigation of silica nanofibers via electrospinning. Mater. Sci. Eng. C 91, 502–511 (2018). https://doi.org/10.1016/j.msec.2018.05.068
- I. Zucker, N. Dizge, C.L. Fausey, E. Shaulsky, M. Sun et al., Electrospun silica nanofiber mats functionalized with ceria nanops for water decontamination. RSC Adv. 9(34), 19408–19417 (2019). https://doi.org/10.1039/C9RA03467F
- F. Wang, L. Dou, J. Dai, Y. Li, L. Huang et al., In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angew. Chem. Int. Ed. 59(21), 8285–8292 (2020). https://doi.org/10.1002/ange.202001679
- Y.J. Kim, C.H. Ahn, M.O. Choi, Effect of thermal treatment on the characteristics of electrospun PVDF-silica composite nanofibrous membrane. Eur. Polym. J. 46(10), 1957–1965 (2010). https://doi.org/10.1016/j.eurpolymj.2010.08.009
- A.C. Patel, S. Li, J.M. Yuan, Y. Wei, In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications. Nano Lett. 6(5), 1042–1046 (2006). https://doi.org/10.1021/nl0604560
- Y. Wu, F. Li, Y. Wu, W. Jia, P. Hannam et al., Formation of silica nanofibers with hierarchical structure via electrospinning. Colloid Polym. Sci. 289(11), 1253–1260 (2011). https://doi.org/10.1007/s00396-011-2455-3
- L.A. Mercante, R.S. Andre, L.H.C. Mattoso, D.S. Correa, Electrospun ceramic nanofibers and hybrid-nanofiber composites for gas sensing. ACS Appl. Nano Mater. 2(7), 4026–4042 (2019). https://doi.org/10.1021/acsanm.9b01176
- Z. Wen, X. Song, D. Chen, T. Fan, Y. Liu et al., Electrospinning preparation and microstructure characterization of homogeneous diphasic mullite ceramic nanofibers. Ceram. Int. 46(8), 12172–12179 (2020). https://doi.org/10.1016/j.ceramint.2020.01.263
- H. Wang, X. Yang, Q. Wu, Q. Zhang, H. Chen et al., Encapsulating silica/antimony into porous electrospun carbon nanofibers with robust structure stability for high-efficiency lithium storage. ACS Nano 12(4), 3406–3416 (2018). https://doi.org/10.1021/acsnano.7b09092
- Z. Shen, J. Zhong, J. Chen, W. Xie, K. Yang et al., SiO2 nanofiber composite gel polymer electrolyte by in-situ polymerization for stable Li metal batteries. Chin. Chem. Lett. (2022). https://doi.org/10.1016/j.cclet.2022.03.093
- L. Wang, C. Zhao, H. Shan, Y. Jiao, Q. Zhang et al., Deoxycholic acid-modified microporous SiO2 nanofibers mimicking colorectal microenvironment to optimize radiotherapy-chemotherapy combined therapy. Biomed. Mater. 16(6), 065020 (2021). https://doi.org/10.1088/1748-605x/ac2bbb
- H. Shan, X. Dong, X. Cheng, Y. Si, J. Yu et al., Highly flexible, mesoporous structured, and metallic Cu-doped C/SiO2 nanofibrous membranes for efficient catalytic oxidative elimination of antibiotic pollutants. Nanoscale 11(31), 14844–14856 (2019). https://doi.org/10.1039/C9NR04118D
- Y. Wang, B. Wang, Q. Wang, J. Di, S. Miao et al., Amino-functionalized porous nanofibrous membranes for simultaneous removal of oil and heavy-metal ions from wastewater. ACS Appl. Mater. Interfaces 11(1), 1672–1679 (2019). https://doi.org/10.1021/acsami.8b18066
- T. Pirzada, S.A. Arvidson, C.D. Saquing, S.S. Shah, S.A. Khan, Hybrid carbon silica nanofibers through sol-gel electrospinning. Langmuir 30(51), 15504–15513 (2014). https://doi.org/10.1021/la503290n
- A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Mater. Horizons 3(2), 91–112 (2016). https://doi.org/10.1039/C5MH00260E
- M. Hu, W. Kang, Z. Zhong, B. Cheng, W. Xing, Porphyrin-functionalized hierarchical porous silica nanofiber membrane for rapid HCl gas detection. Ind. Eng. Chem. Res. 57(34), 11668–11674 (2018). https://doi.org/10.1021/acs.iecr.8b02902
- Z. Sun, L. Feng, X. Wen, L. Wang, X. Qin et al., Ceramic nanofiber-based water-induced electric generator. ACS Appl. Mater. Interfaces 13(47), 56226–56232 (2021). https://doi.org/10.1021/acsami.1c17847
- Y. Peng, Y. Xie, L. Wang, L. Liu, S. Zhu et al., High-temperature flexible, strength and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation. J. Eur. Ceram. Soc. 41(2), 1471–1480 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.09.071
- W. Matysiak, T. Tański, Analysis of the morphology, structure and optical properties of 1D SiO2 nanostructures obtained with sol-gel and electrospinning methods. Appl. Surf. Sci. 489, 34–43 (2019). https://doi.org/10.1016/j.apsusc.2019.05.090
- J. Xue, J. Xie, W. Liu, Y. Xia, Electrospun nanofibers: new concepts, materials, and applications. Acc. Chem. Res. 50(8), 1976–1987 (2017). https://doi.org/10.1021/acs.accounts.7b00218
- J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593
- Y. Liao, C.H. Loh, M. Tian, R. Wang, A.G. Fane, Progress in electrospun polymeric nanofibrous membranes for water treatment: fabrication, modification and applications. Prog. Polym. Sci. 77, 69–94 (2018). https://doi.org/10.1016/j.progpolymsci.2017.10.003
- D. Li, Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16(14), 1151–1170 (2004). https://doi.org/10.1002/adma.200400719
- Y. Li, J. Zhu, H. Cheng, G. Li, H. Cho et al., Developments of advanced electrospinning techniques: a critical review. Adv. Mater. Technol. 6(11), 2100410 (2021). https://doi.org/10.1002/admt.202100410
- T. Han, D.H. Reneker, A.L. Yarin, Buckling of jets in electrospinning. Polymer 48(20), 6064–6076 (2007). https://doi.org/10.1016/j.polymer.2007.08.002
- D. Zong, L. Cao, Y. Li, X. Yin, Y. Si et al., Interlocked dual-network and superelastic electrospun fibrous sponges for efficient low-frequency noise absorption. Small Struct. 1(2), 2000004 (2020). https://doi.org/10.1002/sstr.202000004
- Z. Zheng, H. Wu, Y. Si, Y. Jia, B. Ding, Stretchable and resilient fibrous sponges tailored by interlocking double-network for warmth retention. Compos. Commun. 27, 100788 (2021). https://doi.org/10.1016/j.coco.2021.100788
- X. Mao, Y. Si, Y. Chen, L. Yang, F. Zhao et al., Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Adv. 2(32), 12216–12223 (2012). https://doi.org/10.1039/C2RA22086E
- A. Belgibayeva, I. Taniguchi, Synthesis and characterization of SiO2/C composite nanofibers as free-standing anode materials for Li-ion batteries. Electrochim. Acta 328, 135101 (2019). https://doi.org/10.1016/j.electacta.2019.135101
- L. Cui, Y. Song, F. Wang, Y. Sheng, H. Zou, Electrospinning synthesis of SiO2-TiO2 hybrid nanofibers with large surface area and excellent photocatalytic activity. Appl. Surf. Sci. 488, 284–292 (2019). https://doi.org/10.1016/j.apsusc.2019.05.151
- M. Guo, B. Ding, X. Li, X. Wang, J. Yu et al., Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties. J. Phys. Chem. C 114(2), 916–921 (2010). https://doi.org/10.1021/jp909672r
- J. Wang, Q. Ma, Y. Wang, Z. Li, Z. Li et al., New insights into the structure-performance relationships of mesoporous materials in analytical science. Chem. Soc. Rev. 47(23), 8766–8803 (2018). https://doi.org/10.1039/C8CS00658J
- S.H. Yang, Y.J. Lee, H. Kang, S.K. Park, Y.C. Kang, Carbon-coated three-dimensional MXene/iron selenide ball with core-shell structure for high-performance potassium-ion batteries. Nano-Micro Lett. 14, 17 (2022). https://doi.org/10.1007/s40820-021-00741-0
- P. Xie, W. Yuan, X. Liu, Y. Peng, Y. Yin et al., Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Storage Mater. 36, 56–76 (2021). https://doi.org/10.1016/j.ensm.2020.12.011
- X. Zhang, C. Chi, J. Chen, X. Zhang, M. Gong et al., Electrospun quad-axial nanofibers for controlled and sustained drug delivery. Mater. Des. 206, 109732 (2021). https://doi.org/10.1016/j.matdes.2021.109732
- R. Borah, G.C. Ingavle, S.R. Sandeman, A. Kumar, S.V. Mikhalovsky, Amine-functionalized electrically conductive core-sheath MEH-PPV: PCL electrospun nanofibers for enhanced cell-biomaterial interactions. ACS Biomater. Sci. Eng. 4(9), 3327–3346 (2018). https://doi.org/10.1021/acsbiomaterials.8b00624
- D. Li, Y. Xia, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4(5), 933–938 (2004). https://doi.org/10.1021/nl049590f
- H. Cao, P. Du, L. Song, J. Xiong, J. Yang et al., Co-electrospinning fabrication and photocatalytic performance of TiO2/SiO2 core/sheath nanofibers with tunable sheath thickness. Mater. Res. Bull. 48(11), 4673–4678 (2013). https://doi.org/10.1016/j.materresbull.2013.08.035
- Y. Wang, W. Ding, X. Jiao, D. Chen, Electrospun flexible self-standing silica/mesoporous alumina core-shell fibrous membranes as adsorbents toward Congo red. RSC Adv. 4(58), 30790–30797 (2014). https://doi.org/10.1039/C4RA03912B
- J. Yoon, H.S. Yang, B.S. Lee, W.R. Yu, Recent progress in coaxial electrospinning: new parameters, various structures, and wide applications. Adv. Mater. 30(42), 1704765 (2018). https://doi.org/10.1002/adma.201704765
- P. Rathore, J.D. Schiffman, Beyond the single-nozzle: coaxial electrospinning enables innovative nanofiber chemistries, geometries, and applications. ACS Appl. Mater. Interfaces 13(1), 48–66 (2021). https://doi.org/10.1021/acsami.0c17706
- J.K. Park, O.V.P. Nguyen, H.S. Yoo, Coaxial electrospun nanofibers with different shell contents to control cell adhesion and viability. ACS Omega 5(43), 28178–28185 (2020). https://doi.org/10.1021/acsomega.0c03902
- M. Hedayati, E.T. Nassaj, A. Yourdkhani, M. Borlaf, J. Zhang et al., BaTiO3 nanotubes by co-axial electrospinning: rheological and microstructural investigations. J. Eur. Ceram. Soc. 40(4), 1269–1279 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.078
- J. Ryu, S. Choi, T. Bok, S. Park, Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning. Nanoscale 7(14), 6126–6135 (2015). https://doi.org/10.1039/C5NR00224A
- Z. Ma, H. Ji, Y. Teng, G. Dong, J. Zhou et al., Engineering and optimization of nano- and mesoporous silica fibers using sol-gel and electrospinning techniques for sorption of heavy metal ions. J. Colloid Interface Sci. 358(2), 547–553 (2011). https://doi.org/10.1016/j.jcis.2011.02.066
- W. Chen, Z. Ma, X. Pan, Z. Hu, G. Dong et al., Core@dual-shell nanoporous SiO2-TiO2 composite fibers with high flexibility and its photocatalytic activity. J. Am. Ceram. Soc. 97(6), 1944–1951 (2014). https://doi.org/10.1111/jace.12944
- X.H. Li, C.L. Shao, Y.C. Liu, X.T. Zhang, S.K. Hark, Preparation, structure and photoluminescence properties of SiO2/ZnO nanocables via electrospinning and vapor transport deposition. Mater. Lett. 62(14), 2088–2091 (2008). https://doi.org/10.1016/j.matlet.2007.11.021
- L. Li, S. Peng, J.K.Y. Lee, D. Ji, M. Srinivasan et al., Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39, 111–139 (2017). https://doi.org/10.1016/j.nanoen.2017.06.050
- R. Liu, L. Hou, G. Yue, H. Li, J. Zhang et al., Progress of fabrication and applications of electrospun hierarchically porous nanofibers. Adv. Fiber Mater. 4, 604–630 (2022). https://doi.org/10.1007/s42765-022-00132-z
- J. Chen, Y. Song, Y. Sheng, M. Chang, X. Xie et al., Luminescence properties and Judd-Ofelt analysis of SiO2:Ln3+ (Eu, Tb) hollow nanofibers fabricated by co-axial electrospinning method. J. Alloy. Compd. 716, 144–155 (2017). https://doi.org/10.1016/j.jallcom.2017.05.070
- A. Katoch, S.S. Kim, Synthesis of hollow silica fibers with porous walls by coaxial electrospinning method. J. Am. Ceram. Soc. 95(2), 553–556 (2012). https://doi.org/10.1111/j.1551-2916.2011.04923.x
- S. Zhan, D. Chen, X. Jiao, Co-electrospun SiO2 hollow nanostructured fibers with hierarchical walls. J. Colloid Interface Sci. 318(2), 331–336 (2008). https://doi.org/10.1016/j.jcis.2007.10.044
- G.F.J. Müller, M. Stürzel, R. Mülhaupt, Silica nanotubes and hollow silica nanofibers: gas phase mineralization, polymerization catalysis and in-situ polyethylene nanocomposites. Polymer 55(2), 465–470 (2014). https://doi.org/10.1016/j.polymer.2013.12.019
- K. Nayani, H. Katepalli, C.S. Sharma, A. Sharma, S. Patil et al., Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers. Ind. Eng. Chem. Res. 51(4), 1761–1766 (2012). https://doi.org/10.1021/ie2009229
- W. Wang, J. Zhou, S. Zhang, J. Song, H. Duan et al., A novel method to fabricate silica nanotubes based on phase separation effect. J. Mater. Chem. 20(41), 9068–9072 (2010). https://doi.org/10.1039/C0JM02120B
- G.H. An, S.Y. Jeong, T.Y. Seong, H.J. Ahn, One-pot fabrication of hollow SiO2 nanowires via an electrospinning technique. Mater. Lett. 65(15), 2377–2380 (2011). https://doi.org/10.1016/j.matlet.2011.05.043
- A. Thomas, Functional materials: from hard to soft porous frameworks. Angew. Chem. Int. Ed. 49(45), 8328–8344 (2010). https://doi.org/10.1002/anie.201000167
- H. Hou, G. Shao, W. Yang, W.Y. Wong, One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption. Prog. Mater. Sci. 113, 100671 (2020). https://doi.org/10.1016/j.pmatsci.2020.100671
- C. Wu, W. Yuan, S.S. Al-Deyab, K.Q. Zhang, Tuning porous silica nanofibers by colloid electrospinning for dye adsorption. Appl. Surf. Sci. 313, 389–395 (2014). https://doi.org/10.1016/j.apsusc.2014.06.002
- B. Zhang, Z. Tong, Y. Pang, H. Xu, X. Li et al., Design and electrospun closed cell structured SiO2 nanocomposite fiber by hollow SiO2/TiO2 spheres for thermal insulation. Compos. Sci. Technol. 218, 109152 (2022). https://doi.org/10.1016/j.compscitech.2021.109152
- M.J. Chang, W.N. Cui, J. Liu, Facile preparation of porous inorganic SiO2 nanofibrous membrane by electrospinning method. J. Nanomater. 2017, 9621515 (2017). https://doi.org/10.1155/2017/9621515
- B. Zhang, X. Li, Q. Wu, C. Zhang, Y. Yu et al., Synthesis of Ni/mesoporous ZSM-5 for direct catalytic conversion of cellulose to hexitols: modulating the pore structure and acidic sites via a nanocrystalline cellulose template. Green Chem. 18(11), 3315–3323 (2016). https://doi.org/10.1039/C5GC03077C
- L. Jin, W. Cao, P. Wang, N. Song, P. Ding, Interconnected MXene/graphene network constructed by soft template for multi-performance improvement of polymer composites. Nano-Micro Lett. 14, 133 (2022). https://doi.org/10.1007/s40820-022-00877-7
- J. Kloos, N. Joosten, A. Schenning, K. Nijmeijer, Self-assembling liquid crystals as building blocks to design nanoporous membranes suitable for molecular separations. J. Membr. Sci. 620, 118849 (2021). https://doi.org/10.1016/j.memsci.2020.118849
- S.H. Wu, C.Y. Mou, H.P. Lin, Synthesis of mesoporous silica nanops. Chem. Soc. Rev. 42(9), 3862–3875 (2013). https://doi.org/10.1039/C3CS35405A
- Q. Wen, J. Di, Y. Zhao, Y. Wang, L. Jiang et al., Flexible inorganic nanofibrous membranes with hierarchical porosity for efficient water purification. Chem. Sci. 4(12), 4378–4382 (2013). https://doi.org/10.1039/C3SC51851E
- J. Saha, G. De, Highly ordered cubic mesoporous electrospun SiO2 nanofibers. Chem. Commun. 49(56), 6322–6324 (2013). https://doi.org/10.1039/C3CC42338G
- M.M. Abolhasani, M. Naebe, M.H. Amiri, K. Shirvanimoghaddam, S. Anwar et al., Hierarchically structured porous piezoelectric polymer nanofibers for energy harvesting. Adv. Sci. 7(13), 2000517 (2020). https://doi.org/10.1002/advs.202000517
- Y. Wang, H. Huang, G. Li, X. Zhao, L. Yu et al., Electrospun TiO2-SiO2 fibres with hierarchical pores from phase separation. CrystEngComm 19(19), 2673–2680 (2017). https://doi.org/10.1039/C7CE00471K
- X.Q. Wu, Z.D. Shao, Q. Liu, Z. Xie, F. Zhao et al., Flexible and porous TiO2/SiO2/carbon composite electrospun nanofiber mat with enhanced interfacial charge separation for photocatalytic degradation of organic pollutants in water. J. Colloid Interface Sci. 553, 156–166 (2019). https://doi.org/10.1016/j.jcis.2019.06.019
- F. Hong, C. Yan, Y. Si, J. He, J. Yu et al., Nickel ferrite nanops anchored onto silica nanofibers for designing magnetic and flexible nanofibrous membranes. ACS Appl. Mater. Interfaces 7(36), 20200–20207 (2015). https://doi.org/10.1021/acsami.5b05754
- Y. Miao, R. Wang, D. Chen, Z. Liu, T. Liu, Electrospun self-standing membrane of hierarchical SiO2@γ-AlOOH (boehmite) core/sheath fibers for water remediation. ACS Appl. Mater. Interfaces 4(10), 5353–5359 (2012). https://doi.org/10.1021/am3012998
- Q. Nie, Z. Pang, D. Li, H. Zhou, F. Huang et al., Facile fabrication of flexible SiO2/PANI nanofibers for ammonia gas sensing at room temperature. Colloids Surf. A 537, 532–539 (2018). https://doi.org/10.1016/j.colsurfa.2017.10.065
- C. Wang, K. Liu, D. Wang, G. Wang, P.K. Chu et al., Hierarchical CuO-ZnO/SiO2 fibrous membranes for efficient removal of Congo red and 4-nitrophenol from water. Adv. Fiber Mater. (2022). https://doi.org/10.1007/s42765-022-00142-x
- J. Zhang, L. Liu, Y. Si, S. Zhang, J. Yu et al., Charged membranes based on spider silk-inspired nanofibers for comprehensive and continuous purification of wastewater. Nanotechnology 32(49), 495704 (2021). https://doi.org/10.1088/1361-6528/ac2243
- Z. Hu, Z. Ma, X. He, C. Liao, Y. Li et al., Preparation and characterization of flexible and thermally stable CuO nanocrystal-decorated SiO2 nanofibers. J. Sol-Gel Sci. Technol. 76(3), 492–500 (2015). https://doi.org/10.1007/s10971-015-3799-9
- M. Wan, H. Zhao, Z. Wang, X. Zou, Y. Zhao et al., Fabrication of Ag modified SiO2 electrospun nanofibrous membranes as ultrasensitive and high stable SERS substrates for multiple analytes detection. Colloid Interface Sci. Commun. 42, 100428 (2021). https://doi.org/10.1016/j.colcom.2021.100428
- X. Wang, X. Zhou, C. Shao, X. Li, Y. Liu, Graphitic carbon nitride/BiOI loaded on electrospun silica nanofibers with enhanced photocatalytic activity. Appl. Surf. Sci. 455, 952–962 (2018). https://doi.org/10.1016/j.apsusc.2018.06.050
- Q. Zhu, X. Tang, S. Feng, Z. Zhong, J. Yao et al., ZIF-8@SiO2 composite nanofiber membrane with bioinspired spider web-like structure for efficient air pollution control. J. Membr. Sci. 581, 252–261 (2019). https://doi.org/10.1016/j.memsci.2019.03.075
- S. Wen, M. Liang, R. Zou, Z. Wang, D. Yue et al., Electrospinning of palladium/silica nanofibers for catalyst applications. RSC Adv. 5(52), 41513–41519 (2015). https://doi.org/10.1039/C5RA02660A
- X. Wang, L. Dou, L. Yang, J. Yu, B. Ding, Hierarchical structured MnO2@SiO2 nanofibrous membranes with superb flexibility and enhanced catalytic performance. J. Hazard. Mater. 324, 203–212 (2017). https://doi.org/10.1016/j.jhazmat.2016.10.050
- J. Liu, M.J. Chang, H.L. Du, Fabrication and photocatalytic properties of flexible BiOI/SiO2 hybrid membrane by electrospinning method. J. Nanosci. Nanotechnol. 17(6), 3792–3797 (2017). https://doi.org/10.1166/jnn.2017.14008
- M. Li, X. Gao, X. Wang, S. Chen, J. Yu, Wettable and flexible silica nanofiber/bead-based membranes for separation of oily wastewater. ACS Appl. Nano Mater. 4(3), 2952–2962 (2021). https://doi.org/10.1021/acsanm.1c00092
- X. Zhou, G. Zhang, C. Shao, X. Li, X. Jiang et al., Fabrication of g-C3N4/SiO2-Au composite nanofibers with enhanced visible photocatalytic activity. Ceram. Int. 43(17), 15699–15707 (2017). https://doi.org/10.1016/j.ceramint.2017.08.130
- A.Q. Xie, T. Cui, R. Cheng, X. Wu, J. Guo et al., Robust nanofiber films prepared by electro-microfluidic spinning for flexible highly stable quantum-dot displays. Adv. Electron. Mater. 7(1), 2000626 (2021). https://doi.org/10.1002/aelm.202000626
- G.Z. Tan, Y. Zhou, Tunable 3D nanofiber architecture of polycaprolactone by divergence electrospinning for potential tissue engineering applications. Nano-Micro Lett. 10, 73 (2018). https://doi.org/10.1007/s40820-018-0226-0
- Y. Zhao, J. Yan, W. Cai, Y. Lai, J. Song et al., Elastic and well-aligned ceramic LLZO nanofiber based electrolytes for solid-state lithium batteries. Energy Storage Mater. 23, 306–313 (2019). https://doi.org/10.1016/j.ensm.2019.04.043
- D. Li, Y. Wang, Y. Xia, Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 16(4), 361–366 (2004). https://doi.org/10.1002/adma.200306226
- D. Yang, B. Lu, Y. Zhao, X. Jiang, Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv. Mater. 19(21), 3702–3706 (2007). https://doi.org/10.1002/adma.200700171
- W. Lin, M. Chen, T. Qu, J. Li, Y. Man, Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering. J. Biomed. Mater. Res. Part B 108(4), 1311–1321 (2020). https://doi.org/10.1002/jbm.b.34479
- Q. Fu, C. Duan, Z. Yan, Y. Li, Y. Si et al., Nanofiber-based hydrogels: controllable synthesis and multifunctional applications. Macromol. Rapid Commun. 39(10), 1800058 (2018). https://doi.org/10.1002/marc.201800058
- T. Xu, Y. Ding, Z. Liang, H. Sun, F. Zheng et al., Three-dimensional monolithic porous structures assembled from fragmented electrospun nanofiber mats/membranes: methods, properties, and applications. Prog. Mater. Sci. 112, 100656 (2020). https://doi.org/10.1016/j.pmatsci.2020.100656
- M. Dilamian, M. Joghataei, Z. Ashrafi, C. Bohr, S. Mathur et al., From 1D electrospun nanofibers to advanced multifunctional fibrous 3D aerogels. Appl. Mater. Today 22, 100964 (2021). https://doi.org/10.1016/j.apmt.2021.100964
- Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014). https://doi.org/10.1038/ncomms6802
- X. Zhang, F. Wang, L. Dou, X. Cheng, Y. Si et al., Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300 °C. ACS Nano 14(11), 15616–15625 (2020). https://doi.org/10.1021/acsnano.0c06423
- S.S. Kistler, Coherent expanded aerogels and jellies. Nature 127(3211), 741 (1931). https://doi.org/10.1038/127741a0
- T. Huang, Y. Zhu, J. Zhu, H. Yu, Q. Zhang et al., Self-reinforcement of light, temperature-resistant silica nanofibrous aerogels with tunable mechanical properties. Adv. Fiber Mater. 2(6), 338–347 (2020). https://doi.org/10.1007/s42765-020-00054-8
- X. Zhang, C. Liu, X. Zhang, Y. Si, J. Yu et al., Super strong, shear resistant, and highly elastic lamellar structured ceramic nanofibrous aerogels for thermal insulation. J. Mater. Chem. A 9(48), 27415–27423 (2021). https://doi.org/10.1039/D1TA08879C
- X. Li, Y. Zhang, L. Zhang, S. Xia, Y. Zhao et al., Synthesizing superior flexible oxide perovskite ceramic nanofibers by precisely controlling crystal nucleation and growth. Small 18(8), 2106500 (2022). https://doi.org/10.1002/smll.202106500
- X. Gao, M. Li, F. Zhou, X. Wang, S. Chen et al., Flexible zirconium doped strontium titanate nanofibrous membranes with enhanced visible-light photocatalytic performance and antibacterial activities. J. Colloid Interface Sci. 600, 127–137 (2021). https://doi.org/10.1016/j.jcis.2021.05.005
- W. Nuansing, S. Ninmuang, W. Jarernboon, S. Maensiri, S. Seraphin, Structural characterization and morphology of electrospun TiO2 nanofibers. Mater. Sci. Eng. B 131(1), 147–155 (2006). https://doi.org/10.1016/j.mseb.2006.04.030
- C. Shao, H. Guan, Y. Liu, J. Gong, N. Yu et al., A novel method for making ZrO2 nanofibres via an electrospinning technique. J. Cryst. Growth 267, 380–384 (2004). https://doi.org/10.1016/j.jcrysgro.2004.03.065
- A.M. Azad, Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning. Mater. Sci. Eng. A 435–436, 468–473 (2006). https://doi.org/10.1016/j.msea.2006.07.075
- L. Cao, H. Shan, D. Zong, X. Yu, X. Yin et al., Fire-resistant and hierarchically structured elastic ceramic nanofibrous aerogels for efficient low-frequency noise reduction. Nano Lett. 22(4), 1609–1617 (2022). https://doi.org/10.1021/acs.nanolett.1c04532
- E. Dupree, R.F. Pettifer, Determination of the Si-O-Si bond angle distribution in vitreous silica by magic angle spinning NMR. Nature 308(5959), 523–525 (1984). https://doi.org/10.1038/308523a0
- S. Ailawar, A. Hunoor, D. Basu, B. Rudzinski, L. Burel et al., Aqueous phase hydrodechlorination of trichloroethylene using Pd supported on swellable organically modified silica (SOMS): effect of support derivatization. J. Catal. 411, 15–30 (2022). https://doi.org/10.1016/j.jcat.2022.04.031
- E.J. Frankberg, J. Kalikka, F.G. Ferré, L. Joly-Pottuz, T. Salminen et al., Highly ductile amorphous oxide at room temperature and high strain rate. Science 366(6467), 864–869 (2019). https://doi.org/10.1126/science.aav1254
- X. Li, S. Yin, S.H. Oh, H. Gao, Hardening and toughening mechanisms in nanotwinned ceramics. Scr. Mater. 133, 105–112 (2017). https://doi.org/10.1016/j.scriptamat.2017.02.003
- Y. Zhuang, X. Wei, Y. Zhao, J. Li, X. Fu et al., Microstructure and elastic properties of BaTiO3 nanofibers sintered in various atmospheres. Ceram. Int. 44(2), 2426–2431 (2018). https://doi.org/10.1016/j.ceramint.2017.10.213
- X. Song, K. Zhang, Y. Song, Z. Duan, Q. Liu et al., Morphology, microstructure and mechanical properties of electrospun alumina nanofibers prepared using different polymer templates: a comparative study. J. Alloys Compd. 829, 154502 (2020). https://doi.org/10.1016/j.jallcom.2020.154502
- F. Wu, Y. Liu, Y. Si, J. Yu, B. Ding, Multiphase ceramic nanofibers with super-elasticity from - 196–1600 °C. Nano Today 44, 101455 (2022). https://doi.org/10.1016/j.nantod.2022.101455
- J. Song, X. Wang, J. Yan, J. Yu, G. Sun et al., Soft Zr-doped TiO2 nanofibrous membranes with enhanced photocatalytic activity for water purification. Sci. Rep. 7(1), 1636 (2017). https://doi.org/10.1038/s41598-017-01969-w
- X. Wang, Y. Zhang, Y. Zhao, G. Li, J. Yan et al., A general strategy to fabricate flexible oxide ceramic nanofibers with gradient bending-resilience properties. Adv. Funct. Mater. 31(36), 2103989 (2021). https://doi.org/10.1002/adfm.202103989
- J. Kim, J. Lee, J.H. Ha, I.H. Song, Effect of silica on flexibility of yttria-stabilized zirconia nanofibers for developing water purification membranes. Ceram. Int. 45(14), 17696–17704 (2019). https://doi.org/10.1016/j.ceramint.2019.05.337
- Y. Sun, J. Qu, Q. Guo, J. Song, G. Wei et al., Preparation of fine-grained silica-doped zirconia fibers by electrospinning. Ceram. Int. 43(15), 12551–12556 (2017). https://doi.org/10.1016/j.ceramint.2017.06.129
- X. Zhang, Y. Liu, Y. Si, J. Yu, B. Ding, Flexible and tough zirconia-based nanofibrous membranes for thermal insulation. Compos. Commun. 33, 101219 (2022). https://doi.org/10.1016/j.coco.2022.101219
- X. Li, H. Xu, Q. Wang, S. Li, H. Xiao et al., Control of continuous α-Al2O3 fibers by self-seeding and SiO2-Sol doping. Ceram. Int. 45(9), 12053–12059 (2019). https://doi.org/10.1016/j.ceramint.2019.03.101
- H. Shan, X. Wang, F. Shi, J. Yan, J. Yu et al., Hierarchical porous structured SiO2/SnO2 nanofibrous membrane with superb flexibility for molecular filtration. ACS Appl. Mater. Interfaces 9(22), 18966–18976 (2017). https://doi.org/10.1021/acsami.7b04518
- J. Schiøtz, F.D.D. Tolla, K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667), 561–563 (1998). https://doi.org/10.1038/35328
- L. Wang, J. Teng, P. Liu, A. Hirata, E. Ma et al., Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun. 5, 4402 (2014). https://doi.org/10.1038/ncomms5402
- X. Mao, J. Hong, Y.X. Wu, Q. Zhang, J. Liu et al., An efficient strategy for reinforcing flexible ceramic membranes. Nano Lett. 21(22), 9419–9425 (2021). https://doi.org/10.1021/acs.nanolett.1c02657
- Y. Zhang, S. Liu, J. Yan, X. Zhang, S. Xia et al., Superior flexibility in oxide ceramic crystal nanofibers. Adv. Mater. 33(44), 2105011 (2021). https://doi.org/10.1002/adma.202105011
- H. Zheng, H. Shan, Y. Bai, X. Wang, L. Liu et al., Assembly of silica aerogels within silica nanofibers: towards a super-insulating flexible hybrid aerogel membrane. RSC Adv. 5(111), 91813–91820 (2015). https://doi.org/10.1039/C5RA18137B
- R. Zhang, Z. An, Y. Zhao, L. Zhang, P. Zhou, Nanofibers reinforced silica aerogel composites having flexibility and ultra-low thermal conductivity. Int. J. Appl. Ceram. Technol. 17(3), 1531–1539 (2020). https://doi.org/10.1111/ijac.13457
- L. Dou, X. Zhang, X. Cheng, Z. Ma, X. Wang et al., Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl. Mater. Interfaces 11(32), 29056–29064 (2019). https://doi.org/10.1021/acsami.9b10018
- L. Dou, X. Cheng, X. Zhang, Y. Si, J. Yu et al., Temperature-invariant superelastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation. J. Mater. Chem. A 8(16), 7775–7783 (2020). https://doi.org/10.1039/D0TA01092H
- X. Zhang, X. Cheng, Y. Si, J. Yu, B. Ding, Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation. Chem. Eng. J. 433, 133628 (2022). https://doi.org/10.1016/j.cej.2021.133628
- X. Zhang, X. Cheng, Y. Si, J. Yu, B. Ding, All-ceramic and elastic aerogels with nanofibrous-granular binary synergistic structure for thermal superinsulation. ACS Nano 16(4), 5487–5495 (2022). https://doi.org/10.1021/acsnano.1c09668
- D. Zong, L. Cao, X. Yin, Y. Si, S. Zhang et al., Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nat. Commun. 12, 6599 (2021). https://doi.org/10.1038/s41467-021-26890-9
- L. Cao, Q. Fu, Y. Si, B. Ding, J. Yu, Porous materials for sound absorption. Compos. Commun. 10, 25–35 (2018). https://doi.org/10.1016/j.coco.2018.05.001
- Y. Liao, F. Yang, Y. Si, J. Yu, B. Ding, Nanoflake-engineered zirconic fibrous aerogels with parallel-arrayed conduits for fast nerve agent degradation. Nano Lett. 21(20), 8839–8847 (2021). https://doi.org/10.1021/acs.nanolett.1c03246
- F. Cui, W. Han, Y. Si, W. Chen, M. Zhang et al., In situ synthesis of MnO2@SiO2-TiO2 nanofibrous membranes for room temperature degradation of formaldehyde. Compos. Commun. 16, 61–66 (2019). https://doi.org/10.1016/j.coco.2019.08.002
- S. Zhan, Y. Yang, X. Gao, H. Yu, S. Yang et al., Rapid degradation of toxic toluene using novel mesoporous SiO2 doped TiO2 nanofibers. Catal. Today 225, 10–17 (2014). https://doi.org/10.1016/j.cattod.2013.08.018
- R. Yu, H. Zhang, B. Guo, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 14, 1 (2022). https://doi.org/10.1007/s40820-021-00751-y
- D.D.S. Gomes, R.D.S. Victor, B.V.D. Sousa, G.D.A. Neves, L.N.D.L. Santana et al., Ceramic nanofiber materials for wound healing and bone regeneration: a brief review. Materials 15(11), 3909 (2022). https://doi.org/10.3390/ma15113909
- B.A. Allo, A.S. Rizkalla, K. Mequanint, Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Langmuir 26(23), 18340–18348 (2010). https://doi.org/10.1021/la102845k
- G. Toskas, C. Cherif, R.D. Hund, E. Laourine, B. Mahltig et al., Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydr. Polym. 94(2), 713–722 (2013). https://doi.org/10.1016/j.carbpol.2013.01.068
- S. Sakai, T. Yamaguchi, R.A. Putra, R. Watanabe, M. Kawabe et al., Controlling apatite microps formation by calcining electrospun sol-gel derived ultrafine silica fibers. J. Sol-Gel Sci. Technol. 61(2), 374–380 (2012). https://doi.org/10.1007/s10971-011-2637-y
- X. Wang, J. Zhu, L. Yin, S. Liu, X. Zhang et al., Fabrication of electrospun silica-titania nanofibers with different silica content and evaluation of the morphology and osteoinductive properties. J. Biomed. Mater. Res. Part A 100A(12), 3511–3517 (2012). https://doi.org/10.1002/jbm.a.34293
- L. Wang, Y. Qiu, H. Lv, Y. Si, L. Liu et al., 3D superelastic scaffolds constructed from flexible inorganic nanofibers with self-fitting capability and tailorable gradient for bone regeneration. Adv. Funct. Mater. 29(31), 1901407 (2019). https://doi.org/10.1002/adfm.201901407
- L. Wang, Y. Qiu, Y. Guo, Y. Si, L. Liu et al., Smart, elastic, and nanofiber-based 3D scaffolds with self-deploying capability for osteoporotic bone regeneration. Nano Lett. 19(12), 9112–9120 (2019). https://doi.org/10.1021/acs.nanolett.9b04313
- R.A. Matthew, M.M. Gopi, P. Menon, R. Jayakumar, L.S. Vijayachandran, Synthesis of electrospun silica nanofibers for protein/DNA binding. Mater. Lett. 184, 5–8 (2016). https://doi.org/10.1016/j.matlet.2016.07.148
- G.T. Zhu, X. Chen, X.M. He, H. Wang, Z. Zhang et al., Electrospun highly ordered mesoporous silica-carbon composite nanofibers for rapid extraction and prefractionation of endogenous peptides. Chem. Eur. J. 21(11), 4450–4456 (2015). https://doi.org/10.1002/chem.201406237
- Q. Fu, Y. Si, C. Duan, Z. Yan, L. Liu et al., Highly carboxylated, cellular structured, and underwater superelastic nanofibrous aerogels for efficient protein separation. Adv. Funct. Mater. 29(13), 1808234 (2019). https://doi.org/10.1002/adfm.201808234
- Q. Fu, L. Liu, Y. Si, J. Yu, B. Ding, Shapeable, underwater superelastic, and highly phosphorylated nanofibrous aerogels for large-capacity and high-throughput protein separation. ACS Appl. Mater. Interfaces 11(47), 44874–44885 (2019). https://doi.org/10.1021/acsami.9b15760
- M. Wan, H. Zhao, Z. Wang, Y. Zhao, L. Sun, Preparation of Ag@PDA@SiO2 electrospinning nanofibrous membranes for direct bacteria SERS detection and antimicrobial activities. Mater. Res. Express 7(9), 095012 (2020). https://doi.org/10.1088/2053-1591/abb8a0
- C. Liu, H. Shan, X. Chen, Y. Si, X. Yin et al., Novel inorganic-based N-halamine nanofibrous membranes as highly effective antibacterial agent for water disinfection. ACS Appl. Mater. Interfaces 10(51), 44209–44215 (2018). https://doi.org/10.1021/acsami.8b18322
- H. Shan, Y. Si, J. Yu, B. Ding, Flexible, mesoporous, and monodispersed metallic cobalt-embedded inorganic nanofibrous membranes enable ultra-fast and high-efficiency killing of bacteria. Chem. Eng. J. 382, 122909 (2020). https://doi.org/10.1016/j.cej.2019.122909
- F. Wang, J. Dai, L. Huang, Y. Si, J. Yu et al., Biomimetic and superelastic silica nanofibrous aerogels with rechargeable bactericidal function for antifouling water disinfection. ACS Nano 14(7), 8975–8984 (2020). https://doi.org/10.1021/acsnano.0c03793
- F. Wang, Y. Si, J. Yu, B. Ding, Tailoring nanonets-engineered superflexible nanofibrous aerogels with hierarchical cage-like architecture enables renewable antimicrobial air filtration. Adv. Funct. Mater. 31(49), 2107223 (2021). https://doi.org/10.1002/adfm.202107223
- H. Shan, Y. Si, J. Yu, B. Ding, Facile access to highly flexible and mesoporous structured silica fibrous membranes for tetracyclines removal. Chem. Eng. J. 417, 129211 (2021). https://doi.org/10.1016/j.cej.2021.129211
- C. Xu, S. Shi, X. Wang, H. Zhou, L. Wang et al., Electrospun SiO2-MgO hybrid fibers for heavy metal removal: characterization and adsorption study of Pb(II) and Cu(II). J. Hazard. Mater. 381, 120974 (2020). https://doi.org/10.1016/j.jhazmat.2019.120974
- M. Zhou, W. Tang, P. Luo, J. Lyu, A. Chen et al., Preparation of ureido-functionalized PVA/silica mesoporous fibre membranes via electrospinning for adsorption of Pb2+ and Cu2+ in wastewater. Water Sci. Technol. 76(9), 2526–2534 (2017). https://doi.org/10.2166/wst.2017.405
- J.H. Roque-Ruiz, J.A. Garibay-Alvarado, N.A. Medellín-Castillo, S.Y. Reyes-López, Preparation of electrospun hydroxyapatite-glass fibers for removal of cadmium (Cd+2) and lead (Pb+2) from aqueous media. Water Air Soil Pollut. 231(10), 497 (2020). https://doi.org/10.1007/s11270-020-04856-9
- A.A. Taha, Y. Wu, H. Wang, F. Li, Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution. J. Environ. Manage. 112, 10–16 (2012). https://doi.org/10.1016/j.jenvman.2012.05.031
- F. Shi, H. Shan, D. Li, X. Yin, J. Yu et al., A general strategy to fabricate soft magnetic CuFe2O4@SiO2 nanofibrous membranes as efficient and recyclable Fenton-like catalysts. J. Colloid Interface Sci. 538, 620–629 (2019). https://doi.org/10.1016/j.jcis.2018.12.028
- X. Wang, L. Dou, Z. Li, L. Yang, J. Yu et al., Flexible hierarchical ZrO2 nanop-embedded SiO2 nanofibrous membrane as a versatile tool for efficient removal of phosphate. ACS Appl. Mater. Interfaces 8(50), 34668–34676 (2016). https://doi.org/10.1021/acsami.6b11294
- J. Dai, Z. Yan, W. Jiao, X. Yin, Y. Si et al., Amide-halamine/silica composite nanofibrous membranes with rechargeable chlorination function for mercaptan degradation. Compos. Commun. 25, 100729 (2021). https://doi.org/10.1016/j.coco.2021.100729
- J. Zhang, J. Song, L. Liu, P. Zhang, Y. Si et al., Electroconductive nanofibrous membranes with nanosheet-based microsphere-threaded heterostructures enabling oily wastewater remediation. J. Mater. Chem. A 9(27), 15310–15320 (2021). https://doi.org/10.1039/D1TA03195C
- Y. Si, Q. Fu, X. Wang, J. Zhu, J. Yu et al., Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano 9(4), 3791–3799 (2015). https://doi.org/10.1021/nn506633b
- T. Pirzada, Z. Ashrafi, W. Xie, S.A. Khan, Cellulose silica hybrid nanofiber aerogels: from sol-gel electrospun nanofibers to multifunctional aerogels. Adv. Funct. Mater. 30(5), 1907359 (2020). https://doi.org/10.1002/adfm.201907359
- X. Zheng, X. Liu, L. Zha, Under-oil superhydrophilic poly(vinyl alcohol)/silica hybrid nanofibrous aerogel for gravity-driven separation of surfactant-stabilized water-in-oil emulsions. Macromol. Mater. Eng. 304(7), 1900125 (2019). https://doi.org/10.1002/mame.201900125
- Y.X. Huang, Z. Wang, D. Hou, S. Lin, Coaxially electrospun super-amphiphobic silica-based membrane for anti-surfactant-wetting membrane distillation. J. Membr. Sci. 531, 122–128 (2017). https://doi.org/10.1016/j.memsci.2017.02.044
- M. Sun, C. Boo, W. Shi, J. Rolf, E. Shaulsky et al., Engineering carbon nanotube forest superstructure for robust thermal desalination membranes. Adv. Funct. Mater. 29(36), 1903125 (2019). https://doi.org/10.1002/adfm.201903125
- X. Dong, L. Cao, Y. Si, B. Ding, H. Deng, Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 32(34), 1908269 (2020). https://doi.org/10.1002/adma.201908269
- X. Dong, Y. Si, C. Chen, B. Ding, H. Deng, Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 15(7), 12256–12266 (2021). https://doi.org/10.1021/acsnano.1c04035
- S. Zhang, H. Liu, N. Tang, J. Ge, J. Yu et al., Direct electronetting of high-performance membranes based on self-assembled 2D nanoarchitectured networks. Nat. Commun. 10, 1458 (2019). https://doi.org/10.1038/s41467-019-09444-y
- X. Cheng, Y.T. Liu, Y. Si, J. Yu, B. Ding, Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning. Nat. Commun. 13, 2637 (2022). https://doi.org/10.1038/s41467-022-30435-z
References
M.D. Lavender, The importance of silica to the modern world. Indoor Built Environ. 8(2), 89–93 (1999). https://doi.org/10.1177/1420326X9900800203
R.Y. Ning, Discussion of silica speciation, fouling, control and maximum reduction. Desalination 151(1), 67–73 (2003). https://doi.org/10.1016/S0011-9164(02)00973-6
S.S. Hossain, L. Mathur, P.K. Roy, Rice husk/rice husk ash as an alternative source of silica in ceramics: a review. J. Asian Ceram. Soc. 6(4), 299–313 (2018). https://doi.org/10.1080/21870764.2018.1539210
T.A. Saleh, Nanomaterials: classification, properties, and environmental toxicities. Environ. Technol. Innov. 20, 101067 (2020). https://doi.org/10.1016/j.eti.2020.101067
Z. Zhang, Y. Ouyang, Y. Cheng, J. Chen, N. Li et al., Size-dependent phononic thermal transport in low-dimensional nanomaterials. Phys. Rep. 860, 1–26 (2020). https://doi.org/10.1016/j.physrep.2020.03.001
W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
A. Meddahi-Pellé, A. Legrand, A. Marcellan, L. Louedec, D. Letourneur et al., Organ repair, hemostasis, and in vivo bonding of medical devices by aqueous solutions of nanops. Angew. Chem. Int. Ed. 53(25), 6369–6373 (2014). https://doi.org/10.1002/anie.201401043
L. Zhang, B. Liu, S. Dong, Bifunctional nanostructure of magnetic core luminescent shell and its application as solid-state electrochemiluminescence sensor material. J. Phys. Chem. B 111(35), 10448–10452 (2007). https://doi.org/10.1021/jp0734427
M. Kosari, U. Anjum, S. Xi, A.M.H. Lim, A.M. Seayad et al., Revamping SiO2 spheres by core-shell porosity endowment to construct a mazelike nanoreactor for enhanced catalysis in CO2 hydrogenation to methanol. Adv. Funct. Mater. 31(47), 2102896 (2021). https://doi.org/10.1002/adfm.202102896
S. Ding, L. Zhang, Y. Li, L. Hou, Fabrication of a novel polyvinylidene fluoride membrane via binding SiO2 nanops and a copper ferrocyanide layer onto a membrane surface for selective removal of cesium. J. Hazard. Mater. 368, 292–299 (2019). https://doi.org/10.1016/j.jhazmat.2019.01.065
M. Maeda, Y. Nishimura, N. Kumagai, H. Hayashi, T. Hatayama et al., Dysregulation of the immune system caused by silica and asbestos. J. Immunotoxicol. 7(4), 268–278 (2010). https://doi.org/10.3109/1547691X.2010.512579
S.G. Higgins, M. Becce, A. Belessiotis-Richards, H. Seong, J.E. Sero et al., High-aspect-ratio nanostructured surfaces as biological metamaterials. Adv. Mater. 32(9), 1903862 (2020). https://doi.org/10.1002/adma.201903862
T. Zhao, X. Zhang, R. Lin, L. Chen, C. Sun et al., Surface-confined winding assembly of mesoporous nanorods. J. Am. Chem. Soc. 142(48), 20359–20367 (2020). https://doi.org/10.1021/jacs.0c08277
C. Deng, Q. Zhang, C. Fu, F. Zhou, W. Yang et al., Template-free synthesis of chemically asymmetric silica nanotubes for selective cargo loading and sustained drug release. Chem. Mat. 31(11), 4291–4298 (2019). https://doi.org/10.1021/acs.chemmater.9b01530
S. Liu, H. Shan, S. Xia, J. Yan, J. Yu et al., Polymer template synthesis of flexible SiO2 nanofibers to upgrade composite electrolytes. ACS Appl. Mater. Interfaces 12(28), 31439–31447 (2020). https://doi.org/10.1021/acsami.0c06922
H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha et al., Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett. 10(10), 4242–4248 (2010). https://doi.org/10.1021/nl102725k
Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14, 26 (2022). https://doi.org/10.1007/s40820-021-00767-4
W. Huang, Y. Xiao, X. Shi, Construction of electrospun organic/inorganic hybrid nanofibers for drug delivery and tissue engineering applications. Adv. Fiber Mater. 1, 32–45 (2019). https://doi.org/10.1007/s42765-019-00007-w
G. Nie, Z. Zhang, T. Wang, C. Wang, Z. Kou, Electrospun one-dimensional electrocatalysts for oxygen reduction reaction: insights into structure-activity relationship. ACS Appl. Mater. Interfaces 13(32), 37961–37978 (2021). https://doi.org/10.1021/acsami.1c08798
Z. Zhang, X. Wu, Z. Kou, N. Song, G. Nie et al., Rational design of electrospun nanofiber-typed electrocatalysts for water splitting: a review. Chem. Eng. J. 428, 131133 (2022). https://doi.org/10.1016/j.cej.2021.131133
X. Li, W. Chen, Q. Qian, H. Huang, Y. Chen et al., Electrospinning-based strategies for battery materials. Adv. Energy Mater. 11(2), 2000845 (2021). https://doi.org/10.1002/aenm.202000845
L. Zhang, H. Zhao, S. Xu, Q. Liu, T. Li et al., Recent advances in 1D electrospun nanocatalysts for electrochemical water splitting. Small Struct. 2(2), 2000048 (2021). https://doi.org/10.1002/sstr.202000048
Y. Zhang, X. Liu, L. Zeng, J. Zhang, J. Zuo et al., Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv. Funct. Mater. 29(36), 1903279 (2019). https://doi.org/10.1002/adfm.201903279
X. Wang, J. Yu, G. Sun, B. Ding, Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. Mater. Today 19(7), 403–414 (2016). https://doi.org/10.1016/j.mattod.2015.11.010
J. Yu, C. Wang, S. Li, N. Liu, J. Zhu et al., Li+-containing, continuous silica nanofibers for high Li+ conductivity in composite polymer electrolyte. Small 15(44), 1902729 (2019). https://doi.org/10.1002/smll.201902729
L. Dou, Y. Si, J. Yu, B. Ding, Semi-template based, biomimetic-architectured, and mechanically robust ceramic nanofibrous aerogels for thermal insulation. Nano Res. 15, 5581–5589 (2022). https://doi.org/10.1007/s12274-022-4194-9
I. Das, G. De, L. Hupa, P.K. Vallittu, Porous SiO2 nanofiber grafted novel bioactive glass-ceramic coating: a structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant. Mater. Sci. Eng. C 62, 206–214 (2016). https://doi.org/10.1016/j.msec.2016.01.053
J. Kameoka, S.S. Verbridge, H. Liu, D.A. Czaplewski, H.G. Craighead, Fabrication of suspended silica glass nanofibers from polymeric materials using a scanned electrospinning source. Nano Lett. 4(11), 2105–2108 (2004). https://doi.org/10.1021/nl048840p
M. Dirican, O. Yildiz, Y. Lu, X. Fang, H. Jiang et al., Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium-ion batteries. Electrochim. Acta 169, 52–60 (2015). https://doi.org/10.1016/j.electacta.2015.04.035
J. Zhou, Y. Nie, C. Jin, J.X.J. Zhang, Engineering biomimetic extracellular matrix with silica nanofibers: from 1D material to 3D network. ACS Biomater. Sci. Eng. 8(6), 2258–2280 (2022). https://doi.org/10.1021/acsbiomaterials.1c01525
C. Shao, H. Kim, J. Gong, D. Lee, A novel method for making silica nanofibres by using electrospun fibres of polyvinylalcohol/silica composite as precursor. Nanotechnology 13(5), 635–637 (2002). https://doi.org/10.1088/0957-4484/13/5/319
J. Song, R. Guan, M. Xie, P. Dong, X. Yang et al., Advances in electrospun TiO2 nanofibers: design, construction, and applications. Chem. Eng. J. 431, 134343 (2022). https://doi.org/10.1016/j.cej.2021.134343
X. Tang, Y. Yu, Electrospinning preparation and characterization of alumina nanofibers with high aspect ratio. Ceram. Int. 41(8), 9232–9238 (2015). https://doi.org/10.1016/j.ceramint.2015.04.157
F. Xu, H. Tan, J. Fan, B. Cheng, J. Yu et al., Electrospun TiO2-based photocatalysts. Sol. RRL 5(6), 2000571 (2021). https://doi.org/10.1002/solr.202000571
Z. Ma, W. Chen, Z. Hu, X. Pan, M. Peng et al., Luffa-sponge-like glass-TiO2 composite fibers as efficient photocatalysts for environmental remediation. ACS Appl. Mater. Interfaces 5(15), 7527–7536 (2013). https://doi.org/10.1021/am401827k
M. Zhou, J. Zhou, R. Li, E. Xie, Preparation of aligned ultra-long and diameter-controlled silicon oxide nanotubes by plasma enhanced chemical vapor deposition using electrospun PVP nanofiber template. Nanoscale Res. Lett. 5(2), 279 (2010). https://doi.org/10.1007/s11671-009-9476-6
Y. Wang, H. Huang, Y. Zhao, Z. Feng, H. Fan et al., Self-assembly of ultralight and compressible inorganic sponges with hierarchical porosity by electrospinning. Ceram. Int. 46(1), 768–774 (2020). https://doi.org/10.1016/j.ceramint.2019.09.031
C. Liao, Z. Ma, G. Dong, J. Qiu, Flexible porous SiO2-Bi2WO6 nanofibers film for visible-light photocatalytic water purification. J. Am. Ceram. Soc. 98(3), 957–964 (2015). https://doi.org/10.1111/jace.13388
X. Song, W. Liu, J. Wang, S. Xu, B. Liu et al., Highly aligned continuous mullite nanofibers: conjugate electrospinning fabrication, microstructure and mechanical properties. Mater. Lett. 212, 20–24 (2018). https://doi.org/10.1016/j.matlet.2017.10.055
Y. Si, X. Wang, L. Dou, J. Yu, B. Ding, Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 4(4), 8925 (2018). https://doi.org/10.1126/sciadv.aas8925
C. Burger, B.S. Hsiao, B. Chu, Nanofibrous materials and their applications. Annu. Rev. Mater. Res. 36(1), 333–368 (2006). https://doi.org/10.1146/annurev.matsci.36.011205.123537
D. Li, J.T. McCann, Y. Xia, M. Marquez, Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J. Am. Ceram. Soc. 89(6), 1861–1869 (2006). https://doi.org/10.1111/j.1551-2916.2006.00989.x
Y. Si, X. Mao, H. Zheng, J. Yu, B. Ding, Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation. RSC Adv. 5(8), 6027–6032 (2015). https://doi.org/10.1039/C4RA12271B
M. Shahhosseininia, S. Bazgir, M.D. Joupari, Fabrication and investigation of silica nanofibers via electrospinning. Mater. Sci. Eng. C 91, 502–511 (2018). https://doi.org/10.1016/j.msec.2018.05.068
I. Zucker, N. Dizge, C.L. Fausey, E. Shaulsky, M. Sun et al., Electrospun silica nanofiber mats functionalized with ceria nanops for water decontamination. RSC Adv. 9(34), 19408–19417 (2019). https://doi.org/10.1039/C9RA03467F
F. Wang, L. Dou, J. Dai, Y. Li, L. Huang et al., In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angew. Chem. Int. Ed. 59(21), 8285–8292 (2020). https://doi.org/10.1002/ange.202001679
Y.J. Kim, C.H. Ahn, M.O. Choi, Effect of thermal treatment on the characteristics of electrospun PVDF-silica composite nanofibrous membrane. Eur. Polym. J. 46(10), 1957–1965 (2010). https://doi.org/10.1016/j.eurpolymj.2010.08.009
A.C. Patel, S. Li, J.M. Yuan, Y. Wei, In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications. Nano Lett. 6(5), 1042–1046 (2006). https://doi.org/10.1021/nl0604560
Y. Wu, F. Li, Y. Wu, W. Jia, P. Hannam et al., Formation of silica nanofibers with hierarchical structure via electrospinning. Colloid Polym. Sci. 289(11), 1253–1260 (2011). https://doi.org/10.1007/s00396-011-2455-3
L.A. Mercante, R.S. Andre, L.H.C. Mattoso, D.S. Correa, Electrospun ceramic nanofibers and hybrid-nanofiber composites for gas sensing. ACS Appl. Nano Mater. 2(7), 4026–4042 (2019). https://doi.org/10.1021/acsanm.9b01176
Z. Wen, X. Song, D. Chen, T. Fan, Y. Liu et al., Electrospinning preparation and microstructure characterization of homogeneous diphasic mullite ceramic nanofibers. Ceram. Int. 46(8), 12172–12179 (2020). https://doi.org/10.1016/j.ceramint.2020.01.263
H. Wang, X. Yang, Q. Wu, Q. Zhang, H. Chen et al., Encapsulating silica/antimony into porous electrospun carbon nanofibers with robust structure stability for high-efficiency lithium storage. ACS Nano 12(4), 3406–3416 (2018). https://doi.org/10.1021/acsnano.7b09092
Z. Shen, J. Zhong, J. Chen, W. Xie, K. Yang et al., SiO2 nanofiber composite gel polymer electrolyte by in-situ polymerization for stable Li metal batteries. Chin. Chem. Lett. (2022). https://doi.org/10.1016/j.cclet.2022.03.093
L. Wang, C. Zhao, H. Shan, Y. Jiao, Q. Zhang et al., Deoxycholic acid-modified microporous SiO2 nanofibers mimicking colorectal microenvironment to optimize radiotherapy-chemotherapy combined therapy. Biomed. Mater. 16(6), 065020 (2021). https://doi.org/10.1088/1748-605x/ac2bbb
H. Shan, X. Dong, X. Cheng, Y. Si, J. Yu et al., Highly flexible, mesoporous structured, and metallic Cu-doped C/SiO2 nanofibrous membranes for efficient catalytic oxidative elimination of antibiotic pollutants. Nanoscale 11(31), 14844–14856 (2019). https://doi.org/10.1039/C9NR04118D
Y. Wang, B. Wang, Q. Wang, J. Di, S. Miao et al., Amino-functionalized porous nanofibrous membranes for simultaneous removal of oil and heavy-metal ions from wastewater. ACS Appl. Mater. Interfaces 11(1), 1672–1679 (2019). https://doi.org/10.1021/acsami.8b18066
T. Pirzada, S.A. Arvidson, C.D. Saquing, S.S. Shah, S.A. Khan, Hybrid carbon silica nanofibers through sol-gel electrospinning. Langmuir 30(51), 15504–15513 (2014). https://doi.org/10.1021/la503290n
A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Mater. Horizons 3(2), 91–112 (2016). https://doi.org/10.1039/C5MH00260E
M. Hu, W. Kang, Z. Zhong, B. Cheng, W. Xing, Porphyrin-functionalized hierarchical porous silica nanofiber membrane for rapid HCl gas detection. Ind. Eng. Chem. Res. 57(34), 11668–11674 (2018). https://doi.org/10.1021/acs.iecr.8b02902
Z. Sun, L. Feng, X. Wen, L. Wang, X. Qin et al., Ceramic nanofiber-based water-induced electric generator. ACS Appl. Mater. Interfaces 13(47), 56226–56232 (2021). https://doi.org/10.1021/acsami.1c17847
Y. Peng, Y. Xie, L. Wang, L. Liu, S. Zhu et al., High-temperature flexible, strength and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation. J. Eur. Ceram. Soc. 41(2), 1471–1480 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.09.071
W. Matysiak, T. Tański, Analysis of the morphology, structure and optical properties of 1D SiO2 nanostructures obtained with sol-gel and electrospinning methods. Appl. Surf. Sci. 489, 34–43 (2019). https://doi.org/10.1016/j.apsusc.2019.05.090
J. Xue, J. Xie, W. Liu, Y. Xia, Electrospun nanofibers: new concepts, materials, and applications. Acc. Chem. Res. 50(8), 1976–1987 (2017). https://doi.org/10.1021/acs.accounts.7b00218
J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593
Y. Liao, C.H. Loh, M. Tian, R. Wang, A.G. Fane, Progress in electrospun polymeric nanofibrous membranes for water treatment: fabrication, modification and applications. Prog. Polym. Sci. 77, 69–94 (2018). https://doi.org/10.1016/j.progpolymsci.2017.10.003
D. Li, Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16(14), 1151–1170 (2004). https://doi.org/10.1002/adma.200400719
Y. Li, J. Zhu, H. Cheng, G. Li, H. Cho et al., Developments of advanced electrospinning techniques: a critical review. Adv. Mater. Technol. 6(11), 2100410 (2021). https://doi.org/10.1002/admt.202100410
T. Han, D.H. Reneker, A.L. Yarin, Buckling of jets in electrospinning. Polymer 48(20), 6064–6076 (2007). https://doi.org/10.1016/j.polymer.2007.08.002
D. Zong, L. Cao, Y. Li, X. Yin, Y. Si et al., Interlocked dual-network and superelastic electrospun fibrous sponges for efficient low-frequency noise absorption. Small Struct. 1(2), 2000004 (2020). https://doi.org/10.1002/sstr.202000004
Z. Zheng, H. Wu, Y. Si, Y. Jia, B. Ding, Stretchable and resilient fibrous sponges tailored by interlocking double-network for warmth retention. Compos. Commun. 27, 100788 (2021). https://doi.org/10.1016/j.coco.2021.100788
X. Mao, Y. Si, Y. Chen, L. Yang, F. Zhao et al., Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Adv. 2(32), 12216–12223 (2012). https://doi.org/10.1039/C2RA22086E
A. Belgibayeva, I. Taniguchi, Synthesis and characterization of SiO2/C composite nanofibers as free-standing anode materials for Li-ion batteries. Electrochim. Acta 328, 135101 (2019). https://doi.org/10.1016/j.electacta.2019.135101
L. Cui, Y. Song, F. Wang, Y. Sheng, H. Zou, Electrospinning synthesis of SiO2-TiO2 hybrid nanofibers with large surface area and excellent photocatalytic activity. Appl. Surf. Sci. 488, 284–292 (2019). https://doi.org/10.1016/j.apsusc.2019.05.151
M. Guo, B. Ding, X. Li, X. Wang, J. Yu et al., Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties. J. Phys. Chem. C 114(2), 916–921 (2010). https://doi.org/10.1021/jp909672r
J. Wang, Q. Ma, Y. Wang, Z. Li, Z. Li et al., New insights into the structure-performance relationships of mesoporous materials in analytical science. Chem. Soc. Rev. 47(23), 8766–8803 (2018). https://doi.org/10.1039/C8CS00658J
S.H. Yang, Y.J. Lee, H. Kang, S.K. Park, Y.C. Kang, Carbon-coated three-dimensional MXene/iron selenide ball with core-shell structure for high-performance potassium-ion batteries. Nano-Micro Lett. 14, 17 (2022). https://doi.org/10.1007/s40820-021-00741-0
P. Xie, W. Yuan, X. Liu, Y. Peng, Y. Yin et al., Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Storage Mater. 36, 56–76 (2021). https://doi.org/10.1016/j.ensm.2020.12.011
X. Zhang, C. Chi, J. Chen, X. Zhang, M. Gong et al., Electrospun quad-axial nanofibers for controlled and sustained drug delivery. Mater. Des. 206, 109732 (2021). https://doi.org/10.1016/j.matdes.2021.109732
R. Borah, G.C. Ingavle, S.R. Sandeman, A. Kumar, S.V. Mikhalovsky, Amine-functionalized electrically conductive core-sheath MEH-PPV: PCL electrospun nanofibers for enhanced cell-biomaterial interactions. ACS Biomater. Sci. Eng. 4(9), 3327–3346 (2018). https://doi.org/10.1021/acsbiomaterials.8b00624
D. Li, Y. Xia, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4(5), 933–938 (2004). https://doi.org/10.1021/nl049590f
H. Cao, P. Du, L. Song, J. Xiong, J. Yang et al., Co-electrospinning fabrication and photocatalytic performance of TiO2/SiO2 core/sheath nanofibers with tunable sheath thickness. Mater. Res. Bull. 48(11), 4673–4678 (2013). https://doi.org/10.1016/j.materresbull.2013.08.035
Y. Wang, W. Ding, X. Jiao, D. Chen, Electrospun flexible self-standing silica/mesoporous alumina core-shell fibrous membranes as adsorbents toward Congo red. RSC Adv. 4(58), 30790–30797 (2014). https://doi.org/10.1039/C4RA03912B
J. Yoon, H.S. Yang, B.S. Lee, W.R. Yu, Recent progress in coaxial electrospinning: new parameters, various structures, and wide applications. Adv. Mater. 30(42), 1704765 (2018). https://doi.org/10.1002/adma.201704765
P. Rathore, J.D. Schiffman, Beyond the single-nozzle: coaxial electrospinning enables innovative nanofiber chemistries, geometries, and applications. ACS Appl. Mater. Interfaces 13(1), 48–66 (2021). https://doi.org/10.1021/acsami.0c17706
J.K. Park, O.V.P. Nguyen, H.S. Yoo, Coaxial electrospun nanofibers with different shell contents to control cell adhesion and viability. ACS Omega 5(43), 28178–28185 (2020). https://doi.org/10.1021/acsomega.0c03902
M. Hedayati, E.T. Nassaj, A. Yourdkhani, M. Borlaf, J. Zhang et al., BaTiO3 nanotubes by co-axial electrospinning: rheological and microstructural investigations. J. Eur. Ceram. Soc. 40(4), 1269–1279 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.078
J. Ryu, S. Choi, T. Bok, S. Park, Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning. Nanoscale 7(14), 6126–6135 (2015). https://doi.org/10.1039/C5NR00224A
Z. Ma, H. Ji, Y. Teng, G. Dong, J. Zhou et al., Engineering and optimization of nano- and mesoporous silica fibers using sol-gel and electrospinning techniques for sorption of heavy metal ions. J. Colloid Interface Sci. 358(2), 547–553 (2011). https://doi.org/10.1016/j.jcis.2011.02.066
W. Chen, Z. Ma, X. Pan, Z. Hu, G. Dong et al., Core@dual-shell nanoporous SiO2-TiO2 composite fibers with high flexibility and its photocatalytic activity. J. Am. Ceram. Soc. 97(6), 1944–1951 (2014). https://doi.org/10.1111/jace.12944
X.H. Li, C.L. Shao, Y.C. Liu, X.T. Zhang, S.K. Hark, Preparation, structure and photoluminescence properties of SiO2/ZnO nanocables via electrospinning and vapor transport deposition. Mater. Lett. 62(14), 2088–2091 (2008). https://doi.org/10.1016/j.matlet.2007.11.021
L. Li, S. Peng, J.K.Y. Lee, D. Ji, M. Srinivasan et al., Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39, 111–139 (2017). https://doi.org/10.1016/j.nanoen.2017.06.050
R. Liu, L. Hou, G. Yue, H. Li, J. Zhang et al., Progress of fabrication and applications of electrospun hierarchically porous nanofibers. Adv. Fiber Mater. 4, 604–630 (2022). https://doi.org/10.1007/s42765-022-00132-z
J. Chen, Y. Song, Y. Sheng, M. Chang, X. Xie et al., Luminescence properties and Judd-Ofelt analysis of SiO2:Ln3+ (Eu, Tb) hollow nanofibers fabricated by co-axial electrospinning method. J. Alloy. Compd. 716, 144–155 (2017). https://doi.org/10.1016/j.jallcom.2017.05.070
A. Katoch, S.S. Kim, Synthesis of hollow silica fibers with porous walls by coaxial electrospinning method. J. Am. Ceram. Soc. 95(2), 553–556 (2012). https://doi.org/10.1111/j.1551-2916.2011.04923.x
S. Zhan, D. Chen, X. Jiao, Co-electrospun SiO2 hollow nanostructured fibers with hierarchical walls. J. Colloid Interface Sci. 318(2), 331–336 (2008). https://doi.org/10.1016/j.jcis.2007.10.044
G.F.J. Müller, M. Stürzel, R. Mülhaupt, Silica nanotubes and hollow silica nanofibers: gas phase mineralization, polymerization catalysis and in-situ polyethylene nanocomposites. Polymer 55(2), 465–470 (2014). https://doi.org/10.1016/j.polymer.2013.12.019
K. Nayani, H. Katepalli, C.S. Sharma, A. Sharma, S. Patil et al., Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers. Ind. Eng. Chem. Res. 51(4), 1761–1766 (2012). https://doi.org/10.1021/ie2009229
W. Wang, J. Zhou, S. Zhang, J. Song, H. Duan et al., A novel method to fabricate silica nanotubes based on phase separation effect. J. Mater. Chem. 20(41), 9068–9072 (2010). https://doi.org/10.1039/C0JM02120B
G.H. An, S.Y. Jeong, T.Y. Seong, H.J. Ahn, One-pot fabrication of hollow SiO2 nanowires via an electrospinning technique. Mater. Lett. 65(15), 2377–2380 (2011). https://doi.org/10.1016/j.matlet.2011.05.043
A. Thomas, Functional materials: from hard to soft porous frameworks. Angew. Chem. Int. Ed. 49(45), 8328–8344 (2010). https://doi.org/10.1002/anie.201000167
H. Hou, G. Shao, W. Yang, W.Y. Wong, One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption. Prog. Mater. Sci. 113, 100671 (2020). https://doi.org/10.1016/j.pmatsci.2020.100671
C. Wu, W. Yuan, S.S. Al-Deyab, K.Q. Zhang, Tuning porous silica nanofibers by colloid electrospinning for dye adsorption. Appl. Surf. Sci. 313, 389–395 (2014). https://doi.org/10.1016/j.apsusc.2014.06.002
B. Zhang, Z. Tong, Y. Pang, H. Xu, X. Li et al., Design and electrospun closed cell structured SiO2 nanocomposite fiber by hollow SiO2/TiO2 spheres for thermal insulation. Compos. Sci. Technol. 218, 109152 (2022). https://doi.org/10.1016/j.compscitech.2021.109152
M.J. Chang, W.N. Cui, J. Liu, Facile preparation of porous inorganic SiO2 nanofibrous membrane by electrospinning method. J. Nanomater. 2017, 9621515 (2017). https://doi.org/10.1155/2017/9621515
B. Zhang, X. Li, Q. Wu, C. Zhang, Y. Yu et al., Synthesis of Ni/mesoporous ZSM-5 for direct catalytic conversion of cellulose to hexitols: modulating the pore structure and acidic sites via a nanocrystalline cellulose template. Green Chem. 18(11), 3315–3323 (2016). https://doi.org/10.1039/C5GC03077C
L. Jin, W. Cao, P. Wang, N. Song, P. Ding, Interconnected MXene/graphene network constructed by soft template for multi-performance improvement of polymer composites. Nano-Micro Lett. 14, 133 (2022). https://doi.org/10.1007/s40820-022-00877-7
J. Kloos, N. Joosten, A. Schenning, K. Nijmeijer, Self-assembling liquid crystals as building blocks to design nanoporous membranes suitable for molecular separations. J. Membr. Sci. 620, 118849 (2021). https://doi.org/10.1016/j.memsci.2020.118849
S.H. Wu, C.Y. Mou, H.P. Lin, Synthesis of mesoporous silica nanops. Chem. Soc. Rev. 42(9), 3862–3875 (2013). https://doi.org/10.1039/C3CS35405A
Q. Wen, J. Di, Y. Zhao, Y. Wang, L. Jiang et al., Flexible inorganic nanofibrous membranes with hierarchical porosity for efficient water purification. Chem. Sci. 4(12), 4378–4382 (2013). https://doi.org/10.1039/C3SC51851E
J. Saha, G. De, Highly ordered cubic mesoporous electrospun SiO2 nanofibers. Chem. Commun. 49(56), 6322–6324 (2013). https://doi.org/10.1039/C3CC42338G
M.M. Abolhasani, M. Naebe, M.H. Amiri, K. Shirvanimoghaddam, S. Anwar et al., Hierarchically structured porous piezoelectric polymer nanofibers for energy harvesting. Adv. Sci. 7(13), 2000517 (2020). https://doi.org/10.1002/advs.202000517
Y. Wang, H. Huang, G. Li, X. Zhao, L. Yu et al., Electrospun TiO2-SiO2 fibres with hierarchical pores from phase separation. CrystEngComm 19(19), 2673–2680 (2017). https://doi.org/10.1039/C7CE00471K
X.Q. Wu, Z.D. Shao, Q. Liu, Z. Xie, F. Zhao et al., Flexible and porous TiO2/SiO2/carbon composite electrospun nanofiber mat with enhanced interfacial charge separation for photocatalytic degradation of organic pollutants in water. J. Colloid Interface Sci. 553, 156–166 (2019). https://doi.org/10.1016/j.jcis.2019.06.019
F. Hong, C. Yan, Y. Si, J. He, J. Yu et al., Nickel ferrite nanops anchored onto silica nanofibers for designing magnetic and flexible nanofibrous membranes. ACS Appl. Mater. Interfaces 7(36), 20200–20207 (2015). https://doi.org/10.1021/acsami.5b05754
Y. Miao, R. Wang, D. Chen, Z. Liu, T. Liu, Electrospun self-standing membrane of hierarchical SiO2@γ-AlOOH (boehmite) core/sheath fibers for water remediation. ACS Appl. Mater. Interfaces 4(10), 5353–5359 (2012). https://doi.org/10.1021/am3012998
Q. Nie, Z. Pang, D. Li, H. Zhou, F. Huang et al., Facile fabrication of flexible SiO2/PANI nanofibers for ammonia gas sensing at room temperature. Colloids Surf. A 537, 532–539 (2018). https://doi.org/10.1016/j.colsurfa.2017.10.065
C. Wang, K. Liu, D. Wang, G. Wang, P.K. Chu et al., Hierarchical CuO-ZnO/SiO2 fibrous membranes for efficient removal of Congo red and 4-nitrophenol from water. Adv. Fiber Mater. (2022). https://doi.org/10.1007/s42765-022-00142-x
J. Zhang, L. Liu, Y. Si, S. Zhang, J. Yu et al., Charged membranes based on spider silk-inspired nanofibers for comprehensive and continuous purification of wastewater. Nanotechnology 32(49), 495704 (2021). https://doi.org/10.1088/1361-6528/ac2243
Z. Hu, Z. Ma, X. He, C. Liao, Y. Li et al., Preparation and characterization of flexible and thermally stable CuO nanocrystal-decorated SiO2 nanofibers. J. Sol-Gel Sci. Technol. 76(3), 492–500 (2015). https://doi.org/10.1007/s10971-015-3799-9
M. Wan, H. Zhao, Z. Wang, X. Zou, Y. Zhao et al., Fabrication of Ag modified SiO2 electrospun nanofibrous membranes as ultrasensitive and high stable SERS substrates for multiple analytes detection. Colloid Interface Sci. Commun. 42, 100428 (2021). https://doi.org/10.1016/j.colcom.2021.100428
X. Wang, X. Zhou, C. Shao, X. Li, Y. Liu, Graphitic carbon nitride/BiOI loaded on electrospun silica nanofibers with enhanced photocatalytic activity. Appl. Surf. Sci. 455, 952–962 (2018). https://doi.org/10.1016/j.apsusc.2018.06.050
Q. Zhu, X. Tang, S. Feng, Z. Zhong, J. Yao et al., ZIF-8@SiO2 composite nanofiber membrane with bioinspired spider web-like structure for efficient air pollution control. J. Membr. Sci. 581, 252–261 (2019). https://doi.org/10.1016/j.memsci.2019.03.075
S. Wen, M. Liang, R. Zou, Z. Wang, D. Yue et al., Electrospinning of palladium/silica nanofibers for catalyst applications. RSC Adv. 5(52), 41513–41519 (2015). https://doi.org/10.1039/C5RA02660A
X. Wang, L. Dou, L. Yang, J. Yu, B. Ding, Hierarchical structured MnO2@SiO2 nanofibrous membranes with superb flexibility and enhanced catalytic performance. J. Hazard. Mater. 324, 203–212 (2017). https://doi.org/10.1016/j.jhazmat.2016.10.050
J. Liu, M.J. Chang, H.L. Du, Fabrication and photocatalytic properties of flexible BiOI/SiO2 hybrid membrane by electrospinning method. J. Nanosci. Nanotechnol. 17(6), 3792–3797 (2017). https://doi.org/10.1166/jnn.2017.14008
M. Li, X. Gao, X. Wang, S. Chen, J. Yu, Wettable and flexible silica nanofiber/bead-based membranes for separation of oily wastewater. ACS Appl. Nano Mater. 4(3), 2952–2962 (2021). https://doi.org/10.1021/acsanm.1c00092
X. Zhou, G. Zhang, C. Shao, X. Li, X. Jiang et al., Fabrication of g-C3N4/SiO2-Au composite nanofibers with enhanced visible photocatalytic activity. Ceram. Int. 43(17), 15699–15707 (2017). https://doi.org/10.1016/j.ceramint.2017.08.130
A.Q. Xie, T. Cui, R. Cheng, X. Wu, J. Guo et al., Robust nanofiber films prepared by electro-microfluidic spinning for flexible highly stable quantum-dot displays. Adv. Electron. Mater. 7(1), 2000626 (2021). https://doi.org/10.1002/aelm.202000626
G.Z. Tan, Y. Zhou, Tunable 3D nanofiber architecture of polycaprolactone by divergence electrospinning for potential tissue engineering applications. Nano-Micro Lett. 10, 73 (2018). https://doi.org/10.1007/s40820-018-0226-0
Y. Zhao, J. Yan, W. Cai, Y. Lai, J. Song et al., Elastic and well-aligned ceramic LLZO nanofiber based electrolytes for solid-state lithium batteries. Energy Storage Mater. 23, 306–313 (2019). https://doi.org/10.1016/j.ensm.2019.04.043
D. Li, Y. Wang, Y. Xia, Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 16(4), 361–366 (2004). https://doi.org/10.1002/adma.200306226
D. Yang, B. Lu, Y. Zhao, X. Jiang, Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv. Mater. 19(21), 3702–3706 (2007). https://doi.org/10.1002/adma.200700171
W. Lin, M. Chen, T. Qu, J. Li, Y. Man, Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering. J. Biomed. Mater. Res. Part B 108(4), 1311–1321 (2020). https://doi.org/10.1002/jbm.b.34479
Q. Fu, C. Duan, Z. Yan, Y. Li, Y. Si et al., Nanofiber-based hydrogels: controllable synthesis and multifunctional applications. Macromol. Rapid Commun. 39(10), 1800058 (2018). https://doi.org/10.1002/marc.201800058
T. Xu, Y. Ding, Z. Liang, H. Sun, F. Zheng et al., Three-dimensional monolithic porous structures assembled from fragmented electrospun nanofiber mats/membranes: methods, properties, and applications. Prog. Mater. Sci. 112, 100656 (2020). https://doi.org/10.1016/j.pmatsci.2020.100656
M. Dilamian, M. Joghataei, Z. Ashrafi, C. Bohr, S. Mathur et al., From 1D electrospun nanofibers to advanced multifunctional fibrous 3D aerogels. Appl. Mater. Today 22, 100964 (2021). https://doi.org/10.1016/j.apmt.2021.100964
Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014). https://doi.org/10.1038/ncomms6802
X. Zhang, F. Wang, L. Dou, X. Cheng, Y. Si et al., Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300 °C. ACS Nano 14(11), 15616–15625 (2020). https://doi.org/10.1021/acsnano.0c06423
S.S. Kistler, Coherent expanded aerogels and jellies. Nature 127(3211), 741 (1931). https://doi.org/10.1038/127741a0
T. Huang, Y. Zhu, J. Zhu, H. Yu, Q. Zhang et al., Self-reinforcement of light, temperature-resistant silica nanofibrous aerogels with tunable mechanical properties. Adv. Fiber Mater. 2(6), 338–347 (2020). https://doi.org/10.1007/s42765-020-00054-8
X. Zhang, C. Liu, X. Zhang, Y. Si, J. Yu et al., Super strong, shear resistant, and highly elastic lamellar structured ceramic nanofibrous aerogels for thermal insulation. J. Mater. Chem. A 9(48), 27415–27423 (2021). https://doi.org/10.1039/D1TA08879C
X. Li, Y. Zhang, L. Zhang, S. Xia, Y. Zhao et al., Synthesizing superior flexible oxide perovskite ceramic nanofibers by precisely controlling crystal nucleation and growth. Small 18(8), 2106500 (2022). https://doi.org/10.1002/smll.202106500
X. Gao, M. Li, F. Zhou, X. Wang, S. Chen et al., Flexible zirconium doped strontium titanate nanofibrous membranes with enhanced visible-light photocatalytic performance and antibacterial activities. J. Colloid Interface Sci. 600, 127–137 (2021). https://doi.org/10.1016/j.jcis.2021.05.005
W. Nuansing, S. Ninmuang, W. Jarernboon, S. Maensiri, S. Seraphin, Structural characterization and morphology of electrospun TiO2 nanofibers. Mater. Sci. Eng. B 131(1), 147–155 (2006). https://doi.org/10.1016/j.mseb.2006.04.030
C. Shao, H. Guan, Y. Liu, J. Gong, N. Yu et al., A novel method for making ZrO2 nanofibres via an electrospinning technique. J. Cryst. Growth 267, 380–384 (2004). https://doi.org/10.1016/j.jcrysgro.2004.03.065
A.M. Azad, Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning. Mater. Sci. Eng. A 435–436, 468–473 (2006). https://doi.org/10.1016/j.msea.2006.07.075
L. Cao, H. Shan, D. Zong, X. Yu, X. Yin et al., Fire-resistant and hierarchically structured elastic ceramic nanofibrous aerogels for efficient low-frequency noise reduction. Nano Lett. 22(4), 1609–1617 (2022). https://doi.org/10.1021/acs.nanolett.1c04532
E. Dupree, R.F. Pettifer, Determination of the Si-O-Si bond angle distribution in vitreous silica by magic angle spinning NMR. Nature 308(5959), 523–525 (1984). https://doi.org/10.1038/308523a0
S. Ailawar, A. Hunoor, D. Basu, B. Rudzinski, L. Burel et al., Aqueous phase hydrodechlorination of trichloroethylene using Pd supported on swellable organically modified silica (SOMS): effect of support derivatization. J. Catal. 411, 15–30 (2022). https://doi.org/10.1016/j.jcat.2022.04.031
E.J. Frankberg, J. Kalikka, F.G. Ferré, L. Joly-Pottuz, T. Salminen et al., Highly ductile amorphous oxide at room temperature and high strain rate. Science 366(6467), 864–869 (2019). https://doi.org/10.1126/science.aav1254
X. Li, S. Yin, S.H. Oh, H. Gao, Hardening and toughening mechanisms in nanotwinned ceramics. Scr. Mater. 133, 105–112 (2017). https://doi.org/10.1016/j.scriptamat.2017.02.003
Y. Zhuang, X. Wei, Y. Zhao, J. Li, X. Fu et al., Microstructure and elastic properties of BaTiO3 nanofibers sintered in various atmospheres. Ceram. Int. 44(2), 2426–2431 (2018). https://doi.org/10.1016/j.ceramint.2017.10.213
X. Song, K. Zhang, Y. Song, Z. Duan, Q. Liu et al., Morphology, microstructure and mechanical properties of electrospun alumina nanofibers prepared using different polymer templates: a comparative study. J. Alloys Compd. 829, 154502 (2020). https://doi.org/10.1016/j.jallcom.2020.154502
F. Wu, Y. Liu, Y. Si, J. Yu, B. Ding, Multiphase ceramic nanofibers with super-elasticity from - 196–1600 °C. Nano Today 44, 101455 (2022). https://doi.org/10.1016/j.nantod.2022.101455
J. Song, X. Wang, J. Yan, J. Yu, G. Sun et al., Soft Zr-doped TiO2 nanofibrous membranes with enhanced photocatalytic activity for water purification. Sci. Rep. 7(1), 1636 (2017). https://doi.org/10.1038/s41598-017-01969-w
X. Wang, Y. Zhang, Y. Zhao, G. Li, J. Yan et al., A general strategy to fabricate flexible oxide ceramic nanofibers with gradient bending-resilience properties. Adv. Funct. Mater. 31(36), 2103989 (2021). https://doi.org/10.1002/adfm.202103989
J. Kim, J. Lee, J.H. Ha, I.H. Song, Effect of silica on flexibility of yttria-stabilized zirconia nanofibers for developing water purification membranes. Ceram. Int. 45(14), 17696–17704 (2019). https://doi.org/10.1016/j.ceramint.2019.05.337
Y. Sun, J. Qu, Q. Guo, J. Song, G. Wei et al., Preparation of fine-grained silica-doped zirconia fibers by electrospinning. Ceram. Int. 43(15), 12551–12556 (2017). https://doi.org/10.1016/j.ceramint.2017.06.129
X. Zhang, Y. Liu, Y. Si, J. Yu, B. Ding, Flexible and tough zirconia-based nanofibrous membranes for thermal insulation. Compos. Commun. 33, 101219 (2022). https://doi.org/10.1016/j.coco.2022.101219
X. Li, H. Xu, Q. Wang, S. Li, H. Xiao et al., Control of continuous α-Al2O3 fibers by self-seeding and SiO2-Sol doping. Ceram. Int. 45(9), 12053–12059 (2019). https://doi.org/10.1016/j.ceramint.2019.03.101
H. Shan, X. Wang, F. Shi, J. Yan, J. Yu et al., Hierarchical porous structured SiO2/SnO2 nanofibrous membrane with superb flexibility for molecular filtration. ACS Appl. Mater. Interfaces 9(22), 18966–18976 (2017). https://doi.org/10.1021/acsami.7b04518
J. Schiøtz, F.D.D. Tolla, K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667), 561–563 (1998). https://doi.org/10.1038/35328
L. Wang, J. Teng, P. Liu, A. Hirata, E. Ma et al., Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun. 5, 4402 (2014). https://doi.org/10.1038/ncomms5402
X. Mao, J. Hong, Y.X. Wu, Q. Zhang, J. Liu et al., An efficient strategy for reinforcing flexible ceramic membranes. Nano Lett. 21(22), 9419–9425 (2021). https://doi.org/10.1021/acs.nanolett.1c02657
Y. Zhang, S. Liu, J. Yan, X. Zhang, S. Xia et al., Superior flexibility in oxide ceramic crystal nanofibers. Adv. Mater. 33(44), 2105011 (2021). https://doi.org/10.1002/adma.202105011
H. Zheng, H. Shan, Y. Bai, X. Wang, L. Liu et al., Assembly of silica aerogels within silica nanofibers: towards a super-insulating flexible hybrid aerogel membrane. RSC Adv. 5(111), 91813–91820 (2015). https://doi.org/10.1039/C5RA18137B
R. Zhang, Z. An, Y. Zhao, L. Zhang, P. Zhou, Nanofibers reinforced silica aerogel composites having flexibility and ultra-low thermal conductivity. Int. J. Appl. Ceram. Technol. 17(3), 1531–1539 (2020). https://doi.org/10.1111/ijac.13457
L. Dou, X. Zhang, X. Cheng, Z. Ma, X. Wang et al., Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl. Mater. Interfaces 11(32), 29056–29064 (2019). https://doi.org/10.1021/acsami.9b10018
L. Dou, X. Cheng, X. Zhang, Y. Si, J. Yu et al., Temperature-invariant superelastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation. J. Mater. Chem. A 8(16), 7775–7783 (2020). https://doi.org/10.1039/D0TA01092H
X. Zhang, X. Cheng, Y. Si, J. Yu, B. Ding, Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation. Chem. Eng. J. 433, 133628 (2022). https://doi.org/10.1016/j.cej.2021.133628
X. Zhang, X. Cheng, Y. Si, J. Yu, B. Ding, All-ceramic and elastic aerogels with nanofibrous-granular binary synergistic structure for thermal superinsulation. ACS Nano 16(4), 5487–5495 (2022). https://doi.org/10.1021/acsnano.1c09668
D. Zong, L. Cao, X. Yin, Y. Si, S. Zhang et al., Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nat. Commun. 12, 6599 (2021). https://doi.org/10.1038/s41467-021-26890-9
L. Cao, Q. Fu, Y. Si, B. Ding, J. Yu, Porous materials for sound absorption. Compos. Commun. 10, 25–35 (2018). https://doi.org/10.1016/j.coco.2018.05.001
Y. Liao, F. Yang, Y. Si, J. Yu, B. Ding, Nanoflake-engineered zirconic fibrous aerogels with parallel-arrayed conduits for fast nerve agent degradation. Nano Lett. 21(20), 8839–8847 (2021). https://doi.org/10.1021/acs.nanolett.1c03246
F. Cui, W. Han, Y. Si, W. Chen, M. Zhang et al., In situ synthesis of MnO2@SiO2-TiO2 nanofibrous membranes for room temperature degradation of formaldehyde. Compos. Commun. 16, 61–66 (2019). https://doi.org/10.1016/j.coco.2019.08.002
S. Zhan, Y. Yang, X. Gao, H. Yu, S. Yang et al., Rapid degradation of toxic toluene using novel mesoporous SiO2 doped TiO2 nanofibers. Catal. Today 225, 10–17 (2014). https://doi.org/10.1016/j.cattod.2013.08.018
R. Yu, H. Zhang, B. Guo, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 14, 1 (2022). https://doi.org/10.1007/s40820-021-00751-y
D.D.S. Gomes, R.D.S. Victor, B.V.D. Sousa, G.D.A. Neves, L.N.D.L. Santana et al., Ceramic nanofiber materials for wound healing and bone regeneration: a brief review. Materials 15(11), 3909 (2022). https://doi.org/10.3390/ma15113909
B.A. Allo, A.S. Rizkalla, K. Mequanint, Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Langmuir 26(23), 18340–18348 (2010). https://doi.org/10.1021/la102845k
G. Toskas, C. Cherif, R.D. Hund, E. Laourine, B. Mahltig et al., Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydr. Polym. 94(2), 713–722 (2013). https://doi.org/10.1016/j.carbpol.2013.01.068
S. Sakai, T. Yamaguchi, R.A. Putra, R. Watanabe, M. Kawabe et al., Controlling apatite microps formation by calcining electrospun sol-gel derived ultrafine silica fibers. J. Sol-Gel Sci. Technol. 61(2), 374–380 (2012). https://doi.org/10.1007/s10971-011-2637-y
X. Wang, J. Zhu, L. Yin, S. Liu, X. Zhang et al., Fabrication of electrospun silica-titania nanofibers with different silica content and evaluation of the morphology and osteoinductive properties. J. Biomed. Mater. Res. Part A 100A(12), 3511–3517 (2012). https://doi.org/10.1002/jbm.a.34293
L. Wang, Y. Qiu, H. Lv, Y. Si, L. Liu et al., 3D superelastic scaffolds constructed from flexible inorganic nanofibers with self-fitting capability and tailorable gradient for bone regeneration. Adv. Funct. Mater. 29(31), 1901407 (2019). https://doi.org/10.1002/adfm.201901407
L. Wang, Y. Qiu, Y. Guo, Y. Si, L. Liu et al., Smart, elastic, and nanofiber-based 3D scaffolds with self-deploying capability for osteoporotic bone regeneration. Nano Lett. 19(12), 9112–9120 (2019). https://doi.org/10.1021/acs.nanolett.9b04313
R.A. Matthew, M.M. Gopi, P. Menon, R. Jayakumar, L.S. Vijayachandran, Synthesis of electrospun silica nanofibers for protein/DNA binding. Mater. Lett. 184, 5–8 (2016). https://doi.org/10.1016/j.matlet.2016.07.148
G.T. Zhu, X. Chen, X.M. He, H. Wang, Z. Zhang et al., Electrospun highly ordered mesoporous silica-carbon composite nanofibers for rapid extraction and prefractionation of endogenous peptides. Chem. Eur. J. 21(11), 4450–4456 (2015). https://doi.org/10.1002/chem.201406237
Q. Fu, Y. Si, C. Duan, Z. Yan, L. Liu et al., Highly carboxylated, cellular structured, and underwater superelastic nanofibrous aerogels for efficient protein separation. Adv. Funct. Mater. 29(13), 1808234 (2019). https://doi.org/10.1002/adfm.201808234
Q. Fu, L. Liu, Y. Si, J. Yu, B. Ding, Shapeable, underwater superelastic, and highly phosphorylated nanofibrous aerogels for large-capacity and high-throughput protein separation. ACS Appl. Mater. Interfaces 11(47), 44874–44885 (2019). https://doi.org/10.1021/acsami.9b15760
M. Wan, H. Zhao, Z. Wang, Y. Zhao, L. Sun, Preparation of Ag@PDA@SiO2 electrospinning nanofibrous membranes for direct bacteria SERS detection and antimicrobial activities. Mater. Res. Express 7(9), 095012 (2020). https://doi.org/10.1088/2053-1591/abb8a0
C. Liu, H. Shan, X. Chen, Y. Si, X. Yin et al., Novel inorganic-based N-halamine nanofibrous membranes as highly effective antibacterial agent for water disinfection. ACS Appl. Mater. Interfaces 10(51), 44209–44215 (2018). https://doi.org/10.1021/acsami.8b18322
H. Shan, Y. Si, J. Yu, B. Ding, Flexible, mesoporous, and monodispersed metallic cobalt-embedded inorganic nanofibrous membranes enable ultra-fast and high-efficiency killing of bacteria. Chem. Eng. J. 382, 122909 (2020). https://doi.org/10.1016/j.cej.2019.122909
F. Wang, J. Dai, L. Huang, Y. Si, J. Yu et al., Biomimetic and superelastic silica nanofibrous aerogels with rechargeable bactericidal function for antifouling water disinfection. ACS Nano 14(7), 8975–8984 (2020). https://doi.org/10.1021/acsnano.0c03793
F. Wang, Y. Si, J. Yu, B. Ding, Tailoring nanonets-engineered superflexible nanofibrous aerogels with hierarchical cage-like architecture enables renewable antimicrobial air filtration. Adv. Funct. Mater. 31(49), 2107223 (2021). https://doi.org/10.1002/adfm.202107223
H. Shan, Y. Si, J. Yu, B. Ding, Facile access to highly flexible and mesoporous structured silica fibrous membranes for tetracyclines removal. Chem. Eng. J. 417, 129211 (2021). https://doi.org/10.1016/j.cej.2021.129211
C. Xu, S. Shi, X. Wang, H. Zhou, L. Wang et al., Electrospun SiO2-MgO hybrid fibers for heavy metal removal: characterization and adsorption study of Pb(II) and Cu(II). J. Hazard. Mater. 381, 120974 (2020). https://doi.org/10.1016/j.jhazmat.2019.120974
M. Zhou, W. Tang, P. Luo, J. Lyu, A. Chen et al., Preparation of ureido-functionalized PVA/silica mesoporous fibre membranes via electrospinning for adsorption of Pb2+ and Cu2+ in wastewater. Water Sci. Technol. 76(9), 2526–2534 (2017). https://doi.org/10.2166/wst.2017.405
J.H. Roque-Ruiz, J.A. Garibay-Alvarado, N.A. Medellín-Castillo, S.Y. Reyes-López, Preparation of electrospun hydroxyapatite-glass fibers for removal of cadmium (Cd+2) and lead (Pb+2) from aqueous media. Water Air Soil Pollut. 231(10), 497 (2020). https://doi.org/10.1007/s11270-020-04856-9
A.A. Taha, Y. Wu, H. Wang, F. Li, Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution. J. Environ. Manage. 112, 10–16 (2012). https://doi.org/10.1016/j.jenvman.2012.05.031
F. Shi, H. Shan, D. Li, X. Yin, J. Yu et al., A general strategy to fabricate soft magnetic CuFe2O4@SiO2 nanofibrous membranes as efficient and recyclable Fenton-like catalysts. J. Colloid Interface Sci. 538, 620–629 (2019). https://doi.org/10.1016/j.jcis.2018.12.028
X. Wang, L. Dou, Z. Li, L. Yang, J. Yu et al., Flexible hierarchical ZrO2 nanop-embedded SiO2 nanofibrous membrane as a versatile tool for efficient removal of phosphate. ACS Appl. Mater. Interfaces 8(50), 34668–34676 (2016). https://doi.org/10.1021/acsami.6b11294
J. Dai, Z. Yan, W. Jiao, X. Yin, Y. Si et al., Amide-halamine/silica composite nanofibrous membranes with rechargeable chlorination function for mercaptan degradation. Compos. Commun. 25, 100729 (2021). https://doi.org/10.1016/j.coco.2021.100729
J. Zhang, J. Song, L. Liu, P. Zhang, Y. Si et al., Electroconductive nanofibrous membranes with nanosheet-based microsphere-threaded heterostructures enabling oily wastewater remediation. J. Mater. Chem. A 9(27), 15310–15320 (2021). https://doi.org/10.1039/D1TA03195C
Y. Si, Q. Fu, X. Wang, J. Zhu, J. Yu et al., Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano 9(4), 3791–3799 (2015). https://doi.org/10.1021/nn506633b
T. Pirzada, Z. Ashrafi, W. Xie, S.A. Khan, Cellulose silica hybrid nanofiber aerogels: from sol-gel electrospun nanofibers to multifunctional aerogels. Adv. Funct. Mater. 30(5), 1907359 (2020). https://doi.org/10.1002/adfm.201907359
X. Zheng, X. Liu, L. Zha, Under-oil superhydrophilic poly(vinyl alcohol)/silica hybrid nanofibrous aerogel for gravity-driven separation of surfactant-stabilized water-in-oil emulsions. Macromol. Mater. Eng. 304(7), 1900125 (2019). https://doi.org/10.1002/mame.201900125
Y.X. Huang, Z. Wang, D. Hou, S. Lin, Coaxially electrospun super-amphiphobic silica-based membrane for anti-surfactant-wetting membrane distillation. J. Membr. Sci. 531, 122–128 (2017). https://doi.org/10.1016/j.memsci.2017.02.044
M. Sun, C. Boo, W. Shi, J. Rolf, E. Shaulsky et al., Engineering carbon nanotube forest superstructure for robust thermal desalination membranes. Adv. Funct. Mater. 29(36), 1903125 (2019). https://doi.org/10.1002/adfm.201903125
X. Dong, L. Cao, Y. Si, B. Ding, H. Deng, Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 32(34), 1908269 (2020). https://doi.org/10.1002/adma.201908269
X. Dong, Y. Si, C. Chen, B. Ding, H. Deng, Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 15(7), 12256–12266 (2021). https://doi.org/10.1021/acsnano.1c04035
S. Zhang, H. Liu, N. Tang, J. Ge, J. Yu et al., Direct electronetting of high-performance membranes based on self-assembled 2D nanoarchitectured networks. Nat. Commun. 10, 1458 (2019). https://doi.org/10.1038/s41467-019-09444-y
X. Cheng, Y.T. Liu, Y. Si, J. Yu, B. Ding, Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning. Nat. Commun. 13, 2637 (2022). https://doi.org/10.1038/s41467-022-30435-z