Ultra-Stable and Durable Piezoelectric Nanogenerator with All-Weather Service Capability Based on N Doped 4H-SiC Nanohole Arrays
Corresponding Author: Tao Yang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 30
Abstract
Ultra-stable piezoelectric nanogenerator (PENG) driven by environmental actuation sources with all-weather service capability is highly desirable. Here, the PENG based on N doped 4H-SiC nanohole arrays (NHAs) is proposed to harvest ambient energy under low/high temperature and relative humidity (RH) conditions. Finite element method simulation of N doped 4H-SiC NHAs in compression mode is developed to evaluate the relationship between nanohole diameter and piezoelectric performance. The density of short circuit current of the assembled PENG reaches 313 nA cm−2, which is 1.57 times the output of PENG based on N doped 4H-SiC nanowire arrays. The enhancement can be attributed to the existence of nanohole sidewalls in NHAs. All-weather service capability of the PENG is verified after being treated at -80/80 ℃ and 0%/100% RH for 50 days. The PENG is promising to be widely used in practice worldwide to harvest biomechanical energy and mechanical energy.
Highlights:
1 An ultra-stable all-weather service piezoelectric nanogenerator (PENG) with a wide operating temperature range (-80~80 ℃) and a wide operating relative humidity range (0~100%) is proposed.
2 The PENG based on N doped 4H-SiC exhibits long-term service stability up to 50 days.
3 The short circuit current density of PENG based on N doped 4H-SiC is enhanced significantly.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Zhang, D. Wang, Z. Xu, X. Zhang, Y. Yang et al., Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators. Coord. Chem. Rev. 427, 213597 (2021). https://doi.org/10.1016/j.ccr.2020.213597
- D. Wang, D. Zhang, Y. Yang, Q. Mi, J. Zhang et al., Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal-organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano 15(2), 2911–2919 (2021). https://doi.org/10.1021/acsnano.0c09015
- D. Wang, D. Zhang, J. Guo, Y. Hu, Y. Yang et al., Multifunctional poly(vinyl alcohol)/Ag nanofibers-based triboelectric nanogenerator for self-powered MXene/tungsten oxide nanohybrid NO2 gas sensor. Nano Energy 89, 106410 (2021). https://doi.org/10.1016/j.nanoen.2021.106410
- Z. Wang, X. Pan, Y. He, Y. Hu, H. Gu et al., Piezoelectric nanowires in energy harvesting applications. Adv. Mater. Sci. Eng. 2015, 1 (2015). https://doi.org/10.1155/2015/165631
- S. Siddiqui, D.I. Kim, L.T. Duy, M.T. Nguyen, S. Muhammad et al., High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 15, 177–185 (2015). https://doi.org/10.1016/j.nanoen.2015.04.030
- M.A. Johar, A. Waseem, M.A. Hassan, I.V. Bagal, A. Abdullah et al., Highly durable piezoelectric nanogenerator by heteroepitaxy of GaN nanowires on Cu foil for enhanced output using ambient actuation sources. Adv. Energy Mater. 10(47), 2002608 (2020). https://doi.org/10.1002/aenm.202002608
- V. Khurana, R.R. Kisannagar, S.S. Domala, D. Gupta, In situ polarized ultrathin PVDF film-based flexible piezoelectric nanogenerators. ACS Appl. Electron. Mater. 2(10), 3409–3417 (2020). https://doi.org/10.1021/acsaelm.0c00667
- W. Zhai, Q. Lai, L. Chen, L. Zhu, Z.L. Wang, Flexible piezoelectric nanogenerators based on P(VDF–TrFE)/GeSe nanocomposite films. ACS Appl. Electron. Mater. 2(8), 2369–2374 (2020). https://doi.org/10.1021/acsaelm.0c00525
- D. Mandal, K. Henkel, D. Schmeisser, Improved performance of a polymer nanogenerator based on silver nanoparticles doped electrospun P(VDF-HFP) nanofibers. Phys. Chem. Chem. Phys. 16(22), 10403–10407 (2014). https://doi.org/10.1039/c3cp55238a
- J.H. Lee, K.Y. Lee, M.K. Gupta, T.Y. Kim, D.Y. Lee et al., Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv. Mater. 26(5), 765–769 (2014). https://doi.org/10.1002/adma.201303570
- H. Lee, H. Kim, D.Y. Kim, Y. Seo, Pure piezoelectricity generation by a flexible nanogenerator based on lead zirconate titanate nanofibers. ACS Omega 4(2), 2610–2617 (2019). https://doi.org/10.1021/acsomega.8b03325
- L. Gu, J. Liu, N. Cui, Q. Xu, T. Du et al., Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode. Nat. Commun. 11, 1030 (2020). https://doi.org/10.1038/s41467-020-14846-4
- H. Chen, L. Zhou, Z. Fang, S. Wang, T. Yang et al., Piezoelectric nanogenerator based on in situ growth all-inorganic CsPbBr 3 perovskite nanocrystals in PVDF fibers with long-term stability. Adv. Funct. Mater. 31(19), 2011073 (2021). https://doi.org/10.1002/adfm.202011073
- A.J. Joseph, N. Sinha, S. Goel, A. Hussain, B. Kumar, True-remanent, resistive-leakage and mechanical studies of flux grown 0.64PMN-0.36PT single crystals. Arab. J. Chem. 13(1), 2596–2610 (2020). https://doi.org/10.1016/j.arabjc.2018.06.012
- Y. Wang, X. Zhang, X. Guo, D. Li, B. Cui et al., Hybrid nanogenerator of BaTiO3 nanowires and CNTs for harvesting energy. J. Mater. Sci. 53, 13081–13089 (2018). https://doi.org/10.1007/s10853-018-2540-9
- Y. Zhao, Q. Liao, G. Zhang, Z. Zhang, Q. Liang et al., High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy 11, 719–727 (2015). https://doi.org/10.1016/j.nanoen.2014.11.061
- J.H. Jung, M. Lee, J.I. Hong, Y. Ding, C.Y. Chen et al., Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano 5(12), 10041–10046 (2011). https://doi.org/10.1021/nn2039033
- G. Ray, N. Sinha, S. Bhandari, B. Kumar, Excellent piezo-/pyro-/ferroelectric performance of Na0.47K0.47Li0.06NbO3 lead-free ceramic near polymorphic phase transition. Scripta Mater. 99, 77–80 (2015). https://doi.org/10.1016/j.scriptamat.2014.11.033
- Y. Sun, Y. Zheng, R. Wang, J. Fan, Y. Liu, Direct-current piezoelectric nanogenerator based on two-layer zinc oxide nanorod arrays with equal c-axis orientation for energy harvesting. Chem. Eng. J. 426, 131262 (2021). https://doi.org/10.1016/j.cej.2021.131262
- M. Manikandan, P. Rajagopalan, N. Patra, S. Jayachandran, M. Muralidharan et al., Development of Sn-doped ZnO based ecofriendly piezoelectric nanogenerator for energy harvesting application. Nanotechnology 31, 185401 (2020). https://doi.org/10.1088/1361-6528/ab6b9e
- M.A. Johar, M.A. Hassan, A. Waseem, J.S. Ha, J.K. Lee et al., Stable and high piezoelectric output of GaN nanowire-based lead-free piezoelectric nanogenerator by suppression of internal screening. Nanomaterials 8(6), 437 (2018). https://doi.org/10.3390/nano8060437
- J.H. Kang, D.K. Jeong, S.W. Ryu, Transparent, flexible piezoelectric nanogenerator based on GaN membrane using electrochemical lift-off. ACS Appl. Mater. Interfaces 9(12), 10637–10642 (2017). https://doi.org/10.1021/acsami.6b15587
- D. Zhang, Z. Yang, P. Li, M. Pang, Q. Xue, Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy 65, 103974 (2019). https://doi.org/10.1016/j.nanoen.2019.103974
- D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13, 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
- B.H. Kang, S.J. Jung, S. Hong, I.S. Lee, S. Hong et al., Improvement of the stability and optoelectronic characteristics of molybdenum disulfide thin-film transistors by applying a nitrocellulose passivation layer. J. Inf. Display 21(2), 123–130 (2020). https://doi.org/10.1080/15980316.2019.1710585
- W. Li, Q. Liu, S. Chen, Z. Fang, X. Liang et al., Single-crystalline integrated 4H-SiC nanochannel array electrode: toward high-performance capacitive energy storage for robust wide-temperature operation. Mater. Horiz. 5(5), 883–889 (2018). https://doi.org/10.1039/c8mh00474a
- T. Yang, S. Chen, X. Li, X. Xu, F. Gao et al., High-performance SiC nanobelt photodetectors with long-term stability against 300 °C up to 180 days. Adv. Funct. Mater. 29(11), 1806250 (2019). https://doi.org/10.1002/adfm.201806250
- W. Liu, J. Chen, T. Yang, K.C. Chou, X. Hou, Enhancing photoluminescence properties of SiC/SiO2 coaxial nanocables by making oxygen vacancies. Dalton Trans. 45(34), 13503–13508 (2016). https://doi.org/10.1039/c6dt02049f
- H. Dong, Z. Fang, T. Yang, Y. Yu, D. Wang et al., Single crystalline 3C-SiC whiskers used for electrochemical detection of nitrite under neutral condition. Ionics 22, 1493–1500 (2016). https://doi.org/10.1007/s11581-016-1666-5
- L. Zhou, T. Yang, L. Zhu, W. Li, S. Wang et al., Piezoelectric nanogenerators with high performance against harsh conditions based on tunable N doped 4H-SiC nanowire arrays. Nano Energy 83, 105826 (2021). https://doi.org/10.1016/j.nanoen.2021.105826
- M.A. Migliorato, J. Pal, R. Garg, G. Tse, H.Y.S. Al-Zahrani et al., A review of non linear piezoelectricity in semiconductors. AIP Conf. Proc. 1590, 32 (2014). https://doi.org/10.1063/1.4870192
- R. Hinchet, S. Lee, G. Ardila, L. Montès, M. Mouis et al., Performance optimization of vertical nanowire-based piezoelectric nanogenerators. Adv. Funct. Mater. 24(7), 971–977 (2014). https://doi.org/10.1002/adfm.201302157
- W. Li, Q. Liu, Z. Fang, L. Wang, S. Chen et al., All-solid-state on-chip supercapacitors based on free-standing 4H-SiC nanowire arrays. Adv. Energy Mater. 9(17), 1900073 (2019). https://doi.org/10.1002/aenm.201900073
- C. Chen, S. Chen, M. Shang, F. Gao, Z. Yang et al., Fabrication of highly oriented 4H-SiC gourd-shaped nanowire arrays and their field emission properties. J. Mater. Chem. C 4(23), 5195–5201 (2016). https://doi.org/10.1039/c6tc00450d
- L. Ye, L. Chen, J. Yu, S. Tu, B. Yan et al., High-performance piezoelectric nanogenerator based on electrospun ZnO nanorods/P(VDF-TrFE) composite membranes for energy harvesting application. J. Mater. Sci. Mater. Electron. 32, 3966–3978 (2021). https://doi.org/10.1007/s10854-020-05138-0
- G. Gautier, F. Cayrel, M. Capelle, J. Billoué, X. Song et al., Room light anodic etching of highly doped n-type 4H-SiC in high-concentration HF electrolytes: difference between C and Si crystalline faces. Nanoscale Res. Lett. 7, 367 (2012). https://doi.org/10.1186/1556-276X-7-367
- J.H. Lee, W.J. Lee, S.H. Lee, S.M. Kim, S. Kim et al., Atomic-scale origin of piezoelectricity in wurtzite ZnO. Phys. Chem. Chem. Phys. 17(12), 7857–7863 (2015). https://doi.org/10.1039/c4cp06094f
- A. Onodera, M. Takesada, Electronic ferroelectricity in II-VI semiconductor ZnO. Advances in Ferroelectrics, 231–255 (INTECH, 2012) https://doi.org/10.5772/52304
- S. Goel, B. Kumar, A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures. J. Alloys Compd. 816, 152491 (2020). https://doi.org/10.1016/j.jallcom.2019.152491
- S.Q. Liu, K.Z. Huang, W.X. Liu, Z.D. Meng, L. Luo, Cobalt-doped MoS2 enhances the evolution of hydrogen by piezo-electric catalysis under the 850 nm near-infrared light irradiation. New J. Chem. 44(33), 14291–14298 (2020). https://doi.org/10.1039/d0nj01053g
- Y.K. Dou, J.B. Li, X.Y. Fang, H.B. Jin, M.S. Cao, The enhanced polarization relaxation and excellent high-temperature dielectric properties of N-doped SiC. Appl. Phys. Lett. 104(5), 052102 (2014). https://doi.org/10.1063/1.4864062
- D. Mallick, P. Constantinou, P. Podder, S. Roy, Multi-frequency MEMS electromagnetic energy harvesting. Sens. Actuat. A Phys. 264, 247–259 (2017). https://doi.org/10.1016/j.sna.2017.08.002
- J. Kim, J.H. Lee, H. Ryu, J.H. Lee, U. Khan et al., High-performance piezoelectric, pyroelectric, and triboelectric nanogenerators based on P(VDF-TrFE) with controlled crystallinity and dipole alignment. Adv. Funct. Mater. 27(22), 1700702 (2017). https://doi.org/10.1002/adfm.201700702
- S. Yu, Y. Zhang, Z. Yu, J. Zheng, Y. Wang et al., PANI/PVDF-TrFE porous aerogel bulk piezoelectric and triboelectric hybrid nanogenerator based on in-situ doping and liquid nitrogen quenching. Nano Energy 80, 105519 (2021). https://doi.org/10.1016/j.nanoen.2020.105519
- J. Nie, L. Zhu, W. Zhai, A. Berbille, L. Li et al., Flexible piezoelectric nanogenerators based on P(VDF-TrFE)/CsPbBr 3 quantum dot composite films. ACS Appl. Electron. Mater. 3(5), 2136–2144 (2021). https://doi.org/10.1021/acsaelm.1c00137
- X. Ren, H. Fan, Y. Zhao, Z. Liu, Flexible lead-free BiFeO3/PDMS-based nanogenerator as piezoelectric energy harvester. ACS Appl. Mater. Interfaces 8(39), 26190–26197 (2016). https://doi.org/10.1021/acsami.6b04497
- S. Liu, D. Zou, X. Yu, Z. Wang, Z. Yang, Transfer-free PZT thin films for flexible nanogenerators derived from a single-step modified sol-gel process on 2D mica. ACS Appl. Mater. Interfaces 12(49), 54991–54999 (2020). https://doi.org/10.1021/acsami.0c16973
- H. Liu, X. Lin, S. Zhang, Y. Huan, S. Huang et al., Enhanced performance of piezoelectric composite nanogenerator based on gradient porous PZT ceramic structure for energy harvesting. J. Mater. Chem. A 8(37), 19631–19640 (2020). https://doi.org/10.1039/d0ta03054f
- H. Su, X. Wang, C. Li, Z. Wang, Y. Wu et al., Enhanced energy harvesting ability of polydimethylsiloxane-BaTiO3-based flexible piezoelectric nanogenerator for tactile imitation application. Nano Energy 83, 105809 (2021). https://doi.org/10.1016/j.nanoen.2021.105809
- L.Y. Zhu, J.G. Yang, K. Yuan, H.Y. Chen, T. Wang et al., Enhanced piezoelectric performance of the ZnO/AlN stacked nanofilm nanogenerator grown by atomic layer deposition. APL Mater. 6(12), 121109 (2018). https://doi.org/10.1063/1.5057889
- L. Algieri, M.T. Todaro, F. Guido, V. Mastronardi, D. Desmaële et al., Flexible piezoelectric energy-harvesting exploiting biocompatible AlN thin films grown onto spin-coated polyimide layers. ACS Appl. Energy Mater. 1(10), 5203–5210 (2018). https://doi.org/10.1021/acsaem.8b00820
References
D. Zhang, D. Wang, Z. Xu, X. Zhang, Y. Yang et al., Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators. Coord. Chem. Rev. 427, 213597 (2021). https://doi.org/10.1016/j.ccr.2020.213597
D. Wang, D. Zhang, Y. Yang, Q. Mi, J. Zhang et al., Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal-organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano 15(2), 2911–2919 (2021). https://doi.org/10.1021/acsnano.0c09015
D. Wang, D. Zhang, J. Guo, Y. Hu, Y. Yang et al., Multifunctional poly(vinyl alcohol)/Ag nanofibers-based triboelectric nanogenerator for self-powered MXene/tungsten oxide nanohybrid NO2 gas sensor. Nano Energy 89, 106410 (2021). https://doi.org/10.1016/j.nanoen.2021.106410
Z. Wang, X. Pan, Y. He, Y. Hu, H. Gu et al., Piezoelectric nanowires in energy harvesting applications. Adv. Mater. Sci. Eng. 2015, 1 (2015). https://doi.org/10.1155/2015/165631
S. Siddiqui, D.I. Kim, L.T. Duy, M.T. Nguyen, S. Muhammad et al., High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 15, 177–185 (2015). https://doi.org/10.1016/j.nanoen.2015.04.030
M.A. Johar, A. Waseem, M.A. Hassan, I.V. Bagal, A. Abdullah et al., Highly durable piezoelectric nanogenerator by heteroepitaxy of GaN nanowires on Cu foil for enhanced output using ambient actuation sources. Adv. Energy Mater. 10(47), 2002608 (2020). https://doi.org/10.1002/aenm.202002608
V. Khurana, R.R. Kisannagar, S.S. Domala, D. Gupta, In situ polarized ultrathin PVDF film-based flexible piezoelectric nanogenerators. ACS Appl. Electron. Mater. 2(10), 3409–3417 (2020). https://doi.org/10.1021/acsaelm.0c00667
W. Zhai, Q. Lai, L. Chen, L. Zhu, Z.L. Wang, Flexible piezoelectric nanogenerators based on P(VDF–TrFE)/GeSe nanocomposite films. ACS Appl. Electron. Mater. 2(8), 2369–2374 (2020). https://doi.org/10.1021/acsaelm.0c00525
D. Mandal, K. Henkel, D. Schmeisser, Improved performance of a polymer nanogenerator based on silver nanoparticles doped electrospun P(VDF-HFP) nanofibers. Phys. Chem. Chem. Phys. 16(22), 10403–10407 (2014). https://doi.org/10.1039/c3cp55238a
J.H. Lee, K.Y. Lee, M.K. Gupta, T.Y. Kim, D.Y. Lee et al., Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv. Mater. 26(5), 765–769 (2014). https://doi.org/10.1002/adma.201303570
H. Lee, H. Kim, D.Y. Kim, Y. Seo, Pure piezoelectricity generation by a flexible nanogenerator based on lead zirconate titanate nanofibers. ACS Omega 4(2), 2610–2617 (2019). https://doi.org/10.1021/acsomega.8b03325
L. Gu, J. Liu, N. Cui, Q. Xu, T. Du et al., Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode. Nat. Commun. 11, 1030 (2020). https://doi.org/10.1038/s41467-020-14846-4
H. Chen, L. Zhou, Z. Fang, S. Wang, T. Yang et al., Piezoelectric nanogenerator based on in situ growth all-inorganic CsPbBr 3 perovskite nanocrystals in PVDF fibers with long-term stability. Adv. Funct. Mater. 31(19), 2011073 (2021). https://doi.org/10.1002/adfm.202011073
A.J. Joseph, N. Sinha, S. Goel, A. Hussain, B. Kumar, True-remanent, resistive-leakage and mechanical studies of flux grown 0.64PMN-0.36PT single crystals. Arab. J. Chem. 13(1), 2596–2610 (2020). https://doi.org/10.1016/j.arabjc.2018.06.012
Y. Wang, X. Zhang, X. Guo, D. Li, B. Cui et al., Hybrid nanogenerator of BaTiO3 nanowires and CNTs for harvesting energy. J. Mater. Sci. 53, 13081–13089 (2018). https://doi.org/10.1007/s10853-018-2540-9
Y. Zhao, Q. Liao, G. Zhang, Z. Zhang, Q. Liang et al., High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy 11, 719–727 (2015). https://doi.org/10.1016/j.nanoen.2014.11.061
J.H. Jung, M. Lee, J.I. Hong, Y. Ding, C.Y. Chen et al., Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano 5(12), 10041–10046 (2011). https://doi.org/10.1021/nn2039033
G. Ray, N. Sinha, S. Bhandari, B. Kumar, Excellent piezo-/pyro-/ferroelectric performance of Na0.47K0.47Li0.06NbO3 lead-free ceramic near polymorphic phase transition. Scripta Mater. 99, 77–80 (2015). https://doi.org/10.1016/j.scriptamat.2014.11.033
Y. Sun, Y. Zheng, R. Wang, J. Fan, Y. Liu, Direct-current piezoelectric nanogenerator based on two-layer zinc oxide nanorod arrays with equal c-axis orientation for energy harvesting. Chem. Eng. J. 426, 131262 (2021). https://doi.org/10.1016/j.cej.2021.131262
M. Manikandan, P. Rajagopalan, N. Patra, S. Jayachandran, M. Muralidharan et al., Development of Sn-doped ZnO based ecofriendly piezoelectric nanogenerator for energy harvesting application. Nanotechnology 31, 185401 (2020). https://doi.org/10.1088/1361-6528/ab6b9e
M.A. Johar, M.A. Hassan, A. Waseem, J.S. Ha, J.K. Lee et al., Stable and high piezoelectric output of GaN nanowire-based lead-free piezoelectric nanogenerator by suppression of internal screening. Nanomaterials 8(6), 437 (2018). https://doi.org/10.3390/nano8060437
J.H. Kang, D.K. Jeong, S.W. Ryu, Transparent, flexible piezoelectric nanogenerator based on GaN membrane using electrochemical lift-off. ACS Appl. Mater. Interfaces 9(12), 10637–10642 (2017). https://doi.org/10.1021/acsami.6b15587
D. Zhang, Z. Yang, P. Li, M. Pang, Q. Xue, Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy 65, 103974 (2019). https://doi.org/10.1016/j.nanoen.2019.103974
D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13, 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
B.H. Kang, S.J. Jung, S. Hong, I.S. Lee, S. Hong et al., Improvement of the stability and optoelectronic characteristics of molybdenum disulfide thin-film transistors by applying a nitrocellulose passivation layer. J. Inf. Display 21(2), 123–130 (2020). https://doi.org/10.1080/15980316.2019.1710585
W. Li, Q. Liu, S. Chen, Z. Fang, X. Liang et al., Single-crystalline integrated 4H-SiC nanochannel array electrode: toward high-performance capacitive energy storage for robust wide-temperature operation. Mater. Horiz. 5(5), 883–889 (2018). https://doi.org/10.1039/c8mh00474a
T. Yang, S. Chen, X. Li, X. Xu, F. Gao et al., High-performance SiC nanobelt photodetectors with long-term stability against 300 °C up to 180 days. Adv. Funct. Mater. 29(11), 1806250 (2019). https://doi.org/10.1002/adfm.201806250
W. Liu, J. Chen, T. Yang, K.C. Chou, X. Hou, Enhancing photoluminescence properties of SiC/SiO2 coaxial nanocables by making oxygen vacancies. Dalton Trans. 45(34), 13503–13508 (2016). https://doi.org/10.1039/c6dt02049f
H. Dong, Z. Fang, T. Yang, Y. Yu, D. Wang et al., Single crystalline 3C-SiC whiskers used for electrochemical detection of nitrite under neutral condition. Ionics 22, 1493–1500 (2016). https://doi.org/10.1007/s11581-016-1666-5
L. Zhou, T. Yang, L. Zhu, W. Li, S. Wang et al., Piezoelectric nanogenerators with high performance against harsh conditions based on tunable N doped 4H-SiC nanowire arrays. Nano Energy 83, 105826 (2021). https://doi.org/10.1016/j.nanoen.2021.105826
M.A. Migliorato, J. Pal, R. Garg, G. Tse, H.Y.S. Al-Zahrani et al., A review of non linear piezoelectricity in semiconductors. AIP Conf. Proc. 1590, 32 (2014). https://doi.org/10.1063/1.4870192
R. Hinchet, S. Lee, G. Ardila, L. Montès, M. Mouis et al., Performance optimization of vertical nanowire-based piezoelectric nanogenerators. Adv. Funct. Mater. 24(7), 971–977 (2014). https://doi.org/10.1002/adfm.201302157
W. Li, Q. Liu, Z. Fang, L. Wang, S. Chen et al., All-solid-state on-chip supercapacitors based on free-standing 4H-SiC nanowire arrays. Adv. Energy Mater. 9(17), 1900073 (2019). https://doi.org/10.1002/aenm.201900073
C. Chen, S. Chen, M. Shang, F. Gao, Z. Yang et al., Fabrication of highly oriented 4H-SiC gourd-shaped nanowire arrays and their field emission properties. J. Mater. Chem. C 4(23), 5195–5201 (2016). https://doi.org/10.1039/c6tc00450d
L. Ye, L. Chen, J. Yu, S. Tu, B. Yan et al., High-performance piezoelectric nanogenerator based on electrospun ZnO nanorods/P(VDF-TrFE) composite membranes for energy harvesting application. J. Mater. Sci. Mater. Electron. 32, 3966–3978 (2021). https://doi.org/10.1007/s10854-020-05138-0
G. Gautier, F. Cayrel, M. Capelle, J. Billoué, X. Song et al., Room light anodic etching of highly doped n-type 4H-SiC in high-concentration HF electrolytes: difference between C and Si crystalline faces. Nanoscale Res. Lett. 7, 367 (2012). https://doi.org/10.1186/1556-276X-7-367
J.H. Lee, W.J. Lee, S.H. Lee, S.M. Kim, S. Kim et al., Atomic-scale origin of piezoelectricity in wurtzite ZnO. Phys. Chem. Chem. Phys. 17(12), 7857–7863 (2015). https://doi.org/10.1039/c4cp06094f
A. Onodera, M. Takesada, Electronic ferroelectricity in II-VI semiconductor ZnO. Advances in Ferroelectrics, 231–255 (INTECH, 2012) https://doi.org/10.5772/52304
S. Goel, B. Kumar, A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures. J. Alloys Compd. 816, 152491 (2020). https://doi.org/10.1016/j.jallcom.2019.152491
S.Q. Liu, K.Z. Huang, W.X. Liu, Z.D. Meng, L. Luo, Cobalt-doped MoS2 enhances the evolution of hydrogen by piezo-electric catalysis under the 850 nm near-infrared light irradiation. New J. Chem. 44(33), 14291–14298 (2020). https://doi.org/10.1039/d0nj01053g
Y.K. Dou, J.B. Li, X.Y. Fang, H.B. Jin, M.S. Cao, The enhanced polarization relaxation and excellent high-temperature dielectric properties of N-doped SiC. Appl. Phys. Lett. 104(5), 052102 (2014). https://doi.org/10.1063/1.4864062
D. Mallick, P. Constantinou, P. Podder, S. Roy, Multi-frequency MEMS electromagnetic energy harvesting. Sens. Actuat. A Phys. 264, 247–259 (2017). https://doi.org/10.1016/j.sna.2017.08.002
J. Kim, J.H. Lee, H. Ryu, J.H. Lee, U. Khan et al., High-performance piezoelectric, pyroelectric, and triboelectric nanogenerators based on P(VDF-TrFE) with controlled crystallinity and dipole alignment. Adv. Funct. Mater. 27(22), 1700702 (2017). https://doi.org/10.1002/adfm.201700702
S. Yu, Y. Zhang, Z. Yu, J. Zheng, Y. Wang et al., PANI/PVDF-TrFE porous aerogel bulk piezoelectric and triboelectric hybrid nanogenerator based on in-situ doping and liquid nitrogen quenching. Nano Energy 80, 105519 (2021). https://doi.org/10.1016/j.nanoen.2020.105519
J. Nie, L. Zhu, W. Zhai, A. Berbille, L. Li et al., Flexible piezoelectric nanogenerators based on P(VDF-TrFE)/CsPbBr 3 quantum dot composite films. ACS Appl. Electron. Mater. 3(5), 2136–2144 (2021). https://doi.org/10.1021/acsaelm.1c00137
X. Ren, H. Fan, Y. Zhao, Z. Liu, Flexible lead-free BiFeO3/PDMS-based nanogenerator as piezoelectric energy harvester. ACS Appl. Mater. Interfaces 8(39), 26190–26197 (2016). https://doi.org/10.1021/acsami.6b04497
S. Liu, D. Zou, X. Yu, Z. Wang, Z. Yang, Transfer-free PZT thin films for flexible nanogenerators derived from a single-step modified sol-gel process on 2D mica. ACS Appl. Mater. Interfaces 12(49), 54991–54999 (2020). https://doi.org/10.1021/acsami.0c16973
H. Liu, X. Lin, S. Zhang, Y. Huan, S. Huang et al., Enhanced performance of piezoelectric composite nanogenerator based on gradient porous PZT ceramic structure for energy harvesting. J. Mater. Chem. A 8(37), 19631–19640 (2020). https://doi.org/10.1039/d0ta03054f
H. Su, X. Wang, C. Li, Z. Wang, Y. Wu et al., Enhanced energy harvesting ability of polydimethylsiloxane-BaTiO3-based flexible piezoelectric nanogenerator for tactile imitation application. Nano Energy 83, 105809 (2021). https://doi.org/10.1016/j.nanoen.2021.105809
L.Y. Zhu, J.G. Yang, K. Yuan, H.Y. Chen, T. Wang et al., Enhanced piezoelectric performance of the ZnO/AlN stacked nanofilm nanogenerator grown by atomic layer deposition. APL Mater. 6(12), 121109 (2018). https://doi.org/10.1063/1.5057889
L. Algieri, M.T. Todaro, F. Guido, V. Mastronardi, D. Desmaële et al., Flexible piezoelectric energy-harvesting exploiting biocompatible AlN thin films grown onto spin-coated polyimide layers. ACS Appl. Energy Mater. 1(10), 5203–5210 (2018). https://doi.org/10.1021/acsaem.8b00820