Nanoengineered Shear-Thinning Hydrogel Barrier for Preventing Postoperative Abdominal Adhesions
Corresponding Author: Ali Khademhosseini
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 212
Abstract
More than 90% of surgical patients develop postoperative adhesions, and the incidence of hospital re-admissions can be as high as 20%. Current adhesion barriers present limited efficacy due to difficulties in application and incompatibility with minimally invasive interventions. To solve this clinical limitation, we developed an injectable and sprayable shear-thinning hydrogel barrier (STHB) composed of silicate nanoplatelets and poly(ethylene oxide). We optimized this technology to recover mechanical integrity after stress, enabling its delivery though injectable and sprayable methods. We also demonstrated limited cell adhesion and cytotoxicity to STHB compositions in vitro. The STHB was then tested in a rodent model of peritoneal injury to determine its efficacy preventing the formation of postoperative adhesions. After two weeks, the peritoneal adhesion index was used as a scoring method to determine the formation of postoperative adhesions, and STHB formulations presented superior efficacy compared to a commercially available adhesion barrier. Histological and immunohistochemical examination showed reduced adhesion formation and minimal immune infiltration in STHB formulations. Our technology demonstrated increased efficacy, ease of use in complex anatomies, and compatibility with different delivery methods, providing a robust universal platform to prevent postoperative adhesions in a wide range of surgical interventions.
Highlights:
1 A novel “nanoengineered hydrogel” barrier based on silicate nanoplatelets and poly(ethylene oxide) (PEO) was developed to prevent the formation of postoperative adhesions.
2 Compared to other hydrogel systems, the prepared biomaterial is injectable and sprayable which makes it compatible with minimally invasive interventions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Fischer, T. Koopmans, P. Ramesh, S. Christ, M. Strunz et al., Post-surgical adhesions are triggered by calcium-dependent membrane bridges between mesothelial surfaces. Nat. Commun. 11(1), 3068 (2020). https://doi.org/10.1038/s41467-020-16893-3
- S. Soltany, Postoperative peritoneal adhesion: an update on physiopathology and novel traditional herbal and modern medical therapeutics. Naunyn-Schmiedebergs Arch. Pharmacol. 394(2), 317–336 (2021). https://doi.org/10.1007/s00210-020-01961-8
- J. Ouyang, X. Ji, X. Zhang, C. Feng, Z. Tang et al., In situ sprayed nir-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc. Natl. Acad. Sci. USA 117(46), 28667–28677 (2020). https://doi.org/10.1073/pnas.2016268117
- J.M. Tsai, R. Sinha, J. Seita, N. Fernhoff, S. Christ et al., Surgical adhesions in mice are derived from mesothelial cells and can be targeted by antibodies against mesothelial markers. Sci. Transl. Med. 10(469), eaan6735 (2018). https://doi.org/10.1126/scitranslmed.aan6735
- K. Okabayashi, H. Ashrafian, E. Zacharakis, H. Hasegawa, Y. Kitagawa et al., Adhesions after abdominal surgery: a systematic review of the incidence, distribution and severity. Surg. Today 44(3), 405–420 (2014). https://doi.org/10.1007/s00595-013-0591-8
- R. Hou, L. Wu, J. Wang, Z. Yang, Q. Tu et al., Surface-degradable drug-eluting stent with anticoagulation, antiproliferation, and endothelialization functions. Biomolecules 9(2), 69 (2019). https://dx.doi.org/https://doi.org/10.3390/biom9020069
- Z. Lei, W. Zhu, X. Zhang, X. Wang, P. Wu, Bio-inspired ionic skin for theranostics. Adv. Funct. Mater. 31(8), 2008020 (2021). https://doi.org/10.1002/adfm.202008020
- W. Zou, Y. Chen, X. Zhang, J. Li, L. Sun et al., Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties. Carbohydr. Polym. 202, 246–257 (2018). https://doi.org/10.1016/j.carbpol.2018.08.124
- A.K. Gaharwar, R.K. Avery, A. Assmann, A. Paul, G.H. McKinley et al., Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano 8(10), 9833–9842 (2014). https://doi.org/10.1021/nn503719n
- J. Yoo, S.B. Lee, C.K. Lee, S.W. Hwang, C. Kim et al., Graphene oxide and laponite composite films with high oxygen-barrier properties. Nanoscale 6(18), 10824–10830 (2014). https://doi.org/10.1039/c4nr03429e
- E. Lih, S.H. Oh, Y.K. Joung, J.H. Lee, D.K. Han, Polymers for cell/tissue anti-adhesion. Prog. Polym. Sci. 44, 28–61 (2015). https://doi.org/10.1016/j.progpolymsci.2014.10.004
- H. Sakuma, K. Tamura, K. Minagawa, “Doughnut”-like clay microparticles fabricated using a hybrid method of spray drying and centrifugal disc atomization. Chem. Lett. 47(1), 68–70 (2018). https://doi.org/10.1246/cl.170891
- F. Lardy, B. Vennat, M.P. Pouget, A. Pourrat, Functionalization of hydrocolloids: principal component analysis applied to the study of correlations between parameters describing the consistency of hydrogels. Drug Dev. Ind. Pharm. 26(7), 715–721 (2000). https://doi.org/10.1081/DDC-100101289
- Z. Bagher, A. Ehterami, M.H. Safdel, H. Khastar, H. Semiari et al., Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J. Drug Deliv. Sci. Technol. 55, 101379 (2020). https://doi.org/10.1016/j.jddst.2019.101379
- X. Wang, J. Jin, R. Hou, M. Zhou, X. Mou et al., Differentiation of bMSCs on biocompatible, biodegradable, and biomimetic scaffolds for largely defected tissue repair. ACS Appl. Bio. Mater. 3(1), 735 (2019). https://doi.org/10.1021/acsabm.9b01063
- R.K. Avery, H. Albadawi, M. Akbari, Y.S. Zhang, M.J. Duggan et al., An injectable shear-thinning biomaterial for endovascular embolization. Sci. Transl. Med. 8(365), 365ra156 (2016). https://doi.org/10.1126/scitranslmed.aah5533
- J. Zebrowski, V. Prasad, W. Zhang, L.M. Walker, D.A. Weitz, Shake-gels: Shear-induced gelation of laponite–peo mixtures. Colloid Surf. A-Physicochem. Eng. Asp. 213(2), 189–197 (2003). https://doi.org/10.1016/S0927-7757(02)00512-5
- A. Fall, D. Bonn, Shear thickening of laponite suspensions with poly(ethylene oxide). Soft Matter 8(17), 4645–4651 (2012). https://doi.org/10.1039/C2SM07089H
- J.M. Zuidema, C.J. Rivet, R.J. Gilbert, F.A. Morrison, A protocol for rheological characterization of hydrogels for tissue engineering strategies. J. Biomed. Mater. Res. B Appl. Biomater. 102(5), 1063–1073 (2014). https://doi.org/10.1002/jbm.b.33088
- S. Samimi Gharaie, SM.H. Dabiri, M. Akbari, Smart shear-thinning hydrogels as injectable drug delivery systems. Polymers 10(12), 1317 (2018). https://dx.doi.org/https://doi.org/10.3390/polym10121317
- T.B. Becher, C.B. Braga, D.L. Bertuzzi, M.D. Ramos, A. Hassan et al., The structure–property relationship in laponite® materials: From wigner glasses to strong self-healing hydrogels formed by non-covalent interactions. Soft Matter 15(6), 1278–1289 (2019). https://doi.org/10.1039/C8SM01965G
- A. Vo, M. Doumit, G. Rockwell, The biomechanics and optimization of the needle-syringe system for injecting triamcinolone acetonide into keloids. J. Med. Eng. 2016, 5162394 (2016). https://doi.org/10.1155/2016/5162394
- R.F. El-Kased, R.I. Amer, D. Attia, M. Elmazar, Honey-based hydrogel: In vitro and comparative in vivo evaluation for burn wound healing. Sci Rep. 7(1), 1–11 (2017). https://doi.org/10.1038/s41598-017-08771-8
- J. Yang, X. Zhang, C. Liu, Z. Wang, L. Deng et al., Biologically modified nanoparticles as theranostic bionanomaterials. Prog. Mater. Sci. 118, 100768 (2021).https://doi.org/10.1016/j.pmatsci.2020.100768
- C. Collins, A.K. Denisin, B.L. Pruitt, W.J. Nelson, Changes in e-cadherin rigidity sensing regulate cell adhesion. Proc. Natl. Acad. Sci. USA 114(29), E5835–E5844 (2017). https://doi.org/10.1073/pnas.1618676114
- T.B. Becher, C.B. Braga, D.L. Bertuzzi, M.D. Ramos, A. Hassan et al., The structure-property relationship in laponite(r) materials: From wigner glasses to strong self-healing hydrogels formed by non-covalent interactions. Soft Matter 15(6), 1278–1289 (2019). https://doi.org/10.1039/c8sm01965g
- M. Chowdhury, W. Zheng, S. Kumari, J. Heyman, X. Zhang et al., Dendronized fluorosurfactants provide phenomenal droplet integrity to picolitre emulsions for therapeutics development. Nat. Commun. 10, 4546 (2019). https://doi.org/10.1038/s41467-019-12462-5
- M. Zhou, X. Zhang, J. Xie, R. Qi, H. Lu et al., PH-sensitive poly(β-amino ester)s nanocarriers facilitate the inhibition of drug resistance in breast cancer cells. Nanomaterials 8, 952 (2018). https://doi.org/10.3390/nano8110952
- G. Parekh, Y. Shi, J. Zheng, X. Zhang, S. Leporatti, Nano-carriers for targeted delivery and biomedical imaging enhancement. Ther. Deliv. 9(6), 451–468 (2018). https://doi.org/10.4155/tde-2018-0013
- M. Ghadiri, W. Chrzanowski, R. Rohanizadeh, Antibiotic eluting clay mineral (laponite(r)) for wound healing application: an in vitro study. J. Mater. Sci. Mater. Med. 25(11), 2513–2526 (2014). https://doi.org/10.1007/s10856-014-5272-7
- S.H. Whang, J.A. Astudillo, E. Sporn, S.L. Bachman, B.W. Miedema et al., In search of the best peritoneal adhesion model: Comparison of different techniques in a rat model. J. Surg. Res. 167(2), 245–250 (2011). https://doi.org/10.1016/j.jss.2009.06.020
- F. Coccolini, L. Ansaloni, R. Manfredi, L. Campanati, E. Poiasina et al., Peritoneal adhesion index (pai): proposal of a score for the “ignored iceberg” of medicine and surgery. World J. Emerg. Surg. 8(1), 6 (2013). https://doi.org/10.1186/1749-7922-8-6
- M. Hu, X. Lin, R. Huang, K. Yang, Y. Liang et al., Lightweight, high-permeable, biocompatible, and anti-adhesive composite meshes for intraperitoneal repair. Macromol. Biosci. 1800067, 1–8 (2018). https://doi.org/10.1002/mabi.201800067
- A. Cannata, D. Petrella, C.F. Russo, G. Bruschi, P. Fratto et al., Postsurgical intrapericardial adhesions: mechanisms of formation and prevention. Ann. Thorac. Surg. 95(5), 1818–1826 (2013). https://doi.org/10.1016/j.athoracsur.2012.11.020
- P. Krzyszczyk, R. Schloss, A. Palmer, F. Berthiaume, The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front. Physiol. 9, 419 (2018). https://doi.org/10.3389/fphys.2018.00419
- F. Rizzo, N.S. Kehr, Recent advances in injectable hydrogels for controlled and local drug delivery. Adv. Healthc. Mater. 10(1), 2001341 (2021). https://doi.org/10.1002/adhm.202001341
References
A. Fischer, T. Koopmans, P. Ramesh, S. Christ, M. Strunz et al., Post-surgical adhesions are triggered by calcium-dependent membrane bridges between mesothelial surfaces. Nat. Commun. 11(1), 3068 (2020). https://doi.org/10.1038/s41467-020-16893-3
S. Soltany, Postoperative peritoneal adhesion: an update on physiopathology and novel traditional herbal and modern medical therapeutics. Naunyn-Schmiedebergs Arch. Pharmacol. 394(2), 317–336 (2021). https://doi.org/10.1007/s00210-020-01961-8
J. Ouyang, X. Ji, X. Zhang, C. Feng, Z. Tang et al., In situ sprayed nir-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc. Natl. Acad. Sci. USA 117(46), 28667–28677 (2020). https://doi.org/10.1073/pnas.2016268117
J.M. Tsai, R. Sinha, J. Seita, N. Fernhoff, S. Christ et al., Surgical adhesions in mice are derived from mesothelial cells and can be targeted by antibodies against mesothelial markers. Sci. Transl. Med. 10(469), eaan6735 (2018). https://doi.org/10.1126/scitranslmed.aan6735
K. Okabayashi, H. Ashrafian, E. Zacharakis, H. Hasegawa, Y. Kitagawa et al., Adhesions after abdominal surgery: a systematic review of the incidence, distribution and severity. Surg. Today 44(3), 405–420 (2014). https://doi.org/10.1007/s00595-013-0591-8
R. Hou, L. Wu, J. Wang, Z. Yang, Q. Tu et al., Surface-degradable drug-eluting stent with anticoagulation, antiproliferation, and endothelialization functions. Biomolecules 9(2), 69 (2019). https://dx.doi.org/https://doi.org/10.3390/biom9020069
Z. Lei, W. Zhu, X. Zhang, X. Wang, P. Wu, Bio-inspired ionic skin for theranostics. Adv. Funct. Mater. 31(8), 2008020 (2021). https://doi.org/10.1002/adfm.202008020
W. Zou, Y. Chen, X. Zhang, J. Li, L. Sun et al., Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties. Carbohydr. Polym. 202, 246–257 (2018). https://doi.org/10.1016/j.carbpol.2018.08.124
A.K. Gaharwar, R.K. Avery, A. Assmann, A. Paul, G.H. McKinley et al., Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano 8(10), 9833–9842 (2014). https://doi.org/10.1021/nn503719n
J. Yoo, S.B. Lee, C.K. Lee, S.W. Hwang, C. Kim et al., Graphene oxide and laponite composite films with high oxygen-barrier properties. Nanoscale 6(18), 10824–10830 (2014). https://doi.org/10.1039/c4nr03429e
E. Lih, S.H. Oh, Y.K. Joung, J.H. Lee, D.K. Han, Polymers for cell/tissue anti-adhesion. Prog. Polym. Sci. 44, 28–61 (2015). https://doi.org/10.1016/j.progpolymsci.2014.10.004
H. Sakuma, K. Tamura, K. Minagawa, “Doughnut”-like clay microparticles fabricated using a hybrid method of spray drying and centrifugal disc atomization. Chem. Lett. 47(1), 68–70 (2018). https://doi.org/10.1246/cl.170891
F. Lardy, B. Vennat, M.P. Pouget, A. Pourrat, Functionalization of hydrocolloids: principal component analysis applied to the study of correlations between parameters describing the consistency of hydrogels. Drug Dev. Ind. Pharm. 26(7), 715–721 (2000). https://doi.org/10.1081/DDC-100101289
Z. Bagher, A. Ehterami, M.H. Safdel, H. Khastar, H. Semiari et al., Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J. Drug Deliv. Sci. Technol. 55, 101379 (2020). https://doi.org/10.1016/j.jddst.2019.101379
X. Wang, J. Jin, R. Hou, M. Zhou, X. Mou et al., Differentiation of bMSCs on biocompatible, biodegradable, and biomimetic scaffolds for largely defected tissue repair. ACS Appl. Bio. Mater. 3(1), 735 (2019). https://doi.org/10.1021/acsabm.9b01063
R.K. Avery, H. Albadawi, M. Akbari, Y.S. Zhang, M.J. Duggan et al., An injectable shear-thinning biomaterial for endovascular embolization. Sci. Transl. Med. 8(365), 365ra156 (2016). https://doi.org/10.1126/scitranslmed.aah5533
J. Zebrowski, V. Prasad, W. Zhang, L.M. Walker, D.A. Weitz, Shake-gels: Shear-induced gelation of laponite–peo mixtures. Colloid Surf. A-Physicochem. Eng. Asp. 213(2), 189–197 (2003). https://doi.org/10.1016/S0927-7757(02)00512-5
A. Fall, D. Bonn, Shear thickening of laponite suspensions with poly(ethylene oxide). Soft Matter 8(17), 4645–4651 (2012). https://doi.org/10.1039/C2SM07089H
J.M. Zuidema, C.J. Rivet, R.J. Gilbert, F.A. Morrison, A protocol for rheological characterization of hydrogels for tissue engineering strategies. J. Biomed. Mater. Res. B Appl. Biomater. 102(5), 1063–1073 (2014). https://doi.org/10.1002/jbm.b.33088
S. Samimi Gharaie, SM.H. Dabiri, M. Akbari, Smart shear-thinning hydrogels as injectable drug delivery systems. Polymers 10(12), 1317 (2018). https://dx.doi.org/https://doi.org/10.3390/polym10121317
T.B. Becher, C.B. Braga, D.L. Bertuzzi, M.D. Ramos, A. Hassan et al., The structure–property relationship in laponite® materials: From wigner glasses to strong self-healing hydrogels formed by non-covalent interactions. Soft Matter 15(6), 1278–1289 (2019). https://doi.org/10.1039/C8SM01965G
A. Vo, M. Doumit, G. Rockwell, The biomechanics and optimization of the needle-syringe system for injecting triamcinolone acetonide into keloids. J. Med. Eng. 2016, 5162394 (2016). https://doi.org/10.1155/2016/5162394
R.F. El-Kased, R.I. Amer, D. Attia, M. Elmazar, Honey-based hydrogel: In vitro and comparative in vivo evaluation for burn wound healing. Sci Rep. 7(1), 1–11 (2017). https://doi.org/10.1038/s41598-017-08771-8
J. Yang, X. Zhang, C. Liu, Z. Wang, L. Deng et al., Biologically modified nanoparticles as theranostic bionanomaterials. Prog. Mater. Sci. 118, 100768 (2021).https://doi.org/10.1016/j.pmatsci.2020.100768
C. Collins, A.K. Denisin, B.L. Pruitt, W.J. Nelson, Changes in e-cadherin rigidity sensing regulate cell adhesion. Proc. Natl. Acad. Sci. USA 114(29), E5835–E5844 (2017). https://doi.org/10.1073/pnas.1618676114
T.B. Becher, C.B. Braga, D.L. Bertuzzi, M.D. Ramos, A. Hassan et al., The structure-property relationship in laponite(r) materials: From wigner glasses to strong self-healing hydrogels formed by non-covalent interactions. Soft Matter 15(6), 1278–1289 (2019). https://doi.org/10.1039/c8sm01965g
M. Chowdhury, W. Zheng, S. Kumari, J. Heyman, X. Zhang et al., Dendronized fluorosurfactants provide phenomenal droplet integrity to picolitre emulsions for therapeutics development. Nat. Commun. 10, 4546 (2019). https://doi.org/10.1038/s41467-019-12462-5
M. Zhou, X. Zhang, J. Xie, R. Qi, H. Lu et al., PH-sensitive poly(β-amino ester)s nanocarriers facilitate the inhibition of drug resistance in breast cancer cells. Nanomaterials 8, 952 (2018). https://doi.org/10.3390/nano8110952
G. Parekh, Y. Shi, J. Zheng, X. Zhang, S. Leporatti, Nano-carriers for targeted delivery and biomedical imaging enhancement. Ther. Deliv. 9(6), 451–468 (2018). https://doi.org/10.4155/tde-2018-0013
M. Ghadiri, W. Chrzanowski, R. Rohanizadeh, Antibiotic eluting clay mineral (laponite(r)) for wound healing application: an in vitro study. J. Mater. Sci. Mater. Med. 25(11), 2513–2526 (2014). https://doi.org/10.1007/s10856-014-5272-7
S.H. Whang, J.A. Astudillo, E. Sporn, S.L. Bachman, B.W. Miedema et al., In search of the best peritoneal adhesion model: Comparison of different techniques in a rat model. J. Surg. Res. 167(2), 245–250 (2011). https://doi.org/10.1016/j.jss.2009.06.020
F. Coccolini, L. Ansaloni, R. Manfredi, L. Campanati, E. Poiasina et al., Peritoneal adhesion index (pai): proposal of a score for the “ignored iceberg” of medicine and surgery. World J. Emerg. Surg. 8(1), 6 (2013). https://doi.org/10.1186/1749-7922-8-6
M. Hu, X. Lin, R. Huang, K. Yang, Y. Liang et al., Lightweight, high-permeable, biocompatible, and anti-adhesive composite meshes for intraperitoneal repair. Macromol. Biosci. 1800067, 1–8 (2018). https://doi.org/10.1002/mabi.201800067
A. Cannata, D. Petrella, C.F. Russo, G. Bruschi, P. Fratto et al., Postsurgical intrapericardial adhesions: mechanisms of formation and prevention. Ann. Thorac. Surg. 95(5), 1818–1826 (2013). https://doi.org/10.1016/j.athoracsur.2012.11.020
P. Krzyszczyk, R. Schloss, A. Palmer, F. Berthiaume, The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front. Physiol. 9, 419 (2018). https://doi.org/10.3389/fphys.2018.00419
F. Rizzo, N.S. Kehr, Recent advances in injectable hydrogels for controlled and local drug delivery. Adv. Healthc. Mater. 10(1), 2001341 (2021). https://doi.org/10.1002/adhm.202001341