Nanozymes in Point-of-Care Diagnosis: An Emerging Futuristic Approach for Biosensing
Corresponding Author: Cuong Cao
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 193
Abstract
Nanomaterial-based artificial enzymes (or nanozymes) have attracted great attention in the past few years owing to their capability not only to mimic functionality but also to overcome the inherent drawbacks of the natural enzymes. Numerous advantages of nanozymes such as diverse enzyme-mimicking activities, low cost, high stability, robustness, unique surface chemistry, and ease of surface tunability and biocompatibility have allowed their integration in a wide range of biosensing applications. Several metal, metal oxide, metal–organic framework-based nanozymes have been exploited for the development of biosensing systems, which present the potential for point-of-care analysis. To highlight recent progress in the field, in this review, more than 260 research articles are discussed systematically with suitable recent examples, elucidating the role of nanozymes to reinforce, miniaturize, and improve the performance of point-of-care diagnostics addressing the ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to the end user) criteria formulated by World Health Organization. The review reveals that many biosensing strategies such as electrochemical, colorimetric, fluorescent, and immunological sensors required to achieve the ASSURED standards can be implemented by using enzyme-mimicking activities of nanomaterials as signal producing components. However, basic system functionality is still lacking. Since the enzyme-mimicking properties of the nanomaterials are dictated by their size, shape, composition, surface charge, surface chemistry as well as external parameters such as pH or temperature, these factors play a crucial role in the design and function of nanozyme-based point-of-care diagnostics. Therefore, it requires a deliberate exertion to integrate various parameters for truly ASSURED solutions to be realized. This review also discusses possible limitations and research gaps to provide readers a brief scenario of the emerging role of nanozymes in state-of-the-art POC diagnosis system development for futuristic biosensing applications.
Highlights:
1 Enzyme-mimicking activities of different nanomaterials (nanozymes) and the recent progress in the construction of nanozyme-based biosensors with various examples are discussed in this review.
2 Physicochemical properties of nanomaterials (size, composition, pH, temperature, surface chemistry) play crucial role in the nanozyme activities.
3 The emerging nanozyme-based biosensors promise great potential for point-of-care diagnostic applications following the ASSURED criteria defined by WHO.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Organización Mundial de la Salud, The global burden of disease 2004. Updat. World Heal. Organ 146 (2004). ISBN 978 92 4 156371 0 https://apps.who.int/iris/bitstream/handle/10665/43942/9789241563710_eng.pdf
- X. Gao, L.-P. Xu, S.-F. Zhou, G. Liu, X. Zhang, Recent advances in nanoparticles-based lateral flow biosensors. Am. J. Biomed. Sci. 6(1), 41–57 (2014). https://doi.org/10.5099/aj140100041
- J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li et al., Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48(4), 1004–1076 (2019). https://doi.org/10.1039/c8cs00457a
- J.B. Sumner, Enzyme urease. J. Biol. Chem. 69, 435–441 (1926). https://doi.org/10.4159/harvard.9780674366701.c115
- H. Ohnuki, T. Saiki, A. Kusakari, H. Endo, M. Ichihara et al., Incorporation of glucose oxidase into langmuir-blodgett films based on prussian blue applied to amperometric glucose biosensor. Langmuir 23(8), 4675–4681 (2007). https://doi.org/10.1021/la063175g
- M. Akin, M. Yuksel, C. Geyik, D. Odaci, A. Bluma et al., Alcohol biosensing by polyamidoamine (PAMAM)/cysteamine/alcohol oxidase-modified gold electrode. Biotechnol. Prog. 26(3), 896–906 (2010). https://doi.org/10.1002/btpr.372
- A. Parra, E. Casero, L. Vázquez, F. Pariente, E. Lorenzo et al., Design and characterization of a lactate biosensor based on immobilized lactate oxidase onto gold surfaces. Anal. Chim. Acta 555(2), 308–315 (2006). https://doi.org/10.1016/j.aca.2005.09.025
- F. Alam, S. RoyChoudhury, A.H. Jalal, Y. Umasankar, S. Forouzanfar et al., Lactate biosensing: The emerging point-of-care and personal health monitoring. Biosens. Bioelectron. 117, 818–829 (2018). https://doi.org/10.1016/j.bios.2018.06.054
- M.A. Al-Rawhani, B.C. Cheah, A.I. Macdonald, C. Martin, C. Hu et al., A colorimetric cmos-based platform for rapid total serum cholesterol quantification. IEEE Sens. J. 17(2), 240–247 (2017). https://doi.org/10.1109/JSEN.2016.2629018
- J. Yu, S. Wang, L. Ge, S. Ge, A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens. Bioelectron. 26(7), 3284–3289 (2011). https://doi.org/10.1016/j.bios.2010.12.044
- A.-N. Kawde, X. Mao, H. Xu, Q. Zeng, Y. He et al., Moving enzyme-linked immunosorbent assay to the point-of-care dry-reagent strip biosensors. Am. J. Biomed. Sci. 2(1), 23–32 (2010). https://doi.org/10.5099/aj100100023
- M. Pandiaraj, T. Madasamy, P.N. Gollavilli, M. Balamurugan, S. Kotamraju et al., Nanomaterial-based electrochemical biosensors for cytochrome c using cytochrome c reductase. Bioelectrochem 91, 1–7 (2013). https://doi.org/10.1016/j.bioelechem.2012.09.004
- R. Breslow, L.E. Overman, An “artificial enzyme” combining a metal catalytic group and a hydrophobic binding cavity. J. Am. Chem. Soc. 92(4), 1075–1077 (1970). https://doi.org/10.1021/ja00707a062
- L. Gao, X. Yan, Nanozymes: An emerging field bridging nanotechnology and biology. Sci. China Life Sci. 59(4), 400–402 (2016). https://doi.org/10.1007/s11427-016-5044-3
- T. Kuwabara, M. Warashina, K. Taira, Allosterically controllable ribozymes with biosensor functions. Curr. Opin. Chem. Biol. 4(6), 669–677 (2000). https://doi.org/10.1016/S1367-5931(00)00150-2
- M. Liu, D. Chang, Y. Li, Discovery and biosensing applications of diverse RNA-cleaving DNAzymes. Acc. Chem. Res. 50(9), 2273–2283 (2017). https://doi.org/10.1021/acs.accounts.7b00262
- L. Ma, J. Liu., Catalytic nucleic acids: biochemistry, chemical biology, biosensors, and nanotechnology. iScience. 23(1): 100815 (2020)
- M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 16(2), 405–408 (1987). https://doi.org/10.1246/cl.1987.405
- F. Manea, F.B. Houillon, L. Pasquato, P. Scrimin, Nanozymes: gold-nanoparticle-based transphosphorylation catalysts. Angew. Chem. Int. Ed. 116(45), 6291–6295 (2004). https://doi.org/10.1002/ange.200460649
- Y. Lin, J. Ren, X. Qu, Nano-gold as artificial enzymes: Hidden talents. Adv. Mater. 26(25), 4200–4217 (2014). https://doi.org/10.1002/adma.201400238
- W. Song, B. Zhao, C. Wang, Y. Ozaki, X. Lu, Functional nanomaterials with unique enzyme-like characteristics for sensing applications. J. Mater. Chem. B 7(6), 850–875 (2019). https://doi.org/10.1039/c8tb02878h
- D. Jiang, D. Ni, Z.T. Rosenkrans, P. Huang, X. Yan et al., Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 48(14), 3683–3704 (2019). https://doi.org/10.1039/c8cs00718g
- Y. Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad et al., Surface-Enhanced Raman Scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11(6), 5558–5566 (2017). https://doi.org/10.1021/acsnano.7b00905
- S. Mumtaz, A. Gupta, V.M. Rotello, I. Hussain, "Enzyme mimicking metal oxide nanoparticles for bacterial sensing (Conference Presentation)," in Enzyme Mimicking Metal Oxide Nanoparticles for Bacterial Sensing (2020), p. 26. https://doi.org/10.1117/12.2553208
- K. Ngamdee, W. Ngeontae, Circular dichroism glucose biosensor based on chiral cadmium sulfide quantum dots. Sens. Actuators B Chem. 274, 402–411 (2018). https://doi.org/10.1016/j.snb.2018.08.005
- H. Sun, A. Zhao, N. Gao, K. Li, J. Ren et al., Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem. Int. Ed. 54(24), 7176–7180 (2015). https://doi.org/10.1002/anie.201500626
- T. Zhan, J. Kang, X. Li, L. Pan, G. Li et al., NiFe layered double hydroxide nanosheets as an efficiently mimic enzyme for colorimetric determination of glucose and H2O2. Sens. Actuators B Chem. 255, 2635–2642 (2018). https://doi.org/10.1016/j.snb.2017.09.074
- C. Hou, Y. Wang, Q. Ding, L. Jiang, M. Li et al., Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: Mimetic peroxidase properties and colorimetric sensor. Nanoscale 7(44), 18770–18779 (2015). https://doi.org/10.1039/c5nr04994f
- C.P. Liu, T.H. Wu, C.Y. Liu, K.C. Chen, Y.X. Chen et al., Self-supplying O2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small 13(26), 1–9 (2017). https://doi.org/10.1002/smll.201700278
- S. Wang, R. Cazelles, W.C. Liao, M. Vázquez-González, A. Zoabi et al., Mimicking horseradish peroxidase and NADH peroxidase by heterogeneous Cu2+-modified graphene oxide nanoparticles. Nano Lett. 17(3), 2043–2048 (2017). https://doi.org/10.1021/acs.nanolett.7b00093
- H.H. Deng, X.L. Lin, Y.H. Liu, K.L. Li, Q.Q. Zhuang et al., Chitosan-stabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nanoscale 9(29), 10292–10300 (2017). https://doi.org/10.1039/c7nr03399k
- K. Korschelt, R. Ragg, C.S. Metzger, M. Kluenker, M. Oster et al., Glycine-functionalized copper (ii) hydroxide nanoparticleswith high intrinsic superoxide dismutase activity. Nanoscale 9(11), 3952–3960 (2017). https://doi.org/10.1039/C6NR09810J
- Y. Tao, E. Ju, J. Ren, X. Qu, Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 27(6), 1097–1104 (2015). https://doi.org/10.1002/adma.201405105
- A. Boujakhrout, P. Díez, P. Martínez-Ruíz, A. Sánchez, C. Parrado et al., Gold nanoparticles/silver-bipyridine hybrid nanobelts with tuned peroxidase-like activity. RSC Adv. 6(78), 74957–74960 (2016). https://doi.org/10.1039/c6ra12972b
- P. Ni, H. Dai, Y. Wang, Y. Sun, Y. Shi et al., Visual detection of melamine based on the peroxidase-like activity enhancement of bare gold nanoparticles. Biosens. Bioelectron. 60, 286–291 (2014). https://doi.org/10.1016/j.bios.2014.04.029
- M. Nasir, M.H. Nawaz, U. Latif, M. Yaqub, A. Hayat et al., An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim. Acta 184(2), 323–342 (2017). https://doi.org/10.1007/s00604-016-2036-8
- Q. Wang, H. Wei, Z. Zhang, E. Wang, S. Dong, Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC - Trends Anal. Chem. 105, 218–224 (2018). https://doi.org/10.1016/j.trac.2018.05.012
- S. Munir, A.A. Shah, H. Rahman, M. Bilal, M.S.R. Rajoka et al., Nanozymes for medical biotechnology and its potential applications in biosensing and nanotherapeutics. Biotechnol. Lett. 42(3), 357–373 (2020). https://doi.org/10.1007/s10529-020-02795-3
- X. Wang, Y. Hu, H. Wei, Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 3(1), 41–60 (2016). https://doi.org/10.1039/c5qi00240k
- R.M. Lequin, Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 51(12), 2415–2418 (2005). https://doi.org/10.1373/clinchem.2005.051532
- S. Singh, Nanomaterials exhibiting enzyme-like properties (Nanozymes): Current advances and future perspectives. Front. Chem. 7, 46 (2019). https://doi.org/10.3389/fchem.2019.00046
- A. Strzepa, K.A. Pritchard, B.N. Dittel, Myeloperoxidase: A new player in autoimmunity. Cell. Immunol. 317, 1–8 (2017). https://doi.org/10.1016/j.cellimm.2017.05.002
- Q. Liu, A. Zhang, R. Wang, Q. Zhang, D. Cui, A Review on metal - and metal oxide - based nanozymes : properties, mechanisms, and applications. Nanomicro Lett. 13(1), 1–53 (2021). https://doi.org/10.1007/s40820-021-00674-8
- H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 42(14), 6060–6093 (2013). https://doi.org/10.1039/c3cs35486e
- M. Gao, A. Lyalin, T. Taketsugu, Role of the support effects on the catalytic activity of gold clusters: A density functional theory study. Catal 1(1), 18–39 (2011). https://doi.org/10.3390/catal1010018
- S. Wang, W. Chen, A.L. Liu, L. Hong, H.H. Deng et al., Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem 13(5), 1199–1204 (2012). https://doi.org/10.1002/cphc.201100906
- O. Adeniyi, S. Sicwetsha, P. Mashazi, nanomagnet-silica nanoparticles decorated with Au@Pd for enhanced peroxidase-like activity and colorimetric glucose sensing. ACS Appl. Mater. Interfaces 12(2), 1973–1987 (2020). https://doi.org/10.1021/acsami.9b15123
- V. Leifeld, T.P.M. dos Santos, D.W. Zelinski, L. Igarashi-Mafra, Ferrous ions reused as catalysts in Fenton-like reactions for remediation of agro-food industrial wastewater. J. Environ. Manage. 222, 284–292 (2018). https://doi.org/10.1016/j.jenvman.2018.05.087
- J.P. Kehrer, The Haber-Weiss reaction and mechanisms of toxicity. Toxicol. 149(1), 43–50 (2000). https://doi.org/10.1016/S0300-483X(00)00231-6
- L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2(9), 577–583 (2007). https://doi.org/10.1038/nnano.2007.260
- L. Gao, K. Fan, X. Yan, Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics 7(13), 3207–3227 (2017). https://doi.org/10.7150/thno.19738
- H. Wei, E. Wang, Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 80(6), 2250–2254 (2008). https://doi.org/10.1021/ac702203f
- J. Feng, H. Wang, Z. Ma, Ultrasensitive amperometric immunosensor for the prostate specific antigen by exploiting a Fenton reaction induced by a metal-organic framework nanocomposite of type Au/Fe-MOF with peroxidase mimicking activity. Microchim. Acta 187(1), (2020). https://doi.org/10.1007/s00604-019-4075-4
- N. Cheng, J.C. Li, D. Liu, Y. Lin, D. Du, Single-Atom Nanozyme Based on Nanoengineered Fe–N–C Catalyst with Superior Peroxidase-Like Activity for Ultrasensitive Bioassays. Small 15(48), 1–7 (2019). https://doi.org/10.1002/smll.201901485
- Z. Dai, S. Liu, J. Bao, H. Ju, Nanostruetured FeS as a mimic peroxidase for biocatalysis and biosensing. Chem. - A Eur. J. 15(17), 4321–4326 (2009). https://doi.org/10.1002/chem.200802158
- L. Wu, G. Wan, N. Hu, Z. He, S. Shi et al., Synthesis of porous CoFe2O4 and its application as a peroxidase mimetic for colorimetric detection of H2O2 and organic pollutant degradation. Nanomater. (2018) https://doi.org/10.3390/nano8070451
- H. Ouyang, X. Tu, Z. Fu, W. Wang, S. Fu et al., Colorimetric and chemiluminescent dual-readout immunochromatographic assay for detection of pesticide residues utilizing g-C3N4/BiFeO3 nanocomposites. Biosens. Bioelectron. 106, 43–49 (2018). https://doi.org/10.1016/j.bios.2018.01.033
- A.K. Dutta, S.K. Maji, D.N. Srivastava, A. Mondal, P. Biswas et al., Synthesis of FeS and FeSe nanoparticles from a single source precursor: A study of their photocatalytic activity, peroxidase-like behavior, and electrochemical sensing of H2O2. ACS Appl. Mater. Interfaces 4(4), 1919–1927 (2012). https://doi.org/10.1021/am300408r
- J. Mu, Y. Wang, M. Zhao, L. Zhang, Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 48(19), 2540–2542 (2012). https://doi.org/10.1039/c2cc17013b
- J. Yin, H. Cao, Y. Lu, Self-assembly into magnetic Co3O4 complex nanostructures as peroxidase. J. Mater. Chem. 22(2), 527–534 (2012). https://doi.org/10.1039/c1jm14253d
- R. André, F. Natálio, M. Humanes, J. Leppin, K. Heinze et al., V2O5 nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater. 21(3), 501–509 (2011). https://doi.org/10.1002/adfm.201001302
- F. Natalio, R. André, A.F. Hartog, B. Stoll, K.P. Jochum et al., Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 7(8), 530–535 (2012). https://doi.org/10.1038/nnano.2012.91
- B.R. Cuenya, Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12), 3127–3150 (2010). https://doi.org/10.1016/j.tsf.2010.01.018
- Y. Jv, B. Li, R. Cao, Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 46(42), 8017–8019 (2010). https://doi.org/10.1039/c0cc02698k
- X.X. Wang, Q. Wu, Z. Shan, Q.M. Huang, BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens. Bioelectron. 26(8), 3614–3619 (2011). https://doi.org/10.1016/j.bios.2011.02.014
- J. Fan, J.J. Yin, B. Ning, X. Wu, Y. Hu et al., Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials 32(6), 1611–1618 (2011). https://doi.org/10.1016/j.biomaterials.2010.11.004
- M. Ma, Y. Zhang, N. Gu, Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloids Surfaces A Physicochem. Eng. Asp. 373(1–3), 6–10 (2011). https://doi.org/10.1016/j.colsurfa.2010.08.007
- Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 22(19), 2206–2210 (2010). https://doi.org/10.1002/adma.200903783
- Y. Song, X. Wang, C. Zhao, K. Qu, J. Ren, X. Qu, Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem. A Eur. J. 16(12), 3617–3621 (2010). https://doi.org/10.1002/chem.200902643
- H. Sun, L. Wu, W. Wei, X. Qu, Recent advances in graphene quantum dots for sensing. Mater. Today 16(11), 433–442 (2013). https://doi.org/10.1016/j.mattod.2013.10.020
- B. Garg, T. Bisht, Y.C. Ling, Graphene-based nanomaterials as efficient peroxidase mimetic catalysts for biosensing applications: An overview. Molecules 20(8), 14155–14190 (2015). https://doi.org/10.3390/molecules200814155
- W. Zhu, J. Zhang, Z. Jiang, W. Wang, X. Liu, High-quality carbon dots: Synthesis, peroxidase-like activity and their application in the detection of H2O2, Ag+ and Fe3+. RSC Adv. 4(33), 17387–17392 (2014). https://doi.org/10.1039/c3ra47593j
- M. Vázquez-González, W.C. Liao, R. Cazelles, S. Wang, X. Yu et al., Mimicking horseradish peroxidase functions using Cu2+-modified carbon nitride nanoparticles or Cu2+-modified carbon dots as heterogeneous catalysts. ACS Nano 11(3), 3247–3253 (2017). https://doi.org/10.1021/acsnano.7b00352
- L. Fan, P. Sun, Y. Huang, Z. Xu, X. Lu et al., One-pot synthesis of Fe/n-doped hollow carbon nanospheres with multienzyme mimic activities against inflammation. ACS Appl. Bio Mater. 3(2), 1147–1157 (2020). https://doi.org/10.1021/acsabm.9b01079
- T. Pirmohamed, J.M. Dowding, S. Singh, B. Wasserman, E. Heckert et al., Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 46(16), 2736–2738 (2010). https://doi.org/10.1039/b922024k
- A. Asati, S. Santra, C. Kaittanis, S. Nath, J.M. Perez, Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. Int. Ed. 121(13), 2344–2348 (2009)
- A. Asati, C. Kaittanis, S. Santra, J.M. Perez, pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH. Anal. Chem. 83(7), 2547–2553 (2011). https://doi.org/10.1021/ac102826k
- X. Cao, N. Wang, A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst 136(20), 4241–4246 (2011)
- W. He, Y. Liu, J. Yuan, J.J. Yin, X. Wu et al., Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 32(4), 1139–1147 (2011). https://doi.org/10.1016/j.biomaterials.2010.09.040
- Y. Wan, P. Qi, D. Zhang, J. Wu, Y. Wang, Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens. Bioelectron. 33(1), 69–74 (2012). https://doi.org/10.1016/j.bios.2011.12.033
- A.P. Periasamy, P. Roy, W.P. Wu, Y.H. Huang, H.T. Chang, glucose oxidase and horseradish peroxidase like activities of cuprous oxide/polypyrrole composites. Electrochim. Acta 215, 253–260 (2016). https://doi.org/10.1016/j.electacta.2016.08.071
- R. Ragg, F. Natalio, M.N. Tahir, H. Janssen, A. Kashyap et al., Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity. ACS Nano 8(5), 5182–5189 (2014). https://doi.org/10.1021/nn501235j
- P. Beltrame, M. Comotti, C. Della Pina, M. Rossi, Aerobic oxidation of glucose: II. Catalysis by colloidal gold. Appl. Catal. A Gen. 297(1), 1–7 (2006). https://doi.org/10.1016/j.apcata.2005.08.029
- M. Comotti, C. Della Pina, R. Matarrese, M. Rossi, The catalytic activity of “naked” gold particles. Angew. Chem. Int. Ed. 43(43), 5812–5815 (2004). https://doi.org/10.1002/anie.200460446
- X. Zheng, Q. Liu, C. Jing, Y. Li, D. Li et al., Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew. Chem. Int. Ed. 123(50), 12200–12204 (2011). https://doi.org/10.1002/ange.201105121
- A. Karakoti, S. Singh, J.M. Dowding, S. Seal, W.T. Self, Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 39(11), 4422–4432 (2010). https://doi.org/10.1039/b919677n
- J. Li, W. Liu, X. Wu, X. Gao, Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomater. 48, 37–44 (2015). https://doi.org/10.1016/j.biomaterials.2015.01.012
- S. Bhagat, N.V. Srikanth Vallabani, V. Shutthanandan, M. Bowden, A.S. Karakoti et al., Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. J. Colloid Interface Sci. 513, 831–842 (2018) https://doi.org/10.1016/j.jcis.2017.11.064
- H. Liang, Y. Wu, X-Y. Qu, J.-Y. Li, Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity. Nanotechnology 28, 465702–4657 (2017)
- X. Wang, Q. Yang, Y. Cao, H. Hao, J. Zhou et al., Metallosurfactant ionogels in imidazolium and protic ionic liquids as precursors to synthesize nanoceria as catalase mimetics for the catalytic decomposition of H2O2. Chem. A Eur. J. 22(49), 17857–17865 (2016). https://doi.org/10.1002/chem.201603743
- N.V.S. Vallabani, S. Singh, Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech 8(6), 279 (2018). https://doi.org/10.1007/s13205-018-1286-z
- J. Mu, L. Zhang, M. Zhao, Y. Wang, Co3O4 nanoparticles as an efficient catalase mimic: Properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. J. Mol. Catal. A Chem. 378, 30–37 (2013). https://doi.org/10.1016/j.molcata.2013.05.016
- W. Zhang, J. Dong, Y. Wu, P. Cao, L. Song et al., Shape-dependent enzyme-like activity of Co3O4 nanoparticles and their conjugation with his-tagged EGFR single-domain antibody. Colloids Surf. B Biointerfaces 154, 55–62 (2017). https://doi.org/10.1016/j.colsurfb.2017.02.034
- Z. Chen, J.J. Yin, Y.T. Zhou, Y. Zhang, L. Song et al., Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5), 4001–4012 (2012). https://doi.org/10.1021/nn300291r
- W. Zhang, S. Hu, J.J. Yin, W. He, W. Lu et al., Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 138(18), 5860–5865 (2016). https://doi.org/10.1021/jacs.5b12070
- J. Mu, Y. Wang, M. Zhao, L. Zhang, Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 19(48), 2540–2542 (2012). https://doi.org/10.1039/C2CC17013B
- R. Singh, S. Singh, Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles. Colloids Surfaces B Biointerfaces 132, 78–84 (2015). https://doi.org/10.1016/j.colsurfb.2015.05.005
- R. Singh, S. Singh, Redox-dependent catalase mimetic cerium oxide-based nanozyme protect human hepatic cells from 3-AT induced acatalasemia. Colloids Surf. B Biointerfaces 175, 625–635 (2019). https://doi.org/10.1016/j.colsurfb.2018.12.042
- C. Muscoli, S. Cuzzocrea, D.P. Riley, J.L. Zweier, C. Thiemermann et al., On the selectivity of superoxide dismutase mimetics and its importance in pharmacological studies. Br. J. Pharmacol. 140(3), 445–460 (2003). https://doi.org/10.1038/sj.bjp.0705430
- S.L. Mcfadden, D. Ding, D. Salvemini, R.J. Salvi, M40403 , a superoxide dismutase mimetic , protects cochlear hair cells from gentamicin, but not cisplatin toxicity. 186, 46–54 (2003) https://doi.org/10.1016/S0041-008X(02)00017-0
- W. He, Y.T. Zhou, W.G. Wamer, X. Hu, X. Wu et al., Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomater. 34(3), 765–773 (2013). https://doi.org/10.1016/j.biomaterials.2012.10.010
- L. Yuan, S. Liu, W. Tu, Z. Zhang, J. Bao et al., Biomimetic superoxide dismutase stabilized by photopolymerization for superoxide anions biosensing and cell monitoring. Anal. Chem. 86(10), 4783–4790 (2014). https://doi.org/10.1021/ac403920q
- F. Dashtestani, H. Ghourchian, K. Eskandari, H.A. Rafiee-Pour, A superoxide dismutase mimic nanocomposite for amperometric sensing of superoxide anions. Microchim. Acta 182(5–6), 1045–1053 (2015). https://doi.org/10.1007/s00604-014-1424-1
- K. Kamada, N. Soh, Enzyme-mimetic activity of ce-intercalated titanate nanosheets. J. Phys. Chem. B 119(16), 5309–5314 (2015). https://doi.org/10.1021/jp512038x
- X. Shen, W. Liu, X. Gao, Z. Lu, X. Wu et al., Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J. Am. Chem. Soc. 137(50), 15882–15891 (2015). https://doi.org/10.1021/jacs.5b10346
- J. Mu, X. Zhao, J. Li, E.C. Yang, X.J. Zhao, Novel hierarchical NiO nanoflowers exhibiting intrinsic superoxide dismutase-like activity. J. Mater. Chem. B 4(31), 5217–5221 (2016). https://doi.org/10.1039/c6tb01390b
- E.G. Heckert, A.S. Karakoti, S. Seal, W.T. Self, The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29(18), 2705–2709 (2008). https://doi.org/10.1016/j.biomaterials.2008.03.014
- A.S. Karakoti, S. Singh, A. Kumar, M. Malinska, S.V.N.T. Kuchibhatla et al., PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Am. Chem. Soc. 131(40), 14144–14145 (2009)
- C. Korsvik, S. Patil, S. Seal, W.T. Self, Vacancy engineered ceria oxide nanoparticles catalyze superoxide dismutase activity. Chem. Commun. 10, 1056–1058 (2007). https://doi.org/10.1039/B615134E
- A. Dhall, W. Self, Cerium oxide nanoparticles: A brief review of their synthesis methods and biomedical applications. Antioxidants 7(8), 1–13 (2018). https://doi.org/10.3390/antiox7080097
- V. Baldim, F. Bedioui, N. Mignet, I. Margaill, J.F. Berret, The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale 10(15), 6971–6980 (2018). https://doi.org/10.1039/c8nr00325d
- S. Fernandez-Garcia, L. Jiang, M. Tinoco, A.B. Hungria, J. Han et al., Enhanced hydroxyl radical scavenging activity by doping lanthanum in ceria nanocubes. J. Phys. Chem. C 120(3), 1891–1901 (2016). https://doi.org/10.1021/acs.jpcc.5b09495
- M. Soh, D.-W. Kang, H.-G. Jeong, D. Kim, D.Y. Kim et al., Ceria-zirconia nanoparticles as an enhanced multi-antioxidant for sepsis treatment. Angew. Chem. Int. Ed. 129(38), 11557–11561 (2017). https://doi.org/10.1002/ange.201704904
- P. Jawaid, M.U. Rehman, Y. Yoshihisa, P. Li, Q.L. Zhao et al., Effects of SOD/catalase mimetic platinum nanoparticles on radiation-induced apoptosis in human lymphoma U937 cells. Apoptosis 19(6), 1006–1016 (2014). https://doi.org/10.1007/s10495-014-0972-5
- Y. Liu, H. Wu, M. Li, J.J. Yin, Z. Nie, PH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale 6(20), 11904–11910 (2014). https://doi.org/10.1039/c4nr03848g
- A.P.J. Krusic, E. Wasserman, P.N. Keizer, J.R. Morton, K.F. Preston, Radical Reactions of C60. Science 254(5035), 1183–1185 (1991). https://doi.org/10.1126/science.254.5035.1183
- L.L. Dugan, D.M. Turetsky, C. Du, D. Lobner, M. Wheeler et al., "Carboxyfullerenes as neuroprotective agents," in Natl.National Academy of Sciences of the United States of America, N. R. Cozzarelli, ed. (United States National Academy of Sciences, 1997), pp. 9434–9439. https://doi.org/10.1073/pnas.94.17.9434
- S.S. Ali, J.I. Hardt, K.L. Quick, J. Sook Kim-Han, B.F. Erlanger et al., A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic. Biol. Med. 37(8), 1191–1202 (2004). https://doi.org/10.1016/j.freeradbiomed.2004.07.002
- S.S. Ali, J.I. Hardt, L.L. Dugan, SOD Activity of carboxyfullerenes predicts their neuroprotective efficacy: a structure-activity study. Nanomedicine: Nanotechn. Biol. Med. 4(4), 283–294 (2008). https://doi.org/10.1016/j.nano.2008.05.003
- E. Ko, V.K. Tran, S.E. Son, W. Hur, H. Choi et al., Characterization of Au@PtNP/GO nanozyme and its application to electrochemical microfluidic devices for quantification of hydrogen peroxide. Sens. Actuators B Chem. 294, 166–176 (2019). https://doi.org/10.1016/j.snb.2019.05.051
- D. Duan, K. Fan, D. Zhang, S. Tan, M. Liang et al., Nanozyme-strip for rapid local diagnosis of Ebola. Biosens. Bioelectron. 74, 134–141 (2015). https://doi.org/10.1016/j.bios.2015.05.025
- T. Zhang, F. Tian, L. Long, J. Liu, X.C. Wu, Diagnosis-of-rubella-virus-using-antigenconjugated-aupt-nanorods-as-nanozyme-probe. Int. J. Nanomed. 13, 4795 (2018). https://doi.org/10.2147/IJN.S171429
- P. Weerathunge, R. Ramanathan, R. Shukla, T.K. Sharma, V. Bansal, Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal. Chem. 86(24), 11937–11941 (2014). https://doi.org/10.1021/ac5028726
- R. Jin, Z. Xing, D. Kong, X. Yan, F. Liu et al., Sensitive colorimetric sensor for point-of-care detection of acetylcholinesterase using cobalt oxyhydroxide nanoflakes. J. Mater. Chem. B 7(8), 1230–1237 (2019). https://doi.org/10.1039/c8tb02987c
- M.S. Kim, S.H. Kweon, S. Cho, S.S.A. An, M. Il Kim ET AL., Pt-decorated magnetic nanozymes for facile and sensitive point-of-care bioassay. ACS Appl. Mater. Interfaces 9(40), 35133–35140 (2017) https://doi.org/10.1021/acsami.7b12326
- M. Ali, M.A.U. Khalid, I. Shah, S.W. Kim, Y.S. Kim et al., Paper-based selective and quantitative detection of uric acid using citrate-capped Pt nanoparticles (PtNPs) as a colorimetric sensing probe through a simple and remote-based device. New J. Chem. 43(20), 7636–7645 (2019). https://doi.org/10.1039/c9nj01257e
- D. Kong, R. Jin, X. Zhao, H. Li, X. Yan et al., Protein-inorganic hybrid nanoflower-rooted agarose hydrogel platform for point-of-care detection of acetylcholine. ACS Appl. Mater. Interfaces 11(12), 11857–11864 (2019). https://doi.org/10.1021/acsami.8b21571
- C.N. Loynachan, M.R. Thomas, E.R. Gray, D.A. Richards, J. Kim et al., Platinum nanocatalyst amplification: redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range. ACS Nano 12(1), 279–288 (2018). https://doi.org/10.1021/acsnano.7b06229
- A. Li, X. Mu, T. Li, H. Wen, W. Li et al., Formation of porous Cu hydroxy double salt nanoflowers derived from metal-organic frameworks with efficient peroxidase-like activity for label-free detection of glucose. Nanoscale 10(25), 11948–11954 (2018). https://doi.org/10.1039/c8nr02832j
- N. Cheng, Y. Song, M.M.A. Zeinhom, Y.C. Chang, L. Sheng et al., Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl. Mater. Interfaces 9(46), 40671–40680 (2017). https://doi.org/10.1021/acsami.7b12734
- N. Cheng, C. Zhu, Y. Wang, D. Du, M.J. Zhu et al., Nanozyme enhanced colorimetric immunoassay for naked-eye detection of salmonella enteritidis. J. Anal. Test. 3(1), 99–106 (2019).https://doi.org/10.1007/s41664-018-0079-z
- S. Cho, S.M. Lee, H.Y. Shin, M.S. Kim, Y.H. Seo et al., Highly sensitive colorimetric detection of allergies based on an immunoassay using peroxidase-mimicking nanozymes. Analyst 143(5), 1182–1187 (2018). https://doi.org/10.1039/c7an01866e
- J. Han, L. Zhang, L. Hu, K. Xing, X. Lu et al., Nanozyme-based lateral flow assay for the sensitive detection of Escherichia coli O157:H7 in milk. J. Dairy Sci. 101(7), 5770–5779 (2018). https://doi.org/10.3168/jds.2018-14429
- M.K. Masud, S. Yadav, M.N. Islam, N.T. Nguyen, C. Salomon et al., Gold-loaded nanoporous ferric oxide nanocubes with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of autoantibody. Anal. Chem. 89(20), 11005–11013 (2017). https://doi.org/10.1021/acs.analchem.7b02880
- N. Lu, M. Zhang, L. Ding, J. Zheng, C. Zeng et al., Yolk-shell nanostructured Fe3O4@C magnetic nanoparticles with enhanced peroxidase-like activity for label-free colorimetric detection of H2O2 and glucose. Nanoscale 9(13), 4508–4515 (2017). https://doi.org/10.1039/c7nr00819h
- P. Wu, P. Ding, X. Ye, L. Li, X. He et al., One-pot synthesized Cu/Au/Pt trimetallic nanoparticles as a novel enzyme mimic for biosensing applications. RSC Adv. 9(26), 14982–14989 (2019). https://doi.org/10.1039/c9ra00603f
- H.Y. Shin, B.G. Kim, S. Cho, J. Lee, H. Bin Na et al., Visual determination of hydrogen peroxide and glucose by exploiting the peroxidase-like activity of magnetic nanoparticles functionalized with a poly(ethylene glycol) derivative. Microchim. Acta 184(7), 2115–2122 (2017). https://doi.org/10.1007/s00604-017-2198-z
- Q. Wang, L. Zhang, C. Shang, Z. Zhang, S. Dong, Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose. Chem. Commun. 52(31), 5410–5413 (2016). https://doi.org/10.1039/c6cc00194g
- L. Zhang, R. Huang, W. Liu, H. Liu, X. Zhou et al., Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens. Bioelectron. 86, 1–7 (2016). https://doi.org/10.1016/j.bios.2016.05.100
- M.X. Guo, Y.F. Li, Cu (II)-based metal-organic xerogels as a novel nanozyme for colorimetric detection of dopamine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 207, 236–241 (2019) https://doi.org/10.1016/j.saa.2018.09.038
- W. Li, G.C. Fan, F. Gao, Y. Cui, W. Wang et al., High-activity Fe3O4 nanozyme as signal amplifier: A simple, low-cost but efficient strategy for ultrasensitive photoelectrochemical immunoassay. Biosens. Bioelectron. 127, 64–71 (2019). https://doi.org/10.1016/j.bios.2018.11.043
- L. Tian, J. Qi, O. Oderinde, C. Yao, W. Song et al., Planar intercalated copper (II) complex molecule as small molecule enzyme mimic combined with Fe3O4 nanozyme for bienzyme synergistic catalysis applied to the microRNA biosensor. Biosens. Bioelectron. 110, 110–117 (2018). https://doi.org/10.1016/j.bios.2018.03.045
- C.W. Lien, B. Unnikrishnan, S.G. Harroun, C.M. Wang, J.Y. Chang et al., Visual detection of cyanide ions by membrane-based nanozyme assay. Biosens. Bioelectron. 102, 510–517 (2018). https://doi.org/10.1016/j.bios.2017.11.063
- J. Liu, L. Meng, Z. Fei, P.J. Dyson, X. Jing et al., MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens. Bioelectron. 90, 69–74 (2017). https://doi.org/10.1016/j.bios.2016.11.046
- S. Singh, P. Tripathi, N. Kumar, S. Nara, Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme. Biosens. Bioelectron. 92, 280–286 (2017).https://doi.org/10.1016/j.bios.2016.11.011
- Y. Zhuang, X. Zhang, Q. Chen, S. Li, H. Cao et al., Co3O4/CuO hollow nanocage hybrids with high oxidase-like activity for biosensing of dopamine. Mater. Sci. Eng. C 94, 858–866 (2019). https://doi.org/10.1016/j.msec.2018.10.038
- W. Zhang, X. Niu, X. Li, Y. He, H. Song et al., A smartphone-integrated ready-to-use paper-based sensor with mesoporous carbon-dispersed Pd nanoparticles as a highly active peroxidase mimic for H2O2 detection. Sens. Actuators B Chem. 265, 412–420 (2018). https://doi.org/10.1016/j.snb.2018.03.082
- Z. Gao, H. Ye, D. Tang, J. Tao, S. Habibi et al., Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett. 17(9), 5572–5579 (2017). https://doi.org/10.1021/acs.nanolett.7b02385
- X. Zhu, J. Huang, J. Liu, H. Zhang, J. Jiang et al., A dual enzyme-inorganic hybrid nanoflower incorporated microfluidic paper-based analytic device (μPAD) biosensor for sensitive visualized detection of glucose. Nanoscale 9(17), 5658–5663 (2017). https://doi.org/10.1039/c7nr00958e
- L. Huang, D.W. Sun, H. Pu, Q. Wei, L. Luo et al., A colorimetric paper sensor based on the domino reaction of acetylcholinesterase and degradable Γ-MnOOH nanozyme for sensitive detection of organophosphorus pesticides. Sens. Actuators B Chem. 290, 573–580 (2019). https://doi.org/10.1016/j.snb.2019.04.020
- N. Alizadeh, A. Salimi, R. Hallaj, F. Fathi, F. Soleimani, CuO/WO3 nanoparticles decorated graphene oxide nanosheets with enhanced peroxidase-like activity for electrochemical cancer cell detection and targeted therapeutics. Mater. Sci. Eng. C 99, 1374–1383 (2019). https://doi.org/10.1016/j.msec.2019.02.048
- N. Alizadeh, A. Salimi, R. Hallaj, Mimicking peroxidase-like activity of Co3O4-CeO2 nanosheets integrated paper-based analytical devices for detection of glucose with smartphone. Sens. Actuators B Chem. 288, 44–52 (2019). https://doi.org/10.1016/j.snb.2019.01.068
- N. Alizadeh, A. Salimi, R. Hallaj, Mimicking peroxidase activity of Co2(OH)2CO3-CeO2 nanocomposite for smartphone based detection of tumor marker using paper-based microfluidic immunodevice. Talanta 189, 100–110 (2018). https://doi.org/10.1016/j.talanta.2018.06.034
- L. Huang, K. Chen, W. Zhang, W. Zhu, X. Liu et al., ssDNA-tailorable oxidase-mimicking activity of spinel MnCo2O4 for sensitive biomolecular detection in food sample. Sens. Actuators B Chem. 269, 79–87 (2018). https://doi.org/10.1016/j.snb.2018.04.150
- B. Liu, Z. Sun, P.J.J. Huang, J. Liu, Hydrogen peroxide displacing DNA from nanoceria: Mechanism and detection of glucose in serum. J. Am. Chem. Soc. 137(3), 1290–1295 (2015). https://doi.org/10.1021/ja511444e
- G. Vinothkumar, A.I. Lalitha, K. Suresh Babu, Cerium phosphate-cerium oxide heterogeneous composite nanozymes with enhanced peroxidase-like biomimetic activity for glucose and hydrogen peroxide sensing. Inorg. Chem. 58(1), 349–358 (2019) https://doi.org/10.1021/acs.inorgchem.8b02423
- T. Li, P. Hu, J. Li, P. Huang, W. Tong, C. Gao, Enhanced peroxidase-like activity of Fe@PCN-224 nanoparticles and their applications for detection of H2O2and glucose. Colloids Surfaces A Physicochem. Eng. Asp. 577, 456–463 (2019). https://doi.org/10.1016/j.colsurfa.2019.06.012
- N. Nandu, M. Salih Hizir, N.M. Roberston, B. Ozturk, M.V. Yigit, Masking the peroxidase-like activity of the molybdenum disulfide nanozyme enables label-free lipase detection. ChemBioChem 20(14), 1861–1867 (2019). https://doi.org/10.1002/cbic.201800471
- A. Hayat, J. Cunningham, G. Bulbul, S. Andreescu, Evaluation of the oxidase like activity of nanoceria and its application in colorimetric assays. Anal. Chim. Acta 885, 140–147 (2015). https://doi.org/10.1016/j.aca.2015.04.052
- G.L. Wang, L.Y. Jin, X.M. Wu, Y.M. Dong, Z.J. Li, Label-free colorimetric sensor for mercury(II) and DNA on the basis of mercury(II) switched-on the oxidase-mimicking activity of silver nanoclusters. Anal. Chim. Acta 871, 1–8 (2015). https://doi.org/10.1016/j.aca.2015.02.027
- H. Yang, Y. Xiong, P. Zhang, L. Su, F. Ye, Colorimetric detection of mercury ions using MnO2 nanorods as enzyme mimics. Anal. Methods 7(11), 4596–4601 (2015). https://doi.org/10.1039/c5ay00633c
- G.L. Wang, X.F. Xu, L.H. Cao, C.H. He, Z.J. Li et al., Mercury(ii)-stimulated oxidase mimetic activity of silver nanoparticles as a sensitive and selective mercury(ii) sensor. RSC Adv. 4(12), 5867–5872 (2014). https://doi.org/10.1039/c3ra45226c
- Z. Zhu, Z. Guan, S. Jia, Z. Lei, S. Lin et al., Au@pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. Angew. Chem. Int. Ed. 53(46), 12503–12507 (2014). https://doi.org/10.1002/anie.201405995
- Y. Zhao, M. Yang, Q. Fu, H. Ouyang, W. Wen et al., A nanozyme- and ambient light-based smartphone platform for simultaneous detection of dual biomarkers from exposure to organophosphorus pesticides. Anal. Chem. 90(12), 7391–7398 (2018). https://doi.org/10.1021/acs.analchem.8b00837
- Z. Yu, Y. Tang, G. Cai, R. Ren, D. Tang, Paper electrode-based flexible pressure sensor for Point-of-Care immunoassay with digital multimeter. Anal. Chem. 91(2), 1222–1226 (2019). https://doi.org/10.1021/acs.analchem.8b04635
- A. Pratsinis, G.A. Kelesidis, S. Zuercher, F. Krumeich, S. Bolisetty et al., Enzyme-mimetic antioxidant luminescent nanoparticles for highly sensitive hydrogen peroxide biosensing. ACS Nano 11(12), 12210–12218 (2017). https://doi.org/10.1021/acsnano.7b05518
- G.L. Wang, X.Y. Zhu, H.J. Jiao, Y.M. Dong, Z.J. Li, Ultrasensitive and dual functional colorimetric sensors for mercury (II) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles. Biosens. Bioelectron. 31(1), 337–342 (2012). https://doi.org/10.1016/j.bios.2011.10.041
- C.W. Tseng, H.Y. Chang, J.Y. Chang, C.C. Huang, Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nanoscale 4(21), 6823–6830 (2012). https://doi.org/10.1039/c2nr31716h
- W. Wang, X. Jiang, K. Chen, Iron phosphate microflowers as peroxidase mimic and superoxide dismutase mimic for biocatalysis and biosensing. Chem. Commun. 48(58), 7289–7291 (2012). https://doi.org/10.1039/c2cc32429f
- L.L. Wu, L.Y. Wang, Z.J. Xie, F. Xue, C.F. Peng, Colorimetric detection of Hg2+ based on inhibiting the peroxidase-like activity of DNA-Ag/Pt nanoclusters. RSC Adv. 6(79), 75384–75389 (2016). https://doi.org/10.1039/c6ra12597b
- Y.W. Wang, S. Tang, H.H. Yang, H. Song, A novel colorimetric assay for rapid detection of cysteine and Hg2+ based on gold clusters. Talanta 146, 71–74 (2016). https://doi.org/10.1016/j.talanta.2015.08.015
- S. Zhang, D. Zhang, X. Zhang, D. Shang, Z. Xue et al., Ultratrace naked-eye colorimetric detection of Hg2+ in wastewater and serum utilizing mercury-stimulated peroxidase mimetic activity of reduced graphene oxide-PEI-Pd nanohybrids. Anal. Chem. 89(6), 3538–3544 (2017). https://doi.org/10.1021/acs.analchem.6b04805
- D. Zhao, C. Chen, L. Lu, F. Yang, X. Yang, A label-free colorimetric sensor for sulfate based on the inhibition of peroxidase-like activity of cysteamine-modified gold nanoparticles. Sens. Actuators B Chem. 215, 437–444 (2015). https://doi.org/10.1016/j.snb.2015.04.010
- L. Zhang, L. Li, Colorimetric thrombin assay using aptamer-functionalized gold nanoparticles acting as a peroxidase mimetic. Microchim. Acta 183(1), 485–490 (2016). https://doi.org/10.1007/s00604-015-1674-6
- H. Yang, J. Zha, P. Zhang, Y. Xiong, L. Su et al., Sphere-like CoS with nanostructures as peroxidase mimics for colorimetric determination of H2O2 and mercury ions. RSC Adv. 6(71), 66963–66970 (2016). https://doi.org/10.1039/c6ra16619a
- R.S. Li, H. Liu, B. Bin Chen, H.Z. Zhang, C.Z. Huang et al., Stable gold nanoparticles as a novel peroxidase mimic for colorimetric detection of cysteine. Anal. Methods 8(11), 2494–2501 (2016) https://doi.org/10.1039/c6ay00367b
- Z. Chen, C. Zhang, Q. Gao, G. Wang, L. Tan et al., Colorimetric signal amplification assay for mercury ions based on the catalysis of gold amalgam. Anal. Chem. 87(21), 10963–10968 (2015). https://doi.org/10.1021/acs.analchem.5b02812
- C.W. Lien, Y.T. Tseng, C.C. Huang, H.T. Chang, Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions. Anal. Chem. 86(4), 2065–2072 (2014). https://doi.org/10.1021/ac4036789
- J. Zhao, Y. Wu, H. Tao, H. Chen, W. Yang et al., Colorimetric detection of streptomycin in milk based on peroxidase-mimicking catalytic activity of gold nanoparticles. RSC Adv. 7(61), 38471–38478 (2017). https://doi.org/10.1039/c7ra06434a
- L.Y. Chau, Q. He, A. Qin, S.P. Yip, T.M.H. Lee, Platinum nanoparticles on reduced graphene oxide as peroxidase mimetics for the colorimetric detection of specific DNA sequence. J. Mater. Chem. B 4(23), 4076–4083 (2016). https://doi.org/10.1039/c6tb00741d
- Z. Chen, L. Tan, S. Wang, Y. Zhang, Y. Li, Sensitive colorimetric detection of K(I) using catalytically active gold nanoparticles triggered signal amplification. Biosens. Bioelectron. 79, 749–757 (2016). https://doi.org/10.1016/j.bios.2015.12.110
- S.R. Ahmed, J. Kim, T. Suzuki, J. Lee, E.Y. Park, Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens. Bioelectron. 85, 503–508 (2016). https://doi.org/10.1016/j.bios.2016.05.050
- H. Wei, E. Wang, ChemInform Abstract: Nanomaterials with enzyme-like characteristics (Nanozymes): next-generation artificial enzymes. ChemInform 44(38), (2013). https://doi.org/10.1002/chin.201338273
- D. Quesada-González, A. Merkoçi, Nanomaterial-based devices for point-of-care diagnostic applications. Chem. Soc. Rev. 47(13), 4697–4709 (2018). https://doi.org/10.1039/c7cs00837f
- M. Kim, M.S. Kim, S.H. Kweon, S. Jeong, M.H. Kang et al., Simple and sensitive Point-of-Care bioassay system based on hierarchically structured enzyme-mimetic nanoparticles. Adv. Healthc. Mater. 4(9), 1311–1316 (2015). https://doi.org/10.1002/adhm.201500173
- S. Smith, J.G. Korvink, D. Mager, K. Land, The potential of paper-based diagnostics to meet the ASSURED criteria. RSC Adv. 8(59), 34012–34034 (2018). https://doi.org/10.1039/C8RA06132G
- Y. Gao, Y. Zhou, R. Chandrawati, Metal and metal oxide nanoparticles to enhance the performance of enzyme-linked immunosorbent assay (ELISA). ACS Appl. Nano Mater. 3(1), 1–21 (2020). https://doi.org/10.1021/acsanm.9b02003
- D.W. Bradbury, M. Azimi, A.J. Diaz, A.A. Pan, C.H. Falktoft et al., Automation of biomarker preconcentration, capture, and nanozyme signal enhancement on paper-based devices. Anal. Chem. 91(18), 12046–12054 (2019). https://doi.org/10.1021/acs.analchem.9b03105
- R.G. Mahmudunnabi, F.Z. Farhana, N. Kashaninejad, S.H. Firoz, Y.B. Shim et al., Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 145(13), 4398–4420 (2020). https://doi.org/10.1039/d0an00558d
- M. Ornatska, E. Sharpe, D. Andreescu, S. Andreescu, Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal. Chem. 83(11), 4273–4280 (2011). https://doi.org/10.1021/ac200697y
- H.V. Tran, T.V. Nguyen, N.D. Nguyen, B. Piro, C.D. Huynh, A nanocomposite prepared from FeOOH and N-doped carbon nanosheets as a peroxidase mimic, and its application to enzymatic sensing of glucose in human urine. Microchim. Acta 185(5), 1–10 (2018). https://doi.org/10.1007/s00604-018-2804-8
- Z. Zhang, Z. Wang, X. Wang, X. Yang, Magnetic nanoparticle-linked colorimetric aptasensor for the detection of thrombin. Sens. Actuators B Chem. 147(2), 428–433 (2010). https://doi.org/10.1016/j.snb.2010.02.013
- H. Su, H. Zhao, F. Qiao, L. Chen, R. Duan et al., Colorimetric detection of Escherichia coli O157:H7 using functionalized Au@Pt nanoparticles as peroxidase mimetics. Analyst 138(10), 3026–3031 (2013). https://doi.org/10.1039/c3an00026e
- A. Jeanson, J.M. Cloes, M. Bouchet, B. Rentier, Comparison of conjugation procedures for the preparation of monoclonal antibody-enzyme conjugates. J. Immunol. Methods 111(2), 261–270 (1988). https://doi.org/10.1016/0022-1759(88)90135-4
- J. Xie, M.Q. Tang, J. Chen, Y.H. Zhu, C.B. Lei et al., A sandwich ELISA-like detection of C-reactive protein in blood by citicoline-bovine serum albumin conjugate and aptamer-functionalized gold nanoparticles nanozyme. Talanta 217, 121070 (2020). https://doi.org/10.1016/j.talanta.2020.121070
- D. Ou, D. Sun, X. Lin, Z. Liang, Y. Zhong et al., A dual-aptamer-based biosensor for specific detection of breast cancer biomarker HER2 via flower-like nanozymes and DNA nanostructures. J. Mater. Chem. B 7(23), 3661–3669 (2019). https://doi.org/10.1039/c9tb00472f
- W. Zheng, H. Li, W. Chen, J. Ji, X. Jiang, Recyclable colorimetric detection of trivalent cations in aqueous media using zwitterionic gold nanoparticles. Anal. Chem. 88(7), 4140–4146 (2016). https://doi.org/10.1021/acs.analchem.6b00501
- H. Aldewachi, T. Chalati, M.N. Woodroofe, N. Bricklebank, B. Sharrack et al., Gold nanoparticle-based colorimetric biosensors. Nanoscale 10(1), 18–33 (2018). https://doi.org/10.1039/c7nr06367a
- Y. Li, Z. Wang, L. Sun, L. Liu, C. Xu et al., Nanoparticle-based sensors for food contaminants. TrAC - Trends Anal. Chem. 113, 74–83 (2019). https://doi.org/10.1016/j.trac.2019.01.012
- T. Lin, Y. Qin, Y. Huang, R. Yang, L. Hou et al., A label-free fluorescence assay for hydrogen peroxide and glucose based on the bifunctional MIL-53(Fe) nanozyme. Chem. Commun. 54(14), 1762–1765 (2018). https://doi.org/10.1039/c7cc09819g
- Y. He, B. Xu, W. Li, H. Yu, Silver nanoparticle-based chemiluminescent sensor array for pesticide discrimination. J. Agric. Food Chem. 63(11), 2930–2934 (2015). https://doi.org/10.1021/acs.jafc.5b00671
- L. He, Z.W. Jiang, W. Li, C.M. Li, C.Z. Huang et al., In situ synthesis of gold nanoparticles/metal-organic gels hybrids with excellent peroxidase-like activity for sensitive chemiluminescence detection of organophosphorus pesticides. ACS Appl. Mater. Interfaces 10(34), 28868–28876 (2018). https://doi.org/10.1021/acsami.8b08768
- R. Wang, A.J. Wang, W.D. Liu, P.X. Yuan, Y. Xue et al., A novel label-free electrochemical immunosensor for ultra-sensitively detecting prostate specific antigen based on the enhanced catalytic currents of oxygen reduction catalyzed by core-shell Au@Pt nanocrystals. Biosens. Bioelectron. 102, 276–281 (2018). https://doi.org/10.1016/j.bios.2017.11.041
- R. Wang, W.D. Liu, A.J. Wang, Y. Xue, L. Wu et al., A new label-free electrochemical immunosensor based on dendritic core-shell AuPd@Au nanocrystals for highly sensitive detection of prostate specific antigen. Biosens. Bioelectron. 99, 458–463 (2018). https://doi.org/10.1016/j.bios.2017.08.010
- X. Zheng, L. Li, K. Cui, Y. Zhang, L. Zhang et al., Ultrasensitive enzyme-free biosensor by coupling cyclodextrin functionalized au nanoparticles and high-performance Au-paper electrode. ACS Appl. Mater. Interfaces 10(4), 3333–3340 (2018). https://doi.org/10.1021/acsami.7b17037
- M. Zarei, Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. TrAC - Trends Anal. Chem. 91, 26–41 (2017). https://doi.org/10.1016/j.trac.2017.04.001
- A.C. Sun, D.A. Hall, Point-of-Care Smartphone-based Electrochemical Biosensing. Electroanalysis 31(1), 2–16 (2019). https://doi.org/10.1002/elan.201800474
- K. Baryeh, S. Takalkar, M. Lund, G. Liu, Introduction to Medical Biosensors for Point of Care Applications. Medical Biosensors for Point of Care (POC) Appl. 3–25 (2017). https://doi.org/10.1016/B978-0-08-100072-4.00001-0
- T. Mahmoudi, M. de la Guardia, B. Shirdel, A. Mokhtarzadeh, B. Baradaran, Recent advancements in structural improvements of lateral flow assays towards point-of-care testing. TrAC - Trends Anal. Chem. 116, 13–30 (2019). https://doi.org/10.1016/j.trac.2019.04.016
- J. Li, J. Hu, Z. Wang, Gold nanoparticles with special shapes: controlled synthesis, surface-enhanced raman scattering, and the application in biodetection. Sensors 7(12), 3299–3311 (2007). https://doi.org/10.3390/s7123299
- W. Zhou, X. Gao, D. Liu, X. Chen, Gold Nanoparticles for in Vitro Diagnostics. Chem. Rev. 115(19), 10575–10636 (2015). https://doi.org/10.1021/acs.chemrev.5b00100
- J. Lou-Franco, B. Das, C. Elliott, C. Cao, Gold Nanozymes: From concept to biomedical applications. Nano-Micro Lett. 13(1), 10 (2021). https://doi.org/10.1007/s40820-020-00532-z
- N. Lopez, T.V.W. Janssens, B.S. Clausen, Y. Xu, M. Mavrikakis et al., On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 223(1), 232–235 (2004). https://doi.org/10.1016/j.jcat.2004.01.001
- F. Vigneron, V. Caps, Evolution des méthodes chimiques de préparation des catalyseurs d’oxydation à l’or. Comptes Rendus Chim. 19(1–2), 192–198 (2016). https://doi.org/10.1016/j.crci.2015.11.015
- M.C. Saint-Lager, I. Laoufi, A. Bailly, O. Robach, S. Garaudée et al., Catalytic properties of supported gold nanoparticles: New insights into the size-activity relationship gained from in operando measurements. Faraday Discuss. 152, 253–265 (2011). https://doi.org/10.1039/c1fd00028d
- S. Biswas, P. Tripathi, N. Kumar, S. Nara, Gold nanorods as peroxidase mimetics and its application for colorimetric biosensing of malathion. Sens. Actuators B Chem. 231, 584–592 (2016). https://doi.org/10.1016/j.snb.2016.03.066
- C. McVey, N. Logan, N.T.K. Thanh, C. Elliott, C. Cao, Unusual switchable peroxidase-mimicking nanozyme for the determination of proteolytic biomarker. Nano Res. 12(3), 509–516 (2019). https://doi.org/10.1007/s12274-018-2241-3
- G. Darabdhara, J. Bordoloi, P. Manna, M.R. Das, Biocompatible bimetallic Au-Ni doped graphitic carbon nitride sheets: A novel peroxidase-mimicking artificial enzyme for rapid and highly sensitive colorimetric detection of glucose. Sens. Actuators B Chem. 285, 277–290 (2019). https://doi.org/10.1016/j.snb.2019.01.048
- N.R. Vinita, R. Nirala, Prakash, One step synthesis of AuNPs@MoS2-QDs composite as a robust peroxidase- mimetic for instant unaided eye detection of glucose in serum, saliva and tear. Sens. Actuators B Chem. 263, 109–119 (2018). https://doi.org/10.1016/j.snb.2018.02.085
- W. Li, J. Wang, J. Zhu, Y.Q. Zheng, Co3O4 nanocrystals as an efficient catalase mimic for the colorimetric detection of glutathione. J. Mater. Chem. B 6(42), 6858–6864 (2018). https://doi.org/10.1039/c8tb01948g
- X. Liu, X. Wang, Q. Han, C. Qi, C. Wang et al., Facile synthesis of IrO2 rGO nanocomposites with high peroxidase-like activity for sensitive colorimetric detection of low weight biothiols. Talanta 203, 227–234 (2019) https://doi.org/10.1016/j.talanta.2019.05.070
- K.N. Han, J.S. Choi, J. Kwon, Gold nanozyme-based paper chip for colorimetric detection of mercury ions. Sci. Rep. 7(1), 1–7 (2017). https://doi.org/10.1038/s41598-017-02948-x
- N. Logan, C. McVey, C. Elliott, C. Cao, Amalgamated gold-nanoalloys with enhanced catalytic activity for the detection of mercury ions (Hg2+) in seawater samples. Nano Res. 13(4), 989–998 (2020). https://doi.org/10.1007/s12274-020-2731-y
- L. Hedstrom, Enzyme specificity and selectivity. Encycl. Life Sci. 1–7 (2001) https://doi.org/10.1038/npg.els.0000716
- Z. Gao, M. Xu, M. Lu, G. Chen, D. Tang, Urchin-like (gold core)@(platinum shell) nanohybrids: A highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay. Biosens. Bioelectron. 70, 194–201 (2015). https://doi.org/10.1016/j.bios.2015.03.039
- T. Jiang, Y. Song, D. Du, X. Liu, Y. Lin, Detection of p53 protein based on mesoporous Pt-Pd nanoparticles with enhanced peroxidase-like catalysis. ACS Sensors 1(6), 717–724 (2016). https://doi.org/10.1021/acssensors.6b00019
- S. Ge, M. Sun, W. Liu, S. Li, X. Wang et al., Disposable electrochemical immunosensor based on peroxidase-like magnetic silica-graphene oxide composites for detection of cancer antigen 153. Sens. Actuators B Chem. 192, 317–326 (2014). https://doi.org/10.1016/j.snb.2013.10.127
- W. Xu, L. Jiao, H. Yan, Y. Wu, L. Chen et al., Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl. Mater. Interfaces 11(25), 22096–22101 (2019). https://doi.org/10.1021/acsami.9b03004
- M. Liu, Z. Li, Y. Li, J. Chen, Q. Yuan, Self-assembled nanozyme complexes with enhanced cascade activity and high stability for colorimetric detection of glucose. Chinese Chem. Lett. 30(5), 1009–1012 (2019). https://doi.org/10.1016/j.cclet.2018.12.021
- A.S. John, C. P Price, Existing and emerging technologies for point-of-care testing. Clin. Biochem. Rev. 35(3), 155–167 (2014). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204237/
- X. Zhang, D. Wu, X. Zhou, Y. Yu, J. Liu et al., Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC - Trends Anal. Chem. 121, (2019). https://doi.org/10.1016/j.trac.2019.115668
- C.F. Fronczek, T.S. Park, D.K. Harshman, A.M. Nicolini, J.Y. Yoon, Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Adv. 4(22), 11103–11110 (2014). https://doi.org/10.1039/c3ra47688j
- P.S. Liang, T.S. Park, J.Y. Yoon, Rapid and reagentless detection of microbial contamination within meat utilizing a smartphone-based biosensor. Sci. Rep. 4, 4–11 (2014). https://doi.org/10.1038/srep05953
- A.M. Nicolini, C.F. Fronczek, J.Y. Yoon, Droplet-based immunoassay on a “sticky” nanofibrous surface for multiplexed and dual detection of bacteria using smartphones. Biosens. Bioelectron. 67, 560–569 (2015). https://doi.org/10.1016/j.bios.2014.09.040
- T.S. Park, J.Y. Yoon, Smartphone detection of Escherichia coli from field water samples on paper microfluidics. IEEE Sens. J. 15(3), 1902–1907 (2015). https://doi.org/10.1109/JSEN.2014.2367039
- J.X.H. Wong, F.S.F. Liu, H.Z. Yu, Mobile app-based quantitative scanometric analysis. Anal. Chem. 86(24), 11966–11971 (2014). https://doi.org/10.1021/ac5035727
- D. Zhang, Q. Liu, Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 75, 273–284 (2016). https://doi.org/10.1016/j.bios.2015.08.037
- W.L. Hsu, C.Y. Huang, Y.P. Hsu, T.L. Hwang, S.H. Chang et al., On-skin glucose-biosensing and on-demand insulin-zinc hexamers delivery using microneedles for syringe-free diabetes management. Chem. Eng. J. 398, 125536 (2020). https://doi.org/10.1016/j.cej.2020.125536
- R. Guo, S. Wang, F. Huang, Q. Chen, Y. Li et al., Rapid detection of Salmonella Typhimurium using magnetic nanoparticle immunoseparation, nanocluster signal amplification and smartphone image analysis. Sens. Actuators B Chem. 284, 134–139 (2019). https://doi.org/10.1016/j.snb.2018.12.110
- E.F. O’Connor, S. Paterson, R. de la Rica, Naked-eye detection as a universal approach to lower the limit of detection of enzyme-linked immunoassays. Anal. Bioanal. Chem. 408(13), 3389–3393 (2016). https://doi.org/10.1007/s00216-016-9453-8
- G.A.R.Y. Suaifan, S. Alhogail, M. Zourob, Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosens. Bioelectron. 90, 230–237 (2017). https://doi.org/10.1016/j.bios.2016.11.047
- S. Tanaka, Y.V. Kaneti, R. Bhattacharjee, M.N. Islam, R. Nakahata et al., Mesoporous iron oxide synthesized using poly(styrene-b-acrylic acid-b-ethylene glycol) block copolymer micelles as templates for colorimetric and electrochemical detection of glucose. ACS Appl. Mater. Interfaces 10(1), 1039–1049 (2018). https://doi.org/10.1021/acsami.7b13835
- Y. Ding, M. Chen, K. Wu, M. Chen, L. Sun et al., High-performance peroxidase mimics for rapid colorimetric detection of H2O2 and glucose derived from perylene diimides functionalized Co3O4 nanoparticles. Mater. Sci. Eng. C 80, 558–565 (2017). https://doi.org/10.1016/j.msec.2017.06.020
- Y. Ding, B. Yang, H. Liu, Z. Liu, X. Zhang et al., FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sens. Actuators B Chem. 259, 775–783 (2018). https://doi.org/10.1016/j.snb.2017.12.115
- Y. Zhong, J. Yang, X. Yin, J. Zheng, N. Lu et al., Enhanced synergistic effects from multiple iron oxide nanoparticles encapsulated within nitrogen-doped carbon nanocages for simple and label-free visual detection of blood glucose. Nanotechnology 30(35), 355501 (2019). https://doi.org/10.1088/1361-6528/ab2026
- P. Zhang, D. Sun, A. Cho, S. Weon, S. Lee et al., Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 10(1), 1–14 (2019). https://doi.org/10.1038/s41467-019-08731-y
- R. Das, A. Dhiman, A. Kapil, V. Bansal, T.K. Sharma, Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold nanozyme. Anal. Bioanal. Chem. 411(6), 1229–1238 (2019). https://doi.org/10.1007/s00216-018-1555-z
- R. Tian, J. Sun, Y. Qi, B. Zhang, S. Guo et al., Influence of VO2 nanoparticle morphology on the colorimetric assay of H2O2 and glucose. Nanomaterials 7(11), 347 (2017). https://doi.org/10.3390/nano7110347
- M. Il Kim, J. Shim, T. Li, J. Lee, H.G. Park, Fabrication of nanoporous nanocomposites entrapping Fe3O4 magnetic nanoparticles and oxidases for colorimetric biosensing. Chem. A Eur. J. 17(38), 10700–10707 (2011) https://doi.org/10.1002/chem.201101191
- E. Pick, Y. Keisari, A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J. Immunol. Methods 38(1–2), 161–170 (1980). https://doi.org/10.1016/0022-1759(80)90340-3
- X. Chen, X. Zhou, J. Hu, Pt-DNA complexes as peroxidase mimetics and their applications in colorimetric detection of H2O2 and glucose. Anal. Methods 4(7), 2183–2187 (2012). https://doi.org/10.1039/c2ay25250c
- J. Sun, C. Li, Y. Qi, S. Guo, X. Liang, Optimizing colorimetric assay based on V2O5 nanozymes for sensitive detection of H2O2 and glucose. Sensors 16(4), (2016). https://doi.org/10.3390/s16040584
- H. Ye, K. Yang, J. Tao, Y. Liu, Q. Zhang et al., An enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers. ACS Nano 11(2), 2052–2059 (2017). https://doi.org/10.1021/acsnano.6b08232
- S. Luo, Y. Liu, H. Rao, Y. Wang, X. Wang, Fluorescence and magnetic nanocomposite Fe3O4@SiO2@Au MNPs as peroxidase mimetics for glucose detection. Anal. Biochem. 538, 26–33 (2017). https://doi.org/10.1016/j.ab.2017.09.006
- Q. Chang, L. Zhu, G. Jiang, H. Tang, Sensitive fluorescent probes for determination of hydrogen peroxide and glucose based on enzyme-immobilized magnetite/silica nanoparticles. Anal. Bioanal. Chem. 395(7), 2377–2385 (2009). https://doi.org/10.1007/s00216-009-3118-9
- N.R. Nirala, S. Pandey, A. Bansal, V.K. Singh, B. Mukherjee et al., Different shades of cholesterol: Gold nanoparticles supported on MoS2 nanoribbons for enhanced colorimetric sensing of free cholesterol. Biosens. Bioelectron. 74, 207–213 (2015). https://doi.org/10.1016/j.bios.2015.06.043
- L. Yang, X. Ren, F. Tang, L. Zhang, A practical glucose biosensor based on Fe3O4 nanoparticles and chitosan/nafion composite film. Biosens. Bioelectron. 25(4), 889–895 (2009). https://doi.org/10.1016/j.bios.2009.09.002
- L. Huang, W. Zhu, W. Zhang, K. Chen, J. Wang et al., Layered vanadium(IV) disulfide nanosheets as a peroxidase-like nanozyme for colorimetric detection of glucose. Microchim. Acta 185(1), 1–8 (2018). https://doi.org/10.1007/s00604-017-2552-1
- J. Wang, R. Huang, W. Qi, R. Su, B.P. Binks et al., Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl. Catal. B Environ. 254, 452–462 (2019). https://doi.org/10.1016/j.apcatb.2019.05.012
- N.V.S. Vallabani, A.S. Karakoti, S. Singh, Colloids and Surfaces B : Biointerfaces ATP-mediated intrinsic peroxidase-like activity of Fe3O4 -based nanozyme : One step detection of blood glucose at physiological pH. Colloids Surf. B Biointerfaces 153, 52–60 (2017). https://doi.org/10.1016/j.colsurfb.2017.02.004
- Y.L. Dong, H.G. Zhang, Z.U. Rahman, L. Su, X.J. Chen et al., Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4(13), 3969–3976 (2012). https://doi.org/10.1039/c2nr12109c
- Y.C. Yang, Y.T. Wang, W.L. Tseng, Amplified peroxidase-like activity in iron oxide nanoparticles using adenosine monophosphate: application to urinary protein sensing. ACS Appl. Mater. Interfaces 9(11), 10069–10077 (2017). https://doi.org/10.1021/acsami.6b15654
- Q. Liu, L. Zhang, H. Li, Q. Jia, Y. Jiang et al., One-pot synthesis of porphyrin functionalized γ-Fe2O3 nanocomposites as peroxidase mimics for H2O2 and glucose detection. Mater. Sci. Eng. C 55, 193–200 (2015). https://doi.org/10.1016/j.msec.2015.05.028
- L. Long, J. Liu, K. Lu, T. Zhang, Y. Xie et al., Highly sensitive and robust peroxidase like activity of Au Pt core shell nanorod antigen conjugates for measles virus diagnosis. J. Nanobiotechnol. 16(1), 46 (2018)
- L. Zhao, J. Wang, D. Su, Y. Zhang, H. Lu et al., The DNA controllable peroxidase mimetic activity of MoS2 nanosheets for constructing a robust colorimetric biosensor. Nanoscale 12(37), 19420–19428 (2020). https://doi.org/10.1039/d0nr05649a
- Y. Guo, L. Yan, R. Zhang, H. Ren, A. Liu, CoO-supported ordered mesoporous carbon nanocomposite based nanozyme with peroxidase-like activity for colorimetric detection of glucose. Process Biochem. 81, 92–98 (2019). https://doi.org/10.1016/j.procbio.2019.03.005
References
Organización Mundial de la Salud, The global burden of disease 2004. Updat. World Heal. Organ 146 (2004). ISBN 978 92 4 156371 0 https://apps.who.int/iris/bitstream/handle/10665/43942/9789241563710_eng.pdf
X. Gao, L.-P. Xu, S.-F. Zhou, G. Liu, X. Zhang, Recent advances in nanoparticles-based lateral flow biosensors. Am. J. Biomed. Sci. 6(1), 41–57 (2014). https://doi.org/10.5099/aj140100041
J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li et al., Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48(4), 1004–1076 (2019). https://doi.org/10.1039/c8cs00457a
J.B. Sumner, Enzyme urease. J. Biol. Chem. 69, 435–441 (1926). https://doi.org/10.4159/harvard.9780674366701.c115
H. Ohnuki, T. Saiki, A. Kusakari, H. Endo, M. Ichihara et al., Incorporation of glucose oxidase into langmuir-blodgett films based on prussian blue applied to amperometric glucose biosensor. Langmuir 23(8), 4675–4681 (2007). https://doi.org/10.1021/la063175g
M. Akin, M. Yuksel, C. Geyik, D. Odaci, A. Bluma et al., Alcohol biosensing by polyamidoamine (PAMAM)/cysteamine/alcohol oxidase-modified gold electrode. Biotechnol. Prog. 26(3), 896–906 (2010). https://doi.org/10.1002/btpr.372
A. Parra, E. Casero, L. Vázquez, F. Pariente, E. Lorenzo et al., Design and characterization of a lactate biosensor based on immobilized lactate oxidase onto gold surfaces. Anal. Chim. Acta 555(2), 308–315 (2006). https://doi.org/10.1016/j.aca.2005.09.025
F. Alam, S. RoyChoudhury, A.H. Jalal, Y. Umasankar, S. Forouzanfar et al., Lactate biosensing: The emerging point-of-care and personal health monitoring. Biosens. Bioelectron. 117, 818–829 (2018). https://doi.org/10.1016/j.bios.2018.06.054
M.A. Al-Rawhani, B.C. Cheah, A.I. Macdonald, C. Martin, C. Hu et al., A colorimetric cmos-based platform for rapid total serum cholesterol quantification. IEEE Sens. J. 17(2), 240–247 (2017). https://doi.org/10.1109/JSEN.2016.2629018
J. Yu, S. Wang, L. Ge, S. Ge, A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens. Bioelectron. 26(7), 3284–3289 (2011). https://doi.org/10.1016/j.bios.2010.12.044
A.-N. Kawde, X. Mao, H. Xu, Q. Zeng, Y. He et al., Moving enzyme-linked immunosorbent assay to the point-of-care dry-reagent strip biosensors. Am. J. Biomed. Sci. 2(1), 23–32 (2010). https://doi.org/10.5099/aj100100023
M. Pandiaraj, T. Madasamy, P.N. Gollavilli, M. Balamurugan, S. Kotamraju et al., Nanomaterial-based electrochemical biosensors for cytochrome c using cytochrome c reductase. Bioelectrochem 91, 1–7 (2013). https://doi.org/10.1016/j.bioelechem.2012.09.004
R. Breslow, L.E. Overman, An “artificial enzyme” combining a metal catalytic group and a hydrophobic binding cavity. J. Am. Chem. Soc. 92(4), 1075–1077 (1970). https://doi.org/10.1021/ja00707a062
L. Gao, X. Yan, Nanozymes: An emerging field bridging nanotechnology and biology. Sci. China Life Sci. 59(4), 400–402 (2016). https://doi.org/10.1007/s11427-016-5044-3
T. Kuwabara, M. Warashina, K. Taira, Allosterically controllable ribozymes with biosensor functions. Curr. Opin. Chem. Biol. 4(6), 669–677 (2000). https://doi.org/10.1016/S1367-5931(00)00150-2
M. Liu, D. Chang, Y. Li, Discovery and biosensing applications of diverse RNA-cleaving DNAzymes. Acc. Chem. Res. 50(9), 2273–2283 (2017). https://doi.org/10.1021/acs.accounts.7b00262
L. Ma, J. Liu., Catalytic nucleic acids: biochemistry, chemical biology, biosensors, and nanotechnology. iScience. 23(1): 100815 (2020)
M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 16(2), 405–408 (1987). https://doi.org/10.1246/cl.1987.405
F. Manea, F.B. Houillon, L. Pasquato, P. Scrimin, Nanozymes: gold-nanoparticle-based transphosphorylation catalysts. Angew. Chem. Int. Ed. 116(45), 6291–6295 (2004). https://doi.org/10.1002/ange.200460649
Y. Lin, J. Ren, X. Qu, Nano-gold as artificial enzymes: Hidden talents. Adv. Mater. 26(25), 4200–4217 (2014). https://doi.org/10.1002/adma.201400238
W. Song, B. Zhao, C. Wang, Y. Ozaki, X. Lu, Functional nanomaterials with unique enzyme-like characteristics for sensing applications. J. Mater. Chem. B 7(6), 850–875 (2019). https://doi.org/10.1039/c8tb02878h
D. Jiang, D. Ni, Z.T. Rosenkrans, P. Huang, X. Yan et al., Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 48(14), 3683–3704 (2019). https://doi.org/10.1039/c8cs00718g
Y. Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad et al., Surface-Enhanced Raman Scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11(6), 5558–5566 (2017). https://doi.org/10.1021/acsnano.7b00905
S. Mumtaz, A. Gupta, V.M. Rotello, I. Hussain, "Enzyme mimicking metal oxide nanoparticles for bacterial sensing (Conference Presentation)," in Enzyme Mimicking Metal Oxide Nanoparticles for Bacterial Sensing (2020), p. 26. https://doi.org/10.1117/12.2553208
K. Ngamdee, W. Ngeontae, Circular dichroism glucose biosensor based on chiral cadmium sulfide quantum dots. Sens. Actuators B Chem. 274, 402–411 (2018). https://doi.org/10.1016/j.snb.2018.08.005
H. Sun, A. Zhao, N. Gao, K. Li, J. Ren et al., Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem. Int. Ed. 54(24), 7176–7180 (2015). https://doi.org/10.1002/anie.201500626
T. Zhan, J. Kang, X. Li, L. Pan, G. Li et al., NiFe layered double hydroxide nanosheets as an efficiently mimic enzyme for colorimetric determination of glucose and H2O2. Sens. Actuators B Chem. 255, 2635–2642 (2018). https://doi.org/10.1016/j.snb.2017.09.074
C. Hou, Y. Wang, Q. Ding, L. Jiang, M. Li et al., Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: Mimetic peroxidase properties and colorimetric sensor. Nanoscale 7(44), 18770–18779 (2015). https://doi.org/10.1039/c5nr04994f
C.P. Liu, T.H. Wu, C.Y. Liu, K.C. Chen, Y.X. Chen et al., Self-supplying O2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small 13(26), 1–9 (2017). https://doi.org/10.1002/smll.201700278
S. Wang, R. Cazelles, W.C. Liao, M. Vázquez-González, A. Zoabi et al., Mimicking horseradish peroxidase and NADH peroxidase by heterogeneous Cu2+-modified graphene oxide nanoparticles. Nano Lett. 17(3), 2043–2048 (2017). https://doi.org/10.1021/acs.nanolett.7b00093
H.H. Deng, X.L. Lin, Y.H. Liu, K.L. Li, Q.Q. Zhuang et al., Chitosan-stabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nanoscale 9(29), 10292–10300 (2017). https://doi.org/10.1039/c7nr03399k
K. Korschelt, R. Ragg, C.S. Metzger, M. Kluenker, M. Oster et al., Glycine-functionalized copper (ii) hydroxide nanoparticleswith high intrinsic superoxide dismutase activity. Nanoscale 9(11), 3952–3960 (2017). https://doi.org/10.1039/C6NR09810J
Y. Tao, E. Ju, J. Ren, X. Qu, Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 27(6), 1097–1104 (2015). https://doi.org/10.1002/adma.201405105
A. Boujakhrout, P. Díez, P. Martínez-Ruíz, A. Sánchez, C. Parrado et al., Gold nanoparticles/silver-bipyridine hybrid nanobelts with tuned peroxidase-like activity. RSC Adv. 6(78), 74957–74960 (2016). https://doi.org/10.1039/c6ra12972b
P. Ni, H. Dai, Y. Wang, Y. Sun, Y. Shi et al., Visual detection of melamine based on the peroxidase-like activity enhancement of bare gold nanoparticles. Biosens. Bioelectron. 60, 286–291 (2014). https://doi.org/10.1016/j.bios.2014.04.029
M. Nasir, M.H. Nawaz, U. Latif, M. Yaqub, A. Hayat et al., An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim. Acta 184(2), 323–342 (2017). https://doi.org/10.1007/s00604-016-2036-8
Q. Wang, H. Wei, Z. Zhang, E. Wang, S. Dong, Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC - Trends Anal. Chem. 105, 218–224 (2018). https://doi.org/10.1016/j.trac.2018.05.012
S. Munir, A.A. Shah, H. Rahman, M. Bilal, M.S.R. Rajoka et al., Nanozymes for medical biotechnology and its potential applications in biosensing and nanotherapeutics. Biotechnol. Lett. 42(3), 357–373 (2020). https://doi.org/10.1007/s10529-020-02795-3
X. Wang, Y. Hu, H. Wei, Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 3(1), 41–60 (2016). https://doi.org/10.1039/c5qi00240k
R.M. Lequin, Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 51(12), 2415–2418 (2005). https://doi.org/10.1373/clinchem.2005.051532
S. Singh, Nanomaterials exhibiting enzyme-like properties (Nanozymes): Current advances and future perspectives. Front. Chem. 7, 46 (2019). https://doi.org/10.3389/fchem.2019.00046
A. Strzepa, K.A. Pritchard, B.N. Dittel, Myeloperoxidase: A new player in autoimmunity. Cell. Immunol. 317, 1–8 (2017). https://doi.org/10.1016/j.cellimm.2017.05.002
Q. Liu, A. Zhang, R. Wang, Q. Zhang, D. Cui, A Review on metal - and metal oxide - based nanozymes : properties, mechanisms, and applications. Nanomicro Lett. 13(1), 1–53 (2021). https://doi.org/10.1007/s40820-021-00674-8
H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 42(14), 6060–6093 (2013). https://doi.org/10.1039/c3cs35486e
M. Gao, A. Lyalin, T. Taketsugu, Role of the support effects on the catalytic activity of gold clusters: A density functional theory study. Catal 1(1), 18–39 (2011). https://doi.org/10.3390/catal1010018
S. Wang, W. Chen, A.L. Liu, L. Hong, H.H. Deng et al., Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem 13(5), 1199–1204 (2012). https://doi.org/10.1002/cphc.201100906
O. Adeniyi, S. Sicwetsha, P. Mashazi, nanomagnet-silica nanoparticles decorated with Au@Pd for enhanced peroxidase-like activity and colorimetric glucose sensing. ACS Appl. Mater. Interfaces 12(2), 1973–1987 (2020). https://doi.org/10.1021/acsami.9b15123
V. Leifeld, T.P.M. dos Santos, D.W. Zelinski, L. Igarashi-Mafra, Ferrous ions reused as catalysts in Fenton-like reactions for remediation of agro-food industrial wastewater. J. Environ. Manage. 222, 284–292 (2018). https://doi.org/10.1016/j.jenvman.2018.05.087
J.P. Kehrer, The Haber-Weiss reaction and mechanisms of toxicity. Toxicol. 149(1), 43–50 (2000). https://doi.org/10.1016/S0300-483X(00)00231-6
L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2(9), 577–583 (2007). https://doi.org/10.1038/nnano.2007.260
L. Gao, K. Fan, X. Yan, Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics 7(13), 3207–3227 (2017). https://doi.org/10.7150/thno.19738
H. Wei, E. Wang, Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 80(6), 2250–2254 (2008). https://doi.org/10.1021/ac702203f
J. Feng, H. Wang, Z. Ma, Ultrasensitive amperometric immunosensor for the prostate specific antigen by exploiting a Fenton reaction induced by a metal-organic framework nanocomposite of type Au/Fe-MOF with peroxidase mimicking activity. Microchim. Acta 187(1), (2020). https://doi.org/10.1007/s00604-019-4075-4
N. Cheng, J.C. Li, D. Liu, Y. Lin, D. Du, Single-Atom Nanozyme Based on Nanoengineered Fe–N–C Catalyst with Superior Peroxidase-Like Activity for Ultrasensitive Bioassays. Small 15(48), 1–7 (2019). https://doi.org/10.1002/smll.201901485
Z. Dai, S. Liu, J. Bao, H. Ju, Nanostruetured FeS as a mimic peroxidase for biocatalysis and biosensing. Chem. - A Eur. J. 15(17), 4321–4326 (2009). https://doi.org/10.1002/chem.200802158
L. Wu, G. Wan, N. Hu, Z. He, S. Shi et al., Synthesis of porous CoFe2O4 and its application as a peroxidase mimetic for colorimetric detection of H2O2 and organic pollutant degradation. Nanomater. (2018) https://doi.org/10.3390/nano8070451
H. Ouyang, X. Tu, Z. Fu, W. Wang, S. Fu et al., Colorimetric and chemiluminescent dual-readout immunochromatographic assay for detection of pesticide residues utilizing g-C3N4/BiFeO3 nanocomposites. Biosens. Bioelectron. 106, 43–49 (2018). https://doi.org/10.1016/j.bios.2018.01.033
A.K. Dutta, S.K. Maji, D.N. Srivastava, A. Mondal, P. Biswas et al., Synthesis of FeS and FeSe nanoparticles from a single source precursor: A study of their photocatalytic activity, peroxidase-like behavior, and electrochemical sensing of H2O2. ACS Appl. Mater. Interfaces 4(4), 1919–1927 (2012). https://doi.org/10.1021/am300408r
J. Mu, Y. Wang, M. Zhao, L. Zhang, Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 48(19), 2540–2542 (2012). https://doi.org/10.1039/c2cc17013b
J. Yin, H. Cao, Y. Lu, Self-assembly into magnetic Co3O4 complex nanostructures as peroxidase. J. Mater. Chem. 22(2), 527–534 (2012). https://doi.org/10.1039/c1jm14253d
R. André, F. Natálio, M. Humanes, J. Leppin, K. Heinze et al., V2O5 nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater. 21(3), 501–509 (2011). https://doi.org/10.1002/adfm.201001302
F. Natalio, R. André, A.F. Hartog, B. Stoll, K.P. Jochum et al., Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 7(8), 530–535 (2012). https://doi.org/10.1038/nnano.2012.91
B.R. Cuenya, Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12), 3127–3150 (2010). https://doi.org/10.1016/j.tsf.2010.01.018
Y. Jv, B. Li, R. Cao, Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 46(42), 8017–8019 (2010). https://doi.org/10.1039/c0cc02698k
X.X. Wang, Q. Wu, Z. Shan, Q.M. Huang, BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens. Bioelectron. 26(8), 3614–3619 (2011). https://doi.org/10.1016/j.bios.2011.02.014
J. Fan, J.J. Yin, B. Ning, X. Wu, Y. Hu et al., Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials 32(6), 1611–1618 (2011). https://doi.org/10.1016/j.biomaterials.2010.11.004
M. Ma, Y. Zhang, N. Gu, Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloids Surfaces A Physicochem. Eng. Asp. 373(1–3), 6–10 (2011). https://doi.org/10.1016/j.colsurfa.2010.08.007
Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 22(19), 2206–2210 (2010). https://doi.org/10.1002/adma.200903783
Y. Song, X. Wang, C. Zhao, K. Qu, J. Ren, X. Qu, Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem. A Eur. J. 16(12), 3617–3621 (2010). https://doi.org/10.1002/chem.200902643
H. Sun, L. Wu, W. Wei, X. Qu, Recent advances in graphene quantum dots for sensing. Mater. Today 16(11), 433–442 (2013). https://doi.org/10.1016/j.mattod.2013.10.020
B. Garg, T. Bisht, Y.C. Ling, Graphene-based nanomaterials as efficient peroxidase mimetic catalysts for biosensing applications: An overview. Molecules 20(8), 14155–14190 (2015). https://doi.org/10.3390/molecules200814155
W. Zhu, J. Zhang, Z. Jiang, W. Wang, X. Liu, High-quality carbon dots: Synthesis, peroxidase-like activity and their application in the detection of H2O2, Ag+ and Fe3+. RSC Adv. 4(33), 17387–17392 (2014). https://doi.org/10.1039/c3ra47593j
M. Vázquez-González, W.C. Liao, R. Cazelles, S. Wang, X. Yu et al., Mimicking horseradish peroxidase functions using Cu2+-modified carbon nitride nanoparticles or Cu2+-modified carbon dots as heterogeneous catalysts. ACS Nano 11(3), 3247–3253 (2017). https://doi.org/10.1021/acsnano.7b00352
L. Fan, P. Sun, Y. Huang, Z. Xu, X. Lu et al., One-pot synthesis of Fe/n-doped hollow carbon nanospheres with multienzyme mimic activities against inflammation. ACS Appl. Bio Mater. 3(2), 1147–1157 (2020). https://doi.org/10.1021/acsabm.9b01079
T. Pirmohamed, J.M. Dowding, S. Singh, B. Wasserman, E. Heckert et al., Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 46(16), 2736–2738 (2010). https://doi.org/10.1039/b922024k
A. Asati, S. Santra, C. Kaittanis, S. Nath, J.M. Perez, Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. Int. Ed. 121(13), 2344–2348 (2009)
A. Asati, C. Kaittanis, S. Santra, J.M. Perez, pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH. Anal. Chem. 83(7), 2547–2553 (2011). https://doi.org/10.1021/ac102826k
X. Cao, N. Wang, A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst 136(20), 4241–4246 (2011)
W. He, Y. Liu, J. Yuan, J.J. Yin, X. Wu et al., Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 32(4), 1139–1147 (2011). https://doi.org/10.1016/j.biomaterials.2010.09.040
Y. Wan, P. Qi, D. Zhang, J. Wu, Y. Wang, Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens. Bioelectron. 33(1), 69–74 (2012). https://doi.org/10.1016/j.bios.2011.12.033
A.P. Periasamy, P. Roy, W.P. Wu, Y.H. Huang, H.T. Chang, glucose oxidase and horseradish peroxidase like activities of cuprous oxide/polypyrrole composites. Electrochim. Acta 215, 253–260 (2016). https://doi.org/10.1016/j.electacta.2016.08.071
R. Ragg, F. Natalio, M.N. Tahir, H. Janssen, A. Kashyap et al., Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity. ACS Nano 8(5), 5182–5189 (2014). https://doi.org/10.1021/nn501235j
P. Beltrame, M. Comotti, C. Della Pina, M. Rossi, Aerobic oxidation of glucose: II. Catalysis by colloidal gold. Appl. Catal. A Gen. 297(1), 1–7 (2006). https://doi.org/10.1016/j.apcata.2005.08.029
M. Comotti, C. Della Pina, R. Matarrese, M. Rossi, The catalytic activity of “naked” gold particles. Angew. Chem. Int. Ed. 43(43), 5812–5815 (2004). https://doi.org/10.1002/anie.200460446
X. Zheng, Q. Liu, C. Jing, Y. Li, D. Li et al., Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew. Chem. Int. Ed. 123(50), 12200–12204 (2011). https://doi.org/10.1002/ange.201105121
A. Karakoti, S. Singh, J.M. Dowding, S. Seal, W.T. Self, Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 39(11), 4422–4432 (2010). https://doi.org/10.1039/b919677n
J. Li, W. Liu, X. Wu, X. Gao, Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomater. 48, 37–44 (2015). https://doi.org/10.1016/j.biomaterials.2015.01.012
S. Bhagat, N.V. Srikanth Vallabani, V. Shutthanandan, M. Bowden, A.S. Karakoti et al., Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. J. Colloid Interface Sci. 513, 831–842 (2018) https://doi.org/10.1016/j.jcis.2017.11.064
H. Liang, Y. Wu, X-Y. Qu, J.-Y. Li, Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity. Nanotechnology 28, 465702–4657 (2017)
X. Wang, Q. Yang, Y. Cao, H. Hao, J. Zhou et al., Metallosurfactant ionogels in imidazolium and protic ionic liquids as precursors to synthesize nanoceria as catalase mimetics for the catalytic decomposition of H2O2. Chem. A Eur. J. 22(49), 17857–17865 (2016). https://doi.org/10.1002/chem.201603743
N.V.S. Vallabani, S. Singh, Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech 8(6), 279 (2018). https://doi.org/10.1007/s13205-018-1286-z
J. Mu, L. Zhang, M. Zhao, Y. Wang, Co3O4 nanoparticles as an efficient catalase mimic: Properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. J. Mol. Catal. A Chem. 378, 30–37 (2013). https://doi.org/10.1016/j.molcata.2013.05.016
W. Zhang, J. Dong, Y. Wu, P. Cao, L. Song et al., Shape-dependent enzyme-like activity of Co3O4 nanoparticles and their conjugation with his-tagged EGFR single-domain antibody. Colloids Surf. B Biointerfaces 154, 55–62 (2017). https://doi.org/10.1016/j.colsurfb.2017.02.034
Z. Chen, J.J. Yin, Y.T. Zhou, Y. Zhang, L. Song et al., Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5), 4001–4012 (2012). https://doi.org/10.1021/nn300291r
W. Zhang, S. Hu, J.J. Yin, W. He, W. Lu et al., Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 138(18), 5860–5865 (2016). https://doi.org/10.1021/jacs.5b12070
J. Mu, Y. Wang, M. Zhao, L. Zhang, Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 19(48), 2540–2542 (2012). https://doi.org/10.1039/C2CC17013B
R. Singh, S. Singh, Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles. Colloids Surfaces B Biointerfaces 132, 78–84 (2015). https://doi.org/10.1016/j.colsurfb.2015.05.005
R. Singh, S. Singh, Redox-dependent catalase mimetic cerium oxide-based nanozyme protect human hepatic cells from 3-AT induced acatalasemia. Colloids Surf. B Biointerfaces 175, 625–635 (2019). https://doi.org/10.1016/j.colsurfb.2018.12.042
C. Muscoli, S. Cuzzocrea, D.P. Riley, J.L. Zweier, C. Thiemermann et al., On the selectivity of superoxide dismutase mimetics and its importance in pharmacological studies. Br. J. Pharmacol. 140(3), 445–460 (2003). https://doi.org/10.1038/sj.bjp.0705430
S.L. Mcfadden, D. Ding, D. Salvemini, R.J. Salvi, M40403 , a superoxide dismutase mimetic , protects cochlear hair cells from gentamicin, but not cisplatin toxicity. 186, 46–54 (2003) https://doi.org/10.1016/S0041-008X(02)00017-0
W. He, Y.T. Zhou, W.G. Wamer, X. Hu, X. Wu et al., Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomater. 34(3), 765–773 (2013). https://doi.org/10.1016/j.biomaterials.2012.10.010
L. Yuan, S. Liu, W. Tu, Z. Zhang, J. Bao et al., Biomimetic superoxide dismutase stabilized by photopolymerization for superoxide anions biosensing and cell monitoring. Anal. Chem. 86(10), 4783–4790 (2014). https://doi.org/10.1021/ac403920q
F. Dashtestani, H. Ghourchian, K. Eskandari, H.A. Rafiee-Pour, A superoxide dismutase mimic nanocomposite for amperometric sensing of superoxide anions. Microchim. Acta 182(5–6), 1045–1053 (2015). https://doi.org/10.1007/s00604-014-1424-1
K. Kamada, N. Soh, Enzyme-mimetic activity of ce-intercalated titanate nanosheets. J. Phys. Chem. B 119(16), 5309–5314 (2015). https://doi.org/10.1021/jp512038x
X. Shen, W. Liu, X. Gao, Z. Lu, X. Wu et al., Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J. Am. Chem. Soc. 137(50), 15882–15891 (2015). https://doi.org/10.1021/jacs.5b10346
J. Mu, X. Zhao, J. Li, E.C. Yang, X.J. Zhao, Novel hierarchical NiO nanoflowers exhibiting intrinsic superoxide dismutase-like activity. J. Mater. Chem. B 4(31), 5217–5221 (2016). https://doi.org/10.1039/c6tb01390b
E.G. Heckert, A.S. Karakoti, S. Seal, W.T. Self, The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29(18), 2705–2709 (2008). https://doi.org/10.1016/j.biomaterials.2008.03.014
A.S. Karakoti, S. Singh, A. Kumar, M. Malinska, S.V.N.T. Kuchibhatla et al., PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Am. Chem. Soc. 131(40), 14144–14145 (2009)
C. Korsvik, S. Patil, S. Seal, W.T. Self, Vacancy engineered ceria oxide nanoparticles catalyze superoxide dismutase activity. Chem. Commun. 10, 1056–1058 (2007). https://doi.org/10.1039/B615134E
A. Dhall, W. Self, Cerium oxide nanoparticles: A brief review of their synthesis methods and biomedical applications. Antioxidants 7(8), 1–13 (2018). https://doi.org/10.3390/antiox7080097
V. Baldim, F. Bedioui, N. Mignet, I. Margaill, J.F. Berret, The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale 10(15), 6971–6980 (2018). https://doi.org/10.1039/c8nr00325d
S. Fernandez-Garcia, L. Jiang, M. Tinoco, A.B. Hungria, J. Han et al., Enhanced hydroxyl radical scavenging activity by doping lanthanum in ceria nanocubes. J. Phys. Chem. C 120(3), 1891–1901 (2016). https://doi.org/10.1021/acs.jpcc.5b09495
M. Soh, D.-W. Kang, H.-G. Jeong, D. Kim, D.Y. Kim et al., Ceria-zirconia nanoparticles as an enhanced multi-antioxidant for sepsis treatment. Angew. Chem. Int. Ed. 129(38), 11557–11561 (2017). https://doi.org/10.1002/ange.201704904
P. Jawaid, M.U. Rehman, Y. Yoshihisa, P. Li, Q.L. Zhao et al., Effects of SOD/catalase mimetic platinum nanoparticles on radiation-induced apoptosis in human lymphoma U937 cells. Apoptosis 19(6), 1006–1016 (2014). https://doi.org/10.1007/s10495-014-0972-5
Y. Liu, H. Wu, M. Li, J.J. Yin, Z. Nie, PH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale 6(20), 11904–11910 (2014). https://doi.org/10.1039/c4nr03848g
A.P.J. Krusic, E. Wasserman, P.N. Keizer, J.R. Morton, K.F. Preston, Radical Reactions of C60. Science 254(5035), 1183–1185 (1991). https://doi.org/10.1126/science.254.5035.1183
L.L. Dugan, D.M. Turetsky, C. Du, D. Lobner, M. Wheeler et al., "Carboxyfullerenes as neuroprotective agents," in Natl.National Academy of Sciences of the United States of America, N. R. Cozzarelli, ed. (United States National Academy of Sciences, 1997), pp. 9434–9439. https://doi.org/10.1073/pnas.94.17.9434
S.S. Ali, J.I. Hardt, K.L. Quick, J. Sook Kim-Han, B.F. Erlanger et al., A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic. Biol. Med. 37(8), 1191–1202 (2004). https://doi.org/10.1016/j.freeradbiomed.2004.07.002
S.S. Ali, J.I. Hardt, L.L. Dugan, SOD Activity of carboxyfullerenes predicts their neuroprotective efficacy: a structure-activity study. Nanomedicine: Nanotechn. Biol. Med. 4(4), 283–294 (2008). https://doi.org/10.1016/j.nano.2008.05.003
E. Ko, V.K. Tran, S.E. Son, W. Hur, H. Choi et al., Characterization of Au@PtNP/GO nanozyme and its application to electrochemical microfluidic devices for quantification of hydrogen peroxide. Sens. Actuators B Chem. 294, 166–176 (2019). https://doi.org/10.1016/j.snb.2019.05.051
D. Duan, K. Fan, D. Zhang, S. Tan, M. Liang et al., Nanozyme-strip for rapid local diagnosis of Ebola. Biosens. Bioelectron. 74, 134–141 (2015). https://doi.org/10.1016/j.bios.2015.05.025
T. Zhang, F. Tian, L. Long, J. Liu, X.C. Wu, Diagnosis-of-rubella-virus-using-antigenconjugated-aupt-nanorods-as-nanozyme-probe. Int. J. Nanomed. 13, 4795 (2018). https://doi.org/10.2147/IJN.S171429
P. Weerathunge, R. Ramanathan, R. Shukla, T.K. Sharma, V. Bansal, Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal. Chem. 86(24), 11937–11941 (2014). https://doi.org/10.1021/ac5028726
R. Jin, Z. Xing, D. Kong, X. Yan, F. Liu et al., Sensitive colorimetric sensor for point-of-care detection of acetylcholinesterase using cobalt oxyhydroxide nanoflakes. J. Mater. Chem. B 7(8), 1230–1237 (2019). https://doi.org/10.1039/c8tb02987c
M.S. Kim, S.H. Kweon, S. Cho, S.S.A. An, M. Il Kim ET AL., Pt-decorated magnetic nanozymes for facile and sensitive point-of-care bioassay. ACS Appl. Mater. Interfaces 9(40), 35133–35140 (2017) https://doi.org/10.1021/acsami.7b12326
M. Ali, M.A.U. Khalid, I. Shah, S.W. Kim, Y.S. Kim et al., Paper-based selective and quantitative detection of uric acid using citrate-capped Pt nanoparticles (PtNPs) as a colorimetric sensing probe through a simple and remote-based device. New J. Chem. 43(20), 7636–7645 (2019). https://doi.org/10.1039/c9nj01257e
D. Kong, R. Jin, X. Zhao, H. Li, X. Yan et al., Protein-inorganic hybrid nanoflower-rooted agarose hydrogel platform for point-of-care detection of acetylcholine. ACS Appl. Mater. Interfaces 11(12), 11857–11864 (2019). https://doi.org/10.1021/acsami.8b21571
C.N. Loynachan, M.R. Thomas, E.R. Gray, D.A. Richards, J. Kim et al., Platinum nanocatalyst amplification: redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range. ACS Nano 12(1), 279–288 (2018). https://doi.org/10.1021/acsnano.7b06229
A. Li, X. Mu, T. Li, H. Wen, W. Li et al., Formation of porous Cu hydroxy double salt nanoflowers derived from metal-organic frameworks with efficient peroxidase-like activity for label-free detection of glucose. Nanoscale 10(25), 11948–11954 (2018). https://doi.org/10.1039/c8nr02832j
N. Cheng, Y. Song, M.M.A. Zeinhom, Y.C. Chang, L. Sheng et al., Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl. Mater. Interfaces 9(46), 40671–40680 (2017). https://doi.org/10.1021/acsami.7b12734
N. Cheng, C. Zhu, Y. Wang, D. Du, M.J. Zhu et al., Nanozyme enhanced colorimetric immunoassay for naked-eye detection of salmonella enteritidis. J. Anal. Test. 3(1), 99–106 (2019).https://doi.org/10.1007/s41664-018-0079-z
S. Cho, S.M. Lee, H.Y. Shin, M.S. Kim, Y.H. Seo et al., Highly sensitive colorimetric detection of allergies based on an immunoassay using peroxidase-mimicking nanozymes. Analyst 143(5), 1182–1187 (2018). https://doi.org/10.1039/c7an01866e
J. Han, L. Zhang, L. Hu, K. Xing, X. Lu et al., Nanozyme-based lateral flow assay for the sensitive detection of Escherichia coli O157:H7 in milk. J. Dairy Sci. 101(7), 5770–5779 (2018). https://doi.org/10.3168/jds.2018-14429
M.K. Masud, S. Yadav, M.N. Islam, N.T. Nguyen, C. Salomon et al., Gold-loaded nanoporous ferric oxide nanocubes with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of autoantibody. Anal. Chem. 89(20), 11005–11013 (2017). https://doi.org/10.1021/acs.analchem.7b02880
N. Lu, M. Zhang, L. Ding, J. Zheng, C. Zeng et al., Yolk-shell nanostructured Fe3O4@C magnetic nanoparticles with enhanced peroxidase-like activity for label-free colorimetric detection of H2O2 and glucose. Nanoscale 9(13), 4508–4515 (2017). https://doi.org/10.1039/c7nr00819h
P. Wu, P. Ding, X. Ye, L. Li, X. He et al., One-pot synthesized Cu/Au/Pt trimetallic nanoparticles as a novel enzyme mimic for biosensing applications. RSC Adv. 9(26), 14982–14989 (2019). https://doi.org/10.1039/c9ra00603f
H.Y. Shin, B.G. Kim, S. Cho, J. Lee, H. Bin Na et al., Visual determination of hydrogen peroxide and glucose by exploiting the peroxidase-like activity of magnetic nanoparticles functionalized with a poly(ethylene glycol) derivative. Microchim. Acta 184(7), 2115–2122 (2017). https://doi.org/10.1007/s00604-017-2198-z
Q. Wang, L. Zhang, C. Shang, Z. Zhang, S. Dong, Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose. Chem. Commun. 52(31), 5410–5413 (2016). https://doi.org/10.1039/c6cc00194g
L. Zhang, R. Huang, W. Liu, H. Liu, X. Zhou et al., Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens. Bioelectron. 86, 1–7 (2016). https://doi.org/10.1016/j.bios.2016.05.100
M.X. Guo, Y.F. Li, Cu (II)-based metal-organic xerogels as a novel nanozyme for colorimetric detection of dopamine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 207, 236–241 (2019) https://doi.org/10.1016/j.saa.2018.09.038
W. Li, G.C. Fan, F. Gao, Y. Cui, W. Wang et al., High-activity Fe3O4 nanozyme as signal amplifier: A simple, low-cost but efficient strategy for ultrasensitive photoelectrochemical immunoassay. Biosens. Bioelectron. 127, 64–71 (2019). https://doi.org/10.1016/j.bios.2018.11.043
L. Tian, J. Qi, O. Oderinde, C. Yao, W. Song et al., Planar intercalated copper (II) complex molecule as small molecule enzyme mimic combined with Fe3O4 nanozyme for bienzyme synergistic catalysis applied to the microRNA biosensor. Biosens. Bioelectron. 110, 110–117 (2018). https://doi.org/10.1016/j.bios.2018.03.045
C.W. Lien, B. Unnikrishnan, S.G. Harroun, C.M. Wang, J.Y. Chang et al., Visual detection of cyanide ions by membrane-based nanozyme assay. Biosens. Bioelectron. 102, 510–517 (2018). https://doi.org/10.1016/j.bios.2017.11.063
J. Liu, L. Meng, Z. Fei, P.J. Dyson, X. Jing et al., MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens. Bioelectron. 90, 69–74 (2017). https://doi.org/10.1016/j.bios.2016.11.046
S. Singh, P. Tripathi, N. Kumar, S. Nara, Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme. Biosens. Bioelectron. 92, 280–286 (2017).https://doi.org/10.1016/j.bios.2016.11.011
Y. Zhuang, X. Zhang, Q. Chen, S. Li, H. Cao et al., Co3O4/CuO hollow nanocage hybrids with high oxidase-like activity for biosensing of dopamine. Mater. Sci. Eng. C 94, 858–866 (2019). https://doi.org/10.1016/j.msec.2018.10.038
W. Zhang, X. Niu, X. Li, Y. He, H. Song et al., A smartphone-integrated ready-to-use paper-based sensor with mesoporous carbon-dispersed Pd nanoparticles as a highly active peroxidase mimic for H2O2 detection. Sens. Actuators B Chem. 265, 412–420 (2018). https://doi.org/10.1016/j.snb.2018.03.082
Z. Gao, H. Ye, D. Tang, J. Tao, S. Habibi et al., Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett. 17(9), 5572–5579 (2017). https://doi.org/10.1021/acs.nanolett.7b02385
X. Zhu, J. Huang, J. Liu, H. Zhang, J. Jiang et al., A dual enzyme-inorganic hybrid nanoflower incorporated microfluidic paper-based analytic device (μPAD) biosensor for sensitive visualized detection of glucose. Nanoscale 9(17), 5658–5663 (2017). https://doi.org/10.1039/c7nr00958e
L. Huang, D.W. Sun, H. Pu, Q. Wei, L. Luo et al., A colorimetric paper sensor based on the domino reaction of acetylcholinesterase and degradable Γ-MnOOH nanozyme for sensitive detection of organophosphorus pesticides. Sens. Actuators B Chem. 290, 573–580 (2019). https://doi.org/10.1016/j.snb.2019.04.020
N. Alizadeh, A. Salimi, R. Hallaj, F. Fathi, F. Soleimani, CuO/WO3 nanoparticles decorated graphene oxide nanosheets with enhanced peroxidase-like activity for electrochemical cancer cell detection and targeted therapeutics. Mater. Sci. Eng. C 99, 1374–1383 (2019). https://doi.org/10.1016/j.msec.2019.02.048
N. Alizadeh, A. Salimi, R. Hallaj, Mimicking peroxidase-like activity of Co3O4-CeO2 nanosheets integrated paper-based analytical devices for detection of glucose with smartphone. Sens. Actuators B Chem. 288, 44–52 (2019). https://doi.org/10.1016/j.snb.2019.01.068
N. Alizadeh, A. Salimi, R. Hallaj, Mimicking peroxidase activity of Co2(OH)2CO3-CeO2 nanocomposite for smartphone based detection of tumor marker using paper-based microfluidic immunodevice. Talanta 189, 100–110 (2018). https://doi.org/10.1016/j.talanta.2018.06.034
L. Huang, K. Chen, W. Zhang, W. Zhu, X. Liu et al., ssDNA-tailorable oxidase-mimicking activity of spinel MnCo2O4 for sensitive biomolecular detection in food sample. Sens. Actuators B Chem. 269, 79–87 (2018). https://doi.org/10.1016/j.snb.2018.04.150
B. Liu, Z. Sun, P.J.J. Huang, J. Liu, Hydrogen peroxide displacing DNA from nanoceria: Mechanism and detection of glucose in serum. J. Am. Chem. Soc. 137(3), 1290–1295 (2015). https://doi.org/10.1021/ja511444e
G. Vinothkumar, A.I. Lalitha, K. Suresh Babu, Cerium phosphate-cerium oxide heterogeneous composite nanozymes with enhanced peroxidase-like biomimetic activity for glucose and hydrogen peroxide sensing. Inorg. Chem. 58(1), 349–358 (2019) https://doi.org/10.1021/acs.inorgchem.8b02423
T. Li, P. Hu, J. Li, P. Huang, W. Tong, C. Gao, Enhanced peroxidase-like activity of Fe@PCN-224 nanoparticles and their applications for detection of H2O2and glucose. Colloids Surfaces A Physicochem. Eng. Asp. 577, 456–463 (2019). https://doi.org/10.1016/j.colsurfa.2019.06.012
N. Nandu, M. Salih Hizir, N.M. Roberston, B. Ozturk, M.V. Yigit, Masking the peroxidase-like activity of the molybdenum disulfide nanozyme enables label-free lipase detection. ChemBioChem 20(14), 1861–1867 (2019). https://doi.org/10.1002/cbic.201800471
A. Hayat, J. Cunningham, G. Bulbul, S. Andreescu, Evaluation of the oxidase like activity of nanoceria and its application in colorimetric assays. Anal. Chim. Acta 885, 140–147 (2015). https://doi.org/10.1016/j.aca.2015.04.052
G.L. Wang, L.Y. Jin, X.M. Wu, Y.M. Dong, Z.J. Li, Label-free colorimetric sensor for mercury(II) and DNA on the basis of mercury(II) switched-on the oxidase-mimicking activity of silver nanoclusters. Anal. Chim. Acta 871, 1–8 (2015). https://doi.org/10.1016/j.aca.2015.02.027
H. Yang, Y. Xiong, P. Zhang, L. Su, F. Ye, Colorimetric detection of mercury ions using MnO2 nanorods as enzyme mimics. Anal. Methods 7(11), 4596–4601 (2015). https://doi.org/10.1039/c5ay00633c
G.L. Wang, X.F. Xu, L.H. Cao, C.H. He, Z.J. Li et al., Mercury(ii)-stimulated oxidase mimetic activity of silver nanoparticles as a sensitive and selective mercury(ii) sensor. RSC Adv. 4(12), 5867–5872 (2014). https://doi.org/10.1039/c3ra45226c
Z. Zhu, Z. Guan, S. Jia, Z. Lei, S. Lin et al., Au@pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. Angew. Chem. Int. Ed. 53(46), 12503–12507 (2014). https://doi.org/10.1002/anie.201405995
Y. Zhao, M. Yang, Q. Fu, H. Ouyang, W. Wen et al., A nanozyme- and ambient light-based smartphone platform for simultaneous detection of dual biomarkers from exposure to organophosphorus pesticides. Anal. Chem. 90(12), 7391–7398 (2018). https://doi.org/10.1021/acs.analchem.8b00837
Z. Yu, Y. Tang, G. Cai, R. Ren, D. Tang, Paper electrode-based flexible pressure sensor for Point-of-Care immunoassay with digital multimeter. Anal. Chem. 91(2), 1222–1226 (2019). https://doi.org/10.1021/acs.analchem.8b04635
A. Pratsinis, G.A. Kelesidis, S. Zuercher, F. Krumeich, S. Bolisetty et al., Enzyme-mimetic antioxidant luminescent nanoparticles for highly sensitive hydrogen peroxide biosensing. ACS Nano 11(12), 12210–12218 (2017). https://doi.org/10.1021/acsnano.7b05518
G.L. Wang, X.Y. Zhu, H.J. Jiao, Y.M. Dong, Z.J. Li, Ultrasensitive and dual functional colorimetric sensors for mercury (II) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles. Biosens. Bioelectron. 31(1), 337–342 (2012). https://doi.org/10.1016/j.bios.2011.10.041
C.W. Tseng, H.Y. Chang, J.Y. Chang, C.C. Huang, Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nanoscale 4(21), 6823–6830 (2012). https://doi.org/10.1039/c2nr31716h
W. Wang, X. Jiang, K. Chen, Iron phosphate microflowers as peroxidase mimic and superoxide dismutase mimic for biocatalysis and biosensing. Chem. Commun. 48(58), 7289–7291 (2012). https://doi.org/10.1039/c2cc32429f
L.L. Wu, L.Y. Wang, Z.J. Xie, F. Xue, C.F. Peng, Colorimetric detection of Hg2+ based on inhibiting the peroxidase-like activity of DNA-Ag/Pt nanoclusters. RSC Adv. 6(79), 75384–75389 (2016). https://doi.org/10.1039/c6ra12597b
Y.W. Wang, S. Tang, H.H. Yang, H. Song, A novel colorimetric assay for rapid detection of cysteine and Hg2+ based on gold clusters. Talanta 146, 71–74 (2016). https://doi.org/10.1016/j.talanta.2015.08.015
S. Zhang, D. Zhang, X. Zhang, D. Shang, Z. Xue et al., Ultratrace naked-eye colorimetric detection of Hg2+ in wastewater and serum utilizing mercury-stimulated peroxidase mimetic activity of reduced graphene oxide-PEI-Pd nanohybrids. Anal. Chem. 89(6), 3538–3544 (2017). https://doi.org/10.1021/acs.analchem.6b04805
D. Zhao, C. Chen, L. Lu, F. Yang, X. Yang, A label-free colorimetric sensor for sulfate based on the inhibition of peroxidase-like activity of cysteamine-modified gold nanoparticles. Sens. Actuators B Chem. 215, 437–444 (2015). https://doi.org/10.1016/j.snb.2015.04.010
L. Zhang, L. Li, Colorimetric thrombin assay using aptamer-functionalized gold nanoparticles acting as a peroxidase mimetic. Microchim. Acta 183(1), 485–490 (2016). https://doi.org/10.1007/s00604-015-1674-6
H. Yang, J. Zha, P. Zhang, Y. Xiong, L. Su et al., Sphere-like CoS with nanostructures as peroxidase mimics for colorimetric determination of H2O2 and mercury ions. RSC Adv. 6(71), 66963–66970 (2016). https://doi.org/10.1039/c6ra16619a
R.S. Li, H. Liu, B. Bin Chen, H.Z. Zhang, C.Z. Huang et al., Stable gold nanoparticles as a novel peroxidase mimic for colorimetric detection of cysteine. Anal. Methods 8(11), 2494–2501 (2016) https://doi.org/10.1039/c6ay00367b
Z. Chen, C. Zhang, Q. Gao, G. Wang, L. Tan et al., Colorimetric signal amplification assay for mercury ions based on the catalysis of gold amalgam. Anal. Chem. 87(21), 10963–10968 (2015). https://doi.org/10.1021/acs.analchem.5b02812
C.W. Lien, Y.T. Tseng, C.C. Huang, H.T. Chang, Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions. Anal. Chem. 86(4), 2065–2072 (2014). https://doi.org/10.1021/ac4036789
J. Zhao, Y. Wu, H. Tao, H. Chen, W. Yang et al., Colorimetric detection of streptomycin in milk based on peroxidase-mimicking catalytic activity of gold nanoparticles. RSC Adv. 7(61), 38471–38478 (2017). https://doi.org/10.1039/c7ra06434a
L.Y. Chau, Q. He, A. Qin, S.P. Yip, T.M.H. Lee, Platinum nanoparticles on reduced graphene oxide as peroxidase mimetics for the colorimetric detection of specific DNA sequence. J. Mater. Chem. B 4(23), 4076–4083 (2016). https://doi.org/10.1039/c6tb00741d
Z. Chen, L. Tan, S. Wang, Y. Zhang, Y. Li, Sensitive colorimetric detection of K(I) using catalytically active gold nanoparticles triggered signal amplification. Biosens. Bioelectron. 79, 749–757 (2016). https://doi.org/10.1016/j.bios.2015.12.110
S.R. Ahmed, J. Kim, T. Suzuki, J. Lee, E.Y. Park, Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens. Bioelectron. 85, 503–508 (2016). https://doi.org/10.1016/j.bios.2016.05.050
H. Wei, E. Wang, ChemInform Abstract: Nanomaterials with enzyme-like characteristics (Nanozymes): next-generation artificial enzymes. ChemInform 44(38), (2013). https://doi.org/10.1002/chin.201338273
D. Quesada-González, A. Merkoçi, Nanomaterial-based devices for point-of-care diagnostic applications. Chem. Soc. Rev. 47(13), 4697–4709 (2018). https://doi.org/10.1039/c7cs00837f
M. Kim, M.S. Kim, S.H. Kweon, S. Jeong, M.H. Kang et al., Simple and sensitive Point-of-Care bioassay system based on hierarchically structured enzyme-mimetic nanoparticles. Adv. Healthc. Mater. 4(9), 1311–1316 (2015). https://doi.org/10.1002/adhm.201500173
S. Smith, J.G. Korvink, D. Mager, K. Land, The potential of paper-based diagnostics to meet the ASSURED criteria. RSC Adv. 8(59), 34012–34034 (2018). https://doi.org/10.1039/C8RA06132G
Y. Gao, Y. Zhou, R. Chandrawati, Metal and metal oxide nanoparticles to enhance the performance of enzyme-linked immunosorbent assay (ELISA). ACS Appl. Nano Mater. 3(1), 1–21 (2020). https://doi.org/10.1021/acsanm.9b02003
D.W. Bradbury, M. Azimi, A.J. Diaz, A.A. Pan, C.H. Falktoft et al., Automation of biomarker preconcentration, capture, and nanozyme signal enhancement on paper-based devices. Anal. Chem. 91(18), 12046–12054 (2019). https://doi.org/10.1021/acs.analchem.9b03105
R.G. Mahmudunnabi, F.Z. Farhana, N. Kashaninejad, S.H. Firoz, Y.B. Shim et al., Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 145(13), 4398–4420 (2020). https://doi.org/10.1039/d0an00558d
M. Ornatska, E. Sharpe, D. Andreescu, S. Andreescu, Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal. Chem. 83(11), 4273–4280 (2011). https://doi.org/10.1021/ac200697y
H.V. Tran, T.V. Nguyen, N.D. Nguyen, B. Piro, C.D. Huynh, A nanocomposite prepared from FeOOH and N-doped carbon nanosheets as a peroxidase mimic, and its application to enzymatic sensing of glucose in human urine. Microchim. Acta 185(5), 1–10 (2018). https://doi.org/10.1007/s00604-018-2804-8
Z. Zhang, Z. Wang, X. Wang, X. Yang, Magnetic nanoparticle-linked colorimetric aptasensor for the detection of thrombin. Sens. Actuators B Chem. 147(2), 428–433 (2010). https://doi.org/10.1016/j.snb.2010.02.013
H. Su, H. Zhao, F. Qiao, L. Chen, R. Duan et al., Colorimetric detection of Escherichia coli O157:H7 using functionalized Au@Pt nanoparticles as peroxidase mimetics. Analyst 138(10), 3026–3031 (2013). https://doi.org/10.1039/c3an00026e
A. Jeanson, J.M. Cloes, M. Bouchet, B. Rentier, Comparison of conjugation procedures for the preparation of monoclonal antibody-enzyme conjugates. J. Immunol. Methods 111(2), 261–270 (1988). https://doi.org/10.1016/0022-1759(88)90135-4
J. Xie, M.Q. Tang, J. Chen, Y.H. Zhu, C.B. Lei et al., A sandwich ELISA-like detection of C-reactive protein in blood by citicoline-bovine serum albumin conjugate and aptamer-functionalized gold nanoparticles nanozyme. Talanta 217, 121070 (2020). https://doi.org/10.1016/j.talanta.2020.121070
D. Ou, D. Sun, X. Lin, Z. Liang, Y. Zhong et al., A dual-aptamer-based biosensor for specific detection of breast cancer biomarker HER2 via flower-like nanozymes and DNA nanostructures. J. Mater. Chem. B 7(23), 3661–3669 (2019). https://doi.org/10.1039/c9tb00472f
W. Zheng, H. Li, W. Chen, J. Ji, X. Jiang, Recyclable colorimetric detection of trivalent cations in aqueous media using zwitterionic gold nanoparticles. Anal. Chem. 88(7), 4140–4146 (2016). https://doi.org/10.1021/acs.analchem.6b00501
H. Aldewachi, T. Chalati, M.N. Woodroofe, N. Bricklebank, B. Sharrack et al., Gold nanoparticle-based colorimetric biosensors. Nanoscale 10(1), 18–33 (2018). https://doi.org/10.1039/c7nr06367a
Y. Li, Z. Wang, L. Sun, L. Liu, C. Xu et al., Nanoparticle-based sensors for food contaminants. TrAC - Trends Anal. Chem. 113, 74–83 (2019). https://doi.org/10.1016/j.trac.2019.01.012
T. Lin, Y. Qin, Y. Huang, R. Yang, L. Hou et al., A label-free fluorescence assay for hydrogen peroxide and glucose based on the bifunctional MIL-53(Fe) nanozyme. Chem. Commun. 54(14), 1762–1765 (2018). https://doi.org/10.1039/c7cc09819g
Y. He, B. Xu, W. Li, H. Yu, Silver nanoparticle-based chemiluminescent sensor array for pesticide discrimination. J. Agric. Food Chem. 63(11), 2930–2934 (2015). https://doi.org/10.1021/acs.jafc.5b00671
L. He, Z.W. Jiang, W. Li, C.M. Li, C.Z. Huang et al., In situ synthesis of gold nanoparticles/metal-organic gels hybrids with excellent peroxidase-like activity for sensitive chemiluminescence detection of organophosphorus pesticides. ACS Appl. Mater. Interfaces 10(34), 28868–28876 (2018). https://doi.org/10.1021/acsami.8b08768
R. Wang, A.J. Wang, W.D. Liu, P.X. Yuan, Y. Xue et al., A novel label-free electrochemical immunosensor for ultra-sensitively detecting prostate specific antigen based on the enhanced catalytic currents of oxygen reduction catalyzed by core-shell Au@Pt nanocrystals. Biosens. Bioelectron. 102, 276–281 (2018). https://doi.org/10.1016/j.bios.2017.11.041
R. Wang, W.D. Liu, A.J. Wang, Y. Xue, L. Wu et al., A new label-free electrochemical immunosensor based on dendritic core-shell AuPd@Au nanocrystals for highly sensitive detection of prostate specific antigen. Biosens. Bioelectron. 99, 458–463 (2018). https://doi.org/10.1016/j.bios.2017.08.010
X. Zheng, L. Li, K. Cui, Y. Zhang, L. Zhang et al., Ultrasensitive enzyme-free biosensor by coupling cyclodextrin functionalized au nanoparticles and high-performance Au-paper electrode. ACS Appl. Mater. Interfaces 10(4), 3333–3340 (2018). https://doi.org/10.1021/acsami.7b17037
M. Zarei, Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. TrAC - Trends Anal. Chem. 91, 26–41 (2017). https://doi.org/10.1016/j.trac.2017.04.001
A.C. Sun, D.A. Hall, Point-of-Care Smartphone-based Electrochemical Biosensing. Electroanalysis 31(1), 2–16 (2019). https://doi.org/10.1002/elan.201800474
K. Baryeh, S. Takalkar, M. Lund, G. Liu, Introduction to Medical Biosensors for Point of Care Applications. Medical Biosensors for Point of Care (POC) Appl. 3–25 (2017). https://doi.org/10.1016/B978-0-08-100072-4.00001-0
T. Mahmoudi, M. de la Guardia, B. Shirdel, A. Mokhtarzadeh, B. Baradaran, Recent advancements in structural improvements of lateral flow assays towards point-of-care testing. TrAC - Trends Anal. Chem. 116, 13–30 (2019). https://doi.org/10.1016/j.trac.2019.04.016
J. Li, J. Hu, Z. Wang, Gold nanoparticles with special shapes: controlled synthesis, surface-enhanced raman scattering, and the application in biodetection. Sensors 7(12), 3299–3311 (2007). https://doi.org/10.3390/s7123299
W. Zhou, X. Gao, D. Liu, X. Chen, Gold Nanoparticles for in Vitro Diagnostics. Chem. Rev. 115(19), 10575–10636 (2015). https://doi.org/10.1021/acs.chemrev.5b00100
J. Lou-Franco, B. Das, C. Elliott, C. Cao, Gold Nanozymes: From concept to biomedical applications. Nano-Micro Lett. 13(1), 10 (2021). https://doi.org/10.1007/s40820-020-00532-z
N. Lopez, T.V.W. Janssens, B.S. Clausen, Y. Xu, M. Mavrikakis et al., On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 223(1), 232–235 (2004). https://doi.org/10.1016/j.jcat.2004.01.001
F. Vigneron, V. Caps, Evolution des méthodes chimiques de préparation des catalyseurs d’oxydation à l’or. Comptes Rendus Chim. 19(1–2), 192–198 (2016). https://doi.org/10.1016/j.crci.2015.11.015
M.C. Saint-Lager, I. Laoufi, A. Bailly, O. Robach, S. Garaudée et al., Catalytic properties of supported gold nanoparticles: New insights into the size-activity relationship gained from in operando measurements. Faraday Discuss. 152, 253–265 (2011). https://doi.org/10.1039/c1fd00028d
S. Biswas, P. Tripathi, N. Kumar, S. Nara, Gold nanorods as peroxidase mimetics and its application for colorimetric biosensing of malathion. Sens. Actuators B Chem. 231, 584–592 (2016). https://doi.org/10.1016/j.snb.2016.03.066
C. McVey, N. Logan, N.T.K. Thanh, C. Elliott, C. Cao, Unusual switchable peroxidase-mimicking nanozyme for the determination of proteolytic biomarker. Nano Res. 12(3), 509–516 (2019). https://doi.org/10.1007/s12274-018-2241-3
G. Darabdhara, J. Bordoloi, P. Manna, M.R. Das, Biocompatible bimetallic Au-Ni doped graphitic carbon nitride sheets: A novel peroxidase-mimicking artificial enzyme for rapid and highly sensitive colorimetric detection of glucose. Sens. Actuators B Chem. 285, 277–290 (2019). https://doi.org/10.1016/j.snb.2019.01.048
N.R. Vinita, R. Nirala, Prakash, One step synthesis of AuNPs@MoS2-QDs composite as a robust peroxidase- mimetic for instant unaided eye detection of glucose in serum, saliva and tear. Sens. Actuators B Chem. 263, 109–119 (2018). https://doi.org/10.1016/j.snb.2018.02.085
W. Li, J. Wang, J. Zhu, Y.Q. Zheng, Co3O4 nanocrystals as an efficient catalase mimic for the colorimetric detection of glutathione. J. Mater. Chem. B 6(42), 6858–6864 (2018). https://doi.org/10.1039/c8tb01948g
X. Liu, X. Wang, Q. Han, C. Qi, C. Wang et al., Facile synthesis of IrO2 rGO nanocomposites with high peroxidase-like activity for sensitive colorimetric detection of low weight biothiols. Talanta 203, 227–234 (2019) https://doi.org/10.1016/j.talanta.2019.05.070
K.N. Han, J.S. Choi, J. Kwon, Gold nanozyme-based paper chip for colorimetric detection of mercury ions. Sci. Rep. 7(1), 1–7 (2017). https://doi.org/10.1038/s41598-017-02948-x
N. Logan, C. McVey, C. Elliott, C. Cao, Amalgamated gold-nanoalloys with enhanced catalytic activity for the detection of mercury ions (Hg2+) in seawater samples. Nano Res. 13(4), 989–998 (2020). https://doi.org/10.1007/s12274-020-2731-y
L. Hedstrom, Enzyme specificity and selectivity. Encycl. Life Sci. 1–7 (2001) https://doi.org/10.1038/npg.els.0000716
Z. Gao, M. Xu, M. Lu, G. Chen, D. Tang, Urchin-like (gold core)@(platinum shell) nanohybrids: A highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay. Biosens. Bioelectron. 70, 194–201 (2015). https://doi.org/10.1016/j.bios.2015.03.039
T. Jiang, Y. Song, D. Du, X. Liu, Y. Lin, Detection of p53 protein based on mesoporous Pt-Pd nanoparticles with enhanced peroxidase-like catalysis. ACS Sensors 1(6), 717–724 (2016). https://doi.org/10.1021/acssensors.6b00019
S. Ge, M. Sun, W. Liu, S. Li, X. Wang et al., Disposable electrochemical immunosensor based on peroxidase-like magnetic silica-graphene oxide composites for detection of cancer antigen 153. Sens. Actuators B Chem. 192, 317–326 (2014). https://doi.org/10.1016/j.snb.2013.10.127
W. Xu, L. Jiao, H. Yan, Y. Wu, L. Chen et al., Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl. Mater. Interfaces 11(25), 22096–22101 (2019). https://doi.org/10.1021/acsami.9b03004
M. Liu, Z. Li, Y. Li, J. Chen, Q. Yuan, Self-assembled nanozyme complexes with enhanced cascade activity and high stability for colorimetric detection of glucose. Chinese Chem. Lett. 30(5), 1009–1012 (2019). https://doi.org/10.1016/j.cclet.2018.12.021
A.S. John, C. P Price, Existing and emerging technologies for point-of-care testing. Clin. Biochem. Rev. 35(3), 155–167 (2014). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204237/
X. Zhang, D. Wu, X. Zhou, Y. Yu, J. Liu et al., Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC - Trends Anal. Chem. 121, (2019). https://doi.org/10.1016/j.trac.2019.115668
C.F. Fronczek, T.S. Park, D.K. Harshman, A.M. Nicolini, J.Y. Yoon, Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Adv. 4(22), 11103–11110 (2014). https://doi.org/10.1039/c3ra47688j
P.S. Liang, T.S. Park, J.Y. Yoon, Rapid and reagentless detection of microbial contamination within meat utilizing a smartphone-based biosensor. Sci. Rep. 4, 4–11 (2014). https://doi.org/10.1038/srep05953
A.M. Nicolini, C.F. Fronczek, J.Y. Yoon, Droplet-based immunoassay on a “sticky” nanofibrous surface for multiplexed and dual detection of bacteria using smartphones. Biosens. Bioelectron. 67, 560–569 (2015). https://doi.org/10.1016/j.bios.2014.09.040
T.S. Park, J.Y. Yoon, Smartphone detection of Escherichia coli from field water samples on paper microfluidics. IEEE Sens. J. 15(3), 1902–1907 (2015). https://doi.org/10.1109/JSEN.2014.2367039
J.X.H. Wong, F.S.F. Liu, H.Z. Yu, Mobile app-based quantitative scanometric analysis. Anal. Chem. 86(24), 11966–11971 (2014). https://doi.org/10.1021/ac5035727
D. Zhang, Q. Liu, Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 75, 273–284 (2016). https://doi.org/10.1016/j.bios.2015.08.037
W.L. Hsu, C.Y. Huang, Y.P. Hsu, T.L. Hwang, S.H. Chang et al., On-skin glucose-biosensing and on-demand insulin-zinc hexamers delivery using microneedles for syringe-free diabetes management. Chem. Eng. J. 398, 125536 (2020). https://doi.org/10.1016/j.cej.2020.125536
R. Guo, S. Wang, F. Huang, Q. Chen, Y. Li et al., Rapid detection of Salmonella Typhimurium using magnetic nanoparticle immunoseparation, nanocluster signal amplification and smartphone image analysis. Sens. Actuators B Chem. 284, 134–139 (2019). https://doi.org/10.1016/j.snb.2018.12.110
E.F. O’Connor, S. Paterson, R. de la Rica, Naked-eye detection as a universal approach to lower the limit of detection of enzyme-linked immunoassays. Anal. Bioanal. Chem. 408(13), 3389–3393 (2016). https://doi.org/10.1007/s00216-016-9453-8
G.A.R.Y. Suaifan, S. Alhogail, M. Zourob, Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosens. Bioelectron. 90, 230–237 (2017). https://doi.org/10.1016/j.bios.2016.11.047
S. Tanaka, Y.V. Kaneti, R. Bhattacharjee, M.N. Islam, R. Nakahata et al., Mesoporous iron oxide synthesized using poly(styrene-b-acrylic acid-b-ethylene glycol) block copolymer micelles as templates for colorimetric and electrochemical detection of glucose. ACS Appl. Mater. Interfaces 10(1), 1039–1049 (2018). https://doi.org/10.1021/acsami.7b13835
Y. Ding, M. Chen, K. Wu, M. Chen, L. Sun et al., High-performance peroxidase mimics for rapid colorimetric detection of H2O2 and glucose derived from perylene diimides functionalized Co3O4 nanoparticles. Mater. Sci. Eng. C 80, 558–565 (2017). https://doi.org/10.1016/j.msec.2017.06.020
Y. Ding, B. Yang, H. Liu, Z. Liu, X. Zhang et al., FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sens. Actuators B Chem. 259, 775–783 (2018). https://doi.org/10.1016/j.snb.2017.12.115
Y. Zhong, J. Yang, X. Yin, J. Zheng, N. Lu et al., Enhanced synergistic effects from multiple iron oxide nanoparticles encapsulated within nitrogen-doped carbon nanocages for simple and label-free visual detection of blood glucose. Nanotechnology 30(35), 355501 (2019). https://doi.org/10.1088/1361-6528/ab2026
P. Zhang, D. Sun, A. Cho, S. Weon, S. Lee et al., Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 10(1), 1–14 (2019). https://doi.org/10.1038/s41467-019-08731-y
R. Das, A. Dhiman, A. Kapil, V. Bansal, T.K. Sharma, Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold nanozyme. Anal. Bioanal. Chem. 411(6), 1229–1238 (2019). https://doi.org/10.1007/s00216-018-1555-z
R. Tian, J. Sun, Y. Qi, B. Zhang, S. Guo et al., Influence of VO2 nanoparticle morphology on the colorimetric assay of H2O2 and glucose. Nanomaterials 7(11), 347 (2017). https://doi.org/10.3390/nano7110347
M. Il Kim, J. Shim, T. Li, J. Lee, H.G. Park, Fabrication of nanoporous nanocomposites entrapping Fe3O4 magnetic nanoparticles and oxidases for colorimetric biosensing. Chem. A Eur. J. 17(38), 10700–10707 (2011) https://doi.org/10.1002/chem.201101191
E. Pick, Y. Keisari, A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J. Immunol. Methods 38(1–2), 161–170 (1980). https://doi.org/10.1016/0022-1759(80)90340-3
X. Chen, X. Zhou, J. Hu, Pt-DNA complexes as peroxidase mimetics and their applications in colorimetric detection of H2O2 and glucose. Anal. Methods 4(7), 2183–2187 (2012). https://doi.org/10.1039/c2ay25250c
J. Sun, C. Li, Y. Qi, S. Guo, X. Liang, Optimizing colorimetric assay based on V2O5 nanozymes for sensitive detection of H2O2 and glucose. Sensors 16(4), (2016). https://doi.org/10.3390/s16040584
H. Ye, K. Yang, J. Tao, Y. Liu, Q. Zhang et al., An enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers. ACS Nano 11(2), 2052–2059 (2017). https://doi.org/10.1021/acsnano.6b08232
S. Luo, Y. Liu, H. Rao, Y. Wang, X. Wang, Fluorescence and magnetic nanocomposite Fe3O4@SiO2@Au MNPs as peroxidase mimetics for glucose detection. Anal. Biochem. 538, 26–33 (2017). https://doi.org/10.1016/j.ab.2017.09.006
Q. Chang, L. Zhu, G. Jiang, H. Tang, Sensitive fluorescent probes for determination of hydrogen peroxide and glucose based on enzyme-immobilized magnetite/silica nanoparticles. Anal. Bioanal. Chem. 395(7), 2377–2385 (2009). https://doi.org/10.1007/s00216-009-3118-9
N.R. Nirala, S. Pandey, A. Bansal, V.K. Singh, B. Mukherjee et al., Different shades of cholesterol: Gold nanoparticles supported on MoS2 nanoribbons for enhanced colorimetric sensing of free cholesterol. Biosens. Bioelectron. 74, 207–213 (2015). https://doi.org/10.1016/j.bios.2015.06.043
L. Yang, X. Ren, F. Tang, L. Zhang, A practical glucose biosensor based on Fe3O4 nanoparticles and chitosan/nafion composite film. Biosens. Bioelectron. 25(4), 889–895 (2009). https://doi.org/10.1016/j.bios.2009.09.002
L. Huang, W. Zhu, W. Zhang, K. Chen, J. Wang et al., Layered vanadium(IV) disulfide nanosheets as a peroxidase-like nanozyme for colorimetric detection of glucose. Microchim. Acta 185(1), 1–8 (2018). https://doi.org/10.1007/s00604-017-2552-1
J. Wang, R. Huang, W. Qi, R. Su, B.P. Binks et al., Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl. Catal. B Environ. 254, 452–462 (2019). https://doi.org/10.1016/j.apcatb.2019.05.012
N.V.S. Vallabani, A.S. Karakoti, S. Singh, Colloids and Surfaces B : Biointerfaces ATP-mediated intrinsic peroxidase-like activity of Fe3O4 -based nanozyme : One step detection of blood glucose at physiological pH. Colloids Surf. B Biointerfaces 153, 52–60 (2017). https://doi.org/10.1016/j.colsurfb.2017.02.004
Y.L. Dong, H.G. Zhang, Z.U. Rahman, L. Su, X.J. Chen et al., Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4(13), 3969–3976 (2012). https://doi.org/10.1039/c2nr12109c
Y.C. Yang, Y.T. Wang, W.L. Tseng, Amplified peroxidase-like activity in iron oxide nanoparticles using adenosine monophosphate: application to urinary protein sensing. ACS Appl. Mater. Interfaces 9(11), 10069–10077 (2017). https://doi.org/10.1021/acsami.6b15654
Q. Liu, L. Zhang, H. Li, Q. Jia, Y. Jiang et al., One-pot synthesis of porphyrin functionalized γ-Fe2O3 nanocomposites as peroxidase mimics for H2O2 and glucose detection. Mater. Sci. Eng. C 55, 193–200 (2015). https://doi.org/10.1016/j.msec.2015.05.028
L. Long, J. Liu, K. Lu, T. Zhang, Y. Xie et al., Highly sensitive and robust peroxidase like activity of Au Pt core shell nanorod antigen conjugates for measles virus diagnosis. J. Nanobiotechnol. 16(1), 46 (2018)
L. Zhao, J. Wang, D. Su, Y. Zhang, H. Lu et al., The DNA controllable peroxidase mimetic activity of MoS2 nanosheets for constructing a robust colorimetric biosensor. Nanoscale 12(37), 19420–19428 (2020). https://doi.org/10.1039/d0nr05649a
Y. Guo, L. Yan, R. Zhang, H. Ren, A. Liu, CoO-supported ordered mesoporous carbon nanocomposite based nanozyme with peroxidase-like activity for colorimetric detection of glucose. Process Biochem. 81, 92–98 (2019). https://doi.org/10.1016/j.procbio.2019.03.005