Gold Nanozymes: From Concept to Biomedical Applications
Corresponding Author: Cuong Cao
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 10
Abstract
In recent years, gold nanoparticles have demonstrated excellent enzyme-mimicking activities which resemble those of peroxidase, oxidase, catalase, superoxide dismutase or reductase. This, merged with their ease of synthesis, tunability, biocompatibility and low cost, makes them excellent candidates when compared with biological enzymes for applications in biomedicine or biochemical analyses. Herein, over 200 research papers have been systematically reviewed to present the recent progress on the fundamentals of gold nanozymes and their potential applications. The review reveals that the morphology and surface chemistry of the nanoparticles play an important role in their catalytic properties, as well as external parameters such as pH or temperature. Yet, real applications often require specific biorecognition elements to be immobilized onto the nanozymes, leading to unexpected positive or negative effects on their activity. Thus, rational design of efficient nanozymes remains a challenge of paramount importance. Different implementation paths have already been explored, including the application of peroxidase-like nanozymes for the development of clinical diagnostics or the regulation of oxidative stress within cells via their catalase and superoxide dismutase activities. The review also indicates that it is essential to understand how external parameters may boost or inhibit each of these activities, as more than one of them could coexist. Likewise, further toxicity studies are required to ensure the applicability of gold nanozymes in vivo. Current challenges and future prospects of gold nanozymes are discussed in this review, whose significance can be anticipated in a diverse range of fields beyond biomedicine, such as food safety, environmental analyses or the chemical industry.
Highlights:
1 The capability of gold nanomaterials to mimic enzyme activities offers new approaches for diagnosis and treatment in the field of biomedicine, which are discussed in this review.
2 Controlling the physicochemical properties of the nanomaterials (size, morphology and surface chemistry) remains the first obstacle for endeavouring real-life applications.
3 Numerous examples of ex vivo applications in the field of diagnosis are a reality today, whereas further controlling side effects is required for in vivo applications like tumour treatment or intracellular ROS level control.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Fermo, G. Padeletti, The use of nano-particles to produce iridescent metallic effects on ancient ceramic objects. J. Nanosci. Nanotechnol. 12(11), 8764–8769 (2012). https://doi.org/10.1166/jnn.2012.6464
- I. Freestone, N. Meeks, M. Sax, C. Higgit, The lycurgus cup—a roman nanotechnology. Gold Bull. 40(4), 270–277 (2007). https://doi.org/10.1007/BF03215599
- L. Dykman, N. Khlebtsov, Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41(6), 2256–2282 (2012). https://doi.org/10.1039/c1cs15166e
- G.J. Higby, Gold in medicine—a review of its use in the west before 1900. Gold Bull. 15(4), 130–140 (1982). https://doi.org/10.1007/BF03214618
- N. Culpeper, Pharmacopoeia Londinensis: Or the London Dispensatory (Royal College of Physicians, England, 1672)
- R. James, A Medicinal Dictionary, Vol.1 (London, 1743)
- J.A. Chrestien, De la méthode ïatraleptique, ou observations pratiques sur l’efficacité des remèdes administrés par la voie, de l’absorption cutanée dans le traitement de plusieurs maladies internes et externes; et sur un nouveau remède [pour les] maladies vénériennes et lymphatiques (Chez Croullebois: Chez Crochard, Paris, 1811)
- R. Koch, Dtsch. Medizinische Wochenschrift. 16, 756–757 (1890)
- J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951)
- R.P. Feynman, There’s Plenty of Room at the Bottom (Perseus Books Publishing, New York, 1999)
- M.C.M. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size related properties and applications toward biology, catalysis and nanotechnology. Chem. Rev. 104(1), 293–346 (2004). https://doi.org/10.1021/cr030698+
- M.A. Garcia, Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D Appl. Phys. 45(38), 1–20 (2012). https://doi.org/10.1088/0022-3727/45/38/389501
- S. Trudel, Unexpected magnetism in gold nanostructures: making gold even more attractive. Gold Bull. 44(1), 3–13 (2011). https://doi.org/10.1007/s13404-010-0002-5
- Y. Lin, J. Ren, X. Qu, Nano-gold as artificial enzymes: hidden talents. Adv. Mater. 26(25), 4200–4217 (2014). https://doi.org/10.1002/adma.201400238
- X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2(5), 681–693 (2007). https://doi.org/10.2217/17435889.2.5.681
- P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41(12), 1578–1586 (2008). https://doi.org/10.1021/ar7002804
- Y. Wang, Y. Xia, Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett. 4(10), 2047–2050 (2004). https://doi.org/10.1021/nl048689j
- J.F. Liu, L.G. Zhang, N. Gu, J.Y. Ren, Y.P. Wu et al., Fabrication of colloidal gold micro-patterns using photolithographed self-assembled monolayers as templates. Thin Solid Films 327–329(1–2), 176–179 (1998). https://doi.org/10.1016/S0040-6090(98)00623-3
- M.K. Corbierre, J. Beerens, R.B. Lennox, Gold nanoparticles generated by electron beam lithography of gold(I)-thiolate thin films. Chem. Mater. 17(23), 5774–5779 (2005). https://doi.org/10.1021/cm051085b
- D. Qin, Y. Xia, G.M. Whitesides, Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5(3), 491–502 (2010). https://doi.org/10.1038/nprot.2009.234
- H.W. Li, B.V.O. Muir, G. Fichet, W.T.S. Huck, Nanocontact printing: a route to sub-50-nm-scale chemical and biological patterning. Langmuir 19(6), 1963–1965 (2003). https://doi.org/10.1021/la0269098
- G. Barbillon, F. Hamouda, S. Held, P. Gogol, B. Bartenlian, Gold nanoparticles by soft UV nanoimprint lithography coupled to a lift-off process for plasmonic sensing of antibodies. Microelectron. Eng. 87(5–8), 1001–1004 (2010). https://doi.org/10.1016/j.mee.2009.11.114
- B.J.Y. Tan, C.H. Sow, T.S. Koh, K.C. Chin, A.T.S. Wee, C.K. Ong, Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing. J. Phys. Chem. B 109(22), 11100–11109 (2005). https://doi.org/10.1021/jp045172n
- S.M. Yang, S.G. Jang, D.G. Choi, S. Kim, H.K. Yu, Nanomachining by colloidal lithography. Small 2(4), 458–475 (2006). https://doi.org/10.1002/smll.200500390
- J.C. Garno, Y. Yang, N.A. Amro, S. Cruchon-Dupeyrat, S. Chen, G.Y. Liu, Precise positioning of nanoparticles on surfaces using scanning probe lithography. Nano Lett. 3(3), 389–395 (2003). https://doi.org/10.1021/nl025934v
- S.H. Kim, B.Y.H. Liu, M.R. Zachariah, Synthesis of nanoporous metal oxide particles by a new inorganic matrix spray pyrolysis method. Chem. Mater. 14(7), 2889–2899 (2002). https://doi.org/10.1021/cm010957g
- S. Stopić, B. Friedrich, K. Raić, T. Volkov-Husović, M. Dimitrijević, Characterization of nano-powder morphology obtained by ultrasonic spray pyrolysis. Metalurgija 14(1), 41–54 (2008)
- J. Dokić, R. Rudolf, S. Tomíc, S. Stopić, B. Friedrich, B. Budič, I. Anžel, M. Čolić, Immunomodulatory properties of nanoparticles obtained by ultrasonic spray pirolysis from gold scrap. J. Biomed. Nanotechnol. 8(3), 528–538 (2012). https://doi.org/10.1166/jbn.2012.1405
- V. Pareek, A. Bhargava, R. Gupta, N. Jain, J. Panwar, Synthesis and applications of noble metal nanoparticles: a review. Adv. Sci. Eng. Med. 9(7), 527–544 (2017). https://doi.org/10.1166/asem.2017.2027
- L. Wang, Y. Sun, Z. Li, A. Wu, G. Wei, Bottom-up synthesis and sensor applications of biomimetic nanostructures. Materials 9(53), 1–28 (2016). https://doi.org/10.3390/ma9010053
- S. Zankovych, T. Hoffmann, J. Seekamp, J.U. Bruch, C.M. Sotomayor Torres, Nanoimprint lithography: challenges and prospects. Nanotechnology 12(2), 91–95 (2001). https://doi.org/10.1088/0957-4484/12/2/303
- Q. Ruan, L. Shao, Y. Shu, J. Wang, H. Wu, Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures. Adv. Opt. Mater. 2(1), 65–73 (2014). https://doi.org/10.1002/adom.201300359
- B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15(10), 1957–1962 (2003). https://doi.org/10.1021/cm020732l
- P.L. Truong, C. Cao, S. Park, M. Kim, S.J. Sim, A new method for non-labeling attomolar detection of diseases based on an individual gold nanorod immunosensor. Lab Chip 11(15), 2591–2597 (2011). https://doi.org/10.1039/c1lc20085b
- Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601), 2176–2179 (2002). https://doi.org/10.1126/science.1077229
- T.H. Ha, H.J. Koo, B.H. Chung, Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J. Phys. Chem. C 111(3), 1123–1130 (2007). https://doi.org/10.1021/jp066454l
- X. Ma, Y. Cheng, Y. Huang, Y. Tian, S. Wang, Y. Chen, PEGylated gold nanoprisms for photothermal therapy at low laser power density. RSC Adv. 5(99), 81682–81688 (2015). https://doi.org/10.1039/c5ra17385j
- P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. Javier García De Abajo, L.M. Liz-Marzán, High-yield synthesis and optical response of gold nanostars. Nanotechnology 19(1), 1–6 (2008). https://doi.org/10.1088/0957-4484/19/01/015606
- E.C. Cho, L. Au, Q. Zhang, Y. Xia, The effects of size, shape, and surface functional group of gold nanostructures on their adsorption and internalization by cells. Small 6(4), 517–522 (2010). https://doi.org/10.1002/smll.200901622
- F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Platonic gold nanocrystals. Angew. Chem. Int. Ed. 116(28), 3759–3763 (2004). https://doi.org/10.1002/ange.200454216
- J. Shen, J. Su, J. Yan, B. Zhao, D. Wang et al., Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification. Nano Res. 8(3), 731–742 (2015). https://doi.org/10.1007/s12274-014-0556-2
- C. Fang, G. Zhao, Y. Xiao, J. Zhao, Z. Zhang, B. Geng, Facile growth of high-yield gold nanobipyramids induced by chloroplatinic acid for high refractive index sensing properties. Sci. Rep. 6, 1–8 (2016). https://doi.org/10.1038/srep36706
- M.S. Vega, A.G. Martínez, F. Cucinotta, Facile strategy for the synthesis of Gold@Silica hybrid nanoparticles with controlled porosity and janus morphology. Nanomaterials 9(3), 348 (2019). https://doi.org/10.3390/nano9030348
- N. Ji, Y. Chen, P. Gong, K. Cao, D.L. Peng, Investigation on the self-assembly of gold nanoparticles into bidisperse nanoparticle superlattices. Colloids Surf. A Physicochem. Eng. Asp. 480, 11–18 (2015). https://doi.org/10.1016/j.colsurfa.2015.03.058
- M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L.M. Liz-Marzán, Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37(9), 1783–1791 (2008). https://doi.org/10.1039/b711490g
- K.D. Gilroy, A. Ruditskiy, H.C. Peng, D. Qin, Y. Xia, Bimetallic nanocrystals: syntheses, properties, and applications. Chem. Rev. 116(18), 10414–10472 (2016). https://doi.org/10.1021/acs.chemrev.6b00211
- N. Patel, M.C. Davies, M. Hartshorne, R.J. Heaton, C.J. Roberts, S.J.B. Tendler, P.M. Williams, Immobilization of protein molecules onto homogeneous and mixed carboxylate-terminated self-assembled monolayers. Langmuir 13(24), 6485–6490 (1997). https://doi.org/10.1021/la970933h
- D. Bartczak, A.G. Kanaras, Preparation of peptide-functionalized gold nanoparticles using one pot EDC/Sulfo-NHS coupling. Langmuir 27(16), 10119–10123 (2011). https://doi.org/10.1021/la2022177
- J.Y. Chang, H. Wu, H. Chen, Y.C. Ling, W. Tan, Oriented assembly of Au nanorods using biorecognition system. Chem. Commun. 8, 1092–1094 (2005). https://doi.org/10.1039/b414059a
- S. Pathak, M.C. Davidson, G.A. Silva, Characterization of the functional binding properties of antibody conjugated quantum dots. Nano Lett. 7(7), 1839–1845 (2007). https://doi.org/10.1021/nl062706i
- X. Wang, Z. Mei, Y. Wang, L. Tang, Comparison of four methods for the biofunctionalization of gold nanorods by the introduction of sulfhydryl groups to antibodies. Beilstein J. Nanotechnol. 8(1), 372–380 (2017). https://doi.org/10.3762/bjnano.8.39
- E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41(7), 2740–2779 (2012). https://doi.org/10.1039/c1cs15237h
- Y. Pan, A. Leifert, D. Ruau, S. Neuss, J. Bornemann et al., Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18), 2067–2076 (2009). https://doi.org/10.1002/smll.200900466
- A.M. Alkilany, P.K. Nagaria, C.R. Hexel, T.J. Shaw, C.J. Murphy, M.D. Wyatt, Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6), 701–708 (2009). https://doi.org/10.1002/smll.200801546
- A.M. Alkilany, P.K. Nagaria, M.D. Wyatt, C.J. Murphy, Cation exchange on the surface of gold nanorods with a polymerizable surfactant: polymerization, stability, and toxicity evaluation. Langmuir 26(12), 9328–9333 (2010). https://doi.org/10.1021/la100253k
- T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi et al., PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 114(3), 343–347 (2006). https://doi.org/10.1016/j.jconrel.2006.06.017
- M.K. Lai, C.Y. Chang, Y.W. Lien, R.C.C. Tsiang, Application of gold nanoparticles to microencapsulation of thioridazine. J. Control. Release 111(3), 352–361 (2006). https://doi.org/10.1016/j.jconrel.2005.12.017
- E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3), 325–327 (2005). https://doi.org/10.1002/smll.200400093
- G. Sonavane, K. Tomoda, K. Makino, Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surfaces B Biointerfaces 66(2), 274–280 (2008). https://doi.org/10.1016/j.colsurfb.2008.07.004
- W.H. De Jong, P.J.A. Borm, Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3(2), 133–149 (2008). https://doi.org/10.2147/ijn.s596
- E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38(6), 1759–1782 (2009). https://doi.org/10.1039/b806051g
- Scientific Committee on Emerging and Newly Identified Health Risks, Modified opinion (after public consultation) on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. (Health & Consumer Protection Directorate-General, European Commission, 2006). https://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_003b.pdf. Accessed 19 August 2020
- C.M. Goodman, C.D. McCusker, T. Yilmaz, V.M. Rotello, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 15(4), 897–900 (2004). https://doi.org/10.1021/bc049951i
- S.J. Soenen, W.J. Parak, J. Rejman, B. Manshian, (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem. Rev. 115(5), 2109–2135 (2015). https://doi.org/10.1021/cr400714j
- D.Y. Cha, G. Parravano, Surface reactivity of supported gold. I. Oxygen transfer between carbon monoxide and carbon dioxide. J. Catal. 18, 200–211 (1970)
- M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem. Lett. 16(2), 405–408 (1987). https://doi.org/10.1246/cl.1987.405
- D.G. Duff, A. Baiker, Preparation and structural properties of ultrafine gold colloids for oxidation catalysis. Stud. Surf. Sci. Catal. 91, 505–512 (1995). https://doi.org/10.1016/S0167-2991(06)81788-X
- Y. Tao, E. Ju, J. Ren, X. Qu, Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 27(6), 1097–1104 (2015). https://doi.org/10.1002/adma.201405105
- M. Comotti, C. DellaPina, R. Matarrese, M. Rossi, The catalytic activity of “naked” gold particles. Angew. Chem. Int. Ed. 43(43), 5812–5815 (2004). https://doi.org/10.1002/anie.200460446
- W. Luo, C. Zhu, S. Su, D. Li, Y. He, Q. Huang, C. Fan, Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 4(12), 7451–7458 (2010). https://doi.org/10.1021/nn102592h
- Y. Jv, B. Li, R. Cao, Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 46(42), 8017–8019 (2010). https://doi.org/10.1039/c0cc02698k
- W. He, Y.T. Zhou, W.G. Wamer, X. Hu, X. Wu et al., Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 34(3), 765–773 (2013). https://doi.org/10.1016/j.biomaterials.2012.10.010
- C.W. Tseng, H.Y. Chang, J.Y. Chang, C.C. Huang, Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nanoscale 4(21), 6823–6830 (2012). https://doi.org/10.1039/c2nr31716h
- N. Pradhan, A. Pal, T. Pal, Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir 17(5), 1800–1802 (2001). https://doi.org/10.1021/la000862d
- B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals. Nature 376, 238–240 (1995)
- F. Manea, F.B. Houillon, L. Pasquato, P. Scrimin, Nanozymes: gold-nanoparticle-based transphosphorylation catalysts. Angew. Chem. Int. Ed. 43(45), 6165–6169 (2004). https://doi.org/10.1002/anie.200460649
- I.M. Klotz, G.P. Royer, I.S. Scarpa, Synthetic derivatives of polyethyleneimine with enzyme-like catalytic activity (synzymes). Proc. Natl. Acad. Sci. U.S.A. 68(2), 263–264 (1971). https://doi.org/10.1073/pnas.68.2.263
- X. Xie, W. Xu, X. Liu, Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification. Acc. Chem. Res. 45(9), 1511–1520 (2012). https://doi.org/10.1021/ar300044j
- L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2(9), 577–583 (2007). https://doi.org/10.1038/nnano.2007.260
- H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42(14), 6060–6093 (2013). https://doi.org/10.1039/c3cs35486e
- X. Li, L. Wang, D. Du, L. Ni, J. Pan, X. Niu, Emerging applications of nanozymes in environmental analysis: opportunities and trends. Trends Anal. Chem. 120, 115653 (2019). https://doi.org/10.1016/j.trac.2019.115653
- A. Mohamad, H. Teo, N.A. Keasberry, M.U. Ahmed, Recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles. Crit. Rev. Biotechnol. 39(1), 50–66 (2019). https://doi.org/10.1080/07388551.2018.1496063
- D.P. Cormode, L. Gao, H. Koo, Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends Biotechnol. 36(1), 15–29 (2018). https://doi.org/10.1016/j.tibtech.2017.09.006
- M. Liang, X. Yan, Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52(8), 2190–2200 (2019). https://doi.org/10.1021/acs.accounts.9b00140
- S. Li, X. Liu, H. Chai, Y. Huang, Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. Trends Anal. Chem. 105, 391–403 (2018). https://doi.org/10.1016/j.trac.2018.06.001
- X. Zhang, G. Li, D. Wu, X. Li, N. Hu et al., Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens. Bioelectron. 137, 178–198 (2019). https://doi.org/10.1016/j.bios.2019.04.061
- B. Liu, J. Liu, Sensors and biosensors based on metal oxide nanomaterials. Trends Anal. Chem. 121, 115690 (2019). https://doi.org/10.1016/j.trac.2019.115690
- M. Sharifi, K. Faryabi, A.J. Talaei, M.S. Shekha, M. Ale-Ebrahim et al., Antioxidant properties of gold nanozyme: a review. J. Mol. Liq. 297, 112004 (2020). https://doi.org/10.1016/j.molliq.2019.112004
- M. Sharifi, S.H. Hosseinali, P. Yousefvand, A. Salihi, M.S. Shekha et al., Gold nanozyme: biosensing and therapeutic activities. Mater. Sci. Eng., C 108, 110422 (2020). https://doi.org/10.1016/j.msec.2019.110422
- X. Cao, C. Li, Y. Lu, B. Zhang, Y. Wu et al., Catalysis of Au nano-pyramids formed across the surfaces of ordered Au nano-ring arrays. J. Catal. 377, 389–399 (2019). https://doi.org/10.1016/j.jcat.2019.07.038
- S. Levin, J. Fritzsche, S. Nilsson, A. Runemark, B. Dhokale et al., A nanofluidic device for parallel single nanoparticle catalysis in solution. Nat. Commun. 10(1), 1–8 (2019). https://doi.org/10.1038/s41467-019-12458-1
- P. Wang, A.V. Krasavin, M.E. Nasir, W. Dickson, A.V. Zayats, Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials. Nat. Nanotechnol. 13(2), 159–164 (2018). https://doi.org/10.1038/s41565-017-0017-7
- G.C. Bond, D.T. Thompson, Gold-catalysed oxidation of carbon monoxide. Gold Bull. 33(2), 41–50 (2000). https://doi.org/10.1007/BF03216579
- N. Lopez, T.V.W. Janssens, B.S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, J.K. Nørskov, On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 223(1), 232–235 (2004). https://doi.org/10.1016/j.jcat.2004.01.001
- M.C. Saint-Lager, I. Laoufi, A. Bailly, O. Robach, S. Garaudée, P. Dolle, Catalytic properties of supported gold nanoparticles: new insights into the size-activity relationship gained from in operando measurements. Faraday Discuss. 152, 253–265 (2011). https://doi.org/10.1039/c1fd00028d
- F. Vigneron, V. Caps, Evolution in the chemical making of gold oxidation catalysts. Comptes Rendus Chim. 19(1–2), 192–198 (2016). https://doi.org/10.1016/j.crci.2015.11.015
- C. Lin, K. Tao, D. Hua, Z. Ma, S. Zhou, Size effect of gold nanoparticles in catalytic reduction of p-nitrophenol with NaBH4. Molecules 18(10), 12609–12620 (2013). https://doi.org/10.3390/molecules181012609
- X. Zhou, W. Xu, G. Liu, D. Panda, P. Chen, Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J. Am. Chem. Soc. 132(1), 138–146 (2010). https://doi.org/10.1021/ja904307n
- Y. He, J.C. Liu, L. Luo, Y.G. Wang, J. Zhu et al., Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition. Proc. Natl. Acad. Sci. U.S.A. 115(30), 7700–7705 (2018). https://doi.org/10.1073/pnas.1800262115
- S. Biswas, P. Tripathi, N. Kumar, S. Nara, Gold nanorods as peroxidase mimetics and its application for colorimetric biosensing of malathion. Sensors Actuat. B Chem. 231, 584–592 (2016). https://doi.org/10.1016/j.snb.2016.03.066
- T. Ma, W. Yang, S. Liu, H. Zhang, F. Liang, A comparison reduction of 4-nitrophenol by gold nanospheres and gold nanostars. Catalysts 7(38), 1–10 (2017). https://doi.org/10.3390/catal7020038
- C. McVey, N. Logan, N.T.K. Thanh, C. Elliott, C. Cao, Unusual switchable peroxidase-mimicking nanozyme for the determination of proteolytic biomarker. Nano Res. 12(3), 509–516 (2019). https://doi.org/10.1007/s12274-018-2241-3
- M. Drozd, M. Pietrzak, P. Parzuchowski, M. Mazurkiewicz-Pawlicka, E. Malinowska, Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range. Nanotechnology 26(49), (2015). https://doi.org/10.1088/0957-4484/26/49/495101
- M. Drozd, M. Pietrzak, P.G. Parzuchowski, E. Malinowska, Pitfalls and capabilities of various hydrogen donors in evaluation of peroxidase-like activity of gold nanoparticles. Anal. Bioanal. Chem. 408(29), 8505–8513 (2016). https://doi.org/10.1007/s00216-016-9976-z
- C. Zheng, W. Ke, T. Yin, X. An, Intrinsic peroxidase-like activity and the catalytic mechanism of gold @ carbon dots nanocomposites. RSC Adv. 6, 35280–35286 (2016). https://doi.org/10.1039/C6RA01917J
- L. Hu, H. Liao, L. Feng, M. Wang, W. Fu, Accelerating the peroxidase-like activity of gold nanoclusters at neutral pH for colorimetric detection of heparin and heparinase activity. Anal. Chem. 90(10), 6247–6252 (2018). https://doi.org/10.1021/acs.analchem.8b00885
- N. Lee, S.M. Lee, D.W. Lee, High catalytic activity of gold nanoparticle-templated, tyrosine-rich peptide self-assemblies for 3,3′,5,5′-tetramethylbenzidine oxidation in the absence of hydrogen peroxide. React. Kinet. Mech. Catal. 128(1), 349–359 (2019). https://doi.org/10.1007/s11144-019-01619-4
- J. Li, W. Liu, X. Wu, X. Gao, Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 48, 37–44 (2015). https://doi.org/10.1016/j.biomaterials.2015.01.012
- M. Comotti, C. Della Pina, E. Falletta, M. Rossi, Aerobic oxidation of glucose with gold catalyst: hydrogen peroxide as intermediate and reagent. Adv. Synth. Catal. 348(3), 313–316 (2006). https://doi.org/10.1002/adsc.200505389
- P. Landon, P.J. Collier, A.J. Papworth, C.J. Kiely, G.J. Hutchings, Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chem. Commun. 18, 2058–2059 (2002). https://doi.org/10.1039/b205248m
- Y. Lu, Y. Mei, M. Drechsler, M. Ballauff, Thermosensitive core-shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew. Chem. Int. Ed. 45(5), 813–816 (2006). https://doi.org/10.1002/anie.200502731
- Y. Sun, Z. Li, J. Wu, Z. Wang, Y. Dong et al., Gold nanoparticle-protein conjugate dually-responsive to pH and temperature for modulation of enzyme activity. J. Mater. Chem. B 7(20), 3260–3267 (2019). https://doi.org/10.1039/c9tb00325h
- R.G. Nuzzo, B.R. Zegarski, L.H. DuBois, Fundamental studies of the chemisorption of organosulfur compounds on Au(111). Implications for molecular self-assembly on gold surfaces. J. Am. Chem. Soc. 109(3), 733–740 (1987). https://doi.org/10.1021/ja00237a017
- J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105(4), 1103–1169 (2005). https://doi.org/10.1021/cr0300789
- H. Häkkinen, The gold–sulfur interface at the nanoscale. Nat. Chem. 4(6), 443–455 (2012). https://doi.org/10.1038/nchem.1352
- S. Wang, W. Chen, A. Liu, L. Hong, H. Deng, X. Lin, Comparison of the peroxidase-like activity of unmodified, amino-modified and citrate-capped gold nnaoparticles. ChemPhysChem 13, 1199–1204 (2012). https://doi.org/10.1002/cphc.201100906
- C.P. Liu, K.C. Chen, C.F. Su, P.Y. Yu, P.W. Lee, Revealing the active site of gold nanoparticles for the peroxidase-like activity: the determination of surface accessibility. Catalysts 9(6), 517 (2019). https://doi.org/10.3390/catal9060517
- X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128(6), 2115–2120 (2006). https://doi.org/10.1021/ja057254a
- A.M. Alkilany, R.L. Frey, J.L. Ferry, C.J. Murphy, Gold nanorods as nanoadmicelles: 1-naphthol partitioning into a nanorod-bound surfactant bilayer. Langmuir 24(18), 10235–10239 (2008). https://doi.org/10.1021/la8018343
- Y. Cheng, A.C. Samia, J. Li, M.E. Kenney, A. Resnick, C. Burda, Delivery and efficacy of a cancer drug as a function of the bond to the gold nanoparticle surface. Langmuir 26(4), 2248–2255 (2010). https://doi.org/10.1021/la902390d
- S.D. Brown, P. Nativo, J.A. Smith, D. Stirling, P.R. Edwards et al., Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc. 132(13), 4678–4684 (2010). https://doi.org/10.1021/ja908117a
- S. Guo, Ќ.Y. Huang, Ќ.Q. Jiang, Y. Sun, L. Deng et al., Enhanced gene delivery and sirna silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4(9), 5505–5511 (2010). https://doi.org/10.1021/nn101638u
- J. You, G. Zhang, C. Li, Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 4(2), 1033–1041 (2010). https://doi.org/10.1021/nn901181c
- E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 176(10), 139–148 (2017). https://doi.org/10.1016/j.physbeh.2017.03.040
- Y. Yang, E. Noviana, M.P. Nguyen, B.J. Geiss, D.S. Dandy, C.S. Henry, Paper-based microfluidic devices: emerging themes and applications. Anal. Chem. 89(1), 71–91 (2017). https://doi.org/10.1021/acs.analchem.6b04581
- Y. Liu, D. Ding, Y. Zhen, R. Guo, Amino acid-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens. Bioelectron. 92, 140–146 (2017). https://doi.org/10.1016/j.bios.2017.01.036
- Y. Wu, Y. Chen, Y. Li, J. Huang, H. Yu, Z. Wang, Accelerating peroxidase-like activity of gold nanozymes using purine derivatives and its application for monitoring of occult blood in urine. Sensors Actuat. B Chem. 270, 443–451 (2018). https://doi.org/10.1016/j.snb.2018.05.057
- Y. Sun, J. Wang, W. Li, J. Zhang, Y. Zhang, Y. Fu, DNA-stabilized bimetallic nanozyme and its application on colorimetric assay of biothiols. Biosens. Bioelectron. 74, 1038–1046 (2015). https://doi.org/10.1016/j.bios.2015.08.001
- L. Long, J. Liu, K. Lu, T. Zhang, Y. Xie, Y. Ji, X. Wu, Highly sensitive and robust peroxidase-like activity of Au-Pt core/shell nanorod-antigen conjugates for measles virus diagnosis. J. Nanobiotechn. 16(1), 1–10 (2018). https://doi.org/10.1186/s12951-018-0371-0
- S. Oh, J. Kim, V.T. Tran, D.K. Lee, S.R. Ahmed et al., Magnetic nanozyme-linked immunosorbent assay for ultrasensitive influenza a virus detection. ACS Appl. Mater. Interfaces. 10(15), 12534–12543 (2018). https://doi.org/10.1021/acsami.8b02735
- S.R. Ahmed, J. Kim, T. Suzuki, J. Lee, E.Y. Park, Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens. Bioelectron. 85, 503–508 (2016). https://doi.org/10.1016/j.bios.2016.05.050
- S. Cho, H.Y. Shin, M. Il Kim, Nanohybrids consisting of magnetic nanoparticles and gold nanoclusters as effective peroxidase mimics and their application for colorimetric detection of glucose. Biointerphases 12(1), 01A401 (2017). https://doi.org/10.1116/1.4974198
- K. Boriachek, M.K. Masud, C. Palma, H.-P. Phan, Y. Yamauchi et al., Avoiding pre-isolation step in exosome analysis: direct isolation and sensitive detection of exosomes using gold-loaded nanoporous ferric oxide nanozymes. Anal. Chem. 91(6), 3827–3834 (2019). https://doi.org/10.1021/acs.analchem.8b03619
- M. Liu, H. Zhao, S. Chen, H. Yu, X. Quan, Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano 6(4), 3142–3151 (2012). https://doi.org/10.1021/nn3010922
- Z. Sun, Q. Zhao, G. Zhang, Y. Li, G. Zhang, F. Zhang, X. Fan, Exfoliated MoS2 supported Au–Pd bimetallic nanoparticles with core–shell structures and superior peroxidase-like activities. RSC Adv. 5(14), 10352–10357 (2015). https://doi.org/10.1039/c4ra13575j
- K.N. Han, J.S. Choi, J. Kwon, Gold nanozyme-based paper chip for colorimetric detection of mercury ions. Sci. Rep. 7(1), 1–7 (2017). https://doi.org/10.1038/s41598-017-02948-x
- S. Laing, A. Hernandez-Santana, J. Sassmannshausen, D.L. Asquith, I.B. McInnes, K. Faulds, D. Graham, Quantitative detection of human tumor necrosis factor α by a resonance raman enzyme-linked immunosorbent assay. Anal. Chem. 83(1), 297–302 (2011). https://doi.org/10.1021/ac1024039
- D. Sun, Z. Luo, J. Lu, S. Zhang, T. Che, Z. Chen, L. Zhang, Electrochemical dual-aptamer-based biosensor for nonenzymatic detection of cardiac troponin I by nanohybrid electrocatalysts labeling combined with DNA nanotetrahedron structure. Biosens. Bioelectron. 134, 49–56 (2019). https://doi.org/10.1016/j.bios.2019.03.049
- P.-C. Kuo, C.-W. Lien, J.-Y. Mao, B. Unnikrishnan, H.-T. Chang, H.-J. Lin, C.-C. Huang, Detection of urinary spermine by using silver-gold/silver chloride nanozymes. Anal. Chim. Acta 1009, 89–97 (2018). https://doi.org/10.1016/j.aca.2018.01.018
- X. Lin, Y. Liu, Z. Tao, J. Gao, J. Deng, J. Yin, S. Wang, Nanozyme-based bio-barcode assay for high sensitive and logic-controlled specific detection of multiple DNAs. Biosens. Bioelectron. 94, 471–477 (2017). https://doi.org/10.1016/j.bios.2017.01.008
- Y. Tao, Y. Lin, J. Ren, X. Qu, A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. Biosens. Bioelectron. 42(1), 41–46 (2013). https://doi.org/10.1016/j.bios.2012.10.014
- A.M. Alkilany, C.J. Murphy, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanoparticle Res. 12(7), 2313–2333 (2010). https://doi.org/10.1007/s11051-010-9911-8
- L. Fan, X. Xu, C. Zhu, J. Han, L. Gao, J. Xi, R. Guo, Tumor catalytic-photothermal therapy with yolk-shell gold@carbon nanozymes. ACS Appl. Mater. Interfaces. 10(5), 4502–4511 (2018). https://doi.org/10.1021/acsami.7b17916
- D. Zhang, Y.X. Zhao, Y.J. Gao, F.P. Gao, Y.S. Fan et al., Anti-bacterial and in vivo tumor treatment by reactive oxygen species generated by magnetic nanoparticles. J. Mater. Chem. B 1(38), 5100–5107 (2013). https://doi.org/10.1039/c3tb20907e
- L. Gao, K.M. Giglio, J.L. Nelson, H. Sondermann, A.J. Travis, Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 6(5), 2588–2593 (2014). https://doi.org/10.1039/c3nr05422e
- Y. Liu, M. Yuan, L. Qiao, R. Guo, An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosens. Bioelectron. 52, 391–396 (2014). https://doi.org/10.1016/j.bios.2013.09.020
- S. Maman, I.P. Witz, A history of exploring cancer in context. Nat. Rev. Cancer 18(6), 359–376 (2018). https://doi.org/10.1038/s41568-018-0006-7
- J.M. Brown, W.R. Wilson, Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 4(6), 437–447 (2004). https://doi.org/10.1038/nrc1367
- Q. Chen, C. Liang, X. Sun, J. Chen, Z. Yang et al., H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proc. Natl. Acad. Sci. U.S.A. 114(21), 5343–5348 (2017). https://doi.org/10.1073/pnas.1701976114
- M. López-Lázaro, Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett. 252(1), 1–8 (2007). https://doi.org/10.1016/j.canlet.2006.10.029
- Y. Zhang, F. Wang, C. Liu, Z. Wang, L. Kang et al., Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 12(1), 651–661 (2018). https://doi.org/10.1021/acsnano.7b07746
- A. Zhang, S. Pan, Y. Zhang, J. Chang, J. Cheng et al., Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics 9(12), 3443–3458 (2019). https://doi.org/10.7150/thno.33266
- Y.-C. Ma, Y.-H. Zhu, X.-F. Tang, L.-F. Hang, W. Jiang et al., Au nanoparticles with enzyme-mimicking activity-ornamented ZIF-8 for highly efficient photodynamic therapy. Biomater. Sci. 7(7), 2740–2748 (2019). https://doi.org/10.1039/c9bm00333a
- L. Li, Z. Yang, W. Fan, L. He, C. Cui et al., In situ polymerized hollow mesoporous organosilica biocatalysis nanoreactor for enhancing ROS-mediated anticancer therapy. Adv. Funct. Mater. 1907716, 1–11 (2019). https://doi.org/10.1002/adfm.201907716
- S.K. Maji, S. Yu, K. Chung, M. Sekkarapatti Ramasamy, J.W. Lim et al., Synergistic nanozymetic activity of hybrid gold bipyramid-molybdenum disulfide core@shell nanostructures for two-photon imaging and anticancer therapy. ACS Appl. Mater. Interfaces. 10(49), 42068–42076 (2018). https://doi.org/10.1021/acsami.8b15443
- C. Liu, L. Luo, L. Zeng, J. Xing, Y. Xia et al., Porous gold nanoshells on functional NH2-MOFs: facile synthesis and designable platforms for cancer multiple therapy. Small 14(35), 1801851 (2018). https://doi.org/10.1002/smll.201801851
- S. Gao, H. Lin, H. Zhang, H. Yao, Y. Chen, J. Shi, Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 6(3), 1801733 (2019). https://doi.org/10.1002/advs.201801733
- Z. Wang, K. Dong, Z. Liu, Y. Zhang, Z. Chen, 1801733 Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 113, 145–157 (2017). https://doi.org/10.1016/j.biomaterials.2016.10.041
- H. Koo, R.N. Allan, R.P. Howlin, P. Stoodley, L. Hall-Stoodley, Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15(12), 740–755 (2017). https://doi.org/10.1038/nrmicro.2017.99
- Q. Zhang, S. Chen, H. Wang, H. Yu, Exquisite enzyme-fenton biomimetic catalysts for hydroxyl radical production by mimicking an enzyme cascade. ACS Appl. Mater. Interfaces. 10(10), 8666–8675 (2018). https://doi.org/10.1021/acsami.7b18690
- M. Hui Zhang, H. Dong, L. Zhao, D. Xi Wang, D. Meng, A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci. Total Environ. 670, 110–121 (2019). https://doi.org/10.1016/j.scitotenv.2019.03.180
- S. Kunjiappan, C. Bhattacharjee, R. Chowdhury, In vitro antioxidant and hepatoprotective potential of Azolla microphylla phytochemically synthesized gold nanoparticles on acetaminophen—induced hepatocyte damage in Cyprinus carpio L. Vitr. Cell. Dev. Biol. Anim. 51(6), 630–643 (2015). https://doi.org/10.1007/s11626-014-9841-3
- F. Wang, E. Ju, Y. Guan, J. Ren, X. Qu, Light-mediated reversible modulation of ROS level in living cells by using an activity-controllable nanozyme. Small 13(25), 1603051 (2017). https://doi.org/10.1002/smll.201603051
- C.-P. Liu, T.-H. Wu, Y.-L. Lin, C.-Y. Liu, S. Wang, S.-Y. Lin, Tailoring enzyme-like activities of gold nanoclusters by polymeric tertiary amines for protecting neurons against oxidative stress. Small 12(30), 4127–4135 (2016). https://doi.org/10.1002/smll.201503919
- F. Dashtestani, H. Ghourchian, A. Najafi, Silver-gold-apoferritin nanozyme for suppressing oxidative stress during cryopreservation. Mater. Sci. Eng., C 94, 831–840 (2019). https://doi.org/10.1016/j.msec.2018.10.008
- J.T. Hancock, R. Desikan, S.J. Neill, Role of reactive oxygen species in cell signalling pathways. Biochem. Soc. Trans. 29(2), 345–350 (2001). https://doi.org/10.1042/0300-5127:0290345
- S. Boukhenouna, M.A. Wilson, K. Bahmed, B. Kosmider, Reactive oxygen species in chronic obstructive pulmonary disease. Oxid. Med. Cell. Longev. (2018). https://doi.org/10.1155/2018/5730395
- D.S. Manickam, A.M. Brynskikh, J.L. Kopanic, P.L. Sorgen, N.L. Klyachko et al., Well-defined cross-linked antioxidant nanozymes for treatment of ischemic brain injury. J. Control. Release 162(3), 636–645 (2012). https://doi.org/10.1016/j.jconrel.2012.07.044
- M. Valko, D. Leibfritz, J. Moncol, M.T.D. Cronin, M. Mazur, J. Telser, Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39(1), 44–84 (2007). https://doi.org/10.1016/j.biocel.2006.07.001
- Z. Chen, J.J. Yin, Y.T. Zhou, Y. Zhang, L. Song et al., Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5), 4001–4012 (2012). https://doi.org/10.1021/nn300291r
- X. Wang, Y. Zhang, T. Li, W. Tian, Q. Zhang, Y. Cheng, Generation 9 polyamidoamine dendrimer encapsulated platinum nanoparticle mimics catalase size, shape, and catalytic activity. Langmuir 29(17), 5262–5270 (2013). https://doi.org/10.1021/la3046077
- J.L.D. Nelis, A.S. Tsagkaris, Y. Zhao, J. Lou-Franco, P. Nolan et al., The end user sensor tree: an end-user friendly sensor database. Biosens. Bioelectron. 130, 245–253 (2019). https://doi.org/10.1016/j.bios.2019.01.055
- J. Hou, M. Vázquez-González, M. Fadeev, X. Liu, R. Lavi, I. Willner, Catalyzed and electrocatalyzed oxidation of l-tyrosine and l-phenylalanine to dopachrome by nanozymes. Nano Lett. 18(6), 4015–4022 (2018). https://doi.org/10.1021/acs.nanolett.8b01522
- M. Diez-Castellnou, F. Mancin, P. Scrimin, Efficient phosphodiester cleaving nanozymes resulting from multivalency and local medium polarity control. J. Am. Chem. Soc. 136(4), 1158–1161 (2014). https://doi.org/10.1021/ja411969e
- Y. Zhou, H. Sun, H. Xu, S. Matysiak, J. Ren, X. Qu, Mesoporous encapsulated chiral nanogold for use in enantioselective reactions. Angew. Chem. Int. Ed. 57(51), 16791–16795 (2018). https://doi.org/10.1002/anie.201811118
- Y.-W. Wang, Q. Liu, L. Wang, S. Tang, H.-H. Yang, H. Song, A colorimetric mercury(II) assay based on the Hg(II)-stimulated peroxidase mimicking activity of a nanocomposite prepared from graphitic carbon nitride and gold nanoparticles. Microchim. Acta 186(1), 7 (2019). https://doi.org/10.1007/s00604-018-3137-3
- S. Zhang, H. Li, Z. Wang, J. Liu, H. Zhang, B. Wang, Z. Yang, A strongly coupled Au/Fe3O4/GO hybrid material with enhanced nanozyme activity for highly sensitive colorimetric detection, and rapid and efficient removal of Hg2+ in aqueous solutions. Nanoscale 7(18), 8495–8502 (2015). https://doi.org/10.1039/c5nr00527b
- C.-F. Peng, Y.-Y. Zhang, L.-Y. Wang, Z.-Y. Jin, G. Shao, Colorimetric assay for the simultaneous detection of Hg2+ and Ag+ based on inhibiting the peroxidase-like activity of core-shell Au@Pt nanoparticles. Anal. Methods 9(30), 4363–4370 (2017). https://doi.org/10.1039/c7ay01317e
- C.-L. Hsu, C.-W. Lien, S.G. Harroun, R. Ravindranath, H.-T. Chang, J.-Y. Mao, C.-C. Huang, Metal-deposited bismuth oxyiodide nanonetworks with tunable enzyme-like activity: sensing of mercury and lead ions. Mater. Chem. Front. 1(5), 893–899 (2017). https://doi.org/10.1039/c6qm00149a
- Y.J. Long, Y.F. Li, Y. Liu, J.J. Zheng, J. Tang, C.Z. Huang, Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem. Commun. 47(43), 11939–11941 (2011). https://doi.org/10.1039/c1cc14294a
- C. Cao, J. Zhang, S. Li, Q. Xiong, Intelligent and ultrasensitive analysis of mercury trace contaminants via plasmonic metamaterial-based surface-enhanced raman spectroscopy. Small 10(16), 3252–3256 (2014). https://doi.org/10.1002/smll.201400165
- L. Zhang, Y. Yuan, X. Wen, Y. Li, C. Cao, Q. Xiong, A coordination and ligand replacement based three-input colorimetric logic gate sensing platform for melamine, mercury ions, and cysteine. RSC Adv. 5(73), 59106–59113 (2015). https://doi.org/10.1039/c5ra09570k
- N. Logan, C. McVey, C. Elliott, C. Cao, Amalgamated gold-nanoalloys with enhanced catalytic activity for the detection of mercury ions (Hg2+) in seawater samples. Nano Res. 13(4), 989–998 (2020). https://doi.org/10.1007/s12274-020-2731-y
- P. Weerathunge, R. Ramanathan, R. Shukla, T.K. Sharma, V. Bansal, Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal. Chem. 86(24), 11937–11941 (2014). https://doi.org/10.1021/ac5028726
- S. Singh, P. Tripathi, N. Kumar, S. Nara, Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme. Biosens. Bioelectron. 92, 280–286 (2017). https://doi.org/10.1016/j.bios.2016.11.011
- P. Weerathunge, R. Ramanathan, V.A. Torok, K. Hodgson, Y. Xu et al., Ultrasensitive colorimetric detection of murine norovirus using nanozyme aptasensor. Anal. Chem. 91(5), 3270–3276 (2019). https://doi.org/10.1021/acs.analchem.8b03300
- R. Das, A. Dhiman, A. Kapil, V. Bansal, T.K. Sharma, Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal. Bioanal. Chem. 411(6), 1229–1238 (2019). https://doi.org/10.1007/s00216-018-1555-z
- C. McVey, F. Huang, C. Elliott, C. Cao, Endonuclease controlled aggregation of gold nanoparticles for the ultrasensitive detection of pathogenic bacterial DNA. Biosens. Bioelectron. 92, 502–508 (2017). https://doi.org/10.1016/j.bios.2016.10.072
- C. Cao, L.C. Gontard, L.L. ThuyTram, A. Wolff, D.D. Bang, Dual enlargement of gold nanoparticles: from mechanism to scanometric detection of pathogenic bacteria. Small 7(12), 1701–1708 (2011). https://doi.org/10.1002/smll.201100294
- Z. Zhang, L.M. Bragg, M.R. Servos, J. Liu, Gold nanoparticles as dehydrogenase mimicking nanozymes for estradiol degradation. Chinese Chem. Lett. 30(9), 1655–1658 (2019). https://doi.org/10.1016/j.cclet.2019.05.062
- Y. Liu, Y.Y. Zhang, Q.W. Kou, D.D. Wang, D.L. Han et al., Fe3O4/Au binary nanocrystals: facile synthesis with diverse structure evolution and highly efficient catalytic reduction with cyclability characteristics in 4-nitrophenol. Powder Technol. 338, 26–35 (2018). https://doi.org/10.1016/j.powtec.2018.06.037
- B.H. Robinson, E-waste: an assessment of global production and environmental impacts. Sci. Total Environ. 408(2), 183–191 (2009). https://doi.org/10.1016/j.scitotenv.2009.09.044
- G. Zhao, Y. Xu, G. Han, B. Ling, Biotransfer of persistent organic pollutants from a large site in China used for the disassembly of electronic and electrical waste. Environ. Geochem. Health 28(4), 341–351 (2006). https://doi.org/10.1007/s10653-005-9003-3
- H.-H. Deng, B.-Y. Luo, S.-B. He, R.-T. Chen, Z. Lin et al., Redox recycling-triggered peroxidase-like activity enhancement of bare gold nanoparticles for ultrasensitive colorimetric detection of rare-earth Ce3+ Ion. Anal. Chem. 91(6), 4039–4046 (2019). https://doi.org/10.1021/acs.analchem.8b05552
- Y. Liu, Y. Xiang, D. Ding, R. Guo, Structural effects of amphiphilic protein/gold nanoparticle hybrid based nanozyme on peroxidase-like activity and silver-mediated inhibition. RSC Adv. 6(113), 112435–112444 (2016). https://doi.org/10.1039/C6RA23773H
- Z. Wu, X. Yuan, H. Zhong, H. Wang, G. Zeng et al., Enhanced adsorptive removal of p-nitrophenol from water by aluminum metal-organic framework/reduced graphene oxide composite. Sci. Rep. 6, 1–13 (2016). https://doi.org/10.1038/srep25638
- X. Kong, H. Zhu, C. Le Chen, G. Huang, Q. Chen, Insights into the reduction of 4-nitrophenol to 4-aminophenol on catalysts. Chem. Phys. Lett. 684, 148–152 (2017). https://doi.org/10.1016/j.cplett.2017.06.049
- R.N. Tanna, G.R. Tetreault, C.J. Bennett, B.M. Smith, L.M. Bragg et al., Occurrence and degree of intersex (testis-ova) in darters (Etheostoma SPP.) across an urban gradient in the Grand River, Ontario, Canada. Environ. Toxicol. Chem. 32(9), 1981–1991 (2013). https://doi.org/10.1002/etc.2262
- M. Giulivo, M. Lopez de Alda, E. Capri, D. Barceló, Human exposure to endocrine disrupting compounds: their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environ. Res. 151, 251–264 (2016). https://doi.org/10.1016/j.envres.2016.07.011
- Anonymous, Food safety. (World Health Organization, 2020). https://www.who.int/news-room/fact-sheets/detail/food-safety. Accessed 19 August 2020
- T. Jiang, Y. Song, T. Wei, H. Li, D. Du, M.-J. Zhu, Y. Lin, Sensitive detection of Escherichia coli O157:H7 using Pt–Au bimetal nanoparticles with peroxidase-like amplification. Biosens. Bioelectron. 77, 687–694 (2016). https://doi.org/10.1016/j.bios.2015.10.017
- T. Kumar Sharma, R. Ramanathan, P. Weerathunge, M. Mohammadtaheri, H. KumarDaima, R. Shukla, V. Bansal, Aptamer-mediated “turn-off/turn-on” nanozyme activity of gold nanoparticles for kanamycin detection. Chem. Commun. 50(100), 15856–15859 (2014). https://doi.org/10.1039/c4cc07275h
- C. Wang, C. Liu, J. Luo, Y. Tian, N. Zhou, Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 936, 75–82 (2016). https://doi.org/10.1016/j.aca.2016.07.013
- X. Pei, A. Tandon, A. Alldrick, L. Giorgi, W. Huang, R. Yang, The China melamine milk scandal and its implications for food safety regulation. Food Policy 36(3), 412–420 (2011). https://doi.org/10.1016/j.foodpol.2011.03.008
- H. Xin, R. Stone, Tainted milk scandal: Chinese probe unmasks high-tech adulteration with melamine. Science 322(5906), 1310–1311 (2008). https://doi.org/10.1126/science.322.5906.1310
- C. Xiu, K.K. Klein, Melamine in milk products in China: examining the factors that led to deliberate use of the contaminant. Food Policy 35(5), 463–470 (2010). https://doi.org/10.1016/j.foodpol.2010.05.001
- H.H. Deng, G.W. Li, L. Hong, A.L. Liu, W. Chen, X.H. Lin, X.H. Xia, Colorimetric sensor based on dual-functional gold nanoparticles: analyte-recognition and peroxidase-like activity. Food Chem. 147, 257–261 (2014). https://doi.org/10.1016/j.foodchem.2013.09.151
- J. Li, G. Zhang, L. Wang, A. Shen, J. Hu, Simultaneous enzymatic and SERS properties of bifunctional chitosan-modified popcorn-like Au–Ag nanoparticles for high sensitive detection of melamine in milk powder. Talanta 140, 204–211 (2015). https://doi.org/10.1016/j.talanta.2015.03.050
- N.R. Jana, T. Pal, Anisotropic metal nanoparticles for use as surface-enhanced Raman substrates. Adv. Mater. 19(13), 1761–1765 (2007). https://doi.org/10.1002/adma.200601749
- E. Nalbant Esenturk, A.R. Hight Walker, Surface-enhanced Raman scattering spectroscopy via gold nanostars. J. Raman Spectrosc. 40(1), 86–91 (2009). https://doi.org/10.1002/jrs.2084
- M. Varvara, G. Bozzo, G. Celano, C. Disanto, C.N. Pagliarone, G.V. Celano, The use of ascorbic acid as a food additive: technical-legal issues. Ital. J. Food Saf. 5(1), 7–10 (2016). https://doi.org/10.4081/ijfs.2016.4313
- S. Xu, X. Dong, S. Chen, Y. Zhao, G. Shan et al., The preparation of high-index facet Au/Cu NRs and their application for colorimetric determination ascorbic acid. Sensors Actuat. B Chem. 281, 375–382 (2019). https://doi.org/10.1016/j.snb.2018.10.114
- Y. Xu, J. Fei, G. Li, T. Yuan, X. Xu, J. Li, Nanozyme-catalyzed cascade reactions for mitochondria-mimicking oxidative phosphorylation. Angew. Chem. Int. Ed. 58(17), 5572–5576 (2019). https://doi.org/10.1002/anie.201813771
- L. Gao, M. Liu, G. Ma, Y. Wang, L. Zhao et al., Peptide-conjugated gold nanoprobe: intrinsic nanozyme-linked immunsorbant assay of integrin expression level on cell membrane. ACS Nano 9(11), 10979–10990 (2015). https://doi.org/10.1021/acsnano.5b04261
- R. Cao-Milán, L.D. He, S. Shorkey, G.Y. Tonga, L.-S. Wang et al., Modulating the catalytic activity of enzyme-like nanoparticles through their surface functionalization. Mol. Syst. Des. Eng. 2(5), 624–628 (2017). https://doi.org/10.1039/c7me00055c
- F. della Sala, J.L.-Y. Chen, S. Ranallo, D. Badocco, P. Pastore, F. Ricci, L.J. Prins, Reversible electrochemical modulation of a catalytic nanosystem. Angew. Chem. Int. Ed. 55(36), 10737–10740 (2016). https://doi.org/10.1002/anie.201605309
- S. Lee, E. Tak, J. Lee, M. Rashid, M.P. Murphy, J. Ha, S.S. Kim, Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Cell Res. 21(5), 817–834 (2011). https://doi.org/10.1038/cr.2011.55
- Y. Sun, R. Wang, X. Liu, G. Shan, Y. Chen, T. Tong, Y. Liu, Laser-induced formation of Au/Pt nanorods with peroxidase mimicking and SERS enhancement properties for application to the colorimetric determination of H2O2. Microchim. Acta 185(9), 445 (2018). https://doi.org/10.1007/s00604-018-2981-5
- J. Wu, K. Qin, D. Yuan, J. Tan, L. Qin, X. Zhang, H. Wei, Rational design of Au@Pt multibranched nanostructures as bifunctional nanozymes. ACS Appl. Mater. Interfaces. 10(15), 12954–12959 (2018). https://doi.org/10.1021/acsami.7b17945
- K. Zhang, Y. Liu, Y. Wang, J. Zhao, B. Liu, Direct SERS tracking of a chemical reaction at a single 13 nm gold nanoparticle. Chem. Sci. 10(6), 1741–1745 (2019). https://doi.org/10.1039/c8sc04496a
- Q. Cui, B. Xia, S. Mitzscherling, A. Masic, L. Li, M. Bargheer, H. Möhwald, Preparation of gold nanostars and their study in selective catalytic reactions. Colloids Surfaces A Physicochem. Eng. Asp. 465, 20–25 (2015). https://doi.org/10.1016/j.colsurfa.2014.10.028
- D. Lou, Y. Tian, Y. Zhang, J. Yin, T. Yang et al., Peroxidase-like activity of gold nanoparticles and their gold staining enhanced ELISA application. J. Nanosci. Nanotechnol. 18(2), 951–958 (2018). https://doi.org/10.1166/jnn.2018.13977
- J.A.J. Fitzpatrick, S.K. Andreko, L.A. Ernst, A.S. Waggoner, B. Ballou, M.P. Bruchez, Long-term persistence and spectral blue shifting of quantum dots in vivo. Nano Lett. 9(7), 2736–2741 (2009). https://doi.org/10.1021/nl901534q
- M. Longmire, P.L. Choyke, H. Kobayashi, Clearance properties of nano-sized particles and molecules as imaging agents: consideration and caveats. Nanomedicine 3(5), 703–717 (2012). https://doi.org/10.2217/17435889.3.5.703.Clearance
- T. Zhang, F. Tian, L. Long, J. Liu, X. Wu, Diagnosis of rubella virus using antigen-conjugated Au@Pt nanorods as nanozyme probe. Int. J. Nanomedicine 13, 4795–4805 (2018). https://doi.org/10.2147/IJN.S171429
- O. Adegoke, C. McKenzie, N.N. Daeid, Multi-shaped cationic gold nanoparticle-l-cysteine-ZnSeS quantum dots hybrid nanozyme as an intrinsic peroxidase mimic for the rapid colorimetric detection of cocaine. Sensors Actuat. B Chem. 287, 416–427 (2019). https://doi.org/10.1016/j.snb.2019.02.074
- Y. Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad et al., Surface-enhanced raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11(6), 5558–5566 (2017). https://doi.org/10.1021/acsnano.7b00905
- X.X. Wang, Q. Wu, Z. Shan, Q.M. Huang, BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens. Bioelectron. 26(8), 3614–3619 (2011). https://doi.org/10.1016/j.bios.2011.02.014
- L. Cao, P. Wang, L. Chen, Y. Wu, J. Di, A photoelectrochemical glucose sensor based on gold nanoparticles as a mimic enzyme of glucose oxidase. RSC Adv. 9(27), 15307–15313 (2019). https://doi.org/10.1039/c9ra02088h
- G. Darabdhara, J. Bordoloi, P. Manna, M.R. Das, Biocompatible bimetallic Au-Ni doped graphitic carbon nitride sheets: a novel peroxidase-mimicking artificial enzyme for rapid and highly sensitive colorimetric detection of glucose. Sensors Actuat. B Chem. 285, 277–290 (2019). https://doi.org/10.1016/j.snb.2019.01.048
- L. Liu, J. Du, W.-E. Liu, Y. Guo, G. Wu, W. Qi, X. Lu, Enhanced His@AuNCs oxidase-like activity by reduced graphene oxide and its application for colorimetric and electrochemical detection of nitrite. Anal. Bioanal. Chem. 411(10), 2189–2200 (2019). https://doi.org/10.1007/s00216-019-01655-y
- X. Zhu, X. Mao, Z. Wang, C. Feng, G. Chen, G. Li, Fabrication of nanozyme@DNA hydrogel and its application in biomedical analysis. Nano Res. 10(3), 959–970 (2017). https://doi.org/10.1007/s12274-016-1354-9
- G.H. Jin, E. Ko, M.K. Kim, V.-K. Tran, S.E. Son et al., Graphene oxide-gold nanozyme for highly sensitive electrochemical detection of hydrogen peroxide. Sensors Actuat. B Chem. 274, 201–209 (2018). https://doi.org/10.1016/j.snb.2018.07.160
References
P. Fermo, G. Padeletti, The use of nano-particles to produce iridescent metallic effects on ancient ceramic objects. J. Nanosci. Nanotechnol. 12(11), 8764–8769 (2012). https://doi.org/10.1166/jnn.2012.6464
I. Freestone, N. Meeks, M. Sax, C. Higgit, The lycurgus cup—a roman nanotechnology. Gold Bull. 40(4), 270–277 (2007). https://doi.org/10.1007/BF03215599
L. Dykman, N. Khlebtsov, Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41(6), 2256–2282 (2012). https://doi.org/10.1039/c1cs15166e
G.J. Higby, Gold in medicine—a review of its use in the west before 1900. Gold Bull. 15(4), 130–140 (1982). https://doi.org/10.1007/BF03214618
N. Culpeper, Pharmacopoeia Londinensis: Or the London Dispensatory (Royal College of Physicians, England, 1672)
R. James, A Medicinal Dictionary, Vol.1 (London, 1743)
J.A. Chrestien, De la méthode ïatraleptique, ou observations pratiques sur l’efficacité des remèdes administrés par la voie, de l’absorption cutanée dans le traitement de plusieurs maladies internes et externes; et sur un nouveau remède [pour les] maladies vénériennes et lymphatiques (Chez Croullebois: Chez Crochard, Paris, 1811)
R. Koch, Dtsch. Medizinische Wochenschrift. 16, 756–757 (1890)
J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951)
R.P. Feynman, There’s Plenty of Room at the Bottom (Perseus Books Publishing, New York, 1999)
M.C.M. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size related properties and applications toward biology, catalysis and nanotechnology. Chem. Rev. 104(1), 293–346 (2004). https://doi.org/10.1021/cr030698+
M.A. Garcia, Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D Appl. Phys. 45(38), 1–20 (2012). https://doi.org/10.1088/0022-3727/45/38/389501
S. Trudel, Unexpected magnetism in gold nanostructures: making gold even more attractive. Gold Bull. 44(1), 3–13 (2011). https://doi.org/10.1007/s13404-010-0002-5
Y. Lin, J. Ren, X. Qu, Nano-gold as artificial enzymes: hidden talents. Adv. Mater. 26(25), 4200–4217 (2014). https://doi.org/10.1002/adma.201400238
X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2(5), 681–693 (2007). https://doi.org/10.2217/17435889.2.5.681
P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41(12), 1578–1586 (2008). https://doi.org/10.1021/ar7002804
Y. Wang, Y. Xia, Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett. 4(10), 2047–2050 (2004). https://doi.org/10.1021/nl048689j
J.F. Liu, L.G. Zhang, N. Gu, J.Y. Ren, Y.P. Wu et al., Fabrication of colloidal gold micro-patterns using photolithographed self-assembled monolayers as templates. Thin Solid Films 327–329(1–2), 176–179 (1998). https://doi.org/10.1016/S0040-6090(98)00623-3
M.K. Corbierre, J. Beerens, R.B. Lennox, Gold nanoparticles generated by electron beam lithography of gold(I)-thiolate thin films. Chem. Mater. 17(23), 5774–5779 (2005). https://doi.org/10.1021/cm051085b
D. Qin, Y. Xia, G.M. Whitesides, Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5(3), 491–502 (2010). https://doi.org/10.1038/nprot.2009.234
H.W. Li, B.V.O. Muir, G. Fichet, W.T.S. Huck, Nanocontact printing: a route to sub-50-nm-scale chemical and biological patterning. Langmuir 19(6), 1963–1965 (2003). https://doi.org/10.1021/la0269098
G. Barbillon, F. Hamouda, S. Held, P. Gogol, B. Bartenlian, Gold nanoparticles by soft UV nanoimprint lithography coupled to a lift-off process for plasmonic sensing of antibodies. Microelectron. Eng. 87(5–8), 1001–1004 (2010). https://doi.org/10.1016/j.mee.2009.11.114
B.J.Y. Tan, C.H. Sow, T.S. Koh, K.C. Chin, A.T.S. Wee, C.K. Ong, Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing. J. Phys. Chem. B 109(22), 11100–11109 (2005). https://doi.org/10.1021/jp045172n
S.M. Yang, S.G. Jang, D.G. Choi, S. Kim, H.K. Yu, Nanomachining by colloidal lithography. Small 2(4), 458–475 (2006). https://doi.org/10.1002/smll.200500390
J.C. Garno, Y. Yang, N.A. Amro, S. Cruchon-Dupeyrat, S. Chen, G.Y. Liu, Precise positioning of nanoparticles on surfaces using scanning probe lithography. Nano Lett. 3(3), 389–395 (2003). https://doi.org/10.1021/nl025934v
S.H. Kim, B.Y.H. Liu, M.R. Zachariah, Synthesis of nanoporous metal oxide particles by a new inorganic matrix spray pyrolysis method. Chem. Mater. 14(7), 2889–2899 (2002). https://doi.org/10.1021/cm010957g
S. Stopić, B. Friedrich, K. Raić, T. Volkov-Husović, M. Dimitrijević, Characterization of nano-powder morphology obtained by ultrasonic spray pyrolysis. Metalurgija 14(1), 41–54 (2008)
J. Dokić, R. Rudolf, S. Tomíc, S. Stopić, B. Friedrich, B. Budič, I. Anžel, M. Čolić, Immunomodulatory properties of nanoparticles obtained by ultrasonic spray pirolysis from gold scrap. J. Biomed. Nanotechnol. 8(3), 528–538 (2012). https://doi.org/10.1166/jbn.2012.1405
V. Pareek, A. Bhargava, R. Gupta, N. Jain, J. Panwar, Synthesis and applications of noble metal nanoparticles: a review. Adv. Sci. Eng. Med. 9(7), 527–544 (2017). https://doi.org/10.1166/asem.2017.2027
L. Wang, Y. Sun, Z. Li, A. Wu, G. Wei, Bottom-up synthesis and sensor applications of biomimetic nanostructures. Materials 9(53), 1–28 (2016). https://doi.org/10.3390/ma9010053
S. Zankovych, T. Hoffmann, J. Seekamp, J.U. Bruch, C.M. Sotomayor Torres, Nanoimprint lithography: challenges and prospects. Nanotechnology 12(2), 91–95 (2001). https://doi.org/10.1088/0957-4484/12/2/303
Q. Ruan, L. Shao, Y. Shu, J. Wang, H. Wu, Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures. Adv. Opt. Mater. 2(1), 65–73 (2014). https://doi.org/10.1002/adom.201300359
B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15(10), 1957–1962 (2003). https://doi.org/10.1021/cm020732l
P.L. Truong, C. Cao, S. Park, M. Kim, S.J. Sim, A new method for non-labeling attomolar detection of diseases based on an individual gold nanorod immunosensor. Lab Chip 11(15), 2591–2597 (2011). https://doi.org/10.1039/c1lc20085b
Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601), 2176–2179 (2002). https://doi.org/10.1126/science.1077229
T.H. Ha, H.J. Koo, B.H. Chung, Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J. Phys. Chem. C 111(3), 1123–1130 (2007). https://doi.org/10.1021/jp066454l
X. Ma, Y. Cheng, Y. Huang, Y. Tian, S. Wang, Y. Chen, PEGylated gold nanoprisms for photothermal therapy at low laser power density. RSC Adv. 5(99), 81682–81688 (2015). https://doi.org/10.1039/c5ra17385j
P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. Javier García De Abajo, L.M. Liz-Marzán, High-yield synthesis and optical response of gold nanostars. Nanotechnology 19(1), 1–6 (2008). https://doi.org/10.1088/0957-4484/19/01/015606
E.C. Cho, L. Au, Q. Zhang, Y. Xia, The effects of size, shape, and surface functional group of gold nanostructures on their adsorption and internalization by cells. Small 6(4), 517–522 (2010). https://doi.org/10.1002/smll.200901622
F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Platonic gold nanocrystals. Angew. Chem. Int. Ed. 116(28), 3759–3763 (2004). https://doi.org/10.1002/ange.200454216
J. Shen, J. Su, J. Yan, B. Zhao, D. Wang et al., Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification. Nano Res. 8(3), 731–742 (2015). https://doi.org/10.1007/s12274-014-0556-2
C. Fang, G. Zhao, Y. Xiao, J. Zhao, Z. Zhang, B. Geng, Facile growth of high-yield gold nanobipyramids induced by chloroplatinic acid for high refractive index sensing properties. Sci. Rep. 6, 1–8 (2016). https://doi.org/10.1038/srep36706
M.S. Vega, A.G. Martínez, F. Cucinotta, Facile strategy for the synthesis of Gold@Silica hybrid nanoparticles with controlled porosity and janus morphology. Nanomaterials 9(3), 348 (2019). https://doi.org/10.3390/nano9030348
N. Ji, Y. Chen, P. Gong, K. Cao, D.L. Peng, Investigation on the self-assembly of gold nanoparticles into bidisperse nanoparticle superlattices. Colloids Surf. A Physicochem. Eng. Asp. 480, 11–18 (2015). https://doi.org/10.1016/j.colsurfa.2015.03.058
M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L.M. Liz-Marzán, Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37(9), 1783–1791 (2008). https://doi.org/10.1039/b711490g
K.D. Gilroy, A. Ruditskiy, H.C. Peng, D. Qin, Y. Xia, Bimetallic nanocrystals: syntheses, properties, and applications. Chem. Rev. 116(18), 10414–10472 (2016). https://doi.org/10.1021/acs.chemrev.6b00211
N. Patel, M.C. Davies, M. Hartshorne, R.J. Heaton, C.J. Roberts, S.J.B. Tendler, P.M. Williams, Immobilization of protein molecules onto homogeneous and mixed carboxylate-terminated self-assembled monolayers. Langmuir 13(24), 6485–6490 (1997). https://doi.org/10.1021/la970933h
D. Bartczak, A.G. Kanaras, Preparation of peptide-functionalized gold nanoparticles using one pot EDC/Sulfo-NHS coupling. Langmuir 27(16), 10119–10123 (2011). https://doi.org/10.1021/la2022177
J.Y. Chang, H. Wu, H. Chen, Y.C. Ling, W. Tan, Oriented assembly of Au nanorods using biorecognition system. Chem. Commun. 8, 1092–1094 (2005). https://doi.org/10.1039/b414059a
S. Pathak, M.C. Davidson, G.A. Silva, Characterization of the functional binding properties of antibody conjugated quantum dots. Nano Lett. 7(7), 1839–1845 (2007). https://doi.org/10.1021/nl062706i
X. Wang, Z. Mei, Y. Wang, L. Tang, Comparison of four methods for the biofunctionalization of gold nanorods by the introduction of sulfhydryl groups to antibodies. Beilstein J. Nanotechnol. 8(1), 372–380 (2017). https://doi.org/10.3762/bjnano.8.39
E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41(7), 2740–2779 (2012). https://doi.org/10.1039/c1cs15237h
Y. Pan, A. Leifert, D. Ruau, S. Neuss, J. Bornemann et al., Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18), 2067–2076 (2009). https://doi.org/10.1002/smll.200900466
A.M. Alkilany, P.K. Nagaria, C.R. Hexel, T.J. Shaw, C.J. Murphy, M.D. Wyatt, Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6), 701–708 (2009). https://doi.org/10.1002/smll.200801546
A.M. Alkilany, P.K. Nagaria, M.D. Wyatt, C.J. Murphy, Cation exchange on the surface of gold nanorods with a polymerizable surfactant: polymerization, stability, and toxicity evaluation. Langmuir 26(12), 9328–9333 (2010). https://doi.org/10.1021/la100253k
T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi et al., PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 114(3), 343–347 (2006). https://doi.org/10.1016/j.jconrel.2006.06.017
M.K. Lai, C.Y. Chang, Y.W. Lien, R.C.C. Tsiang, Application of gold nanoparticles to microencapsulation of thioridazine. J. Control. Release 111(3), 352–361 (2006). https://doi.org/10.1016/j.jconrel.2005.12.017
E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3), 325–327 (2005). https://doi.org/10.1002/smll.200400093
G. Sonavane, K. Tomoda, K. Makino, Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surfaces B Biointerfaces 66(2), 274–280 (2008). https://doi.org/10.1016/j.colsurfb.2008.07.004
W.H. De Jong, P.J.A. Borm, Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3(2), 133–149 (2008). https://doi.org/10.2147/ijn.s596
E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38(6), 1759–1782 (2009). https://doi.org/10.1039/b806051g
Scientific Committee on Emerging and Newly Identified Health Risks, Modified opinion (after public consultation) on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. (Health & Consumer Protection Directorate-General, European Commission, 2006). https://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_003b.pdf. Accessed 19 August 2020
C.M. Goodman, C.D. McCusker, T. Yilmaz, V.M. Rotello, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 15(4), 897–900 (2004). https://doi.org/10.1021/bc049951i
S.J. Soenen, W.J. Parak, J. Rejman, B. Manshian, (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem. Rev. 115(5), 2109–2135 (2015). https://doi.org/10.1021/cr400714j
D.Y. Cha, G. Parravano, Surface reactivity of supported gold. I. Oxygen transfer between carbon monoxide and carbon dioxide. J. Catal. 18, 200–211 (1970)
M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem. Lett. 16(2), 405–408 (1987). https://doi.org/10.1246/cl.1987.405
D.G. Duff, A. Baiker, Preparation and structural properties of ultrafine gold colloids for oxidation catalysis. Stud. Surf. Sci. Catal. 91, 505–512 (1995). https://doi.org/10.1016/S0167-2991(06)81788-X
Y. Tao, E. Ju, J. Ren, X. Qu, Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 27(6), 1097–1104 (2015). https://doi.org/10.1002/adma.201405105
M. Comotti, C. DellaPina, R. Matarrese, M. Rossi, The catalytic activity of “naked” gold particles. Angew. Chem. Int. Ed. 43(43), 5812–5815 (2004). https://doi.org/10.1002/anie.200460446
W. Luo, C. Zhu, S. Su, D. Li, Y. He, Q. Huang, C. Fan, Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 4(12), 7451–7458 (2010). https://doi.org/10.1021/nn102592h
Y. Jv, B. Li, R. Cao, Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 46(42), 8017–8019 (2010). https://doi.org/10.1039/c0cc02698k
W. He, Y.T. Zhou, W.G. Wamer, X. Hu, X. Wu et al., Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 34(3), 765–773 (2013). https://doi.org/10.1016/j.biomaterials.2012.10.010
C.W. Tseng, H.Y. Chang, J.Y. Chang, C.C. Huang, Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nanoscale 4(21), 6823–6830 (2012). https://doi.org/10.1039/c2nr31716h
N. Pradhan, A. Pal, T. Pal, Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir 17(5), 1800–1802 (2001). https://doi.org/10.1021/la000862d
B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals. Nature 376, 238–240 (1995)
F. Manea, F.B. Houillon, L. Pasquato, P. Scrimin, Nanozymes: gold-nanoparticle-based transphosphorylation catalysts. Angew. Chem. Int. Ed. 43(45), 6165–6169 (2004). https://doi.org/10.1002/anie.200460649
I.M. Klotz, G.P. Royer, I.S. Scarpa, Synthetic derivatives of polyethyleneimine with enzyme-like catalytic activity (synzymes). Proc. Natl. Acad. Sci. U.S.A. 68(2), 263–264 (1971). https://doi.org/10.1073/pnas.68.2.263
X. Xie, W. Xu, X. Liu, Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification. Acc. Chem. Res. 45(9), 1511–1520 (2012). https://doi.org/10.1021/ar300044j
L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2(9), 577–583 (2007). https://doi.org/10.1038/nnano.2007.260
H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42(14), 6060–6093 (2013). https://doi.org/10.1039/c3cs35486e
X. Li, L. Wang, D. Du, L. Ni, J. Pan, X. Niu, Emerging applications of nanozymes in environmental analysis: opportunities and trends. Trends Anal. Chem. 120, 115653 (2019). https://doi.org/10.1016/j.trac.2019.115653
A. Mohamad, H. Teo, N.A. Keasberry, M.U. Ahmed, Recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles. Crit. Rev. Biotechnol. 39(1), 50–66 (2019). https://doi.org/10.1080/07388551.2018.1496063
D.P. Cormode, L. Gao, H. Koo, Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends Biotechnol. 36(1), 15–29 (2018). https://doi.org/10.1016/j.tibtech.2017.09.006
M. Liang, X. Yan, Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52(8), 2190–2200 (2019). https://doi.org/10.1021/acs.accounts.9b00140
S. Li, X. Liu, H. Chai, Y. Huang, Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. Trends Anal. Chem. 105, 391–403 (2018). https://doi.org/10.1016/j.trac.2018.06.001
X. Zhang, G. Li, D. Wu, X. Li, N. Hu et al., Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens. Bioelectron. 137, 178–198 (2019). https://doi.org/10.1016/j.bios.2019.04.061
B. Liu, J. Liu, Sensors and biosensors based on metal oxide nanomaterials. Trends Anal. Chem. 121, 115690 (2019). https://doi.org/10.1016/j.trac.2019.115690
M. Sharifi, K. Faryabi, A.J. Talaei, M.S. Shekha, M. Ale-Ebrahim et al., Antioxidant properties of gold nanozyme: a review. J. Mol. Liq. 297, 112004 (2020). https://doi.org/10.1016/j.molliq.2019.112004
M. Sharifi, S.H. Hosseinali, P. Yousefvand, A. Salihi, M.S. Shekha et al., Gold nanozyme: biosensing and therapeutic activities. Mater. Sci. Eng., C 108, 110422 (2020). https://doi.org/10.1016/j.msec.2019.110422
X. Cao, C. Li, Y. Lu, B. Zhang, Y. Wu et al., Catalysis of Au nano-pyramids formed across the surfaces of ordered Au nano-ring arrays. J. Catal. 377, 389–399 (2019). https://doi.org/10.1016/j.jcat.2019.07.038
S. Levin, J. Fritzsche, S. Nilsson, A. Runemark, B. Dhokale et al., A nanofluidic device for parallel single nanoparticle catalysis in solution. Nat. Commun. 10(1), 1–8 (2019). https://doi.org/10.1038/s41467-019-12458-1
P. Wang, A.V. Krasavin, M.E. Nasir, W. Dickson, A.V. Zayats, Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials. Nat. Nanotechnol. 13(2), 159–164 (2018). https://doi.org/10.1038/s41565-017-0017-7
G.C. Bond, D.T. Thompson, Gold-catalysed oxidation of carbon monoxide. Gold Bull. 33(2), 41–50 (2000). https://doi.org/10.1007/BF03216579
N. Lopez, T.V.W. Janssens, B.S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, J.K. Nørskov, On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 223(1), 232–235 (2004). https://doi.org/10.1016/j.jcat.2004.01.001
M.C. Saint-Lager, I. Laoufi, A. Bailly, O. Robach, S. Garaudée, P. Dolle, Catalytic properties of supported gold nanoparticles: new insights into the size-activity relationship gained from in operando measurements. Faraday Discuss. 152, 253–265 (2011). https://doi.org/10.1039/c1fd00028d
F. Vigneron, V. Caps, Evolution in the chemical making of gold oxidation catalysts. Comptes Rendus Chim. 19(1–2), 192–198 (2016). https://doi.org/10.1016/j.crci.2015.11.015
C. Lin, K. Tao, D. Hua, Z. Ma, S. Zhou, Size effect of gold nanoparticles in catalytic reduction of p-nitrophenol with NaBH4. Molecules 18(10), 12609–12620 (2013). https://doi.org/10.3390/molecules181012609
X. Zhou, W. Xu, G. Liu, D. Panda, P. Chen, Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J. Am. Chem. Soc. 132(1), 138–146 (2010). https://doi.org/10.1021/ja904307n
Y. He, J.C. Liu, L. Luo, Y.G. Wang, J. Zhu et al., Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition. Proc. Natl. Acad. Sci. U.S.A. 115(30), 7700–7705 (2018). https://doi.org/10.1073/pnas.1800262115
S. Biswas, P. Tripathi, N. Kumar, S. Nara, Gold nanorods as peroxidase mimetics and its application for colorimetric biosensing of malathion. Sensors Actuat. B Chem. 231, 584–592 (2016). https://doi.org/10.1016/j.snb.2016.03.066
T. Ma, W. Yang, S. Liu, H. Zhang, F. Liang, A comparison reduction of 4-nitrophenol by gold nanospheres and gold nanostars. Catalysts 7(38), 1–10 (2017). https://doi.org/10.3390/catal7020038
C. McVey, N. Logan, N.T.K. Thanh, C. Elliott, C. Cao, Unusual switchable peroxidase-mimicking nanozyme for the determination of proteolytic biomarker. Nano Res. 12(3), 509–516 (2019). https://doi.org/10.1007/s12274-018-2241-3
M. Drozd, M. Pietrzak, P. Parzuchowski, M. Mazurkiewicz-Pawlicka, E. Malinowska, Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range. Nanotechnology 26(49), (2015). https://doi.org/10.1088/0957-4484/26/49/495101
M. Drozd, M. Pietrzak, P.G. Parzuchowski, E. Malinowska, Pitfalls and capabilities of various hydrogen donors in evaluation of peroxidase-like activity of gold nanoparticles. Anal. Bioanal. Chem. 408(29), 8505–8513 (2016). https://doi.org/10.1007/s00216-016-9976-z
C. Zheng, W. Ke, T. Yin, X. An, Intrinsic peroxidase-like activity and the catalytic mechanism of gold @ carbon dots nanocomposites. RSC Adv. 6, 35280–35286 (2016). https://doi.org/10.1039/C6RA01917J
L. Hu, H. Liao, L. Feng, M. Wang, W. Fu, Accelerating the peroxidase-like activity of gold nanoclusters at neutral pH for colorimetric detection of heparin and heparinase activity. Anal. Chem. 90(10), 6247–6252 (2018). https://doi.org/10.1021/acs.analchem.8b00885
N. Lee, S.M. Lee, D.W. Lee, High catalytic activity of gold nanoparticle-templated, tyrosine-rich peptide self-assemblies for 3,3′,5,5′-tetramethylbenzidine oxidation in the absence of hydrogen peroxide. React. Kinet. Mech. Catal. 128(1), 349–359 (2019). https://doi.org/10.1007/s11144-019-01619-4
J. Li, W. Liu, X. Wu, X. Gao, Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 48, 37–44 (2015). https://doi.org/10.1016/j.biomaterials.2015.01.012
M. Comotti, C. Della Pina, E. Falletta, M. Rossi, Aerobic oxidation of glucose with gold catalyst: hydrogen peroxide as intermediate and reagent. Adv. Synth. Catal. 348(3), 313–316 (2006). https://doi.org/10.1002/adsc.200505389
P. Landon, P.J. Collier, A.J. Papworth, C.J. Kiely, G.J. Hutchings, Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chem. Commun. 18, 2058–2059 (2002). https://doi.org/10.1039/b205248m
Y. Lu, Y. Mei, M. Drechsler, M. Ballauff, Thermosensitive core-shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew. Chem. Int. Ed. 45(5), 813–816 (2006). https://doi.org/10.1002/anie.200502731
Y. Sun, Z. Li, J. Wu, Z. Wang, Y. Dong et al., Gold nanoparticle-protein conjugate dually-responsive to pH and temperature for modulation of enzyme activity. J. Mater. Chem. B 7(20), 3260–3267 (2019). https://doi.org/10.1039/c9tb00325h
R.G. Nuzzo, B.R. Zegarski, L.H. DuBois, Fundamental studies of the chemisorption of organosulfur compounds on Au(111). Implications for molecular self-assembly on gold surfaces. J. Am. Chem. Soc. 109(3), 733–740 (1987). https://doi.org/10.1021/ja00237a017
J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105(4), 1103–1169 (2005). https://doi.org/10.1021/cr0300789
H. Häkkinen, The gold–sulfur interface at the nanoscale. Nat. Chem. 4(6), 443–455 (2012). https://doi.org/10.1038/nchem.1352
S. Wang, W. Chen, A. Liu, L. Hong, H. Deng, X. Lin, Comparison of the peroxidase-like activity of unmodified, amino-modified and citrate-capped gold nnaoparticles. ChemPhysChem 13, 1199–1204 (2012). https://doi.org/10.1002/cphc.201100906
C.P. Liu, K.C. Chen, C.F. Su, P.Y. Yu, P.W. Lee, Revealing the active site of gold nanoparticles for the peroxidase-like activity: the determination of surface accessibility. Catalysts 9(6), 517 (2019). https://doi.org/10.3390/catal9060517
X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128(6), 2115–2120 (2006). https://doi.org/10.1021/ja057254a
A.M. Alkilany, R.L. Frey, J.L. Ferry, C.J. Murphy, Gold nanorods as nanoadmicelles: 1-naphthol partitioning into a nanorod-bound surfactant bilayer. Langmuir 24(18), 10235–10239 (2008). https://doi.org/10.1021/la8018343
Y. Cheng, A.C. Samia, J. Li, M.E. Kenney, A. Resnick, C. Burda, Delivery and efficacy of a cancer drug as a function of the bond to the gold nanoparticle surface. Langmuir 26(4), 2248–2255 (2010). https://doi.org/10.1021/la902390d
S.D. Brown, P. Nativo, J.A. Smith, D. Stirling, P.R. Edwards et al., Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc. 132(13), 4678–4684 (2010). https://doi.org/10.1021/ja908117a
S. Guo, Ќ.Y. Huang, Ќ.Q. Jiang, Y. Sun, L. Deng et al., Enhanced gene delivery and sirna silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4(9), 5505–5511 (2010). https://doi.org/10.1021/nn101638u
J. You, G. Zhang, C. Li, Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 4(2), 1033–1041 (2010). https://doi.org/10.1021/nn901181c
E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 176(10), 139–148 (2017). https://doi.org/10.1016/j.physbeh.2017.03.040
Y. Yang, E. Noviana, M.P. Nguyen, B.J. Geiss, D.S. Dandy, C.S. Henry, Paper-based microfluidic devices: emerging themes and applications. Anal. Chem. 89(1), 71–91 (2017). https://doi.org/10.1021/acs.analchem.6b04581
Y. Liu, D. Ding, Y. Zhen, R. Guo, Amino acid-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens. Bioelectron. 92, 140–146 (2017). https://doi.org/10.1016/j.bios.2017.01.036
Y. Wu, Y. Chen, Y. Li, J. Huang, H. Yu, Z. Wang, Accelerating peroxidase-like activity of gold nanozymes using purine derivatives and its application for monitoring of occult blood in urine. Sensors Actuat. B Chem. 270, 443–451 (2018). https://doi.org/10.1016/j.snb.2018.05.057
Y. Sun, J. Wang, W. Li, J. Zhang, Y. Zhang, Y. Fu, DNA-stabilized bimetallic nanozyme and its application on colorimetric assay of biothiols. Biosens. Bioelectron. 74, 1038–1046 (2015). https://doi.org/10.1016/j.bios.2015.08.001
L. Long, J. Liu, K. Lu, T. Zhang, Y. Xie, Y. Ji, X. Wu, Highly sensitive and robust peroxidase-like activity of Au-Pt core/shell nanorod-antigen conjugates for measles virus diagnosis. J. Nanobiotechn. 16(1), 1–10 (2018). https://doi.org/10.1186/s12951-018-0371-0
S. Oh, J. Kim, V.T. Tran, D.K. Lee, S.R. Ahmed et al., Magnetic nanozyme-linked immunosorbent assay for ultrasensitive influenza a virus detection. ACS Appl. Mater. Interfaces. 10(15), 12534–12543 (2018). https://doi.org/10.1021/acsami.8b02735
S.R. Ahmed, J. Kim, T. Suzuki, J. Lee, E.Y. Park, Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens. Bioelectron. 85, 503–508 (2016). https://doi.org/10.1016/j.bios.2016.05.050
S. Cho, H.Y. Shin, M. Il Kim, Nanohybrids consisting of magnetic nanoparticles and gold nanoclusters as effective peroxidase mimics and their application for colorimetric detection of glucose. Biointerphases 12(1), 01A401 (2017). https://doi.org/10.1116/1.4974198
K. Boriachek, M.K. Masud, C. Palma, H.-P. Phan, Y. Yamauchi et al., Avoiding pre-isolation step in exosome analysis: direct isolation and sensitive detection of exosomes using gold-loaded nanoporous ferric oxide nanozymes. Anal. Chem. 91(6), 3827–3834 (2019). https://doi.org/10.1021/acs.analchem.8b03619
M. Liu, H. Zhao, S. Chen, H. Yu, X. Quan, Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano 6(4), 3142–3151 (2012). https://doi.org/10.1021/nn3010922
Z. Sun, Q. Zhao, G. Zhang, Y. Li, G. Zhang, F. Zhang, X. Fan, Exfoliated MoS2 supported Au–Pd bimetallic nanoparticles with core–shell structures and superior peroxidase-like activities. RSC Adv. 5(14), 10352–10357 (2015). https://doi.org/10.1039/c4ra13575j
K.N. Han, J.S. Choi, J. Kwon, Gold nanozyme-based paper chip for colorimetric detection of mercury ions. Sci. Rep. 7(1), 1–7 (2017). https://doi.org/10.1038/s41598-017-02948-x
S. Laing, A. Hernandez-Santana, J. Sassmannshausen, D.L. Asquith, I.B. McInnes, K. Faulds, D. Graham, Quantitative detection of human tumor necrosis factor α by a resonance raman enzyme-linked immunosorbent assay. Anal. Chem. 83(1), 297–302 (2011). https://doi.org/10.1021/ac1024039
D. Sun, Z. Luo, J. Lu, S. Zhang, T. Che, Z. Chen, L. Zhang, Electrochemical dual-aptamer-based biosensor for nonenzymatic detection of cardiac troponin I by nanohybrid electrocatalysts labeling combined with DNA nanotetrahedron structure. Biosens. Bioelectron. 134, 49–56 (2019). https://doi.org/10.1016/j.bios.2019.03.049
P.-C. Kuo, C.-W. Lien, J.-Y. Mao, B. Unnikrishnan, H.-T. Chang, H.-J. Lin, C.-C. Huang, Detection of urinary spermine by using silver-gold/silver chloride nanozymes. Anal. Chim. Acta 1009, 89–97 (2018). https://doi.org/10.1016/j.aca.2018.01.018
X. Lin, Y. Liu, Z. Tao, J. Gao, J. Deng, J. Yin, S. Wang, Nanozyme-based bio-barcode assay for high sensitive and logic-controlled specific detection of multiple DNAs. Biosens. Bioelectron. 94, 471–477 (2017). https://doi.org/10.1016/j.bios.2017.01.008
Y. Tao, Y. Lin, J. Ren, X. Qu, A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. Biosens. Bioelectron. 42(1), 41–46 (2013). https://doi.org/10.1016/j.bios.2012.10.014
A.M. Alkilany, C.J. Murphy, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanoparticle Res. 12(7), 2313–2333 (2010). https://doi.org/10.1007/s11051-010-9911-8
L. Fan, X. Xu, C. Zhu, J. Han, L. Gao, J. Xi, R. Guo, Tumor catalytic-photothermal therapy with yolk-shell gold@carbon nanozymes. ACS Appl. Mater. Interfaces. 10(5), 4502–4511 (2018). https://doi.org/10.1021/acsami.7b17916
D. Zhang, Y.X. Zhao, Y.J. Gao, F.P. Gao, Y.S. Fan et al., Anti-bacterial and in vivo tumor treatment by reactive oxygen species generated by magnetic nanoparticles. J. Mater. Chem. B 1(38), 5100–5107 (2013). https://doi.org/10.1039/c3tb20907e
L. Gao, K.M. Giglio, J.L. Nelson, H. Sondermann, A.J. Travis, Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 6(5), 2588–2593 (2014). https://doi.org/10.1039/c3nr05422e
Y. Liu, M. Yuan, L. Qiao, R. Guo, An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosens. Bioelectron. 52, 391–396 (2014). https://doi.org/10.1016/j.bios.2013.09.020
S. Maman, I.P. Witz, A history of exploring cancer in context. Nat. Rev. Cancer 18(6), 359–376 (2018). https://doi.org/10.1038/s41568-018-0006-7
J.M. Brown, W.R. Wilson, Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 4(6), 437–447 (2004). https://doi.org/10.1038/nrc1367
Q. Chen, C. Liang, X. Sun, J. Chen, Z. Yang et al., H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proc. Natl. Acad. Sci. U.S.A. 114(21), 5343–5348 (2017). https://doi.org/10.1073/pnas.1701976114
M. López-Lázaro, Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett. 252(1), 1–8 (2007). https://doi.org/10.1016/j.canlet.2006.10.029
Y. Zhang, F. Wang, C. Liu, Z. Wang, L. Kang et al., Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 12(1), 651–661 (2018). https://doi.org/10.1021/acsnano.7b07746
A. Zhang, S. Pan, Y. Zhang, J. Chang, J. Cheng et al., Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics 9(12), 3443–3458 (2019). https://doi.org/10.7150/thno.33266
Y.-C. Ma, Y.-H. Zhu, X.-F. Tang, L.-F. Hang, W. Jiang et al., Au nanoparticles with enzyme-mimicking activity-ornamented ZIF-8 for highly efficient photodynamic therapy. Biomater. Sci. 7(7), 2740–2748 (2019). https://doi.org/10.1039/c9bm00333a
L. Li, Z. Yang, W. Fan, L. He, C. Cui et al., In situ polymerized hollow mesoporous organosilica biocatalysis nanoreactor for enhancing ROS-mediated anticancer therapy. Adv. Funct. Mater. 1907716, 1–11 (2019). https://doi.org/10.1002/adfm.201907716
S.K. Maji, S. Yu, K. Chung, M. Sekkarapatti Ramasamy, J.W. Lim et al., Synergistic nanozymetic activity of hybrid gold bipyramid-molybdenum disulfide core@shell nanostructures for two-photon imaging and anticancer therapy. ACS Appl. Mater. Interfaces. 10(49), 42068–42076 (2018). https://doi.org/10.1021/acsami.8b15443
C. Liu, L. Luo, L. Zeng, J. Xing, Y. Xia et al., Porous gold nanoshells on functional NH2-MOFs: facile synthesis and designable platforms for cancer multiple therapy. Small 14(35), 1801851 (2018). https://doi.org/10.1002/smll.201801851
S. Gao, H. Lin, H. Zhang, H. Yao, Y. Chen, J. Shi, Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 6(3), 1801733 (2019). https://doi.org/10.1002/advs.201801733
Z. Wang, K. Dong, Z. Liu, Y. Zhang, Z. Chen, 1801733 Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 113, 145–157 (2017). https://doi.org/10.1016/j.biomaterials.2016.10.041
H. Koo, R.N. Allan, R.P. Howlin, P. Stoodley, L. Hall-Stoodley, Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15(12), 740–755 (2017). https://doi.org/10.1038/nrmicro.2017.99
Q. Zhang, S. Chen, H. Wang, H. Yu, Exquisite enzyme-fenton biomimetic catalysts for hydroxyl radical production by mimicking an enzyme cascade. ACS Appl. Mater. Interfaces. 10(10), 8666–8675 (2018). https://doi.org/10.1021/acsami.7b18690
M. Hui Zhang, H. Dong, L. Zhao, D. Xi Wang, D. Meng, A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci. Total Environ. 670, 110–121 (2019). https://doi.org/10.1016/j.scitotenv.2019.03.180
S. Kunjiappan, C. Bhattacharjee, R. Chowdhury, In vitro antioxidant and hepatoprotective potential of Azolla microphylla phytochemically synthesized gold nanoparticles on acetaminophen—induced hepatocyte damage in Cyprinus carpio L. Vitr. Cell. Dev. Biol. Anim. 51(6), 630–643 (2015). https://doi.org/10.1007/s11626-014-9841-3
F. Wang, E. Ju, Y. Guan, J. Ren, X. Qu, Light-mediated reversible modulation of ROS level in living cells by using an activity-controllable nanozyme. Small 13(25), 1603051 (2017). https://doi.org/10.1002/smll.201603051
C.-P. Liu, T.-H. Wu, Y.-L. Lin, C.-Y. Liu, S. Wang, S.-Y. Lin, Tailoring enzyme-like activities of gold nanoclusters by polymeric tertiary amines for protecting neurons against oxidative stress. Small 12(30), 4127–4135 (2016). https://doi.org/10.1002/smll.201503919
F. Dashtestani, H. Ghourchian, A. Najafi, Silver-gold-apoferritin nanozyme for suppressing oxidative stress during cryopreservation. Mater. Sci. Eng., C 94, 831–840 (2019). https://doi.org/10.1016/j.msec.2018.10.008
J.T. Hancock, R. Desikan, S.J. Neill, Role of reactive oxygen species in cell signalling pathways. Biochem. Soc. Trans. 29(2), 345–350 (2001). https://doi.org/10.1042/0300-5127:0290345
S. Boukhenouna, M.A. Wilson, K. Bahmed, B. Kosmider, Reactive oxygen species in chronic obstructive pulmonary disease. Oxid. Med. Cell. Longev. (2018). https://doi.org/10.1155/2018/5730395
D.S. Manickam, A.M. Brynskikh, J.L. Kopanic, P.L. Sorgen, N.L. Klyachko et al., Well-defined cross-linked antioxidant nanozymes for treatment of ischemic brain injury. J. Control. Release 162(3), 636–645 (2012). https://doi.org/10.1016/j.jconrel.2012.07.044
M. Valko, D. Leibfritz, J. Moncol, M.T.D. Cronin, M. Mazur, J. Telser, Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39(1), 44–84 (2007). https://doi.org/10.1016/j.biocel.2006.07.001
Z. Chen, J.J. Yin, Y.T. Zhou, Y. Zhang, L. Song et al., Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5), 4001–4012 (2012). https://doi.org/10.1021/nn300291r
X. Wang, Y. Zhang, T. Li, W. Tian, Q. Zhang, Y. Cheng, Generation 9 polyamidoamine dendrimer encapsulated platinum nanoparticle mimics catalase size, shape, and catalytic activity. Langmuir 29(17), 5262–5270 (2013). https://doi.org/10.1021/la3046077
J.L.D. Nelis, A.S. Tsagkaris, Y. Zhao, J. Lou-Franco, P. Nolan et al., The end user sensor tree: an end-user friendly sensor database. Biosens. Bioelectron. 130, 245–253 (2019). https://doi.org/10.1016/j.bios.2019.01.055
J. Hou, M. Vázquez-González, M. Fadeev, X. Liu, R. Lavi, I. Willner, Catalyzed and electrocatalyzed oxidation of l-tyrosine and l-phenylalanine to dopachrome by nanozymes. Nano Lett. 18(6), 4015–4022 (2018). https://doi.org/10.1021/acs.nanolett.8b01522
M. Diez-Castellnou, F. Mancin, P. Scrimin, Efficient phosphodiester cleaving nanozymes resulting from multivalency and local medium polarity control. J. Am. Chem. Soc. 136(4), 1158–1161 (2014). https://doi.org/10.1021/ja411969e
Y. Zhou, H. Sun, H. Xu, S. Matysiak, J. Ren, X. Qu, Mesoporous encapsulated chiral nanogold for use in enantioselective reactions. Angew. Chem. Int. Ed. 57(51), 16791–16795 (2018). https://doi.org/10.1002/anie.201811118
Y.-W. Wang, Q. Liu, L. Wang, S. Tang, H.-H. Yang, H. Song, A colorimetric mercury(II) assay based on the Hg(II)-stimulated peroxidase mimicking activity of a nanocomposite prepared from graphitic carbon nitride and gold nanoparticles. Microchim. Acta 186(1), 7 (2019). https://doi.org/10.1007/s00604-018-3137-3
S. Zhang, H. Li, Z. Wang, J. Liu, H. Zhang, B. Wang, Z. Yang, A strongly coupled Au/Fe3O4/GO hybrid material with enhanced nanozyme activity for highly sensitive colorimetric detection, and rapid and efficient removal of Hg2+ in aqueous solutions. Nanoscale 7(18), 8495–8502 (2015). https://doi.org/10.1039/c5nr00527b
C.-F. Peng, Y.-Y. Zhang, L.-Y. Wang, Z.-Y. Jin, G. Shao, Colorimetric assay for the simultaneous detection of Hg2+ and Ag+ based on inhibiting the peroxidase-like activity of core-shell Au@Pt nanoparticles. Anal. Methods 9(30), 4363–4370 (2017). https://doi.org/10.1039/c7ay01317e
C.-L. Hsu, C.-W. Lien, S.G. Harroun, R. Ravindranath, H.-T. Chang, J.-Y. Mao, C.-C. Huang, Metal-deposited bismuth oxyiodide nanonetworks with tunable enzyme-like activity: sensing of mercury and lead ions. Mater. Chem. Front. 1(5), 893–899 (2017). https://doi.org/10.1039/c6qm00149a
Y.J. Long, Y.F. Li, Y. Liu, J.J. Zheng, J. Tang, C.Z. Huang, Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem. Commun. 47(43), 11939–11941 (2011). https://doi.org/10.1039/c1cc14294a
C. Cao, J. Zhang, S. Li, Q. Xiong, Intelligent and ultrasensitive analysis of mercury trace contaminants via plasmonic metamaterial-based surface-enhanced raman spectroscopy. Small 10(16), 3252–3256 (2014). https://doi.org/10.1002/smll.201400165
L. Zhang, Y. Yuan, X. Wen, Y. Li, C. Cao, Q. Xiong, A coordination and ligand replacement based three-input colorimetric logic gate sensing platform for melamine, mercury ions, and cysteine. RSC Adv. 5(73), 59106–59113 (2015). https://doi.org/10.1039/c5ra09570k
N. Logan, C. McVey, C. Elliott, C. Cao, Amalgamated gold-nanoalloys with enhanced catalytic activity for the detection of mercury ions (Hg2+) in seawater samples. Nano Res. 13(4), 989–998 (2020). https://doi.org/10.1007/s12274-020-2731-y
P. Weerathunge, R. Ramanathan, R. Shukla, T.K. Sharma, V. Bansal, Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal. Chem. 86(24), 11937–11941 (2014). https://doi.org/10.1021/ac5028726
S. Singh, P. Tripathi, N. Kumar, S. Nara, Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme. Biosens. Bioelectron. 92, 280–286 (2017). https://doi.org/10.1016/j.bios.2016.11.011
P. Weerathunge, R. Ramanathan, V.A. Torok, K. Hodgson, Y. Xu et al., Ultrasensitive colorimetric detection of murine norovirus using nanozyme aptasensor. Anal. Chem. 91(5), 3270–3276 (2019). https://doi.org/10.1021/acs.analchem.8b03300
R. Das, A. Dhiman, A. Kapil, V. Bansal, T.K. Sharma, Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal. Bioanal. Chem. 411(6), 1229–1238 (2019). https://doi.org/10.1007/s00216-018-1555-z
C. McVey, F. Huang, C. Elliott, C. Cao, Endonuclease controlled aggregation of gold nanoparticles for the ultrasensitive detection of pathogenic bacterial DNA. Biosens. Bioelectron. 92, 502–508 (2017). https://doi.org/10.1016/j.bios.2016.10.072
C. Cao, L.C. Gontard, L.L. ThuyTram, A. Wolff, D.D. Bang, Dual enlargement of gold nanoparticles: from mechanism to scanometric detection of pathogenic bacteria. Small 7(12), 1701–1708 (2011). https://doi.org/10.1002/smll.201100294
Z. Zhang, L.M. Bragg, M.R. Servos, J. Liu, Gold nanoparticles as dehydrogenase mimicking nanozymes for estradiol degradation. Chinese Chem. Lett. 30(9), 1655–1658 (2019). https://doi.org/10.1016/j.cclet.2019.05.062
Y. Liu, Y.Y. Zhang, Q.W. Kou, D.D. Wang, D.L. Han et al., Fe3O4/Au binary nanocrystals: facile synthesis with diverse structure evolution and highly efficient catalytic reduction with cyclability characteristics in 4-nitrophenol. Powder Technol. 338, 26–35 (2018). https://doi.org/10.1016/j.powtec.2018.06.037
B.H. Robinson, E-waste: an assessment of global production and environmental impacts. Sci. Total Environ. 408(2), 183–191 (2009). https://doi.org/10.1016/j.scitotenv.2009.09.044
G. Zhao, Y. Xu, G. Han, B. Ling, Biotransfer of persistent organic pollutants from a large site in China used for the disassembly of electronic and electrical waste. Environ. Geochem. Health 28(4), 341–351 (2006). https://doi.org/10.1007/s10653-005-9003-3
H.-H. Deng, B.-Y. Luo, S.-B. He, R.-T. Chen, Z. Lin et al., Redox recycling-triggered peroxidase-like activity enhancement of bare gold nanoparticles for ultrasensitive colorimetric detection of rare-earth Ce3+ Ion. Anal. Chem. 91(6), 4039–4046 (2019). https://doi.org/10.1021/acs.analchem.8b05552
Y. Liu, Y. Xiang, D. Ding, R. Guo, Structural effects of amphiphilic protein/gold nanoparticle hybrid based nanozyme on peroxidase-like activity and silver-mediated inhibition. RSC Adv. 6(113), 112435–112444 (2016). https://doi.org/10.1039/C6RA23773H
Z. Wu, X. Yuan, H. Zhong, H. Wang, G. Zeng et al., Enhanced adsorptive removal of p-nitrophenol from water by aluminum metal-organic framework/reduced graphene oxide composite. Sci. Rep. 6, 1–13 (2016). https://doi.org/10.1038/srep25638
X. Kong, H. Zhu, C. Le Chen, G. Huang, Q. Chen, Insights into the reduction of 4-nitrophenol to 4-aminophenol on catalysts. Chem. Phys. Lett. 684, 148–152 (2017). https://doi.org/10.1016/j.cplett.2017.06.049
R.N. Tanna, G.R. Tetreault, C.J. Bennett, B.M. Smith, L.M. Bragg et al., Occurrence and degree of intersex (testis-ova) in darters (Etheostoma SPP.) across an urban gradient in the Grand River, Ontario, Canada. Environ. Toxicol. Chem. 32(9), 1981–1991 (2013). https://doi.org/10.1002/etc.2262
M. Giulivo, M. Lopez de Alda, E. Capri, D. Barceló, Human exposure to endocrine disrupting compounds: their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environ. Res. 151, 251–264 (2016). https://doi.org/10.1016/j.envres.2016.07.011
Anonymous, Food safety. (World Health Organization, 2020). https://www.who.int/news-room/fact-sheets/detail/food-safety. Accessed 19 August 2020
T. Jiang, Y. Song, T. Wei, H. Li, D. Du, M.-J. Zhu, Y. Lin, Sensitive detection of Escherichia coli O157:H7 using Pt–Au bimetal nanoparticles with peroxidase-like amplification. Biosens. Bioelectron. 77, 687–694 (2016). https://doi.org/10.1016/j.bios.2015.10.017
T. Kumar Sharma, R. Ramanathan, P. Weerathunge, M. Mohammadtaheri, H. KumarDaima, R. Shukla, V. Bansal, Aptamer-mediated “turn-off/turn-on” nanozyme activity of gold nanoparticles for kanamycin detection. Chem. Commun. 50(100), 15856–15859 (2014). https://doi.org/10.1039/c4cc07275h
C. Wang, C. Liu, J. Luo, Y. Tian, N. Zhou, Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 936, 75–82 (2016). https://doi.org/10.1016/j.aca.2016.07.013
X. Pei, A. Tandon, A. Alldrick, L. Giorgi, W. Huang, R. Yang, The China melamine milk scandal and its implications for food safety regulation. Food Policy 36(3), 412–420 (2011). https://doi.org/10.1016/j.foodpol.2011.03.008
H. Xin, R. Stone, Tainted milk scandal: Chinese probe unmasks high-tech adulteration with melamine. Science 322(5906), 1310–1311 (2008). https://doi.org/10.1126/science.322.5906.1310
C. Xiu, K.K. Klein, Melamine in milk products in China: examining the factors that led to deliberate use of the contaminant. Food Policy 35(5), 463–470 (2010). https://doi.org/10.1016/j.foodpol.2010.05.001
H.H. Deng, G.W. Li, L. Hong, A.L. Liu, W. Chen, X.H. Lin, X.H. Xia, Colorimetric sensor based on dual-functional gold nanoparticles: analyte-recognition and peroxidase-like activity. Food Chem. 147, 257–261 (2014). https://doi.org/10.1016/j.foodchem.2013.09.151
J. Li, G. Zhang, L. Wang, A. Shen, J. Hu, Simultaneous enzymatic and SERS properties of bifunctional chitosan-modified popcorn-like Au–Ag nanoparticles for high sensitive detection of melamine in milk powder. Talanta 140, 204–211 (2015). https://doi.org/10.1016/j.talanta.2015.03.050
N.R. Jana, T. Pal, Anisotropic metal nanoparticles for use as surface-enhanced Raman substrates. Adv. Mater. 19(13), 1761–1765 (2007). https://doi.org/10.1002/adma.200601749
E. Nalbant Esenturk, A.R. Hight Walker, Surface-enhanced Raman scattering spectroscopy via gold nanostars. J. Raman Spectrosc. 40(1), 86–91 (2009). https://doi.org/10.1002/jrs.2084
M. Varvara, G. Bozzo, G. Celano, C. Disanto, C.N. Pagliarone, G.V. Celano, The use of ascorbic acid as a food additive: technical-legal issues. Ital. J. Food Saf. 5(1), 7–10 (2016). https://doi.org/10.4081/ijfs.2016.4313
S. Xu, X. Dong, S. Chen, Y. Zhao, G. Shan et al., The preparation of high-index facet Au/Cu NRs and their application for colorimetric determination ascorbic acid. Sensors Actuat. B Chem. 281, 375–382 (2019). https://doi.org/10.1016/j.snb.2018.10.114
Y. Xu, J. Fei, G. Li, T. Yuan, X. Xu, J. Li, Nanozyme-catalyzed cascade reactions for mitochondria-mimicking oxidative phosphorylation. Angew. Chem. Int. Ed. 58(17), 5572–5576 (2019). https://doi.org/10.1002/anie.201813771
L. Gao, M. Liu, G. Ma, Y. Wang, L. Zhao et al., Peptide-conjugated gold nanoprobe: intrinsic nanozyme-linked immunsorbant assay of integrin expression level on cell membrane. ACS Nano 9(11), 10979–10990 (2015). https://doi.org/10.1021/acsnano.5b04261
R. Cao-Milán, L.D. He, S. Shorkey, G.Y. Tonga, L.-S. Wang et al., Modulating the catalytic activity of enzyme-like nanoparticles through their surface functionalization. Mol. Syst. Des. Eng. 2(5), 624–628 (2017). https://doi.org/10.1039/c7me00055c
F. della Sala, J.L.-Y. Chen, S. Ranallo, D. Badocco, P. Pastore, F. Ricci, L.J. Prins, Reversible electrochemical modulation of a catalytic nanosystem. Angew. Chem. Int. Ed. 55(36), 10737–10740 (2016). https://doi.org/10.1002/anie.201605309
S. Lee, E. Tak, J. Lee, M. Rashid, M.P. Murphy, J. Ha, S.S. Kim, Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Cell Res. 21(5), 817–834 (2011). https://doi.org/10.1038/cr.2011.55
Y. Sun, R. Wang, X. Liu, G. Shan, Y. Chen, T. Tong, Y. Liu, Laser-induced formation of Au/Pt nanorods with peroxidase mimicking and SERS enhancement properties for application to the colorimetric determination of H2O2. Microchim. Acta 185(9), 445 (2018). https://doi.org/10.1007/s00604-018-2981-5
J. Wu, K. Qin, D. Yuan, J. Tan, L. Qin, X. Zhang, H. Wei, Rational design of Au@Pt multibranched nanostructures as bifunctional nanozymes. ACS Appl. Mater. Interfaces. 10(15), 12954–12959 (2018). https://doi.org/10.1021/acsami.7b17945
K. Zhang, Y. Liu, Y. Wang, J. Zhao, B. Liu, Direct SERS tracking of a chemical reaction at a single 13 nm gold nanoparticle. Chem. Sci. 10(6), 1741–1745 (2019). https://doi.org/10.1039/c8sc04496a
Q. Cui, B. Xia, S. Mitzscherling, A. Masic, L. Li, M. Bargheer, H. Möhwald, Preparation of gold nanostars and their study in selective catalytic reactions. Colloids Surfaces A Physicochem. Eng. Asp. 465, 20–25 (2015). https://doi.org/10.1016/j.colsurfa.2014.10.028
D. Lou, Y. Tian, Y. Zhang, J. Yin, T. Yang et al., Peroxidase-like activity of gold nanoparticles and their gold staining enhanced ELISA application. J. Nanosci. Nanotechnol. 18(2), 951–958 (2018). https://doi.org/10.1166/jnn.2018.13977
J.A.J. Fitzpatrick, S.K. Andreko, L.A. Ernst, A.S. Waggoner, B. Ballou, M.P. Bruchez, Long-term persistence and spectral blue shifting of quantum dots in vivo. Nano Lett. 9(7), 2736–2741 (2009). https://doi.org/10.1021/nl901534q
M. Longmire, P.L. Choyke, H. Kobayashi, Clearance properties of nano-sized particles and molecules as imaging agents: consideration and caveats. Nanomedicine 3(5), 703–717 (2012). https://doi.org/10.2217/17435889.3.5.703.Clearance
T. Zhang, F. Tian, L. Long, J. Liu, X. Wu, Diagnosis of rubella virus using antigen-conjugated Au@Pt nanorods as nanozyme probe. Int. J. Nanomedicine 13, 4795–4805 (2018). https://doi.org/10.2147/IJN.S171429
O. Adegoke, C. McKenzie, N.N. Daeid, Multi-shaped cationic gold nanoparticle-l-cysteine-ZnSeS quantum dots hybrid nanozyme as an intrinsic peroxidase mimic for the rapid colorimetric detection of cocaine. Sensors Actuat. B Chem. 287, 416–427 (2019). https://doi.org/10.1016/j.snb.2019.02.074
Y. Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad et al., Surface-enhanced raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11(6), 5558–5566 (2017). https://doi.org/10.1021/acsnano.7b00905
X.X. Wang, Q. Wu, Z. Shan, Q.M. Huang, BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens. Bioelectron. 26(8), 3614–3619 (2011). https://doi.org/10.1016/j.bios.2011.02.014
L. Cao, P. Wang, L. Chen, Y. Wu, J. Di, A photoelectrochemical glucose sensor based on gold nanoparticles as a mimic enzyme of glucose oxidase. RSC Adv. 9(27), 15307–15313 (2019). https://doi.org/10.1039/c9ra02088h
G. Darabdhara, J. Bordoloi, P. Manna, M.R. Das, Biocompatible bimetallic Au-Ni doped graphitic carbon nitride sheets: a novel peroxidase-mimicking artificial enzyme for rapid and highly sensitive colorimetric detection of glucose. Sensors Actuat. B Chem. 285, 277–290 (2019). https://doi.org/10.1016/j.snb.2019.01.048
L. Liu, J. Du, W.-E. Liu, Y. Guo, G. Wu, W. Qi, X. Lu, Enhanced His@AuNCs oxidase-like activity by reduced graphene oxide and its application for colorimetric and electrochemical detection of nitrite. Anal. Bioanal. Chem. 411(10), 2189–2200 (2019). https://doi.org/10.1007/s00216-019-01655-y
X. Zhu, X. Mao, Z. Wang, C. Feng, G. Chen, G. Li, Fabrication of nanozyme@DNA hydrogel and its application in biomedical analysis. Nano Res. 10(3), 959–970 (2017). https://doi.org/10.1007/s12274-016-1354-9
G.H. Jin, E. Ko, M.K. Kim, V.-K. Tran, S.E. Son et al., Graphene oxide-gold nanozyme for highly sensitive electrochemical detection of hydrogen peroxide. Sensors Actuat. B Chem. 274, 201–209 (2018). https://doi.org/10.1016/j.snb.2018.07.160