Correction to: Tetrahedral Framework Nucleic Acid‑Based Delivery of Resveratrol Alleviates Insulin Resistance: From Innate to Adaptive Immunity
Corresponding Author: Yunfeng Lin
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 186
Abstract
Obesity-induced insulin resistance is the hallmark of metabolic syndrome, and chronic, low-grade tissue inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells. Current therapeutic approaches lack efficacy and immunomodulatory capacity. Thus, a new therapeutic approach is needed to prevent chronic inflammation and alleviate insulin resistance. Here, we synthesized a tetrahedral framework nucleic acid (tFNA) nanoparticle that carried resveratrol (RSV) to inhibit tissue inflammation and improve insulin sensitivity in obese mice. The prepared nanoparticles, namely tFNAs-RSV, possessed the characteristics of simple synthesis, stable properties, good water solubility, and superior biocompatibility. The tFNA-based delivery ameliorated the lability of RSV and enhanced its therapeutic efficacy. In high-fat diet (HFD)-fed mice, the administration of tFNAs-RSV ameliorated insulin resistance by alleviating inflammation status. tFNAs-RSV could reverse M1 phenotype macrophages in tissues to M2 phenotype macrophages. As for adaptive immunity, the prepared nanoparticles could repress the activation of Th1 and Th17 and promote Th2 and Treg, leading to the alleviation of insulin resistance. Furthermore, this study is the first to demonstrate that tFNAs, a nucleic acid material, possess immunomodulatory capacity. Collectively, our findings demonstrate that tFNAs-RSV alleviate insulin resistance and ameliorate inflammation in HFD mice, suggesting that nucleic acid materials or nucleic acid-based delivery systems may be a potential agent for the treatment of insulin resistance and obesity-related metabolic diseases.
Highlights:
1 Tetrahedral framework nucleic acid (tFNA)-based delivery of resveratrol (RSV) ameliorates the performance of RSV.
2 tFNAs-RSV improve insulin sensitivity in high-fat diet-fed mice by promoting Treg and Th2 and suppressing Th1 and Th17, and switching macrophage from M1 to M2 phenotype both in vitro and in vivo.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.H. Eckel, S.M. Grundy, P.Z. Zimmet, The metabolic syndrome. Lancet 365(9468), 1415–1428 (2005). https://doi.org/10.1016/S0140-6736(05)66378-7
- R.H. Eckel, K.G.M.M. Alberti, S.M. Grundy, P.Z. Zimmet, The metabolic syndrome. Lancet 375(9710), 181–183 (2010). https://doi.org/10.1016/S0140-6736(09)61794-3
- P. Zimmet, K.G. Alberti, J. Shaw, Global and societal implications of the diabetes epidemic. Nature 414(6865), 782–787 (2001). https://doi.org/10.1038/414782a
- A.M.F. Johnson, J.M. Olefsky, The origins and drivers of insulin resistance. Cell 152(4), 673–684 (2013). https://doi.org/10.1016/j.cell.2013.01.041
- H. Wu, C.M. Ballantyne, Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 126(11), 1549–1564 (2020). https://doi.org/10.1161/CIRCRESAHA.119.315896
- D.M. Mosser, J.P. Edwards, Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8(12), 958–969 (2008). https://doi.org/10.1038/nri2448
- G. Liu, H. Yang, Modulation of macrophage activation and programming in immunity. J. Cell Physiol. 228(3), 502–512 (2013). https://doi.org/10.1002/jcp.24157
- S.P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R.L. Leibel et al., Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest 112(12), 1796–1808 (2003). https://doi.org/10.1172/JCI19246
- C.N. Lumeng, J.L. Bodzin, A.R. Saltiel, Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest 117(1), 175–184 (2007). https://doi.org/10.1172/JCI29881
- S. Winer, Y. Chan, G. Paltser, D. Truong, H. Tsui et al., Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15(8), 921–929 (2009). https://doi.org/10.1038/nm.2001
- H. Sell, C. Habich, J. Eckel, Adaptive immunity in obesity and insulin resistance. Nat. Rev. Endocrinol. 8(12), 709–716 (2012). https://doi.org/10.1038/nrendo.2012.114
- M. Feuerer, L. Herrero, D. Cipolletta, A. Naaz, J. Wong et al., Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15(8), 930–939 (2009). https://doi.org/10.1038/nm.2002
- D. Cipolletta, M. Feuerer, A. Li, N. Kamei, J. Lee et al., PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486(7404), 549–553 (2012). https://doi.org/10.1038/nature11132
- S. Malozowski, J.T. Sahlroot, Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 357(3), 302–303 (2007). https://doi.org/10.1056/NEJMc071324
- T.L. Stanley, M.V. Zanni, S. Johnsen, S. Rasheed, H. Makimura et al., TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J. Clin. Endocrinol. Metab. 96(1), E146–E150 (2011). https://doi.org/10.1210/jc.2010-1170
- A.B. Goldfine, R. Silver, W. Aldhahi, D. Cai, E. Tatro et al., Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin. Transl. Sci. 1(1), 36–43 (2008). https://doi.org/10.1111/j.1752-8062.2008.00026.x
- C.W. Shields, L.L.-W. Wang, M.A. Evans, S. Mitragotri, Materials for Immunotherapy. Adv. Mater. 32(13), e1901633 (2020). https://doi.org/10.1002/adma.201901633
- H.B. Eppler, C.M. Jewell, Biomaterials as tools to decode immunity. Adv. Mater. 32(13), e1903367 (2020). https://doi.org/10.1002/adma.201903367
- T.K. Kishimoto, R.A. Maldonado, Nanoparticles for the induction of antigen-specific immunological tolerance. Front. Immunol. 9, 230 (2018). https://doi.org/10.3389/fimmu.2018.00230
- K.L. Hess, I.L. Medintz, C.M. Jewell, Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today 27, 73–98 (2019). https://doi.org/10.1016/j.nantod.2019.04.005
- D. Zhao, W. Cui, M. Liu, J. Li, Y. Sun et al., Tetrahedral framework nucleic acid promotes the treatment of bisphosphonate-related osteonecrosis of the jaws by promoting angiogenesis and M2 polarization. ACS Appl. Mater. Interfaces 12(40), 44508–44522 (2020). https://doi.org/10.1021/acsami.0c13839
- Q. Zhang, S. Lin, S. Shi, T. Zhang, Q. Ma et al., Anti-inflammatory and antioxidative effects of tetrahedral DNA nanostructures via the modulation of macrophage responses. ACS Appl. Mater. Interfaces 10(4), 3421–3430 (2018). https://doi.org/10.1021/acsami.7b17928
- J.A. Baur, D.A. Sinclair, Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov. 5(6), 493–506 (2006). https://doi.org/10.1038/nrd2060
- S. Patra, B. Pradhan, R. Nayak, C. Behera, L. Rout et al., Chemotherapeutic efficacy of curcumin and resveratrol against cancer: Chemoprevention, chemoprotection, drug synergism and clinical pharmacokinetics. Semin. Cancer Biol. (2020). https://doi.org/10.1016/j.semcancer.2020.10.010 (In Press)
- T. Zhang, T. Tian, R. Zhou, S. Li, W. Ma et al., Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat. Protoc. 15(8), 2728–2757 (2020). https://doi.org/10.1038/s41596-020-0355-z
- S. Sirong, C. Yang, T. Taoran, L. Songhang, L. Shiyu et al., Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Res. 8, 6 (2020). https://doi.org/10.1038/s41413-019-0077-4
- T. Tian, D. Xiao, T. Zhang, Y. Li, S. Shi et al., A framework nucleic acid based robotic nanobee for active targeting therapy. Adv. Funct. Mater. 31(5), 2007342 (2020). https://doi.org/10.1002/adfm.202007342
- Y. Ge, T. Tian, X. Shao, S. Lin, T. Zhang et al., PEGylated protamine-based adsorbing improves the biological properties and stability of tetrahedral framework nucleic acids. ACS Appl. Mater. Interfaces 11(31), 27588–27597 (2019). https://doi.org/10.1021/acsami.9b09243
- J. Zhu, M. Zhang, Y. Gao, X. Qin, T. Zhang et al., Tetrahedral framework nucleic acids promote scarless healing of cutaneous wounds via the AKT-signaling pathway. Signal Transduct. Target. Ther. 5(1), 120 (2020). https://doi.org/10.1038/s41392-020-0173-3
- Y. Li, R. Zhou, D. Xiao, S. Shi, S. Peng et al., Polypeptide uploaded efficient nanophotosensitizers to overcome photodynamic resistance for enhanced anticancer therapy. Chem. Eng. J. 403, 126344 (2021). https://doi.org/10.1016/j.cej.2020.126344
- Y. Li, S. Wu, J. Zhang, R. Zhou, X. Cai, Sulphur doped carbon dots enhance photodynamic therapy via PI3K/Akt signalling pathway. Cell Prolif. 53(5), e12821 (2020). https://doi.org/10.1111/cpr.12821
- C.M. da Silva, M.M. Silva, F.S. Reis, A.L.T.G. Ruiz, J.E. de Carvalho et al., Studies on free radical scavenging, cancer cell antiproliferation, and calf thymus DNA interaction of Schiff bases. J. Photochem. Photobiol. B 172, 129–138 (2017). https://doi.org/10.1016/j.jphotobiol.2017.05.020
- M.S. Nair, A. Shukla, Molecular modeling, simulation and principal component analysis of binding of resveratrol and its analogues with DNA. J. Biomol. Struct. Dyn. 38(10), 3087–3097 (2020). https://doi.org/10.1080/07391102.2019.1662849
- J.M. Olefsky, C.K. Glass, Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010). https://doi.org/10.1146/annurev-physiol-021909-135846
- G.S. Hotamisligil, N.S. Shargill, B.M. Spiegelman, Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259(5091), 87–91 (1993). https://doi.org/10.1126/science.7678183
- G.S. Hotamisligil, P. Peraldi, A. Budavari, R. Ellis, M.F. White et al., IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271(5249), 665–668 (1996). https://doi.org/10.1126/science.271.5249.665
- H. Xu, G.T. Barnes, Q. Yang, G. Tan, D. Yang et al., Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112(12), 1821–1830 (2003). https://doi.org/10.1172/JCI19451
- C.N. Lumeng, A.R. Saltiel, Inflammatory links between obesity and metabolic disease. J. Clin. Invest 121(6), 2111–2117 (2011). https://doi.org/10.1172/JCI57132
- B.-C. Lee, M.-S. Kim, M. Pae, Y. Yamamoto, D. Eberlé et al., Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab. 23(4), 685–698 (2016). https://doi.org/10.1016/j.cmet.2016.03.002
- P. Tontonoz, B.M. Spiegelman, Fat and beyond: the diverse biology of PPARgamma. Annu. Rev. Biochem. 77, 289–312 (2008). https://doi.org/10.1146/annurev.biochem.77.061307.091829
- S. Schenk, M. Saberi, J.M. Olefsky, Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest. 118(9), 2992–3002 (2008). https://doi.org/10.1172/JCI34260
- M.C. Arkan, A.L. Hevener, F.R. Greten, S. Maeda, Z.-W. Li et al., IKK-beta links inflammation to obesity-induced insulin resistance. Nat. Med. 11(2), 191–198 (2005). https://doi.org/10.1038/nm1185
- R.A. DeFronzo, D. Tripathy, Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2), S157–S163 (2009). https://doi.org/10.2337/dc09-S302
- V.T. Samuel, G.I. Shulman, The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Invest. 126(1), 12–22 (2016). https://doi.org/10.1172/JCI77812
- A. Kalinkovich, G. Livshits, Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res. Rev. 35, 200–221 (2017). https://doi.org/10.1016/j.arr.2016.09.008
- S. Gordon, P.R. Taylor, Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5(12), 953–964 (2005). https://doi.org/10.1038/nri1733
- A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25(12), 677–686 (2004). https://doi.org/10.1016/j.it.2004.09.015
- J. Zhong, X. Rao, Z. Braunstein, A. Taylor, V. Narula et al., T-cell costimulation protects obesity-induced adipose inflammation and insulin resistance. Diabetes 63(4), 1289–1302 (2014). https://doi.org/10.2337/db13-1094
References
R.H. Eckel, S.M. Grundy, P.Z. Zimmet, The metabolic syndrome. Lancet 365(9468), 1415–1428 (2005). https://doi.org/10.1016/S0140-6736(05)66378-7
R.H. Eckel, K.G.M.M. Alberti, S.M. Grundy, P.Z. Zimmet, The metabolic syndrome. Lancet 375(9710), 181–183 (2010). https://doi.org/10.1016/S0140-6736(09)61794-3
P. Zimmet, K.G. Alberti, J. Shaw, Global and societal implications of the diabetes epidemic. Nature 414(6865), 782–787 (2001). https://doi.org/10.1038/414782a
A.M.F. Johnson, J.M. Olefsky, The origins and drivers of insulin resistance. Cell 152(4), 673–684 (2013). https://doi.org/10.1016/j.cell.2013.01.041
H. Wu, C.M. Ballantyne, Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 126(11), 1549–1564 (2020). https://doi.org/10.1161/CIRCRESAHA.119.315896
D.M. Mosser, J.P. Edwards, Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8(12), 958–969 (2008). https://doi.org/10.1038/nri2448
G. Liu, H. Yang, Modulation of macrophage activation and programming in immunity. J. Cell Physiol. 228(3), 502–512 (2013). https://doi.org/10.1002/jcp.24157
S.P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R.L. Leibel et al., Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest 112(12), 1796–1808 (2003). https://doi.org/10.1172/JCI19246
C.N. Lumeng, J.L. Bodzin, A.R. Saltiel, Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest 117(1), 175–184 (2007). https://doi.org/10.1172/JCI29881
S. Winer, Y. Chan, G. Paltser, D. Truong, H. Tsui et al., Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15(8), 921–929 (2009). https://doi.org/10.1038/nm.2001
H. Sell, C. Habich, J. Eckel, Adaptive immunity in obesity and insulin resistance. Nat. Rev. Endocrinol. 8(12), 709–716 (2012). https://doi.org/10.1038/nrendo.2012.114
M. Feuerer, L. Herrero, D. Cipolletta, A. Naaz, J. Wong et al., Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15(8), 930–939 (2009). https://doi.org/10.1038/nm.2002
D. Cipolletta, M. Feuerer, A. Li, N. Kamei, J. Lee et al., PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486(7404), 549–553 (2012). https://doi.org/10.1038/nature11132
S. Malozowski, J.T. Sahlroot, Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 357(3), 302–303 (2007). https://doi.org/10.1056/NEJMc071324
T.L. Stanley, M.V. Zanni, S. Johnsen, S. Rasheed, H. Makimura et al., TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J. Clin. Endocrinol. Metab. 96(1), E146–E150 (2011). https://doi.org/10.1210/jc.2010-1170
A.B. Goldfine, R. Silver, W. Aldhahi, D. Cai, E. Tatro et al., Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin. Transl. Sci. 1(1), 36–43 (2008). https://doi.org/10.1111/j.1752-8062.2008.00026.x
C.W. Shields, L.L.-W. Wang, M.A. Evans, S. Mitragotri, Materials for Immunotherapy. Adv. Mater. 32(13), e1901633 (2020). https://doi.org/10.1002/adma.201901633
H.B. Eppler, C.M. Jewell, Biomaterials as tools to decode immunity. Adv. Mater. 32(13), e1903367 (2020). https://doi.org/10.1002/adma.201903367
T.K. Kishimoto, R.A. Maldonado, Nanoparticles for the induction of antigen-specific immunological tolerance. Front. Immunol. 9, 230 (2018). https://doi.org/10.3389/fimmu.2018.00230
K.L. Hess, I.L. Medintz, C.M. Jewell, Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today 27, 73–98 (2019). https://doi.org/10.1016/j.nantod.2019.04.005
D. Zhao, W. Cui, M. Liu, J. Li, Y. Sun et al., Tetrahedral framework nucleic acid promotes the treatment of bisphosphonate-related osteonecrosis of the jaws by promoting angiogenesis and M2 polarization. ACS Appl. Mater. Interfaces 12(40), 44508–44522 (2020). https://doi.org/10.1021/acsami.0c13839
Q. Zhang, S. Lin, S. Shi, T. Zhang, Q. Ma et al., Anti-inflammatory and antioxidative effects of tetrahedral DNA nanostructures via the modulation of macrophage responses. ACS Appl. Mater. Interfaces 10(4), 3421–3430 (2018). https://doi.org/10.1021/acsami.7b17928
J.A. Baur, D.A. Sinclair, Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov. 5(6), 493–506 (2006). https://doi.org/10.1038/nrd2060
S. Patra, B. Pradhan, R. Nayak, C. Behera, L. Rout et al., Chemotherapeutic efficacy of curcumin and resveratrol against cancer: Chemoprevention, chemoprotection, drug synergism and clinical pharmacokinetics. Semin. Cancer Biol. (2020). https://doi.org/10.1016/j.semcancer.2020.10.010 (In Press)
T. Zhang, T. Tian, R. Zhou, S. Li, W. Ma et al., Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat. Protoc. 15(8), 2728–2757 (2020). https://doi.org/10.1038/s41596-020-0355-z
S. Sirong, C. Yang, T. Taoran, L. Songhang, L. Shiyu et al., Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Res. 8, 6 (2020). https://doi.org/10.1038/s41413-019-0077-4
T. Tian, D. Xiao, T. Zhang, Y. Li, S. Shi et al., A framework nucleic acid based robotic nanobee for active targeting therapy. Adv. Funct. Mater. 31(5), 2007342 (2020). https://doi.org/10.1002/adfm.202007342
Y. Ge, T. Tian, X. Shao, S. Lin, T. Zhang et al., PEGylated protamine-based adsorbing improves the biological properties and stability of tetrahedral framework nucleic acids. ACS Appl. Mater. Interfaces 11(31), 27588–27597 (2019). https://doi.org/10.1021/acsami.9b09243
J. Zhu, M. Zhang, Y. Gao, X. Qin, T. Zhang et al., Tetrahedral framework nucleic acids promote scarless healing of cutaneous wounds via the AKT-signaling pathway. Signal Transduct. Target. Ther. 5(1), 120 (2020). https://doi.org/10.1038/s41392-020-0173-3
Y. Li, R. Zhou, D. Xiao, S. Shi, S. Peng et al., Polypeptide uploaded efficient nanophotosensitizers to overcome photodynamic resistance for enhanced anticancer therapy. Chem. Eng. J. 403, 126344 (2021). https://doi.org/10.1016/j.cej.2020.126344
Y. Li, S. Wu, J. Zhang, R. Zhou, X. Cai, Sulphur doped carbon dots enhance photodynamic therapy via PI3K/Akt signalling pathway. Cell Prolif. 53(5), e12821 (2020). https://doi.org/10.1111/cpr.12821
C.M. da Silva, M.M. Silva, F.S. Reis, A.L.T.G. Ruiz, J.E. de Carvalho et al., Studies on free radical scavenging, cancer cell antiproliferation, and calf thymus DNA interaction of Schiff bases. J. Photochem. Photobiol. B 172, 129–138 (2017). https://doi.org/10.1016/j.jphotobiol.2017.05.020
M.S. Nair, A. Shukla, Molecular modeling, simulation and principal component analysis of binding of resveratrol and its analogues with DNA. J. Biomol. Struct. Dyn. 38(10), 3087–3097 (2020). https://doi.org/10.1080/07391102.2019.1662849
J.M. Olefsky, C.K. Glass, Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010). https://doi.org/10.1146/annurev-physiol-021909-135846
G.S. Hotamisligil, N.S. Shargill, B.M. Spiegelman, Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259(5091), 87–91 (1993). https://doi.org/10.1126/science.7678183
G.S. Hotamisligil, P. Peraldi, A. Budavari, R. Ellis, M.F. White et al., IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271(5249), 665–668 (1996). https://doi.org/10.1126/science.271.5249.665
H. Xu, G.T. Barnes, Q. Yang, G. Tan, D. Yang et al., Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112(12), 1821–1830 (2003). https://doi.org/10.1172/JCI19451
C.N. Lumeng, A.R. Saltiel, Inflammatory links between obesity and metabolic disease. J. Clin. Invest 121(6), 2111–2117 (2011). https://doi.org/10.1172/JCI57132
B.-C. Lee, M.-S. Kim, M. Pae, Y. Yamamoto, D. Eberlé et al., Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab. 23(4), 685–698 (2016). https://doi.org/10.1016/j.cmet.2016.03.002
P. Tontonoz, B.M. Spiegelman, Fat and beyond: the diverse biology of PPARgamma. Annu. Rev. Biochem. 77, 289–312 (2008). https://doi.org/10.1146/annurev.biochem.77.061307.091829
S. Schenk, M. Saberi, J.M. Olefsky, Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest. 118(9), 2992–3002 (2008). https://doi.org/10.1172/JCI34260
M.C. Arkan, A.L. Hevener, F.R. Greten, S. Maeda, Z.-W. Li et al., IKK-beta links inflammation to obesity-induced insulin resistance. Nat. Med. 11(2), 191–198 (2005). https://doi.org/10.1038/nm1185
R.A. DeFronzo, D. Tripathy, Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2), S157–S163 (2009). https://doi.org/10.2337/dc09-S302
V.T. Samuel, G.I. Shulman, The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Invest. 126(1), 12–22 (2016). https://doi.org/10.1172/JCI77812
A. Kalinkovich, G. Livshits, Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res. Rev. 35, 200–221 (2017). https://doi.org/10.1016/j.arr.2016.09.008
S. Gordon, P.R. Taylor, Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5(12), 953–964 (2005). https://doi.org/10.1038/nri1733
A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25(12), 677–686 (2004). https://doi.org/10.1016/j.it.2004.09.015
J. Zhong, X. Rao, Z. Braunstein, A. Taylor, V. Narula et al., T-cell costimulation protects obesity-induced adipose inflammation and insulin resistance. Diabetes 63(4), 1289–1302 (2014). https://doi.org/10.2337/db13-1094