Multi-targeted Antisense Oligonucleotide Delivery by a Framework Nucleic Acid for Inhibiting Biofilm Formation and Virulence
Corresponding Author: Yunfeng Lin
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 74
Abstract
Biofilm formation is responsible for numerous chronic infections and represents a serious health challenge. Bacteria and the extracellular polysaccharides (EPS) cause biofilms to become adherent, toxic, resistant to antibiotics, and ultimately difficult to remove. Inhibition of EPS synthesis can prevent the formation of bacterial biofilms, reduce their robustness, and promote removal. Here, we have developed a framework nucleic acid delivery system with a tetrahedral configuration. It can easily access bacterial cells and functions by delivering antisense oligonucleotides that target specific genes. We designed antisense oligonucleotide sequences with multiple targets based on conserved regions of the VicK protein-binding site. Once delivered to bacterial cells, they significantly decreased EPS synthesis and biofilm thickness. Compared to existing approaches, this system is highly efficacious because it simultaneously reduces the expression of all targeted genes (gtfBCD, gbpB, ftf). We demonstrate a novel nucleic acid-based nanomaterial with multi-targeted inhibition that has great potential for the treatment of chronic infections caused by biofilms.
Highlights:
1 A framework nucleic acid delivery system was developed through self-assembly, which can deliver antisense oligonucleotides against multiple targets in bacterial cells.
2 The ASOs-tFNAs (750 nM) was found to simultaneously inhibit the expression of gtfBCD, gbpB, and ftf, and significantly reduce the extracellular polysaccharide synthesis and biofilm thickness.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Lewis, Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5(1), 48–56 (2007). https://doi.org/10.1038/nrmicro1557
- L. Hall-Stoodley, J.W. Costerton, P. Stoodley, Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2(2), 95–108 (2004). https://doi.org/10.1038/nrmicro821
- J.W. Costerton, P.S. Stewart, E.P. Greenberg, Bacterial biofilms: a common cause of persistent infections. Science 284(5418), 1318–1322 (1999). https://doi.org/10.1126/science.284.5418.1318
- S. Neethirajan, M.A. Clond, A. Vogt, Medical biofilms—nanotechnology approaches. J. Biomed. Nanotechnol. 10(10), 2806–2827 (2014). https://doi.org/10.1166/jbn.2014.1892
- X. Ning, S. Lee, Z. Wang, D. Kim, B. Stubblefield, E. Gilbert, N. Murthy, Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat. Mater. 10(8), 602–607 (2011). https://doi.org/10.1038/nmat3074
- J.P. Hegarty, D.B. Stewart Sr., Advances in therapeutic bacterial antisense biotechnology. Appl. Microbiol. Biotechnol. 102(3), 1055–1065 (2018). https://doi.org/10.1007/s00253-017-8671-0
- J.W. Costerton, J.C. Post, G.D. Ehrlich, F.Z. Hu, R. Kreft et al., New methods for the detection of orthopedic and other biofilm infections. FEMS Immunol. Med. Microbiol. 61(2), 133–140 (2011). https://doi.org/10.1111/j.1574695X.2010.00766.x
- A. Gupta, R. Das, G. Yesilbag Tonga, T. Mizuhara, V.M. Rotello, Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections. ACS Nano 12(1), 89–94 (2018). https://doi.org/10.1021/acsnano.7b07496
- H. Koo, R.N. Allan, R.P. Howlin, P. Stoodley, L. Hall-Stoodley, Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15(12), 740–755 (2017). https://doi.org/10.1038/nrmicro.2017.99
- E.E. Mann, D.J. Wozniak, Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol. Rev. 36(4), 893–916 (2012). https://doi.org/10.1111/j.1574-6976.2011.00322.x
- S.A. Tursi, C. Tukel, Curli-containing enteric biofilms inside and out: matrix composition, immune recognition, and disease implications. Microbiol. Mol. Bio. Rev. 82(4), e00028–18 (2018). https://doi.org/10.1128/MMBR.00028-18
- Y. Zhang, W. Ma, Y. Zhu, S. Shi, Q. Li et al., Inhibiting methicillin-resistant Staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery. Nano Lett. 18(9), 5652–5659 (2018). https://doi.org/10.1021/acs.nanolett.8b02166
- H. Pei, X. Zuo, D. Zhu, Q. Huang, C. Fan, Functional DNA nanostructures for theranostic applications. Acc. Chem. Res. 47(2), 550–559 (2014). https://doi.org/10.1021/ar400195t
- J. Chao, H. Liu, S. Su, L. Wang, W. Huang, C. Fan, Structural DNA nanotechnology for intelligent drug delivery. Small 10(22), 4626–4635 (2014). https://doi.org/10.1002/smll.201401309
- L. Zhang, D. Pornpattananangku, C.M. Hu, C.M. Huang, Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem. 17(6), 585–594 (2010). https://doi.org/10.2174/092986710790416290
- Q. Hu, H. Li, L. Wang, DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 119(10), 6459–6506 (2018). https://doi.org/10.1021/acs.chemrev.7b00663
- M. Zhou, N.X. Liu, S.R. Shi, Y. Li, Q. Zhang et al., Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. Nanomed. Nanotechnol. Biol. Med. 14(4), 1227–1236 (2018). https://doi.org/10.1016/j.nano.2018.02.004
- X. Shao, S. Lin, Q. Peng, S. Shi, X. Wei, T. Zhang, Y. Lin, Tetrahedral DNA nanostructure: a potential promoter for cartilage tissue regeneration via regulating chondrocyte phenotype and proliferation. Small 13(12), 1602770 (2017). https://doi.org/10.1002/smll.201602770
- D. Zeng, Z. Wang, Z. Meng, P. Wang, L. San et al., DNA tetrahedral nanostructure-based electrochemical miRNA biosensor for simultaneous detection of multiple miRNAs in pancreatic carcinoma. ACS Appl. Mater. Interfaces 9(28), 24118–24125 (2017). https://doi.org/10.1021/acsami.7b05981
- D. Jiang, Y. Sun, J. Li, Q. Li, M. Lv et al., Multiple-armed tetrahedral DNA nanostructures for tumor-targeting, dual-modality in vivo imaging. ACS Appl. Mater. Interfaces 8(7), 4378–4384 (2016). https://doi.org/10.1021/acsami.5b10792
- Y. Zhang, Z. Cui, H. Kong, K. Xia, L. Pan et al., One-shot immunomodulatory nanodiamond agents for cancer immunotherapy. Adv. Mater. 28(14), 2699–2708 (2016). https://doi.org/10.1002/adma.201506232
- Q. Zhang, S. Lin, S. Shi, T. Zhang, Q. Ma et al., Anti-inflammatory and antioxidative effects of tetrahedral DNA nanostructures via the modulation of macrophage responses. ACS Appl. Mater. Interfaces 10(4), 3421–3430 (2018). https://doi.org/10.1021/acsami.7b17928
- Q. Li, D. Zhao, X. Shao, S. Lin, X. Xie et al., Aptamer-modified tetrahedral DNA nanostructure for tumor-targeted drug delivery. ACS Appl. Mater. Interfaces 9(42), 36695–36701 (2017). https://doi.org/10.1021/acsami.7b13328
- D. Ye, X. Zuo, C. Fan, DNA nanotechnology-enabled interfacial engineering for biosensor development. Ann. Rev. Anal. Chem. 11, 171–195 (2018). https://doi.org/10.1146/annurev-anchem-061417-010007
- S. Grijalvo, A. Alagia, A.F. Jorge, Covalent strategies for targeting messenger and non-coding RNAs: an updated review on siRNA, miRNA and antimiR conjugates. Genes 9(2), 74 (2018). https://doi.org/10.3390/genes9020074
- B. Soder, M. Yakob, J.H. Meurman, L.C. Andersson, P.O. Soder, The association of dental plaque with cancer mortality in Sweden. A longitudinal study. BMJ Open 2(3), e001083 (2012). https://doi.org/10.1136/bmjopen-2012-001083
- Y.H. Li, N. Tang, M.B. Aspiras, P.C. Lau, J.H. Lee, R.P. Ellen, D.G. Cvitkovitch, A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184(10), 2699–2708 (2002). https://doi.org/10.1128/JB.184.10.2699-2708.2002
- J.B. Kaplan, Biofilm matrix-degrading enzymes. Methods Mol. Biol. 1147, 203–213 (2014). https://doi.org/10.1007/978-1-4939-0467-9_14
- D. Viszwapriya, G.A. Subramenium, S. Radhika, S.K. Pandian, Betulin inhibits cariogenic properties of Streptococcus mutans by targeting VicRK and gtf genes. Antonie Van Leeuwenhoek 110(1), 153–165 (2017). https://doi.org/10.1007/s10482-016-0785-3
- D.B. Senadheera, M. Cordova, E.A. Ayala, L.E. Chavez de Paz, K. Singh et al., Regulation of bacteriocin production and cell death by the VicRK signaling system in Streptococcus mutans. J. Bacteriol. 194(6), 1307–1316 (2012). https://doi.org/10.1128/JB.06071-11
- L.A. Alves, E.N. Harth-Chu, T.H. Palma, R.N. Stipp, F.S. Mariano et al., The two-component system VicRK regulates functions associated with Streptococcus mutans resistance to complement immunity. Mol. Oral Microbiol. 32(5), 419–431 (2017). https://doi.org/10.1111/omi.12183
- M.D. Senadheera, B. Guggenheim, G.A. Spatafora, Y.C. Huang, J. Choi et al., A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J. Bacteriol. 187(12), 4064–4076 (2005). https://doi.org/10.1128/JB.187.12.4064-4076.2005
- R.N. Stipp, H. Boisvert, D.J. Smith, J.F. Hofling, M.J. Duncan, R.O. Mattos-Graner, CovR and VicRK regulate cell surface biogenesis genes required for biofilm formation in Streptococcus mutans. PLoS One 8(3), e58271 (2013). https://doi.org/10.1371/journal.pone.0058271
- S. Dubrac, T. Msadek, Identification of genes controlled by the essential YycG/YycF two-component system of Staphylococcus aureus. J. Bacteriol. 186(4), 1175–1181 (2004). https://doi.org/10.1128/JB.186.4.1175-1181.2004
- G. Zhao, J. Li, Z. Tong, B. Zhao, R. Mu, Y. Guan, Enzymatic cleavage of type II restriction endonucleases on the 2′-o-methyl nucleotide and phosphorothioate substituted DNA. PLoS One 8(11), e79415 (2013). https://doi.org/10.1371/journal.pone.0079415
- I. Charles, E. Davis, D.P. Arya, Efficient stabilization of phosphodiester (PO), phosphorothioate (PS), and 2′-o-methoxy (2′-ome) DNA. RNA hybrid duplexes by amino sugars. Biochemistry 51(27), 5496–5505 (2012). https://doi.org/10.1021/bi3004507
- X. Piao, H. Wang, D.W. Binzel, P. Guo, Assessment and comparison of thermal stability of phosphorothioate-DNA, DNA, RNA, 2′-F RNA, and LNA in the context of Phi29 pRNA 3WJ. RNA 24(1), 67–76 (2018). https://doi.org/10.1261/rna.063057.117
- S. Shi, S. Lin, X. Shao, Q. Li, Z. Tao, Y. Lin, Modulation of chondrocyte motility by tetrahedral DNA nanostructures. Cell Prolif. 50(5), e12368 (2017). https://doi.org/10.1111/cpr.12368
- X. Xie, X. Shao, W. Ma, D. Zhao, S. Shi, Q. Li, Y. Lin, Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale 10(12), 5457–5465 (2018). https://doi.org/10.1039/c7nr09692e
- W. Ma, S.X. Hao, D. Zhao, Q. Li, M. Liu, T. Zhou, X. Xie, C. Mao, Y. Zhang, Y. Lin, Self-assembled tetrahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation. ACS Appl. Mater. Interfaces 10(9), 7892–7900 (2018). https://doi.org/10.1021/acsami.8b00833
- A. Dell’Anno, M. Fabiano, G.C.A. Duineveld, A. Kok, R. Danovaro, Nucleic acid (DNA, RNA) quantification and RNA/DNA ratio determination in marine sediments: comparison of spectrophotometric, fluorometric, and highperformance liquid chromatography methods and estimation of detrital DNA. Appl. Environ. Microbiol. 64(9), 3238–3245 (1998). https://doi.org/10.1128/AEM.64.9.32383245.1998
- Q. Hu, S. Wang, L. Wang, H. Gu, C. Fan, DNA nanostructure-based systems for intelligent delivery of therapeutic oligonucleotides. Adv. Healthc. Mater. 7(20), 1701153 (2018). https://doi.org/10.1002/adhm.201701153
- X. Liu, Y. Gao, X. Wang, S. Wu, Z. Tang, Preparation of stable, water-soluble, highly luminescence quantum dots with small hydrodynamic sizes. J. Nanosci. Nanotechnol. 11(3), 1941–1949 (2011). https://doi.org/10.1166/jnn.2011.3531
- P. Ommen, N. Zobek, R.L. Meyer, Quantification of biofilm biomass by staining: non-toxic safranin can replace the popular crystal violet. J. Microbiol. Methods 141, 87–89 (2017). https://doi.org/10.1016/j.mimet.2017.08.003
- K. Ivanova, M.M. Fernandes, A. Francesko, E. Mendoza, J. Guezguez, M. Burnet, T. Tzanov, Quorum-quenching and matrix-degrading enzymes in multilayer coatings synergistically prevent bacterial biofilm formation on urinary catheters. ACS Appl. Mater. Interfaces 7(49), 27066–27077 (2015). https://doi.org/10.1021/acsami.5b09489
- M.I. Klein, S. Duarte, J. Xiao, S. Mitra, T.H. Foster, H. Koo, Structural and molecular basis of the role of starch and sucrose in Streptococcus mutans biofilm development. Appl. Environ. Microbiol. 75(3), 837–841 (2009). https://doi.org/10.1128/AEM.01299-08
- S. Sharma, S. Lavender, J. Woo, L. Guo, W. Shi, L. Kilpatrick-Liverman, J.K. Gimzewski, Nanoscale characterization of effect of l-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy. Microbiology 160(Pt 7), 1466–1473 (2014). https://doi.org/10.1099/mic.0.075267-0
- R.M. Murata, L.S. Branco-de-Almeida, E.M. Franco, R. Yatsuda, M.H. dos Santos, S.M. de Alencar, H. Koo, P.L. Rosalen, Inhibition of Streptococcus mutans biofilm accumulation and development of dental caries in vivo by 7-epiclusianone and fluoride. Biofouling 26(7), 865–872 (2010). https://doi.org/10.1080/08927014.2010.527435
- A. Yanagida, T. Kanda, M. Tanabe, F. Matsudaira, J.G. Oliveira Cordeiro, Inhibitory effects of apple polyphenols and related compounds on cariogenic factors of mutans streptococci. J. Agric. Food Chem. 48(11), 5666–5671 (2000). https://doi.org/10.1021/jf000363i
- E.G. Smith, G.A. Spatafora, Gene regulation in S. mutans: complex control in a complex environment. J. Dent. Res. 91(2), 133–141 (2012). https://doi.org/10.1177/0022034511415415
- A. Heydorn, A.T. Nielsen, R.M. Hentze, C. Sternberg, M. Givskov, B.K. Ersboll, S. Molin, Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146, 2395–2407 (2000). https://doi.org/10.1099/00221287-146-10-2395
References
K. Lewis, Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5(1), 48–56 (2007). https://doi.org/10.1038/nrmicro1557
L. Hall-Stoodley, J.W. Costerton, P. Stoodley, Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2(2), 95–108 (2004). https://doi.org/10.1038/nrmicro821
J.W. Costerton, P.S. Stewart, E.P. Greenberg, Bacterial biofilms: a common cause of persistent infections. Science 284(5418), 1318–1322 (1999). https://doi.org/10.1126/science.284.5418.1318
S. Neethirajan, M.A. Clond, A. Vogt, Medical biofilms—nanotechnology approaches. J. Biomed. Nanotechnol. 10(10), 2806–2827 (2014). https://doi.org/10.1166/jbn.2014.1892
X. Ning, S. Lee, Z. Wang, D. Kim, B. Stubblefield, E. Gilbert, N. Murthy, Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat. Mater. 10(8), 602–607 (2011). https://doi.org/10.1038/nmat3074
J.P. Hegarty, D.B. Stewart Sr., Advances in therapeutic bacterial antisense biotechnology. Appl. Microbiol. Biotechnol. 102(3), 1055–1065 (2018). https://doi.org/10.1007/s00253-017-8671-0
J.W. Costerton, J.C. Post, G.D. Ehrlich, F.Z. Hu, R. Kreft et al., New methods for the detection of orthopedic and other biofilm infections. FEMS Immunol. Med. Microbiol. 61(2), 133–140 (2011). https://doi.org/10.1111/j.1574695X.2010.00766.x
A. Gupta, R. Das, G. Yesilbag Tonga, T. Mizuhara, V.M. Rotello, Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections. ACS Nano 12(1), 89–94 (2018). https://doi.org/10.1021/acsnano.7b07496
H. Koo, R.N. Allan, R.P. Howlin, P. Stoodley, L. Hall-Stoodley, Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15(12), 740–755 (2017). https://doi.org/10.1038/nrmicro.2017.99
E.E. Mann, D.J. Wozniak, Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol. Rev. 36(4), 893–916 (2012). https://doi.org/10.1111/j.1574-6976.2011.00322.x
S.A. Tursi, C. Tukel, Curli-containing enteric biofilms inside and out: matrix composition, immune recognition, and disease implications. Microbiol. Mol. Bio. Rev. 82(4), e00028–18 (2018). https://doi.org/10.1128/MMBR.00028-18
Y. Zhang, W. Ma, Y. Zhu, S. Shi, Q. Li et al., Inhibiting methicillin-resistant Staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery. Nano Lett. 18(9), 5652–5659 (2018). https://doi.org/10.1021/acs.nanolett.8b02166
H. Pei, X. Zuo, D. Zhu, Q. Huang, C. Fan, Functional DNA nanostructures for theranostic applications. Acc. Chem. Res. 47(2), 550–559 (2014). https://doi.org/10.1021/ar400195t
J. Chao, H. Liu, S. Su, L. Wang, W. Huang, C. Fan, Structural DNA nanotechnology for intelligent drug delivery. Small 10(22), 4626–4635 (2014). https://doi.org/10.1002/smll.201401309
L. Zhang, D. Pornpattananangku, C.M. Hu, C.M. Huang, Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem. 17(6), 585–594 (2010). https://doi.org/10.2174/092986710790416290
Q. Hu, H. Li, L. Wang, DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 119(10), 6459–6506 (2018). https://doi.org/10.1021/acs.chemrev.7b00663
M. Zhou, N.X. Liu, S.R. Shi, Y. Li, Q. Zhang et al., Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. Nanomed. Nanotechnol. Biol. Med. 14(4), 1227–1236 (2018). https://doi.org/10.1016/j.nano.2018.02.004
X. Shao, S. Lin, Q. Peng, S. Shi, X. Wei, T. Zhang, Y. Lin, Tetrahedral DNA nanostructure: a potential promoter for cartilage tissue regeneration via regulating chondrocyte phenotype and proliferation. Small 13(12), 1602770 (2017). https://doi.org/10.1002/smll.201602770
D. Zeng, Z. Wang, Z. Meng, P. Wang, L. San et al., DNA tetrahedral nanostructure-based electrochemical miRNA biosensor for simultaneous detection of multiple miRNAs in pancreatic carcinoma. ACS Appl. Mater. Interfaces 9(28), 24118–24125 (2017). https://doi.org/10.1021/acsami.7b05981
D. Jiang, Y. Sun, J. Li, Q. Li, M. Lv et al., Multiple-armed tetrahedral DNA nanostructures for tumor-targeting, dual-modality in vivo imaging. ACS Appl. Mater. Interfaces 8(7), 4378–4384 (2016). https://doi.org/10.1021/acsami.5b10792
Y. Zhang, Z. Cui, H. Kong, K. Xia, L. Pan et al., One-shot immunomodulatory nanodiamond agents for cancer immunotherapy. Adv. Mater. 28(14), 2699–2708 (2016). https://doi.org/10.1002/adma.201506232
Q. Zhang, S. Lin, S. Shi, T. Zhang, Q. Ma et al., Anti-inflammatory and antioxidative effects of tetrahedral DNA nanostructures via the modulation of macrophage responses. ACS Appl. Mater. Interfaces 10(4), 3421–3430 (2018). https://doi.org/10.1021/acsami.7b17928
Q. Li, D. Zhao, X. Shao, S. Lin, X. Xie et al., Aptamer-modified tetrahedral DNA nanostructure for tumor-targeted drug delivery. ACS Appl. Mater. Interfaces 9(42), 36695–36701 (2017). https://doi.org/10.1021/acsami.7b13328
D. Ye, X. Zuo, C. Fan, DNA nanotechnology-enabled interfacial engineering for biosensor development. Ann. Rev. Anal. Chem. 11, 171–195 (2018). https://doi.org/10.1146/annurev-anchem-061417-010007
S. Grijalvo, A. Alagia, A.F. Jorge, Covalent strategies for targeting messenger and non-coding RNAs: an updated review on siRNA, miRNA and antimiR conjugates. Genes 9(2), 74 (2018). https://doi.org/10.3390/genes9020074
B. Soder, M. Yakob, J.H. Meurman, L.C. Andersson, P.O. Soder, The association of dental plaque with cancer mortality in Sweden. A longitudinal study. BMJ Open 2(3), e001083 (2012). https://doi.org/10.1136/bmjopen-2012-001083
Y.H. Li, N. Tang, M.B. Aspiras, P.C. Lau, J.H. Lee, R.P. Ellen, D.G. Cvitkovitch, A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184(10), 2699–2708 (2002). https://doi.org/10.1128/JB.184.10.2699-2708.2002
J.B. Kaplan, Biofilm matrix-degrading enzymes. Methods Mol. Biol. 1147, 203–213 (2014). https://doi.org/10.1007/978-1-4939-0467-9_14
D. Viszwapriya, G.A. Subramenium, S. Radhika, S.K. Pandian, Betulin inhibits cariogenic properties of Streptococcus mutans by targeting VicRK and gtf genes. Antonie Van Leeuwenhoek 110(1), 153–165 (2017). https://doi.org/10.1007/s10482-016-0785-3
D.B. Senadheera, M. Cordova, E.A. Ayala, L.E. Chavez de Paz, K. Singh et al., Regulation of bacteriocin production and cell death by the VicRK signaling system in Streptococcus mutans. J. Bacteriol. 194(6), 1307–1316 (2012). https://doi.org/10.1128/JB.06071-11
L.A. Alves, E.N. Harth-Chu, T.H. Palma, R.N. Stipp, F.S. Mariano et al., The two-component system VicRK regulates functions associated with Streptococcus mutans resistance to complement immunity. Mol. Oral Microbiol. 32(5), 419–431 (2017). https://doi.org/10.1111/omi.12183
M.D. Senadheera, B. Guggenheim, G.A. Spatafora, Y.C. Huang, J. Choi et al., A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J. Bacteriol. 187(12), 4064–4076 (2005). https://doi.org/10.1128/JB.187.12.4064-4076.2005
R.N. Stipp, H. Boisvert, D.J. Smith, J.F. Hofling, M.J. Duncan, R.O. Mattos-Graner, CovR and VicRK regulate cell surface biogenesis genes required for biofilm formation in Streptococcus mutans. PLoS One 8(3), e58271 (2013). https://doi.org/10.1371/journal.pone.0058271
S. Dubrac, T. Msadek, Identification of genes controlled by the essential YycG/YycF two-component system of Staphylococcus aureus. J. Bacteriol. 186(4), 1175–1181 (2004). https://doi.org/10.1128/JB.186.4.1175-1181.2004
G. Zhao, J. Li, Z. Tong, B. Zhao, R. Mu, Y. Guan, Enzymatic cleavage of type II restriction endonucleases on the 2′-o-methyl nucleotide and phosphorothioate substituted DNA. PLoS One 8(11), e79415 (2013). https://doi.org/10.1371/journal.pone.0079415
I. Charles, E. Davis, D.P. Arya, Efficient stabilization of phosphodiester (PO), phosphorothioate (PS), and 2′-o-methoxy (2′-ome) DNA. RNA hybrid duplexes by amino sugars. Biochemistry 51(27), 5496–5505 (2012). https://doi.org/10.1021/bi3004507
X. Piao, H. Wang, D.W. Binzel, P. Guo, Assessment and comparison of thermal stability of phosphorothioate-DNA, DNA, RNA, 2′-F RNA, and LNA in the context of Phi29 pRNA 3WJ. RNA 24(1), 67–76 (2018). https://doi.org/10.1261/rna.063057.117
S. Shi, S. Lin, X. Shao, Q. Li, Z. Tao, Y. Lin, Modulation of chondrocyte motility by tetrahedral DNA nanostructures. Cell Prolif. 50(5), e12368 (2017). https://doi.org/10.1111/cpr.12368
X. Xie, X. Shao, W. Ma, D. Zhao, S. Shi, Q. Li, Y. Lin, Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale 10(12), 5457–5465 (2018). https://doi.org/10.1039/c7nr09692e
W. Ma, S.X. Hao, D. Zhao, Q. Li, M. Liu, T. Zhou, X. Xie, C. Mao, Y. Zhang, Y. Lin, Self-assembled tetrahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation. ACS Appl. Mater. Interfaces 10(9), 7892–7900 (2018). https://doi.org/10.1021/acsami.8b00833
A. Dell’Anno, M. Fabiano, G.C.A. Duineveld, A. Kok, R. Danovaro, Nucleic acid (DNA, RNA) quantification and RNA/DNA ratio determination in marine sediments: comparison of spectrophotometric, fluorometric, and highperformance liquid chromatography methods and estimation of detrital DNA. Appl. Environ. Microbiol. 64(9), 3238–3245 (1998). https://doi.org/10.1128/AEM.64.9.32383245.1998
Q. Hu, S. Wang, L. Wang, H. Gu, C. Fan, DNA nanostructure-based systems for intelligent delivery of therapeutic oligonucleotides. Adv. Healthc. Mater. 7(20), 1701153 (2018). https://doi.org/10.1002/adhm.201701153
X. Liu, Y. Gao, X. Wang, S. Wu, Z. Tang, Preparation of stable, water-soluble, highly luminescence quantum dots with small hydrodynamic sizes. J. Nanosci. Nanotechnol. 11(3), 1941–1949 (2011). https://doi.org/10.1166/jnn.2011.3531
P. Ommen, N. Zobek, R.L. Meyer, Quantification of biofilm biomass by staining: non-toxic safranin can replace the popular crystal violet. J. Microbiol. Methods 141, 87–89 (2017). https://doi.org/10.1016/j.mimet.2017.08.003
K. Ivanova, M.M. Fernandes, A. Francesko, E. Mendoza, J. Guezguez, M. Burnet, T. Tzanov, Quorum-quenching and matrix-degrading enzymes in multilayer coatings synergistically prevent bacterial biofilm formation on urinary catheters. ACS Appl. Mater. Interfaces 7(49), 27066–27077 (2015). https://doi.org/10.1021/acsami.5b09489
M.I. Klein, S. Duarte, J. Xiao, S. Mitra, T.H. Foster, H. Koo, Structural and molecular basis of the role of starch and sucrose in Streptococcus mutans biofilm development. Appl. Environ. Microbiol. 75(3), 837–841 (2009). https://doi.org/10.1128/AEM.01299-08
S. Sharma, S. Lavender, J. Woo, L. Guo, W. Shi, L. Kilpatrick-Liverman, J.K. Gimzewski, Nanoscale characterization of effect of l-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy. Microbiology 160(Pt 7), 1466–1473 (2014). https://doi.org/10.1099/mic.0.075267-0
R.M. Murata, L.S. Branco-de-Almeida, E.M. Franco, R. Yatsuda, M.H. dos Santos, S.M. de Alencar, H. Koo, P.L. Rosalen, Inhibition of Streptococcus mutans biofilm accumulation and development of dental caries in vivo by 7-epiclusianone and fluoride. Biofouling 26(7), 865–872 (2010). https://doi.org/10.1080/08927014.2010.527435
A. Yanagida, T. Kanda, M. Tanabe, F. Matsudaira, J.G. Oliveira Cordeiro, Inhibitory effects of apple polyphenols and related compounds on cariogenic factors of mutans streptococci. J. Agric. Food Chem. 48(11), 5666–5671 (2000). https://doi.org/10.1021/jf000363i
E.G. Smith, G.A. Spatafora, Gene regulation in S. mutans: complex control in a complex environment. J. Dent. Res. 91(2), 133–141 (2012). https://doi.org/10.1177/0022034511415415
A. Heydorn, A.T. Nielsen, R.M. Hentze, C. Sternberg, M. Givskov, B.K. Ersboll, S. Molin, Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146, 2395–2407 (2000). https://doi.org/10.1099/00221287-146-10-2395