Water-Dispersible CsPbBr3 Perovskite Nanocrystals with Ultra-Stability and its Application in Electrochemical CO2 Reduction
Corresponding Author: Paras N. Prasad
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 172
Abstract
Thanks to the excellent optoelectronic properties, lead halide perovskites (LHPs) have been widely employed in high-performance optoelectronic devices such as solar cells and light-emitting diodes. However, overcoming their poor stability against water has been one of the biggest challenges for most applications. Herein, we report a novel hot-injection method in a Pb-poor environment combined with a well-designed purification process to synthesize water-dispersible CsPbBr3 nanocrystals (NCs). The as-prepared NCs sustain their superior photoluminescence (91% quantum yield in water) for more than 200 days in an aqueous environment, which is attributed to a passivation effect induced by excess CsBr salts. Thanks to the ultra-stability of these LHP NCs, for the first time, we report a new application of LHP NCs, in which they are applied to electrocatalysis of CO2 reduction reaction. Noticeably, they show significant electrocatalytic activity (faradaic yield: 32% for CH4, 40% for CO) and operation stability (> 350 h).
Highlights:
1 Water-dispersible CsPbBr3 nanocrystals (NCs) exhibit ultra-stability (>200 days) in water with only ~20% decline of the initial photoluminescence intensity.
2 The as-prepared ultra-stable water-dispersible CsPbBr3 NCs showed high electrocatalysis activity (faradaic yield: 32% for CH4, 40% for CO) and operation stability (>350 h) for CO2 reduction reaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Angamuthu, P. Byers, M. Lutz, A.L. Spek, E. Bouwman, Electrocatalytic CO2 conversion to oxalate by a copper complex. Science 327, 313–315 (2010). https://doi.org/10.1126/science.1177981
- J. Medina-Ramos, J.L. DiMeglio, J. Rosenthal, Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials. J. Am. Chem. Soc. 136, 8361–8367 (2014). https://doi.org/10.1021/ja501923g
- K. Qi, Y. Zhang, J. Li, C. Charmette, M. Ramonda et al., Enhancing the CO2-to-CO conversion from 2D silver nanoprisms via superstructure assembly. ACS Nano 15, 7682–7693 (2021). https://doi.org/10.1021/acsnano.1c01281
- M. Asadi, K. Kim, C. Liu, A.V. Addepalli, P. Abbasi et al., Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016). https://doi.org/10.1126/science.aaf4767
- X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li et al., Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017). https://doi.org/10.1038/ncomms14675
- C. Chen, J.F.K. Kotyk, S.W. Sheehan, Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4, 2571–2586 (2018). https://doi.org/10.1016/j.chempr.2018.08.019
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- Q.A. Akkerman, G. Rainò, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4
- J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate et al., Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017). https://doi.org/10.1126/science.aam6323
- Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu et al., Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015). https://doi.org/10.1126/science.aaa5760
- Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J.W. Haus et al., Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep. 795, 1–51 (2019). https://doi.org/10.1016/j.physrep.2019.01.005
- Y. Wang, M.I. Dar, L.K. Ono, T. Zhang, M. Kan et al., Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019). https://doi.org/10.1126/science.aav8680
- K. Chen, Q. Zhong, W. Chen, B. Sang, Y. Wang et al., Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Adv. Funct. Mater. 29, 1900991 (2019). https://doi.org/10.1002/adfm.201900991
- K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
- K. Chen, W. Jin, Y. Zhang, T. Yang, P. Reiss et al., High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering. J. Am. Chem. Soc. 142, 3775–3783 (2020). https://doi.org/10.1021/jacs.9b10700
- C.-T. Wang, K. Chen, P. Xu, F. Yeung, H.-S. Kwok et al., Fully chiral light emission from CsPbX3 perovskite nanocrystals enabled by cholesteric superstructure stacks. Adv. Funct. Mater. 29, 1903155 (2019). https://doi.org/10.1002/adfm.201903155
- Z. Chen, Y. Hu, J. Wang, Q. Shen, Y. Zhang et al., Boosting photocatalytic CO2 reduction on CsPbBr 3 perovskite nanocrystals by immobilizing metal complexes. Chem. Mater. 32, 1517–1525 (2020). https://doi.org/10.1021/acs.chemmater.9b04582
- J. Wang, J. Wang, N. Li, X. Du, J. Ma et al., Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 12, 31477–31485 (2020). https://doi.org/10.1021/acsami.0c08152
- Y.-F. Xu, M.-Z. Yang, B.-X. Chen, X.-D. Wang, H.-Y. Chen et al., A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 139, 5660–5663 (2017). https://doi.org/10.1021/jacs.7b00489
- B. Saparov, D.B. Mitzi, Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016). https://doi.org/10.1021/acs.chemrev.5b00715
- G. Li, K. Chen, Y. Cui, Y. Zhang, Y. Tian et al., Stability of perovskite light sources: status and challenges. Adv. Opt. Mater. 8, 1902012 (2020). https://doi.org/10.1002/adom.201902012
- K. Chen, C. Wang, Z. Peng, K. Qi, Z. Guo et al., The chemistry of colloidal semiconductor nanocrystals: from metal-chalcogenides to emerging perovskite. Coord. Chem. Rev. 418, 213333 (2020). https://doi.org/10.1016/j.ccr.2020.213333
- W. Lv, L. Li, M. Xu, J. Hong, X. Tang et al., Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv. Mater. 31, 1900682 (2019). https://doi.org/10.1002/adma.201900682
- Z. Li, Q. Hu, Z. Tan, Y. Yang, M. Leng et al., Aqueous synthesis of lead halide perovskite nanocrystals with high water stability and bright photoluminescence. ACS Appl. Mater. Interfaces 10, 43915–43922 (2018). https://doi.org/10.1021/acsami.8b16471
- F. Palazon, Q.A. Akkerman, M. Prato, L. Manna, X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano 10, 1224–1230 (2016). https://doi.org/10.1021/acsnano.5b06536
- X. Zhang, X. Bai, H. Wu, X. Zhang, C. Sun et al., Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals. Angew. Chem. Int. Ed. 57, 3337–3342 (2018). https://doi.org/10.1002/anie.201710869
- H. Huang, B. Chen, Z. Wang, T.F. Hung, A.S. Susha et al., Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci. 7, 5699–5703 (2016). https://doi.org/10.1039/c6sc01758d
- L. Wu, H. Hu, Y. Xu, S. Jiang, M. Chen et al., From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism. Nano Lett. 17, 5799–5804 (2017). https://doi.org/10.1021/acs.nanolett.7b02896
- Y. Wang, L. Varadi, A. Trinchi, J. Shen, Y. Zhu et al., Spray-assisted coil-globule transition for scalable preparation of water-resistant CsPbBr3@PMMA perovskite nanospheres with application in live cell imaging. Small 14, 1803156 (2018). https://doi.org/10.1002/smll.201803156
- C. Geng, S. Xu, H. Zhong, A.L. Rogach, W. Bi, Aqueous synthesis of methylammonium lead halide perovskite nanocrystals. Angew. Chem. Int. Ed. 57, 9650–9654 (2018). https://doi.org/10.1002/anie.201802670
- M. Crespo-Quesada, L.M. Pazos-Outon, J. Warnan, M.F. Kuehnel, R.H. Friend et al., Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 7, 12555 (2016). https://doi.org/10.1038/ncomms12555
- Q. Zhong, M. Cao, H. Hu, D. Yang, M. Chen et al., One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles. ACS Nano 12, 8579–8587 (2018). https://doi.org/10.1021/acsnano.8b04209
- G. Li, Z.-K. Tan, D. Di, M.L. Lai, L. Jiang et al., Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15, 2640–2644 (2015). https://doi.org/10.1021/acs.nanolett.5b00235
- Z.-J. Li, E. Hofman, J. Li, A.H. Davis, C.-H. Tung et al., Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv. Funct. Mater. 28, 1704288 (2018). https://doi.org/10.1002/adfm.201704288
- A. Jana, K.S. Kim, Water-stable, fluorescent organic−inorganic hybrid and fully inorganic perovskites. ACS Energy Lett. 3, 2120–2126 (2018). https://doi.org/10.1021/acsenergylett.8b01394
- A. Jana, Q. Ba, K.S. Kim, Compositional and dimensional control of 2D and quasi-2D lead halide perovskites in water. Adv. Funct. Mater. 29, 1900966 (2019). https://doi.org/10.1002/adfm.201900966
- Q. Ba, A. Jana, L. Wang, K.S. Kim, Dual emission of water-stable 2D organic–inorganic halide perovskites with Mn(II) dopant. Adv. Funct. Mater. 29, 1904768 (2019). https://doi.org/10.1002/adfm.201904768
- M. Xie, H. Liu, F. Chun, W. Deng, C. Luo et al., Aqueous phase exfoliating quasi-2D CsPbBr3 nanosheets with ultrahigh intrinsic water stability. Small 15, 1901994 (2019). https://doi.org/10.1002/smll.201901994
- Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi et al., Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 18, 3716–3722 (2018). https://doi.org/10.1021/acs.nanolett.8b00861
- S. Sun, D. Yuan, Y. Xu, A. Wang, Z. Deng, Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 10, 3648–3657 (2016). https://doi.org/10.1021/acsnano.5b08193
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
- A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016). https://doi.org/10.1126/science.aag2700
- L. Wu, K. Chen, W. Huang, Z. Lin, J. Zhao et al., Perovskite CsPbX3: a promising nonlinear optical material and its applications for ambient all-optical switching with enhanced stability. Adv. Opt. Mater. 6, 1800400 (2018). https://doi.org/10.1002/adom.201800400
- K. Chen, Y. Wang, J. Liu, J. Kang, Y. Ge et al., In situ preparation of a CsPbBr3/black phosphorus heterostructure with an optimized interface and photodetector application. Nanoscale 11, 16852–16859 (2019). https://doi.org/10.1039/c9nr06488e
- Y. Wang, K. Chen, H. Hao, G. Yu, B. Zeng et al., Engineering ultrafast charge transfer in a bismuthene/perovskite nanohybrid. Nanoscale 11, 2637–2643 (2019). https://doi.org/10.1039/c9nr00058e
- J. Shamsi, A.S. Urban, M. Imran, L. De Trizio, L. Manna, Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644
- S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao et al., Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019). https://doi.org/10.1126/science.aax3294
- J.K. Sun, S. Huang, X.Z. Liu, Q. Xu, Q.H. Zhang et al., Polar solvent induced lattice distortion of cubic CsPbI3 nanocubes and hierarchical self-assembly into orthorhombic single-crystalline nanowires. J. Am. Chem. Soc. 140, 11705–11715 (2018). https://doi.org/10.1021/jacs.8b05949
- D. Jain, S. Chaube, P. Khullar, S.G. Srinivasan, B. Rai, Bulk and surface DFT investigations of inorganic halide perovskites screened using machine learning and materials property databases. Phys. Chem. Chem. Phys. 21, 19423–19436 (2019). https://doi.org/10.1039/c9cp03240a
- Y. Liang, N. Hilal, P. Langston, V. Starov, Interaction forces between colloidal particles in liquid: theory and experiment. Adv. Colloid Interface Sci. 134–135, 151–166 (2007). https://doi.org/10.1016/j.cis.2007.04.003
- H. Zhang, M. Jin, Y. Xia, Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 41, 8035–8049 (2012). https://doi.org/10.1039/C2CS35173K
- Y.-J. Wang, W. Long, L. Wang, R. Yuan, A. Ignaszak et al., Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals. Energy Environ. Sci. 11, 258–275 (2018). https://doi.org/10.1039/C7EE02444D
References
R. Angamuthu, P. Byers, M. Lutz, A.L. Spek, E. Bouwman, Electrocatalytic CO2 conversion to oxalate by a copper complex. Science 327, 313–315 (2010). https://doi.org/10.1126/science.1177981
J. Medina-Ramos, J.L. DiMeglio, J. Rosenthal, Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials. J. Am. Chem. Soc. 136, 8361–8367 (2014). https://doi.org/10.1021/ja501923g
K. Qi, Y. Zhang, J. Li, C. Charmette, M. Ramonda et al., Enhancing the CO2-to-CO conversion from 2D silver nanoprisms via superstructure assembly. ACS Nano 15, 7682–7693 (2021). https://doi.org/10.1021/acsnano.1c01281
M. Asadi, K. Kim, C. Liu, A.V. Addepalli, P. Abbasi et al., Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016). https://doi.org/10.1126/science.aaf4767
X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li et al., Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017). https://doi.org/10.1038/ncomms14675
C. Chen, J.F.K. Kotyk, S.W. Sheehan, Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4, 2571–2586 (2018). https://doi.org/10.1016/j.chempr.2018.08.019
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r
Q.A. Akkerman, G. Rainò, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4
J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate et al., Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017). https://doi.org/10.1126/science.aam6323
Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu et al., Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015). https://doi.org/10.1126/science.aaa5760
Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J.W. Haus et al., Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep. 795, 1–51 (2019). https://doi.org/10.1016/j.physrep.2019.01.005
Y. Wang, M.I. Dar, L.K. Ono, T. Zhang, M. Kan et al., Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019). https://doi.org/10.1126/science.aav8680
K. Chen, Q. Zhong, W. Chen, B. Sang, Y. Wang et al., Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Adv. Funct. Mater. 29, 1900991 (2019). https://doi.org/10.1002/adfm.201900991
K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
K. Chen, W. Jin, Y. Zhang, T. Yang, P. Reiss et al., High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering. J. Am. Chem. Soc. 142, 3775–3783 (2020). https://doi.org/10.1021/jacs.9b10700
C.-T. Wang, K. Chen, P. Xu, F. Yeung, H.-S. Kwok et al., Fully chiral light emission from CsPbX3 perovskite nanocrystals enabled by cholesteric superstructure stacks. Adv. Funct. Mater. 29, 1903155 (2019). https://doi.org/10.1002/adfm.201903155
Z. Chen, Y. Hu, J. Wang, Q. Shen, Y. Zhang et al., Boosting photocatalytic CO2 reduction on CsPbBr 3 perovskite nanocrystals by immobilizing metal complexes. Chem. Mater. 32, 1517–1525 (2020). https://doi.org/10.1021/acs.chemmater.9b04582
J. Wang, J. Wang, N. Li, X. Du, J. Ma et al., Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 12, 31477–31485 (2020). https://doi.org/10.1021/acsami.0c08152
Y.-F. Xu, M.-Z. Yang, B.-X. Chen, X.-D. Wang, H.-Y. Chen et al., A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 139, 5660–5663 (2017). https://doi.org/10.1021/jacs.7b00489
B. Saparov, D.B. Mitzi, Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016). https://doi.org/10.1021/acs.chemrev.5b00715
G. Li, K. Chen, Y. Cui, Y. Zhang, Y. Tian et al., Stability of perovskite light sources: status and challenges. Adv. Opt. Mater. 8, 1902012 (2020). https://doi.org/10.1002/adom.201902012
K. Chen, C. Wang, Z. Peng, K. Qi, Z. Guo et al., The chemistry of colloidal semiconductor nanocrystals: from metal-chalcogenides to emerging perovskite. Coord. Chem. Rev. 418, 213333 (2020). https://doi.org/10.1016/j.ccr.2020.213333
W. Lv, L. Li, M. Xu, J. Hong, X. Tang et al., Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv. Mater. 31, 1900682 (2019). https://doi.org/10.1002/adma.201900682
Z. Li, Q. Hu, Z. Tan, Y. Yang, M. Leng et al., Aqueous synthesis of lead halide perovskite nanocrystals with high water stability and bright photoluminescence. ACS Appl. Mater. Interfaces 10, 43915–43922 (2018). https://doi.org/10.1021/acsami.8b16471
F. Palazon, Q.A. Akkerman, M. Prato, L. Manna, X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano 10, 1224–1230 (2016). https://doi.org/10.1021/acsnano.5b06536
X. Zhang, X. Bai, H. Wu, X. Zhang, C. Sun et al., Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals. Angew. Chem. Int. Ed. 57, 3337–3342 (2018). https://doi.org/10.1002/anie.201710869
H. Huang, B. Chen, Z. Wang, T.F. Hung, A.S. Susha et al., Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci. 7, 5699–5703 (2016). https://doi.org/10.1039/c6sc01758d
L. Wu, H. Hu, Y. Xu, S. Jiang, M. Chen et al., From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism. Nano Lett. 17, 5799–5804 (2017). https://doi.org/10.1021/acs.nanolett.7b02896
Y. Wang, L. Varadi, A. Trinchi, J. Shen, Y. Zhu et al., Spray-assisted coil-globule transition for scalable preparation of water-resistant CsPbBr3@PMMA perovskite nanospheres with application in live cell imaging. Small 14, 1803156 (2018). https://doi.org/10.1002/smll.201803156
C. Geng, S. Xu, H. Zhong, A.L. Rogach, W. Bi, Aqueous synthesis of methylammonium lead halide perovskite nanocrystals. Angew. Chem. Int. Ed. 57, 9650–9654 (2018). https://doi.org/10.1002/anie.201802670
M. Crespo-Quesada, L.M. Pazos-Outon, J. Warnan, M.F. Kuehnel, R.H. Friend et al., Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 7, 12555 (2016). https://doi.org/10.1038/ncomms12555
Q. Zhong, M. Cao, H. Hu, D. Yang, M. Chen et al., One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles. ACS Nano 12, 8579–8587 (2018). https://doi.org/10.1021/acsnano.8b04209
G. Li, Z.-K. Tan, D. Di, M.L. Lai, L. Jiang et al., Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15, 2640–2644 (2015). https://doi.org/10.1021/acs.nanolett.5b00235
Z.-J. Li, E. Hofman, J. Li, A.H. Davis, C.-H. Tung et al., Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv. Funct. Mater. 28, 1704288 (2018). https://doi.org/10.1002/adfm.201704288
A. Jana, K.S. Kim, Water-stable, fluorescent organic−inorganic hybrid and fully inorganic perovskites. ACS Energy Lett. 3, 2120–2126 (2018). https://doi.org/10.1021/acsenergylett.8b01394
A. Jana, Q. Ba, K.S. Kim, Compositional and dimensional control of 2D and quasi-2D lead halide perovskites in water. Adv. Funct. Mater. 29, 1900966 (2019). https://doi.org/10.1002/adfm.201900966
Q. Ba, A. Jana, L. Wang, K.S. Kim, Dual emission of water-stable 2D organic–inorganic halide perovskites with Mn(II) dopant. Adv. Funct. Mater. 29, 1904768 (2019). https://doi.org/10.1002/adfm.201904768
M. Xie, H. Liu, F. Chun, W. Deng, C. Luo et al., Aqueous phase exfoliating quasi-2D CsPbBr3 nanosheets with ultrahigh intrinsic water stability. Small 15, 1901994 (2019). https://doi.org/10.1002/smll.201901994
Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi et al., Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 18, 3716–3722 (2018). https://doi.org/10.1021/acs.nanolett.8b00861
S. Sun, D. Yuan, Y. Xu, A. Wang, Z. Deng, Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 10, 3648–3657 (2016). https://doi.org/10.1021/acsnano.5b08193
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016). https://doi.org/10.1126/science.aag2700
L. Wu, K. Chen, W. Huang, Z. Lin, J. Zhao et al., Perovskite CsPbX3: a promising nonlinear optical material and its applications for ambient all-optical switching with enhanced stability. Adv. Opt. Mater. 6, 1800400 (2018). https://doi.org/10.1002/adom.201800400
K. Chen, Y. Wang, J. Liu, J. Kang, Y. Ge et al., In situ preparation of a CsPbBr3/black phosphorus heterostructure with an optimized interface and photodetector application. Nanoscale 11, 16852–16859 (2019). https://doi.org/10.1039/c9nr06488e
Y. Wang, K. Chen, H. Hao, G. Yu, B. Zeng et al., Engineering ultrafast charge transfer in a bismuthene/perovskite nanohybrid. Nanoscale 11, 2637–2643 (2019). https://doi.org/10.1039/c9nr00058e
J. Shamsi, A.S. Urban, M. Imran, L. De Trizio, L. Manna, Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644
S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao et al., Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019). https://doi.org/10.1126/science.aax3294
J.K. Sun, S. Huang, X.Z. Liu, Q. Xu, Q.H. Zhang et al., Polar solvent induced lattice distortion of cubic CsPbI3 nanocubes and hierarchical self-assembly into orthorhombic single-crystalline nanowires. J. Am. Chem. Soc. 140, 11705–11715 (2018). https://doi.org/10.1021/jacs.8b05949
D. Jain, S. Chaube, P. Khullar, S.G. Srinivasan, B. Rai, Bulk and surface DFT investigations of inorganic halide perovskites screened using machine learning and materials property databases. Phys. Chem. Chem. Phys. 21, 19423–19436 (2019). https://doi.org/10.1039/c9cp03240a
Y. Liang, N. Hilal, P. Langston, V. Starov, Interaction forces between colloidal particles in liquid: theory and experiment. Adv. Colloid Interface Sci. 134–135, 151–166 (2007). https://doi.org/10.1016/j.cis.2007.04.003
H. Zhang, M. Jin, Y. Xia, Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 41, 8035–8049 (2012). https://doi.org/10.1039/C2CS35173K
Y.-J. Wang, W. Long, L. Wang, R. Yuan, A. Ignaszak et al., Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals. Energy Environ. Sci. 11, 258–275 (2018). https://doi.org/10.1039/C7EE02444D