Atomic-Scale Layer-by-Layer Deposition of FeSiAl@ZnO@Al2O3 Hybrid with Threshold Anti-Corrosion and Ultra-High Microwave Absorption Properties in Low-Frequency Bands
Corresponding Author: Xian Jian
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 161
Abstract
Developing highly efficient magnetic microwave absorbers (MAs) is crucial, and yet challenging for anti-corrosion properties in extremely humid and salt-induced foggy environments. Herein, a dual-oxide shell of ZnO/Al2O3 as a robust barrier to FeSiAl core is introduced to mitigate corrosion resistance. The FeSiAl@ZnO@Al2O3 layer by layer hybrid structure is realized with atomic-scale precision through the atomic layer deposition technique. Owing to the unique hybrid structure, the FeSiAl@ZnO@Al2O3 exhibits record-high microwave absorbing performance in low-frequency bands covering L and S bands with a minimum reflection loss (RLmin) of -50.6 dB at 3.4 GHz. Compared with pure FeSiAl (RLmin of -13.5 dB, a bandwidth of 0.5 GHz), the RLmin value and effective bandwidth of this designed novel absorber increased up to ~ 3.7 and ~ 3 times, respectively. Furthermore, the inert ceramic dual-shells have improved 9.0 times the anti-corrosion property of FeSiAl core by multistage barriers towards corrosive medium and obstruction of the electric circuit. This is attributed to the large charge transfer resistance, increased impedance modulus |Z|0.01 Hz, and frequency time constant of FeSiAl@ZnO@Al2O3. The research demonstrates a promising platform toward the design of next-generation MAs with improved anti-corrosion properties.
Highlights:
1 A multiscale structure is realized through layer-by-layer deposition with atom-scale precision via atomic layer deposition
2 FeSiAl@ZnO@Al2O3 exhibits record-high absorption properties in low-frequency bands.
3 The corrosion resistance is improved by the unique multistage oxide barriers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liu, Y. Fu, L. Liu, W. Li, J. Guan et al., Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core–shell nanosheets for improved microwave absorption. ACS Appl. Mater. Interfaces 10, 16511–16520 (2018). https://doi.org/10.1021/acsami.8b02770
- M.-S. Cao, X.-X. Wang, M. Zhang, J.-C. Shu, W.-Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- M. Zhang, C. Han, W.Q. Cao, M.-S. Cao, H.J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13, 27 (2021). https://doi.org/10.1007/s40820-020-00552-9
- M. Qin, L. Zhang, X. Zhao, H. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 2004640 (2021). https://doi.org/10.1002/advs.202004640
- G.H. He, Y.P. Duan, H.F. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-020-0388-4
- H. Zhao, Y. Cheng, W. Liu, L. Yang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
- H. Wang, L. Wu, J. Jiao, J. Zhou, Y. Xu, Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires. J. Mater. Chem. A 3, 6517–6525 (2015). https://doi.org/10.1039/C5TA00303B
- C. Lei, Y. Du, Tunable dielectric loss to enhance microwave absorption properties of flakey FeSiAl/Ferrite composites. J. Alloy. Compd. 822, 153674 (2020). https://doi.org/10.1016/j.jallcom.2020.153674
- L. Zhou, J. Huang, H. Wang, M. Chen, Y. Dong et al., FeSiAl/ZnO-filled resin composite coatings with enhanced dielectric and microwave absorption properties. J. Mater. Sci-Mater. El. 30, 1896–1906 (2019). https://doi.org/10.1007/s10854-018-0463-5
- D. Liu, C. Wu, M. Yan, J. Wang, Correlating the microstructure, growth mechanism and magnetic properties of FeSiAl soft magnetic composites fabricated via HNO3 oxidation. Acta Mater. 146, 294–303 (2018). https://doi.org/10.1016/j.actamat.2018.01.001
- Z.H. Chen, X.S. Liu, X.C. Kan, Z. Wang, R.W. Zhu et al., Phosphate coatings evolution study and effects of ultrasonic on soft magnetic properties of FeSiAl by aqueous phosphoric acid solution passivation. J. Alloy. Compd. 783, 434–440 (2019). https://doi.org/10.1016/j.jallcom.2018.12.328
- W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng et al., Metal–organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
- K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE T. Antenn. Propag. 48, 1230–1234 (2000). https://doi.org/10.1109/8.884491
- C. Xu, L. Wang, X. Li, X. Qian, Z. Wu et al., Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 13, 47 (2021). https://doi.org/10.1007/s40820-020-00572-5
- T. Zhu, S. Chang, Y.-F. Song, M. Lahoubi, W. Wang, PVP-encapsulated CoFe2O4/rGO composites with controllable electromagnetic wave absorption performance. Chem. Eng. J. 373, 755–766 (2019). https://doi.org/10.1016/j.cej.2019.05.079
- Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
- G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6, 11009–11017 (2012). https://doi.org/10.1021/nn304630h
- S. Zhao, Z. Gao, C. Chen, G. Wang, B. Zhang et al., Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon 98, 196–203 (2016). https://doi.org/10.1016/j.carbon.2015.10.101
- G. Wang, Z. Gao, G. Wan, S. Lin, P. Yang et al., High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 7, 704–716 (2014). https://doi.org/10.1007/s12274-014-0432-0
- S. Zhao, L. Yan, X. Tian, Y. Liu, C. Chen et al., Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance. Nano Res. 11, 530–541 (2018). https://doi.org/10.1007/s12274-017-1664-6
- L.L. Yan, J. Liu, S.C. Zhao, B. Zhang, Z. Gao et al., Coaxial multi-interface hollow ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 10, 1595–1607 (2017). https://doi.org/10.1007/s12274-016-1302-8
- X.G. Liu, D.Y. Geng, H. Meng, P.J. Shang, Z.D. Zhang, Microwave-absorption properties of ZnO-coated iron nanocapsules. Appl. Phys. Lett. 92, 173117 (2008). https://doi.org/10.1063/1.2919098
- J. Ma, X. Wang, W. Cao, C. Han, H. Yang et al., A facile fabrication and highly tunable microwave absorption of 3d flower-like Co3O4-rGO hybrid-architectures. Chem. Eng. J. 339, 487–498 (2018). https://doi.org/10.1016/j.cej.2018.01.152
- X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei et al., Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.carbon.2019.10.030
- X.-J. Zhang, J.-Q. Zhu, P.-G. Yin, A.-P. Guo, A.-P. Huang et al., Tunable high-performance microwave absorption of Co1–xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater 28, 1800761 (2018). https://doi.org/10.1002/adfm.201800761
- F. Wang, Y. Sun, D. Li, B. Zhong, Z. Wu et al., Microwave absorption properties of 3d cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon 134, 264–273 (2018). https://doi.org/10.1016/j.carbon.2018.03.081
- A.A. Nazeer, M. Madkour, Potential use of smart coatings for corrosion protection of metals and alloys: a review. J. Mol. Liq. 253, 11–22 (2018). https://doi.org/10.1016/j.molliq.2018.01.027
- J.S. Daubert, G.T. Hill, H.N. Gotsch, A.P. Gremaud, J.S. Ovental et al., Corrosion protection of copper using Al2O3, TiO2, ZnO, HfO2, and ZrO2 atomic layer deposition. ACS Appl. Mater. Interfaces 9, 4192–4201 (2017). https://doi.org/10.1021/acsami.6b13571
- A. Yadav, R. Kumar, H.K. Choudhary, B. Sahoo, Graphene-oxide coating for corrosion protection of iron particles in saline water. Carbon 140, 477–487 (2018). https://doi.org/10.1016/j.carbon.2018.08.062
- M.D. Groner, F.H. Fabreguette, J.W. Elam, S.M. George, Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 16, 639–645 (2004). https://doi.org/10.1021/cm0304546
- M. Ritala, M. Leskelä, Zirconium dioxide thin films deposited by ALE using zirconium tetrachloride as precursor. Appl. Surf. Sci. 75, 333–340 (1994). https://doi.org/10.1016/0169-4332(94)90180-5
- H.-B.-R. Lee, G.H. Gu, J.Y. Son, C.G. Park, H. Kim, Spontaneous formation of vertical magnetic-metal-nanorod arrays during plasma-enhanced atomic layer deposition. Small 4, 2247–2254 (2008). https://doi.org/10.1002/smll.200801074
- Y.T. Chong, E.M.Y. Yau, K. Nielsch, J. Bachmann, Direct atomic layer deposition of ternary ferrites with various magnetic properties. Chem. Mater. 22, 6506–6508 (2010). https://doi.org/10.1021/cm102600m
- L. Wang, H. Liu, Y. Fan, P. Yuan, D. Huang et al., Cooperative bimetallic catalyst for thio-etherification reaction prepared by crystal-facet engineering of γ-Al2O3 support. Catal. Today 6, 62 (2020). https://doi.org/10.1016/j.cattod.2020.06.062
- Y. Li, R. Yao, H. Wang, X. Wu, J. Wu et al., Enhanced performance in Al-doped ZnO based transparent flexible transparent thin-film transistors due to oxygen vacancy in ZnO film with Zn–Al–O interfaces fabricated by atomic layer deposition. ACS Appl. Mater. Interfaces 9, 11711–11720 (2017). https://doi.org/10.1021/acsami.7b02609
- O.S. Asiq Rahman, M. Sribalaji, B. Mukherjee, T. Laha, A.K. Keshri, Synergistic effect of hybrid carbon nanotube and graphene nanoplatelets reinforcement on processing, microstructure, interfacial stress and mechanical properties of Al2O3 nanocomposites. Ceram. Int. 44, 2109–2122 (2018). https://doi.org/10.1016/j.ceramint.2017.10.160
- N. Zhang, G. Li, X. Wang, T. Liu, J. Xie, The influence of annealing temperature on hyperfine magnetic field and saturation magnetization of Fe–Si–Al–Cr flake-shaped particles. J. Alloy. Compd. 672, 176–181 (2016). https://doi.org/10.1016/j.jallcom.2016.02.154
- M. Tallarida, K. Kukli, M. Michling, M. Ritala et al., Substrate reactivity effects in the atomic layer deposition of aluminum oxide from trimethylaluminum on ruthenium. Chem. Mater. 23, 3159–3168 (2011). https://doi.org/10.1021/cm200276z
- I. Iatsunskyi, M. Kempiński, M. Jancelewicz, K. Załęski, S. Jurga et al., Structural and XPS characterization of ALD Al2O3 coated porous silicon. Vacuum 113, 52–58 (2015). https://doi.org/10.1016/j.vacuum.2014.12.015
- G.R. Dillip, A.N. Banerjee, V.C. Anitha et al., Oxygen vacancy-induced structural, optical, and enhanced supercapacitive performance of zinc oxide anchored graphitic carbon nanofiber hybrid electrodes. ACS Appl. Mater. Interfaces 8, 5025–5039 (2016). https://doi.org/10.1021/acsami.5b12322
- B. Díaz, E. Härkönen, J. Światowska, V. Maurice, A. Seyeux et al., Low-temperature atomic layer deposition of Al2O3 thin coatings for corrosion protection of steel: surface and electrochemical analysis. Corros. Sci. 53, 2168–2175 (2011). https://doi.org/10.1016/j.corsci.2011.02.036
- J. Xiang, J. Li, X. Zhang, Q. Ye, J. Xu et al., Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J. Mater. Chem. A 2, 16905–16914 (2014). https://doi.org/10.1039/C4TA03732D
- X. Bao, X. Wang, X. Zhou, G. Shi, G. Xu et al., Excellent microwave absorption of FeCo/ZnO composites with defects in ZnO for regulating the impedance matching. J. Alloy. Compd. 769, 512–520 (2018). https://doi.org/10.1016/j.jallcom.2018.08.036
- R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
- Q. Liu, X. Xu, W. Xia, R. Che, C. Chen et al., Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale 7, 1736–1743 (2015). https://doi.org/10.1039/C4NR05547K
- T. Wang, H. Wang, X. Chi, R. Li, J. Wang, Synthesis and microwave absorption properties of Fe–C nanofibers by electrospinning with disperse Fe nanoparticles parceled by carbon. Carbon 74, 312–318 (2014). https://doi.org/10.1016/j.carbon.2014.03.037
- J. Deng, X. Zhang, B. Zhao, Z. Bai, S. Wen et al., Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J. Mater. Chem. C 6, 7128–7140 (2018). https://doi.org/10.1039/C8TC02520G
- Z. Mo, R. Yang, D. Lu, L. Yang, Q. Hu et al., Lightweight, three-dimensional carbon Nanotube@TiO2 sponge with enhanced microwave absorption performance. Carbon 144, 433–439 (2019). https://doi.org/10.1016/j.carbon.2018.12.064
- J. Feng, F. Pu, Z. Li, X. Li, X. Hu et al., Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 104, 214–225 (2016). https://doi.org/10.1016/j.carbon.2016.04.006
- D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020). https://doi.org/10.1016/j.carbon.2019.10.056
- S. Wang, Q. Jiao, X. Liu, Y. Xu, Q. Shi et al., Controllable synthesis of γ-Fe2O3 nanotube/porous rGO composites and their enhanced microwave absorption properties. ACS Sustainable Chem. Eng. 7, 7004–7013 (2019). https://doi.org/10.1021/acssuschemeng.8b06729
- J. Luo, K. Zhang, M. Cheng, M. Gu, X. Sun, MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 380, 122625 (2020). https://doi.org/10.1016/j.cej.2019.122625
- Y.-F. Pan, G.-S. Wang, L. Liu, L. Guo, S.-H. Yu, Binary synergistic enhancement of dielectric and microwave absorption properties: a composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 10, 284–294 (2017). https://doi.org/10.1007/s12274-016-1290-8
- M.R. Anisur, P. Chakraborty Banerjee, C.D. Easton, R.K. Singh Raman, Controlling hydrogen environment and cooling during CVD graphene growth on nickel for improved corrosion resistance. Carbon 127, 131–140 (2018). https://doi.org/10.1016/j.carbon.2017.10.079
- J. Ding, H. Zhao, D. Ji, B. Xu, X. Zhao et al., Achieving long-term anticorrosion via the inhibition of graphene’s electrical activity. J. Mater. Chem. A 7, 2864–2874 (2019). https://doi.org/10.1039/C8TA10337B
- P. Chakraborty Banerjee, R.K. Singh Raman, Electrochemical impedance spectroscopic investigation of the role of alkaline pre-treatment in corrosion resistance of a silane coating on magnesium alloy, ZE41. Electrochim. Acta 56, 3790–3798 (2011). https://doi.org/10.1016/j.electacta.2011.02.050
- R.K. Singh Raman, P. Chakraborty Banerjee, D.E. Lobo, H. Gullapalli, M. Sumandasa et al., Protecting copper from electrochemical degradation by graphene coating. Carbon 50, 4040–4045 (2012). https://doi.org/10.1016/j.carbon.2012.04.048
- X. Jian, W. Tian, J.Y. Li, L.J. Deng, Z.W. Zhou et al., High-temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption. ACS Appl. Mater. Interfaces 11, 15869–15880 (2019). https://doi.org/10.1021/acsami.8b22448
- J. Wei, J. Wang, Q. Liu, L. Qiao, T. Wang et al., Enhanced microwave absorption properties of Fe3Al/Al2O3fine particle composites. J. Phys. D: Appl. Phys. 43, 115001 (2010). https://doi.org/10.1088/0022-3727/43/11/115001
- N. Zhang, X. Wang, T. Liu, J. Xie, L. Deng, Microwave absorbing performance enhancement of Fe75Si15Al10 composites by selective surface oxidation. J. Appl. Phys. 122, 105103 (2017). https://doi.org/10.1063/1.4998453
- Y. Zhang, X. Wang, M. Cao, Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 11, 1426–1436 (2018). https://doi.org/10.1007/s12274-017-1758-1
- Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12, 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
- W.-Q. Cao, X.-X. Wang, J. Yuan, W.-Z. Wang, M.-S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2015). https://doi.org/10.1039/C5TC02185E
- W. Yang, R. Li, B. Jiang, T. Wang, L. Hou et al., Production of hierarchical porous carbon nanosheets from cheap petroleum asphalt toward lightweight and high-performance electromagnetic wave absorbents. Carbon 166(166), 218–226 (2020). https://doi.org/10.1016/j.carbon.2020.05.043
- F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021). https://doi.org/10.1007/s40820-020-00568-1
- W. Yang, B. Jiang, Z. Liu, R. Li, L. Hou et al., Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption. J. Mater. Sci. Technol. 70, 214–223 (2021). https://doi.org/10.1016/j.jmst.2020.08.059
- M. Green, Z.Q. Liu, P. Xiang, Y. Liu, M.J. Zhou et al., Doped, conductive SiO2 nanoparticles for large microwave absorption. Light-Sci. Appl. 7, 87 (2018). https://doi.org/10.1038/s41377-018-0088-8
- S. Mirhashemihaghighi, J. Światowska, V. Maurice, A. Seyeux, S. Zanna et al., Corrosion protection of aluminium by ultra-thin atomic layer deposited alumina coatings. Corros. Sci. 106, 16–24 (2016). https://doi.org/10.1016/j.corsci.2016.01.021
- X. Cao, F. Huang, C. Huang, J. Liu, Y.F. Cheng, Preparation of graphene nanoplate added zinc-rich epoxy coatings for enhanced sacrificial anode-based corrosion protection. Corros. Sci. 159, 108120 (2019). https://doi.org/10.1016/j.corsci.2019.108120
References
Y. Liu, Y. Fu, L. Liu, W. Li, J. Guan et al., Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core–shell nanosheets for improved microwave absorption. ACS Appl. Mater. Interfaces 10, 16511–16520 (2018). https://doi.org/10.1021/acsami.8b02770
M.-S. Cao, X.-X. Wang, M. Zhang, J.-C. Shu, W.-Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
M. Zhang, C. Han, W.Q. Cao, M.-S. Cao, H.J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13, 27 (2021). https://doi.org/10.1007/s40820-020-00552-9
M. Qin, L. Zhang, X. Zhao, H. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 2004640 (2021). https://doi.org/10.1002/advs.202004640
G.H. He, Y.P. Duan, H.F. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-020-0388-4
H. Zhao, Y. Cheng, W. Liu, L. Yang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
H. Wang, L. Wu, J. Jiao, J. Zhou, Y. Xu, Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires. J. Mater. Chem. A 3, 6517–6525 (2015). https://doi.org/10.1039/C5TA00303B
C. Lei, Y. Du, Tunable dielectric loss to enhance microwave absorption properties of flakey FeSiAl/Ferrite composites. J. Alloy. Compd. 822, 153674 (2020). https://doi.org/10.1016/j.jallcom.2020.153674
L. Zhou, J. Huang, H. Wang, M. Chen, Y. Dong et al., FeSiAl/ZnO-filled resin composite coatings with enhanced dielectric and microwave absorption properties. J. Mater. Sci-Mater. El. 30, 1896–1906 (2019). https://doi.org/10.1007/s10854-018-0463-5
D. Liu, C. Wu, M. Yan, J. Wang, Correlating the microstructure, growth mechanism and magnetic properties of FeSiAl soft magnetic composites fabricated via HNO3 oxidation. Acta Mater. 146, 294–303 (2018). https://doi.org/10.1016/j.actamat.2018.01.001
Z.H. Chen, X.S. Liu, X.C. Kan, Z. Wang, R.W. Zhu et al., Phosphate coatings evolution study and effects of ultrasonic on soft magnetic properties of FeSiAl by aqueous phosphoric acid solution passivation. J. Alloy. Compd. 783, 434–440 (2019). https://doi.org/10.1016/j.jallcom.2018.12.328
W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng et al., Metal–organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE T. Antenn. Propag. 48, 1230–1234 (2000). https://doi.org/10.1109/8.884491
C. Xu, L. Wang, X. Li, X. Qian, Z. Wu et al., Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 13, 47 (2021). https://doi.org/10.1007/s40820-020-00572-5
T. Zhu, S. Chang, Y.-F. Song, M. Lahoubi, W. Wang, PVP-encapsulated CoFe2O4/rGO composites with controllable electromagnetic wave absorption performance. Chem. Eng. J. 373, 755–766 (2019). https://doi.org/10.1016/j.cej.2019.05.079
Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6, 11009–11017 (2012). https://doi.org/10.1021/nn304630h
S. Zhao, Z. Gao, C. Chen, G. Wang, B. Zhang et al., Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon 98, 196–203 (2016). https://doi.org/10.1016/j.carbon.2015.10.101
G. Wang, Z. Gao, G. Wan, S. Lin, P. Yang et al., High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 7, 704–716 (2014). https://doi.org/10.1007/s12274-014-0432-0
S. Zhao, L. Yan, X. Tian, Y. Liu, C. Chen et al., Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance. Nano Res. 11, 530–541 (2018). https://doi.org/10.1007/s12274-017-1664-6
L.L. Yan, J. Liu, S.C. Zhao, B. Zhang, Z. Gao et al., Coaxial multi-interface hollow ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 10, 1595–1607 (2017). https://doi.org/10.1007/s12274-016-1302-8
X.G. Liu, D.Y. Geng, H. Meng, P.J. Shang, Z.D. Zhang, Microwave-absorption properties of ZnO-coated iron nanocapsules. Appl. Phys. Lett. 92, 173117 (2008). https://doi.org/10.1063/1.2919098
J. Ma, X. Wang, W. Cao, C. Han, H. Yang et al., A facile fabrication and highly tunable microwave absorption of 3d flower-like Co3O4-rGO hybrid-architectures. Chem. Eng. J. 339, 487–498 (2018). https://doi.org/10.1016/j.cej.2018.01.152
X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei et al., Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.carbon.2019.10.030
X.-J. Zhang, J.-Q. Zhu, P.-G. Yin, A.-P. Guo, A.-P. Huang et al., Tunable high-performance microwave absorption of Co1–xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater 28, 1800761 (2018). https://doi.org/10.1002/adfm.201800761
F. Wang, Y. Sun, D. Li, B. Zhong, Z. Wu et al., Microwave absorption properties of 3d cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon 134, 264–273 (2018). https://doi.org/10.1016/j.carbon.2018.03.081
A.A. Nazeer, M. Madkour, Potential use of smart coatings for corrosion protection of metals and alloys: a review. J. Mol. Liq. 253, 11–22 (2018). https://doi.org/10.1016/j.molliq.2018.01.027
J.S. Daubert, G.T. Hill, H.N. Gotsch, A.P. Gremaud, J.S. Ovental et al., Corrosion protection of copper using Al2O3, TiO2, ZnO, HfO2, and ZrO2 atomic layer deposition. ACS Appl. Mater. Interfaces 9, 4192–4201 (2017). https://doi.org/10.1021/acsami.6b13571
A. Yadav, R. Kumar, H.K. Choudhary, B. Sahoo, Graphene-oxide coating for corrosion protection of iron particles in saline water. Carbon 140, 477–487 (2018). https://doi.org/10.1016/j.carbon.2018.08.062
M.D. Groner, F.H. Fabreguette, J.W. Elam, S.M. George, Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 16, 639–645 (2004). https://doi.org/10.1021/cm0304546
M. Ritala, M. Leskelä, Zirconium dioxide thin films deposited by ALE using zirconium tetrachloride as precursor. Appl. Surf. Sci. 75, 333–340 (1994). https://doi.org/10.1016/0169-4332(94)90180-5
H.-B.-R. Lee, G.H. Gu, J.Y. Son, C.G. Park, H. Kim, Spontaneous formation of vertical magnetic-metal-nanorod arrays during plasma-enhanced atomic layer deposition. Small 4, 2247–2254 (2008). https://doi.org/10.1002/smll.200801074
Y.T. Chong, E.M.Y. Yau, K. Nielsch, J. Bachmann, Direct atomic layer deposition of ternary ferrites with various magnetic properties. Chem. Mater. 22, 6506–6508 (2010). https://doi.org/10.1021/cm102600m
L. Wang, H. Liu, Y. Fan, P. Yuan, D. Huang et al., Cooperative bimetallic catalyst for thio-etherification reaction prepared by crystal-facet engineering of γ-Al2O3 support. Catal. Today 6, 62 (2020). https://doi.org/10.1016/j.cattod.2020.06.062
Y. Li, R. Yao, H. Wang, X. Wu, J. Wu et al., Enhanced performance in Al-doped ZnO based transparent flexible transparent thin-film transistors due to oxygen vacancy in ZnO film with Zn–Al–O interfaces fabricated by atomic layer deposition. ACS Appl. Mater. Interfaces 9, 11711–11720 (2017). https://doi.org/10.1021/acsami.7b02609
O.S. Asiq Rahman, M. Sribalaji, B. Mukherjee, T. Laha, A.K. Keshri, Synergistic effect of hybrid carbon nanotube and graphene nanoplatelets reinforcement on processing, microstructure, interfacial stress and mechanical properties of Al2O3 nanocomposites. Ceram. Int. 44, 2109–2122 (2018). https://doi.org/10.1016/j.ceramint.2017.10.160
N. Zhang, G. Li, X. Wang, T. Liu, J. Xie, The influence of annealing temperature on hyperfine magnetic field and saturation magnetization of Fe–Si–Al–Cr flake-shaped particles. J. Alloy. Compd. 672, 176–181 (2016). https://doi.org/10.1016/j.jallcom.2016.02.154
M. Tallarida, K. Kukli, M. Michling, M. Ritala et al., Substrate reactivity effects in the atomic layer deposition of aluminum oxide from trimethylaluminum on ruthenium. Chem. Mater. 23, 3159–3168 (2011). https://doi.org/10.1021/cm200276z
I. Iatsunskyi, M. Kempiński, M. Jancelewicz, K. Załęski, S. Jurga et al., Structural and XPS characterization of ALD Al2O3 coated porous silicon. Vacuum 113, 52–58 (2015). https://doi.org/10.1016/j.vacuum.2014.12.015
G.R. Dillip, A.N. Banerjee, V.C. Anitha et al., Oxygen vacancy-induced structural, optical, and enhanced supercapacitive performance of zinc oxide anchored graphitic carbon nanofiber hybrid electrodes. ACS Appl. Mater. Interfaces 8, 5025–5039 (2016). https://doi.org/10.1021/acsami.5b12322
B. Díaz, E. Härkönen, J. Światowska, V. Maurice, A. Seyeux et al., Low-temperature atomic layer deposition of Al2O3 thin coatings for corrosion protection of steel: surface and electrochemical analysis. Corros. Sci. 53, 2168–2175 (2011). https://doi.org/10.1016/j.corsci.2011.02.036
J. Xiang, J. Li, X. Zhang, Q. Ye, J. Xu et al., Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J. Mater. Chem. A 2, 16905–16914 (2014). https://doi.org/10.1039/C4TA03732D
X. Bao, X. Wang, X. Zhou, G. Shi, G. Xu et al., Excellent microwave absorption of FeCo/ZnO composites with defects in ZnO for regulating the impedance matching. J. Alloy. Compd. 769, 512–520 (2018). https://doi.org/10.1016/j.jallcom.2018.08.036
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
Q. Liu, X. Xu, W. Xia, R. Che, C. Chen et al., Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale 7, 1736–1743 (2015). https://doi.org/10.1039/C4NR05547K
T. Wang, H. Wang, X. Chi, R. Li, J. Wang, Synthesis and microwave absorption properties of Fe–C nanofibers by electrospinning with disperse Fe nanoparticles parceled by carbon. Carbon 74, 312–318 (2014). https://doi.org/10.1016/j.carbon.2014.03.037
J. Deng, X. Zhang, B. Zhao, Z. Bai, S. Wen et al., Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J. Mater. Chem. C 6, 7128–7140 (2018). https://doi.org/10.1039/C8TC02520G
Z. Mo, R. Yang, D. Lu, L. Yang, Q. Hu et al., Lightweight, three-dimensional carbon Nanotube@TiO2 sponge with enhanced microwave absorption performance. Carbon 144, 433–439 (2019). https://doi.org/10.1016/j.carbon.2018.12.064
J. Feng, F. Pu, Z. Li, X. Li, X. Hu et al., Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 104, 214–225 (2016). https://doi.org/10.1016/j.carbon.2016.04.006
D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020). https://doi.org/10.1016/j.carbon.2019.10.056
S. Wang, Q. Jiao, X. Liu, Y. Xu, Q. Shi et al., Controllable synthesis of γ-Fe2O3 nanotube/porous rGO composites and their enhanced microwave absorption properties. ACS Sustainable Chem. Eng. 7, 7004–7013 (2019). https://doi.org/10.1021/acssuschemeng.8b06729
J. Luo, K. Zhang, M. Cheng, M. Gu, X. Sun, MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 380, 122625 (2020). https://doi.org/10.1016/j.cej.2019.122625
Y.-F. Pan, G.-S. Wang, L. Liu, L. Guo, S.-H. Yu, Binary synergistic enhancement of dielectric and microwave absorption properties: a composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 10, 284–294 (2017). https://doi.org/10.1007/s12274-016-1290-8
M.R. Anisur, P. Chakraborty Banerjee, C.D. Easton, R.K. Singh Raman, Controlling hydrogen environment and cooling during CVD graphene growth on nickel for improved corrosion resistance. Carbon 127, 131–140 (2018). https://doi.org/10.1016/j.carbon.2017.10.079
J. Ding, H. Zhao, D. Ji, B. Xu, X. Zhao et al., Achieving long-term anticorrosion via the inhibition of graphene’s electrical activity. J. Mater. Chem. A 7, 2864–2874 (2019). https://doi.org/10.1039/C8TA10337B
P. Chakraborty Banerjee, R.K. Singh Raman, Electrochemical impedance spectroscopic investigation of the role of alkaline pre-treatment in corrosion resistance of a silane coating on magnesium alloy, ZE41. Electrochim. Acta 56, 3790–3798 (2011). https://doi.org/10.1016/j.electacta.2011.02.050
R.K. Singh Raman, P. Chakraborty Banerjee, D.E. Lobo, H. Gullapalli, M. Sumandasa et al., Protecting copper from electrochemical degradation by graphene coating. Carbon 50, 4040–4045 (2012). https://doi.org/10.1016/j.carbon.2012.04.048
X. Jian, W. Tian, J.Y. Li, L.J. Deng, Z.W. Zhou et al., High-temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption. ACS Appl. Mater. Interfaces 11, 15869–15880 (2019). https://doi.org/10.1021/acsami.8b22448
J. Wei, J. Wang, Q. Liu, L. Qiao, T. Wang et al., Enhanced microwave absorption properties of Fe3Al/Al2O3fine particle composites. J. Phys. D: Appl. Phys. 43, 115001 (2010). https://doi.org/10.1088/0022-3727/43/11/115001
N. Zhang, X. Wang, T. Liu, J. Xie, L. Deng, Microwave absorbing performance enhancement of Fe75Si15Al10 composites by selective surface oxidation. J. Appl. Phys. 122, 105103 (2017). https://doi.org/10.1063/1.4998453
Y. Zhang, X. Wang, M. Cao, Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 11, 1426–1436 (2018). https://doi.org/10.1007/s12274-017-1758-1
Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12, 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
W.-Q. Cao, X.-X. Wang, J. Yuan, W.-Z. Wang, M.-S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2015). https://doi.org/10.1039/C5TC02185E
W. Yang, R. Li, B. Jiang, T. Wang, L. Hou et al., Production of hierarchical porous carbon nanosheets from cheap petroleum asphalt toward lightweight and high-performance electromagnetic wave absorbents. Carbon 166(166), 218–226 (2020). https://doi.org/10.1016/j.carbon.2020.05.043
F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021). https://doi.org/10.1007/s40820-020-00568-1
W. Yang, B. Jiang, Z. Liu, R. Li, L. Hou et al., Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption. J. Mater. Sci. Technol. 70, 214–223 (2021). https://doi.org/10.1016/j.jmst.2020.08.059
M. Green, Z.Q. Liu, P. Xiang, Y. Liu, M.J. Zhou et al., Doped, conductive SiO2 nanoparticles for large microwave absorption. Light-Sci. Appl. 7, 87 (2018). https://doi.org/10.1038/s41377-018-0088-8
S. Mirhashemihaghighi, J. Światowska, V. Maurice, A. Seyeux, S. Zanna et al., Corrosion protection of aluminium by ultra-thin atomic layer deposited alumina coatings. Corros. Sci. 106, 16–24 (2016). https://doi.org/10.1016/j.corsci.2016.01.021
X. Cao, F. Huang, C. Huang, J. Liu, Y.F. Cheng, Preparation of graphene nanoplate added zinc-rich epoxy coatings for enhanced sacrificial anode-based corrosion protection. Corros. Sci. 159, 108120 (2019). https://doi.org/10.1016/j.corsci.2019.108120