Engineering the Coordination Sphere of Isolated Active Sites to Explore the Intrinsic Activity in Single-Atom Catalysts
Corresponding Author: Yu Han
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 136
Abstract
Reducing the dimensions of metallic nanoparticles to isolated, single atom has attracted considerable attention in heterogeneous catalysis, because it significantly improves atomic utilization and often leads to distinct catalytic performance. Through extensive research, it has been recognized that the local coordination environment of single atoms has an important influence on their electronic structures and catalytic behaviors. In this review, we summarize a series of representative systems of single-atom catalysts, discussing their preparation, characterization, and structure–property relationship, with an emphasis on the correlation between the coordination spheres of isolated reactive centers and their intrinsic catalytic activities. We also share our perspectives on the current challenges and future research promises in the development of single-atom catalysis. With this article, we aim to highlight the possibility of finely tuning the catalytic performances by engineering the coordination spheres of single-atom sites and provide new insights into the further development for this emerging research field.
Highlights:
1 All the coordination engineering strategies, such as tuning the coordination species, the coordination number of the active centers, heteroatoms interactions within the support, synergetic interaction between neighboring metal monomers, and spatial microenvironment, have been summarized and discussed in detail.
2 Various single-atom catalysts (SACs) with different coordination spheres in energy conversion driven by thermal, light and electric energy have been systematically reviewed.
3 The current key challenges in SACs for energy conversion are pointed out, and some potential strategies/perspectives are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.D. Sun, Z.J. Zhao, R.T. Mu, S.J. Zha, L.L. Li et al., Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 9, 4454 (2018). https://doi.org/10.1038/s41467-018-06967-8
- X.F. Yang, A.Q. Wang, B.T. Qiao, J. Li, J.Y. Liu et al., Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 46(8), 1740–1748 (2013). https://doi.org/10.1021/ar300361m
- P.N. Duchesne, Z.Y. Li, C.P. Deming, V. Fung, X.J. Zhao et al., Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 17(11), 1033–1039 (2018). https://doi.org/10.1038/s41563-018-0167-5
- H. Zhang, Y. Wang, S. Zuo, W. Zhou, J. Zhang et al., Isolated cobalt centers on W18O49 nanowires perform as a reaction switch for efficient CO2 photoreduction. J. Am. Chem. Soc. 143, 2173–2177 (2021). https://doi.org/10.1021/jacs.0c08409
- H.L. Fei, J.C. Dong, Y.X. Feng, C.S. Allen, C.Z. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1(1), 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
- X. Li, X. Yang, Y. Huang, T. Zhang, B. Liu, Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 31(50), e1902031 (2019). https://doi.org/10.1002/adma.201902031
- C.Z. Zhu, S.F. Fu, Q.R. Shi, D. Du, Y.H. Lin, Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56(45), 13944–13960 (2017). https://doi.org/10.1002/anie.201703864
- A.Q. Wang, J. Li, T. Zhang, Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2(6), 65–81 (2018). https://doi.org/10.1038/s41570-018-0010-1
- Y. Li, J. Li, J. Huang, J. Chen, Y. Kong et al., Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew. Chem. Int. Ed. 60(16), 9078–9085 (2021). https://doi.org/10.1002/anie.202100526
- X. Wang, X. Sang, C.L. Dong, S. Yao, L. Shuai et al., Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal–nitrogen active sites. Angew. Chem. Int. Ed. (2021). https://doi.org/10.1002/anie.202100011
- B.T. Qiao, A.Q. Wang, X.F. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3(8), 634–641 (2011). https://doi.org/10.1038/nchem.1095
- N.C. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638
- H. Li, M. Wang, L. Luo, J. Zeng, Static regulation and dynamic evolution of single-atom catalysts in thermal catalytic reactions. Adv. Sci. 6(3), 1801471 (2019). https://doi.org/10.1002/advs.201801471
- H. Zhang, X.F. Lu, Z.P. Wu, X.W.D. Lou, Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 6(8), 1288–1301 (2020). https://doi.org/10.1021/acscentsci.0c00512
- E.D. Boyes, A.P. LaGrow, M.R. Ward, R.W. Mitchell, P.L. Gai, Single atom dynamics in chemical reactions. Acc. Chem. Res. 53(2), 390–399 (2020). https://doi.org/10.1021/acs.accounts.9b00500
- Y.G. Yao, Z.N. Huang, P.F. Xie, L.P. Wu, L. Ma et al., High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 14(9), 851–857 (2019). https://doi.org/10.1038/s41565-019-0518-7
- P. Zhou, F. Lv, N. Li, Y.L. Zhang, Z.J. Mu et al., Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy 56, 127–137 (2019). https://doi.org/10.1016/j.nanoen.2018.11.033
- W.H. Lai, L.F. Zhang, W.B. Hua, S. Indris, Z.C. Yan et al., General π-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting. Angew. Chem. Int. Ed. 58(34), 11868–11873 (2019). https://doi.org/10.1002/anie.201904614
- Q. Zhang, X.X. Qin, F.P. Duan-Mu, H.M. Ji, Z.R. Shen et al., Isolated platinum atoms stabilized by amorphous tungstenic acid: Metal-support interaction for synergistic oxygen activation. Angew. Chem. Int. Ed. 57(30), 9351–9356 (2018). https://doi.org/10.1002/anie.201804319
- Y. Guo, S. Mei, K. Yuan, D.J. Wang, H.C. Liu et al., Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect. ACS Catal. 8(7), 6203–6215 (2018). https://doi.org/10.1021/acscatal.7b04469
- S. Yang, Y.J. Tak, J. Kim, A. Soon, H. Lee, Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 7(2), 1301–1307 (2017). https://doi.org/10.1021/acscatal.6b02899
- M. Moses-DeBusk, M. Yoon, L.F. Allard, D.R. Mullins, Z. Wu et al., CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 135(34), 12634–12645 (2013). https://doi.org/10.1021/ja401847c
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Norskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355(6321), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
- J.D. Benck, T.R. Hellstern, J. Kibsgaard, P. Chakthranont, T.F. Jaramillo, Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4(11), 3957–3971 (2014). https://doi.org/10.1021/cs500923c
- M. Zhou, S.J. Bao, A.J. Bard, Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles. J. Am. Chem. Soc. 141(18), 7327–7332 (2019). https://doi.org/10.1021/jacs.8b13366
- H. Wang, J.X. Liu, L.F. Allard, S. Lee, J.L. Liu et al., Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 10, 3808 (2019). https://doi.org/10.1038/s41467-019-11856-9
- S. Kawai, A.S. Foster, T. Bjorkman, S. Nowakowska, J. Bjork et al., Van der Waals interactions and the limits of isolated atom models at interfaces. Nat. Commun. 7, 11559 (2016). https://doi.org/10.1038/ncomms11559
- G. Kyriakou, M.B. Boucher, A.D. Jewell, E.A. Lewis, T.J. Lawton et al., Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335(6073), 1209–1212 (2012). https://doi.org/10.1126/science.1215864
- Y. Wang, F.L. Hu, Y. Mi, C. Yan, S. Zhao, Single-metal-atom catalysts: An emerging platform for electrocatalytic oxygen reduction. Chem. Eng. J. 406, 127135 (2021). https://doi.org/10.1016/j.cej.2020.127135
- J. Wang, Z. Li, Y. Wu, Y. Li, Fabrication of single-atom catalysts with precise structure and high metal loading. Adv. Mater. 30, 1801649 (2018). https://doi.org/10.1002/adma.201801649
- Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang et al., Single-atom catalysts for electrochemical hydrogen evolution reaction: Recent advances and future perspectives. Nano-Micro Lett. 12(1), 21 (2020). https://doi.org/10.1007/s40820-019-0349-y
- B. Wang, H. Cai, S. Shen, Single metal atom photocatalysis. Small Method 3(9), 1800447 (2019). https://doi.org/10.1002/smtd.201800447
- L. Nie, D.H. Mei, H.F. Xiong, B. Peng, Z.B. Ren et al., Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358(6369), 1419–1423 (2017). https://doi.org/10.1126/science.aao2109
- L.L. Lin, W. Zhou, R. Gao, S.Y. Yao, X. Zhang et al., Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544(7648), 80–83 (2017). https://doi.org/10.1038/nature21672
- Y. Yang, Y. Yang, Z. Pei, K.H. Wu, C. Tan et al., Recent progress of carbon-supported single-atom catalysts for energy conversion and storage. Matter 3(5), 1442–1476 (2020). https://doi.org/10.1016/j.matt.2020.07.032
- Y. Wang, K. Qi, S. Yu, G. Jia, Z. Cheng et al., Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co-MoS2. Nano-Micro Lett. 11(1), 102 (2019). https://doi.org/10.1007/s40820-019-0324-7
- B.T. Qiao, J.X. Liu, Y.G. Wang, Q.Q. Lin, X.Y. Liu et al., Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal. 5(11), 6249–6254 (2015). https://doi.org/10.1021/acscatal.5b01114
- J. Lin, A.Q. Wang, B.T. Qiao, X.Y. Liu, X.F. Yang et al., Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135(41), 15314–15317 (2013). https://doi.org/10.1021/ja408574m
- H.J. Zhang, T. Watanabe, M. Okumura, M. Haruta, N. Toshima, Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater. 11(1), 49–52 (2012). https://doi.org/10.1038/nmat3143
- G.X. Pei, X.Y. Liu, A.Q. Wang, A.F. Lee, M.A. Isaacs et al., Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 5(6), 3717–3725 (2015). https://doi.org/10.1021/acscatal.5b00700
- P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen et al., Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352(6287), 797–801 (2016). https://doi.org/10.1126/science.aaf5251
- Z. Liang, C. Qu, W. Guo, R. Zou, Q. Xu, Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv. Mater. 30(37), e1702891 (2018). https://doi.org/10.1002/adma.201702891
- Y.F. Gu, Y.N. Wu, L.C. Li, W. Chen, F.T. Li et al., Controllable modular growth of hierarchical MOF-on-MOF architectures. Angew. Chem. Int. Ed. 56(49), 15658–15662 (2017). https://doi.org/10.1002/anie.201709738
- H.X. Zhang, F. Wang, H. Yang, Y.X. Tan, J. Zhang et al., Interrupted zeolite LTA and ATN-type boron imidazolate frameworks. J. Am. Chem. Soc. 133(31), 11884–11887 (2011). https://doi.org/10.1021/ja2040927
- J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38(5), 1477–1504 (2009). https://doi.org/10.1039/B802426J
- G. Xu, H. Zhang, J. Wei, H.X. Zhang, X. Wu et al., Integrating the g-C3N4 nanosheet with B−H bonding decorated metal−organic framework for CO2 activation and photoreduction. ACS Nano 12, 5333–5340 (2018). https://doi.org/10.1021/acsnano.8b00110
- Y. Zhang, L. Jiao, W. Yang, C. Xie, H.L. Jiang, Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem. Int. Ed. 60, 7607–7611 (2021). https://doi.org/10.1002/anie.202016219
- L. Jiao, W. Yang, G. Wan, R. Zhang, X. Zheng et al., Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem. Int. Ed. 59, 20589–20595 (2020). https://doi.org/10.1002/anie.202008787
- L. Jiao, R. Zhang, G. Wan, W. Yang, X. Wan et al., Nanocasting SiO2 into metal–organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 11, 2831 (2020). https://doi.org/10.1038/s41467-020-16715-6
- H. Zhang, J. Wei, J. Dong, G. Liu, L. Shi et al., Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem. Int. Ed. 55(46), 14310–14314 (2016). https://doi.org/10.1002/anie.201608597
- X. Feng, Y. Song, Z. Li, M. Kaufmann, Y. Pi et al., Metal-organic framework stabilizes a low-coordinate iridium complex for catalytic methane borylation. J. Am. Chem. Soc. 141(28), 11196–11203 (2019). https://doi.org/10.1021/jacs.9b04285
- X. Wang, W.X. Chen, L. Zhang, T. Yao, W. Liu et al., Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 139(28), 9419–9422 (2017). https://doi.org/10.1021/jacs.7b01686
- X.Z. Fang, Q.C. Shang, Y. Wang, L. Jiao, T. Yao et al., Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 30(7), 1705112 (2018). https://doi.org/10.1002/adma.201705112
- P.Q. Yin, T. Yao, Y. Wu, L.R. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55(36), 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
- C.M. Zhao, X.Y. Dai, T. Yao, W.X. Chen, X.Q. Wang et al., Ionic exchange of metal organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 139(24), 8078–8081 (2017). https://doi.org/10.1021/jacs.7b02736
- J. Wang, Z.Q. Huang, W. Liu, C.R. Chang, H.L. Tang et al., Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139(48), 17281–17284 (2017). https://doi.org/10.1021/jacs.7b10385
- Y. Li, R. Zhang, W. Zhou, X. Wu, H. Zhang et al., Hierarchical MoS2 hollow architectures with abundant Mo vacancies for efficient sodium storage. ACS Nano 13, 5533–5540 (2019). https://doi.org/10.1021/acsnano.9b00383
- Y. Li, S. Zuo, Q.H. Li, X. Wu, J. Zhang et al., Vertically aligned MoS2 with in-plane selectively cleaved Mo−S bond for hydrogen production. Nano Lett. 21, 1848–1855 (2021). https://doi.org/10.1021/acs.nanolett.0c04978
- F. Dvorak, M.F. Camellone, A. Tovt, N.D. Tran, F.R. Negreiros et al., Creating single-atom Pt-ceria catalysts by surface step decoration. Nat. Commun. 7, 10801 (2016). https://doi.org/10.1038/ncomms10801
- B. Zhang, H. Asakura, J. Zhang, J. Zhang, S. De et al., Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem. Int. Ed. 55(29), 8319–8323 (2016). https://doi.org/10.1002/anie.201602801
- Y.J. Chen, S.F. Ji, W.M. Sun, Y.P. Lei, Q.C. Wang et al., Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem. Int. Ed. 59(3), 1295–1301 (2020). https://doi.org/10.1002/anie.201912439
- S.H. Sun, G.X. Zhang, N. Gauquelin, N. Chen, J.G. Zhou et al., Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 3, 1775 (2013). https://doi.org/10.1038/srep01775
- Y. Wang, J. Mao, X.G. Meng, L. Yu, D.H. Deng et al., Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem. Rev. 119(3), 1806–1854 (2019). https://doi.org/10.1021/acs.chemrev.8b00501
- X.J. Cui, J.P. Xiao, Y.H. Wu, P.P. Du, R. Si et al., A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dye-sensitized solar cells. Angew. Chem. Int. Ed. 55(23), 6708–6712 (2016). https://doi.org/10.1002/anie.201602097
- D.H. Deng, X.Q. Chen, L. Yu, X. Wu, Q.F. Liu et al., A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 1(11), e1500462 (2015). https://doi.org/10.1126/sciadv.1500462
- J. Jones, H.F. Xiong, A.T. Delariva, E.J. Peterson, H. Pham et al., Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353(6295), 150–154 (2016). https://doi.org/10.1126/science.aaf8800
- S.J. Wei, A. Li, J.C. Liu, Z. Li, W.X. Chen et al., Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13(9), 856–861 (2018). https://doi.org/10.1038/s41565-018-0197-9
- W. Chen, J. Pei, C.T. He, J. Wan, H. Ren et al., Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 30(30), e1800396 (2018). https://doi.org/10.1002/adma.201800396
- G. Vile, D. Albani, M. Nachtegaal, Z. Chen, D. Dontsova et al., A stable single-site palladium catalyst for hydrogenations. Angew. Chem. Int. Ed. 54(38), 11265–11269 (2015). https://doi.org/10.1002/anie.201505073
- W. Wan, C.A. Triana, J. Lan, J. Li, C.S. Allen et al., Bifunctional single atom electrocatalysts: Coordination-performance correlations and reaction pathways. ACS Nano 14(10), 13279–13293 (2020). https://doi.org/10.1021/acsnano.0c05088
- H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang et al., Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Adv. Mater. 31(48), e1904548 (2019). https://doi.org/10.1002/adma.201904548
- Y. Han, Y. Wang, R. Xu, W. Chen, L. Zheng et al., Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 11(9), 2348–2352 (2018). https://doi.org/10.1039/c8ee01481g
- W. Liu, L. Zhang, X. Liu, X. Liu, X. Yang et al., Discriminating catalytically active FeNx species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond. J. Am. Chem. Soc. 139(31), 10790–10798 (2017). https://doi.org/10.1021/jacs.7b05130
- Z. Chen, W. Gong, Z. Liu, S. Cong, Z. Zheng et al., Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity. Nano Energy 60, 394–403 (2019). https://doi.org/10.1016/j.nanoen.2019.03.045
- Z. Jakub, J. Hulva, M. Meier, R. Bliem, F. Kraushofer et al., Local structure and coordination define adsorption in a model Ir1/Fe3O4 single-atom catalyst. Angew. Chem. Int. Ed. 58(39), 13961–13968 (2019). https://doi.org/10.1002/anie.201907536
- Y. Xu, M. Chu, F. Liu, X. Wang, Y. Liu et al., Revealing the correlation between catalytic selectivity and the local coordination environment of Pt single atom. Nano Lett. 20(9), 6865–6872 (2020). https://doi.org/10.1021/acs.nanolett.0c02940
- H. Shen, E. Gracia-Espino, J. Ma, K. Zang, J. Luo et al., Synergistic effects between atomically dispersed Fe–N–C and C–S–C for the oxygen reduction reaction in acidic media. Angew. Chem. Int. Ed. 56(44), 13800–13804 (2017). https://doi.org/10.1002/anie.201706602
- Y. Mun, S. Lee, K. Kim, S. Kim, S. Lee et al., Versatile strategy for tuning ORR activity of a single Fe–N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 141(15), 6254–6262 (2019). https://doi.org/10.1021/jacs.8b13543
- Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong et al., Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9(1), 5422 (2018). https://doi.org/10.1038/s41467-018-07850-2
- Z. Luo, H. Zhang, Y. Yang, X. Wang, Y. Li et al., Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nat. Commun. 11(1), 1116 (2020). https://doi.org/10.1038/s41467-020-14980-z
- D. Liu, B. Wang, H. Li, S. Huang, M. Liu et al., Distinguished Zn, Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air Batteries. Nano Energy 58, 277–283 (2019). https://doi.org/10.1016/j.nanoen.2019.01.011
- H. Li, L. Wang, Y. Dai, Z. Pu, Z. Lao et al., Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13(5), 411–417 (2018). https://doi.org/10.1038/s41565-018-0089-z
- S. Tian, Q. Fu, W. Chen, Q. Feng, Z. Chen et al., Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 9(1), 2353 (2018). https://doi.org/10.1038/s41467-018-04845-x
- X. Meng, C. Ma, L. Jiang, R. Si, X. Meng et al., Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem. Int. Ed. 59(26), 10502–10507 (2020). https://doi.org/10.1002/anie.202003484
- P. Zhou, X. Hou, Y. Chao, W. Yang, W. Zhang et al., Synergetic interaction between neighboring platinum and ruthenium monomers boosts CO oxidation. Chem. Sci. 10(23), 5898–5905 (2019). https://doi.org/10.1039/c9sc00658c
- Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao et al., An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 58(9), 2622–2626 (2019). https://doi.org/10.1002/anie.201810175
- X. Han, X. Ling, D. Yu, D. Xie, L. Li et al., Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31(49), e1905622 (2019). https://doi.org/10.1002/adma.201905622
- L.M. Liu, N. Wang, C.Z. Zhu, X.N. Liu, Y.H. Zhu et al., Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew. Chem. Int. Ed. 59(2), 819–825 (2020). https://doi.org/10.1002/anie.201909834
- H. Zhang, P. An, W. Zhou, B.Y. Guan, P. Zhang et al., Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 4(1), eaao6657 (2018). https://doi.org/10.1126/sciadv.aao6657
- X. Qiu, J. Chen, X. Zou, R. Fang, L. Chen et al., Encapsulation of C-N-decorated metal sub-nanoclusters/single atoms into a metal-organic framework for highly efficient catalysis. Chem. Sci. 9(48), 8962–8968 (2018). https://doi.org/10.1039/c8sc03549k
- S.H. Lee, J. Kim, D.Y. Chung, J.M. Yoo, H.S. Lee et al., Design principle of Fe-N-C electrocatalysts: How to optimize multimodal porous structures? J. Am. Chem. Soc. 141(5), 2035–2045 (2019). https://doi.org/10.1021/jacs.8b11129
- Q. Sun, N. Wang, T. Zhang, R. Bai, A. Mayoral et al., Zeolite-encaged single-atom rhodium catalysts: Highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew. Chem. Int. Ed. 58(51), 18570–18576 (2019). https://doi.org/10.1002/anie.201912367
- S. Ji, Y. Chen, S. Zhao, W. Chen, L. Shi et al., Atomically dispersed ruthenium species inside metal-organic frameworks: Combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem. Int. Ed. 58(13), 4271–4275 (2019). https://doi.org/10.1002/anie.201814182
- R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen et al., Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140(37), 11594–11598 (2018). https://doi.org/10.1021/jacs.8b07294
- D. Liu, X. Li, S. Chen, H. Yan, C. Wang et al., Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4(6), 512–518 (2019). https://doi.org/10.1038/s41560-019-0402-6
- H. Zhang, W. Zhou, X.F. Lu, T. Chen, X.W. Lou, Implanting isolated Ru atoms into edge-rich carbon matrix for efficient electrocatalytic hydrogen evolution. Adv. Energy Mater. 10(23), 2000882 (2020). https://doi.org/10.1002/aenm.202000882
- H. Zhang, S. Zuo, M. Qiu, S. Wang, Y. Zhang et al., Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Sci. Adv. 6(39), eabb9823 (2020). https://doi.org/10.1126/sciadv.abb9823
- Z.Y. Li, Z. Yuan, X.N. Li, Y.X. Zhao, S.G. He, CO oxidation catalyzed by single gold atoms supported on aluminum oxide clusters. J. Am. Chem. Soc. 136(40), 14307–14313 (2014). https://doi.org/10.1021/ja508547z
- R. Lin, D. Albani, E. Fako, S.K. Kaiser, O.V. Safonova et al., Design of single gold atoms on nitrogen-doped carbon for molecular recognition in alkyne semi-hydrogenation. Angew. Chem. Int. Ed. 58(2), 504–509 (2019). https://doi.org/10.1002/anie.201805820
- Z. Zhang, Y. Zhu, H. Asakura, B. Zhang, J. Zhang et al., Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 8, 16100 (2017). https://doi.org/10.1038/ncomms16100
- X. Liu, M. Xu, L.Y. Wan, H.D. Zhu, K.X. Yao et al., Superior catalytic performance of atomically dispersed palladium on graphene in CO oxidation. ACS Catal. 10(5), 3084–3093 (2020). https://doi.org/10.1021/acscatal.9b04840
- Y. Chen, J. Lin, L. Li, B. Qiao, J. Liu et al., Identifying size effects of Pt as single atoms and nanoparticles supported on FeOx for the water-gas shift reaction. ACS Catal. 8(2), 859–868 (2018). https://doi.org/10.1021/acscatal.7b02751
- Q. Shen, C. Cao, R. Huang, L. Zhu, X. Zhou et al., Single chromium atoms supported on titanium dioxide nanoparticles for synergic catalytic methane conversion under mild conditions. Angew. Chem. Int. Ed. 59(3), 1216–1219 (2020). https://doi.org/10.1002/anie.201913309
- Y.X. Zhao, Z.Y. Li, Z. Yuan, X.N. Li, S.G. He, Thermal methane conversion to formaldehyde promoted by single platinum atoms in PtAl2O4- cluster anions. Angew. Chem. Int. Ed. 53(36), 9482–9486 (2014). https://doi.org/10.1002/anie.201403953
- X. Guo, G. Fang, G. Li, H. Ma, H. Fan et al., Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344(6184), 616–619 (2014). https://doi.org/10.1126/science.1253150
- P. Xie, T. Pu, A. Nie, S. Hwang, S.C. Purdy et al., Nanoceria-supported single-atom platinum catalysts for direct methane conversion. ACS Catal. 8(5), 4044–4048 (2018). https://doi.org/10.1021/acscatal.8b00004
- M. Zhang, Y.G. Wang, W. Chen, J. Dong, L. Zheng et al., Metal (hydr)oxides@polymer core-shell strategy to metal single-atom materials. J. Am. Chem. Soc. 139(32), 10976–10979 (2017). https://doi.org/10.1021/jacs.7b05372
- H. Zhou, Y. Zhao, J. Gan, J. Xu, Y. Wang et al., Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene. J. Am. Chem. Soc. 142(29), 12643–12650 (2020). https://doi.org/10.1021/jacs.0c03415
- S.W. Cao, H. Li, T. Tong, H.C. Chen, A.C. Yu et al., Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 28(32), 1802169 (2018). https://doi.org/10.1002/adfm.201802169
- Q. Zhao, J. Sun, S.C. Li, C.P. Huang, W.F. Yao et al., Single nickel atoms anchored on nitrogen-doped graphene as a highly active cocatalyst for photocatalytic H2 evolution. ACS Catal. 8(12), 11863–11874 (2018). https://doi.org/10.1021/acscatal.8b03737
- C. Gao, J. Low, R. Long, T. Kong, J. Zhu et al., Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 120(21), 12175–12216 (2020). https://doi.org/10.1021/acs.chemrev.9b00840
- Y. Pan, Y. Qian, X. Zheng, S.Q. Chu, Y. Yang et al., Precise fabrication oaf single-atom alloy co-catalyst with optimal charge state for enhanced photocatalysis. Natl. Sci. Rev. 8, nwaa224 (2021). https://doi.org/10.1093/nsr/nwaa224
- J. Xing, J.F. Chen, Y.H. Li, W.T. Yuan, Y. Zhou et al., Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution. Chem. Eur. J. 20(8), 2138–2144 (2014). https://doi.org/10.1002/chem.201303366
- X. Li, W. Bi, L. Zhang, S. Tao, W. Chu et al., Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 28(12), 2427–2431 (2016). https://doi.org/10.1002/adma.201505281
- X. Wu, H.B. Zhang, J.C. Dong, M. Qiu, J.T. Kong et al., Surface step decoration of isolated atom as electron pumping: Atomic-level insights into visible-light hydrogen evolution. Nano Energy 45, 109–117 (2018). https://doi.org/10.1016/j.nanoen.2017.12.039
- J. Wang, T. Xia, L. Wang, X. Zheng, Z. Qi et al., Enabling visible-light-driven selective CO2 reduction by doping quantum dots: Trapping electrons and suppressing H2 evolution. Angew. Chem. Int. Ed. 57(50), 16447–16451 (2018). https://doi.org/10.1002/anie.201810550
- J. Di, C. Chen, S.Z. Yang, S. Chen, M. Duan et al., Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 10(1), 2840 (2019). https://doi.org/10.1038/s41467-019-10392-w
- S. Ji, Y. Qu, T. Wang, Y. Chen, G. Wang et al., Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 59(26), 10651–10657 (2020). https://doi.org/10.1002/anie.202003623
- T. Chao, X. Luo, W. Chen, B. Jiang, J. Ge et al., Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem. Int. Ed. 56(50), 16047–16051 (2017). https://doi.org/10.1002/anie.201709803
- M. Tavakkoli, N. Holmberg, R. Kronberg, H. Jiang, J. Sainio et al., Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction. ACS Catal. 7(5), 3121–3130 (2017). https://doi.org/10.1021/acscatal.7b00199
- J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong et al., Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1(12), 985–992 (2018). https://doi.org/10.1038/s41929-018-0195-1
- K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng et al., Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 10(1), 1743 (2019). https://doi.org/10.1038/s41467-019-09765-y
- S. Fang, X. Zhu, X. Liu, J. Gu, W. Liu et al., Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 11(1), 1029 (2020). https://doi.org/10.1038/s41467-020-14848-2
- J. Xu, C. Zhang, H. Liu, J. Sun, R. Xie et al., Amorphous MoOX-stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution. Nano Energy 70, 104529 (2020). https://doi.org/10.1016/j.nanoen.2020.104529
- L. Zhang, K. Doyle-Davis, X. Sun, Pt-based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms. Energy Environ. Sci. 12(2), 492–517 (2019). https://doi.org/10.1039/c8ee02939c
- J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng et al., Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8(5), 1594–1601 (2015). https://doi.org/10.1039/c5ee00751h
- Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo et al., Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 9(1), 1460 (2018). https://doi.org/10.1038/s41467-018-03896-4
- H. Zhang, L. Yu, T. Chen, W. Zhou, X.W.D. Lou, Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv. Funct. Mater. 28(51), 1807086 (2018). https://doi.org/10.1002/adfm.201807086
- Y. Zhao, T. Ling, S. Chen, B. Jin, A. Vasileff et al., Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58(35), 12252–12257 (2019). https://doi.org/10.1002/anie.201905554
- K. Qi, X. Cui, L. Gu, S. Yu, X. Fan et al., Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 10(1), 5231 (2019). https://doi.org/10.1038/s41467-019-12997-7
- H. Fei, J. Dong, M.J. Arellano-Jimenez, G. Ye, N. Dong Kim et al., Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015). https://doi.org/10.1038/ncomms9668
- K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc–air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
- B.S. Yeo, Oxygen evolution by stabilized single Ru atoms. Nat. Catal. 2(4), 284–285 (2019). https://doi.org/10.1038/s41929-019-0271-1
- Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam et al., Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10(1), 1392 (2019). https://doi.org/10.1038/s41467-019-09394-5
- Y. Li, Z.S. Wu, P. Lu, X. Wang, W. Liu et al., High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction. Adv. Sci. 7(5), 1903089 (2020). https://doi.org/10.1002/advs.201903089
- Q. Wang, X. Huang, Z.L. Zhao, M. Wang, B. Xiang et al., Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 142(16), 7425–7433 (2020). https://doi.org/10.1021/jacs.9b12642
- W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang et al., Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx. J. Am. Chem. Soc. 138(10), 3570–3578 (2016). https://doi.org/10.1021/jacs.6b00757
- C. Tang, Y. Jiao, B. Shi, J.N. Liu, Z. Xie et al., Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem. Int. Ed. 59(23), 9171–9176 (2020). https://doi.org/10.1002/anie.202003842
- X. Luo, X. Wei, H. Wang, W. Gu, T. Kaneko et al., Secondary-atom-doping enables robust Fe–N–C single-atom catalysts with enhanced oxygen reduction reaction. Nano-Micro Lett. 12, 163 (2020). https://doi.org/10.1007/s40820-020-00502-5
- C.H. Choi, M. Kim, H.C. Kwon, S.J. Cho, S. Yun et al., Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016). https://doi.org/10.1038/ncomms10922
- J. Liu, M. Jiao, L. Lu, H.M. Barkholtz, Y. Li et al., High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 8, 15938 (2017). https://doi.org/10.1038/ncomms15938
- S. Li, J. Liu, Z. Yin, P. Ren, L. Lin et al., Impact of the coordination environment on atomically dispersed Pt catalysts for oxygen reduction reaction. ACS Catal. 10(1), 907–913 (2019). https://doi.org/10.1021/acscatal.9b04558
- J. Liu, M. Jiao, B. Mei, Y. Tong, Y. Li et al., Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction. Angew. Chem. Int. Ed. 58(4), 1163–1167 (2019). https://doi.org/10.1002/anie.201812423
- W.H. Lai, B.W. Zhang, Z. Hu, X.M. Qu, Y.X. Jiang et al., The quasi-Pt-allotrope catalyst: Hollow PtCo@single-atom Pt1 on nitrogen-doped carbon toward superior oxygen reduction. Adv. Funct. Mater. 29(13), 1807340 (2019). https://doi.org/10.1002/adfm.201807340
- M. Xiao, J. Zhu, G. Li, N. Li, S. Li et al., A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem. Int. Ed. 58(28), 9640–9645 (2019). https://doi.org/10.1002/anie.201905241
- Z. Zhang, M. Dou, H. Liu, L. Dai, F. Wang, A facile route to bimetal and nitrogen-codoped 3D porous graphitic carbon networks for efficient oxygen reduction. Small 12(31), 4193–4199 (2016). https://doi.org/10.1002/smll.201601617
- P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong et al., Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56(2), 610–614 (2017). https://doi.org/10.1002/anie.201610119
- H.T. Chung, D.A. Cullen, D. Higgins, B.T. Sneed, E.F. Holby et al., Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357(6350), 479–484 (2017). https://doi.org/10.1126/science.aan2255
- P. Song, M. Luo, X.Z. Liu, W. Xing, W.L. Xu et al., Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 27(28), 1700802 (2017). https://doi.org/10.1002/adfm.201700802
- L. Jiao, G. Wan, R. Zhang, H. Zhou, S.H. Yu et al., From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem. Int. Ed. 57(28), 8525–8529 (2018). https://doi.org/10.1002/anie.201803262
- F. Li, G.-F. Han, H.-J. Noh, S.-J. Kim, Y. Lu et al., Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ. Sci. 11(8), 2263–2269 (2018). https://doi.org/10.1039/c8ee01169a
- C.C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu et al., Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 59(19), 7384–7389 (2020). https://doi.org/10.1002/anie.202002665
- X. Wu, J.C. Dong, M. Qiu, Y. Li, Y.F. Zhang et al., Subnanometer iron clusters confined in a porous carbon matrix for highly efficient zinc-air batteries. Nanoscale Horiz. 5(2), 359–365 (2020). https://doi.org/10.1039/C9NH00510B
- C.X. Zhao, B.Q. Li, J.N. Liu, Q. Zhang, Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60(9), 4448–4463 (2020). https://doi.org/10.1002/anie.202003917
- X. Chen, L. Yu, S. Wang, D. Deng, X. Bao, Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy 32, 353–358 (2017). https://doi.org/10.1016/j.nanoen.2016.12.056
- H. Zhang, W. Zhou, T. Chen, B.Y. Guan, Z. Li et al., A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction. Energy Environ. Sci. 11(8), 1980–1984 (2018). https://doi.org/10.1039/c8ee00901e
- T. Wang, X. Sang, W. Zheng, B. Yang, S. Yao et al., Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO2 batteries. Adv. Mater. 32(29), e2002430 (2020). https://doi.org/10.1002/adma.202002430
- W.Z. Zheng, F. Chen, Q. Zeng, Z.J. Li, B. Yang et al., A universal principle to accurately synthesize atomically dispersed metal-N4 sites for CO2 electroreduction. Nano-Micro Lett. 12(1), 108 (2020). https://doi.org/10.1007/s40820-020-00443-z
- H. Zhang, W. Cheng, D. Luan, X.W. (David) Lou, Atomically dispersed reactive centers for electrocatalytic CO2 reduction and water splitting. Angew. Chem. Int. Ed. 60, 2–22 (2021). https://doi.org/10.1002/anie.202014112
- Q. He, J.H. Lee, D. Liu, Y. Liu, Z. Lin et al., Accelerating CO2 electroreduction to CO over Pd single-atom catalyst. Adv. Funct. Mater. 30(17), 2000407 (2020). https://doi.org/10.1002/adfm.202000407
- Y.N. Gong, L. Jiao, Y.Y. Qian, C.Y. Pan, L.R. Zheng et al., Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. Int. Ed. 59(7), 2705–2709 (2020). https://doi.org/10.1002/anie.201914977
- P. Huang, M. Cheng, H. Zhang, M. Zuo, C. Xiao et al., Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene. Nano Energy 61, 428–434 (2019). https://doi.org/10.1016/j.nanoen.2019.05.003
References
G.D. Sun, Z.J. Zhao, R.T. Mu, S.J. Zha, L.L. Li et al., Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 9, 4454 (2018). https://doi.org/10.1038/s41467-018-06967-8
X.F. Yang, A.Q. Wang, B.T. Qiao, J. Li, J.Y. Liu et al., Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 46(8), 1740–1748 (2013). https://doi.org/10.1021/ar300361m
P.N. Duchesne, Z.Y. Li, C.P. Deming, V. Fung, X.J. Zhao et al., Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 17(11), 1033–1039 (2018). https://doi.org/10.1038/s41563-018-0167-5
H. Zhang, Y. Wang, S. Zuo, W. Zhou, J. Zhang et al., Isolated cobalt centers on W18O49 nanowires perform as a reaction switch for efficient CO2 photoreduction. J. Am. Chem. Soc. 143, 2173–2177 (2021). https://doi.org/10.1021/jacs.0c08409
H.L. Fei, J.C. Dong, Y.X. Feng, C.S. Allen, C.Z. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1(1), 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
X. Li, X. Yang, Y. Huang, T. Zhang, B. Liu, Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 31(50), e1902031 (2019). https://doi.org/10.1002/adma.201902031
C.Z. Zhu, S.F. Fu, Q.R. Shi, D. Du, Y.H. Lin, Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56(45), 13944–13960 (2017). https://doi.org/10.1002/anie.201703864
A.Q. Wang, J. Li, T. Zhang, Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2(6), 65–81 (2018). https://doi.org/10.1038/s41570-018-0010-1
Y. Li, J. Li, J. Huang, J. Chen, Y. Kong et al., Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew. Chem. Int. Ed. 60(16), 9078–9085 (2021). https://doi.org/10.1002/anie.202100526
X. Wang, X. Sang, C.L. Dong, S. Yao, L. Shuai et al., Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal–nitrogen active sites. Angew. Chem. Int. Ed. (2021). https://doi.org/10.1002/anie.202100011
B.T. Qiao, A.Q. Wang, X.F. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3(8), 634–641 (2011). https://doi.org/10.1038/nchem.1095
N.C. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638
H. Li, M. Wang, L. Luo, J. Zeng, Static regulation and dynamic evolution of single-atom catalysts in thermal catalytic reactions. Adv. Sci. 6(3), 1801471 (2019). https://doi.org/10.1002/advs.201801471
H. Zhang, X.F. Lu, Z.P. Wu, X.W.D. Lou, Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 6(8), 1288–1301 (2020). https://doi.org/10.1021/acscentsci.0c00512
E.D. Boyes, A.P. LaGrow, M.R. Ward, R.W. Mitchell, P.L. Gai, Single atom dynamics in chemical reactions. Acc. Chem. Res. 53(2), 390–399 (2020). https://doi.org/10.1021/acs.accounts.9b00500
Y.G. Yao, Z.N. Huang, P.F. Xie, L.P. Wu, L. Ma et al., High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 14(9), 851–857 (2019). https://doi.org/10.1038/s41565-019-0518-7
P. Zhou, F. Lv, N. Li, Y.L. Zhang, Z.J. Mu et al., Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy 56, 127–137 (2019). https://doi.org/10.1016/j.nanoen.2018.11.033
W.H. Lai, L.F. Zhang, W.B. Hua, S. Indris, Z.C. Yan et al., General π-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting. Angew. Chem. Int. Ed. 58(34), 11868–11873 (2019). https://doi.org/10.1002/anie.201904614
Q. Zhang, X.X. Qin, F.P. Duan-Mu, H.M. Ji, Z.R. Shen et al., Isolated platinum atoms stabilized by amorphous tungstenic acid: Metal-support interaction for synergistic oxygen activation. Angew. Chem. Int. Ed. 57(30), 9351–9356 (2018). https://doi.org/10.1002/anie.201804319
Y. Guo, S. Mei, K. Yuan, D.J. Wang, H.C. Liu et al., Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect. ACS Catal. 8(7), 6203–6215 (2018). https://doi.org/10.1021/acscatal.7b04469
S. Yang, Y.J. Tak, J. Kim, A. Soon, H. Lee, Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 7(2), 1301–1307 (2017). https://doi.org/10.1021/acscatal.6b02899
M. Moses-DeBusk, M. Yoon, L.F. Allard, D.R. Mullins, Z. Wu et al., CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 135(34), 12634–12645 (2013). https://doi.org/10.1021/ja401847c
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Norskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355(6321), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
J.D. Benck, T.R. Hellstern, J. Kibsgaard, P. Chakthranont, T.F. Jaramillo, Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4(11), 3957–3971 (2014). https://doi.org/10.1021/cs500923c
M. Zhou, S.J. Bao, A.J. Bard, Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles. J. Am. Chem. Soc. 141(18), 7327–7332 (2019). https://doi.org/10.1021/jacs.8b13366
H. Wang, J.X. Liu, L.F. Allard, S. Lee, J.L. Liu et al., Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 10, 3808 (2019). https://doi.org/10.1038/s41467-019-11856-9
S. Kawai, A.S. Foster, T. Bjorkman, S. Nowakowska, J. Bjork et al., Van der Waals interactions and the limits of isolated atom models at interfaces. Nat. Commun. 7, 11559 (2016). https://doi.org/10.1038/ncomms11559
G. Kyriakou, M.B. Boucher, A.D. Jewell, E.A. Lewis, T.J. Lawton et al., Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335(6073), 1209–1212 (2012). https://doi.org/10.1126/science.1215864
Y. Wang, F.L. Hu, Y. Mi, C. Yan, S. Zhao, Single-metal-atom catalysts: An emerging platform for electrocatalytic oxygen reduction. Chem. Eng. J. 406, 127135 (2021). https://doi.org/10.1016/j.cej.2020.127135
J. Wang, Z. Li, Y. Wu, Y. Li, Fabrication of single-atom catalysts with precise structure and high metal loading. Adv. Mater. 30, 1801649 (2018). https://doi.org/10.1002/adma.201801649
Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang et al., Single-atom catalysts for electrochemical hydrogen evolution reaction: Recent advances and future perspectives. Nano-Micro Lett. 12(1), 21 (2020). https://doi.org/10.1007/s40820-019-0349-y
B. Wang, H. Cai, S. Shen, Single metal atom photocatalysis. Small Method 3(9), 1800447 (2019). https://doi.org/10.1002/smtd.201800447
L. Nie, D.H. Mei, H.F. Xiong, B. Peng, Z.B. Ren et al., Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358(6369), 1419–1423 (2017). https://doi.org/10.1126/science.aao2109
L.L. Lin, W. Zhou, R. Gao, S.Y. Yao, X. Zhang et al., Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544(7648), 80–83 (2017). https://doi.org/10.1038/nature21672
Y. Yang, Y. Yang, Z. Pei, K.H. Wu, C. Tan et al., Recent progress of carbon-supported single-atom catalysts for energy conversion and storage. Matter 3(5), 1442–1476 (2020). https://doi.org/10.1016/j.matt.2020.07.032
Y. Wang, K. Qi, S. Yu, G. Jia, Z. Cheng et al., Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co-MoS2. Nano-Micro Lett. 11(1), 102 (2019). https://doi.org/10.1007/s40820-019-0324-7
B.T. Qiao, J.X. Liu, Y.G. Wang, Q.Q. Lin, X.Y. Liu et al., Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal. 5(11), 6249–6254 (2015). https://doi.org/10.1021/acscatal.5b01114
J. Lin, A.Q. Wang, B.T. Qiao, X.Y. Liu, X.F. Yang et al., Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135(41), 15314–15317 (2013). https://doi.org/10.1021/ja408574m
H.J. Zhang, T. Watanabe, M. Okumura, M. Haruta, N. Toshima, Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater. 11(1), 49–52 (2012). https://doi.org/10.1038/nmat3143
G.X. Pei, X.Y. Liu, A.Q. Wang, A.F. Lee, M.A. Isaacs et al., Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 5(6), 3717–3725 (2015). https://doi.org/10.1021/acscatal.5b00700
P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen et al., Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352(6287), 797–801 (2016). https://doi.org/10.1126/science.aaf5251
Z. Liang, C. Qu, W. Guo, R. Zou, Q. Xu, Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv. Mater. 30(37), e1702891 (2018). https://doi.org/10.1002/adma.201702891
Y.F. Gu, Y.N. Wu, L.C. Li, W. Chen, F.T. Li et al., Controllable modular growth of hierarchical MOF-on-MOF architectures. Angew. Chem. Int. Ed. 56(49), 15658–15662 (2017). https://doi.org/10.1002/anie.201709738
H.X. Zhang, F. Wang, H. Yang, Y.X. Tan, J. Zhang et al., Interrupted zeolite LTA and ATN-type boron imidazolate frameworks. J. Am. Chem. Soc. 133(31), 11884–11887 (2011). https://doi.org/10.1021/ja2040927
J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38(5), 1477–1504 (2009). https://doi.org/10.1039/B802426J
G. Xu, H. Zhang, J. Wei, H.X. Zhang, X. Wu et al., Integrating the g-C3N4 nanosheet with B−H bonding decorated metal−organic framework for CO2 activation and photoreduction. ACS Nano 12, 5333–5340 (2018). https://doi.org/10.1021/acsnano.8b00110
Y. Zhang, L. Jiao, W. Yang, C. Xie, H.L. Jiang, Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem. Int. Ed. 60, 7607–7611 (2021). https://doi.org/10.1002/anie.202016219
L. Jiao, W. Yang, G. Wan, R. Zhang, X. Zheng et al., Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem. Int. Ed. 59, 20589–20595 (2020). https://doi.org/10.1002/anie.202008787
L. Jiao, R. Zhang, G. Wan, W. Yang, X. Wan et al., Nanocasting SiO2 into metal–organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 11, 2831 (2020). https://doi.org/10.1038/s41467-020-16715-6
H. Zhang, J. Wei, J. Dong, G. Liu, L. Shi et al., Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem. Int. Ed. 55(46), 14310–14314 (2016). https://doi.org/10.1002/anie.201608597
X. Feng, Y. Song, Z. Li, M. Kaufmann, Y. Pi et al., Metal-organic framework stabilizes a low-coordinate iridium complex for catalytic methane borylation. J. Am. Chem. Soc. 141(28), 11196–11203 (2019). https://doi.org/10.1021/jacs.9b04285
X. Wang, W.X. Chen, L. Zhang, T. Yao, W. Liu et al., Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 139(28), 9419–9422 (2017). https://doi.org/10.1021/jacs.7b01686
X.Z. Fang, Q.C. Shang, Y. Wang, L. Jiao, T. Yao et al., Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 30(7), 1705112 (2018). https://doi.org/10.1002/adma.201705112
P.Q. Yin, T. Yao, Y. Wu, L.R. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55(36), 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
C.M. Zhao, X.Y. Dai, T. Yao, W.X. Chen, X.Q. Wang et al., Ionic exchange of metal organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 139(24), 8078–8081 (2017). https://doi.org/10.1021/jacs.7b02736
J. Wang, Z.Q. Huang, W. Liu, C.R. Chang, H.L. Tang et al., Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139(48), 17281–17284 (2017). https://doi.org/10.1021/jacs.7b10385
Y. Li, R. Zhang, W. Zhou, X. Wu, H. Zhang et al., Hierarchical MoS2 hollow architectures with abundant Mo vacancies for efficient sodium storage. ACS Nano 13, 5533–5540 (2019). https://doi.org/10.1021/acsnano.9b00383
Y. Li, S. Zuo, Q.H. Li, X. Wu, J. Zhang et al., Vertically aligned MoS2 with in-plane selectively cleaved Mo−S bond for hydrogen production. Nano Lett. 21, 1848–1855 (2021). https://doi.org/10.1021/acs.nanolett.0c04978
F. Dvorak, M.F. Camellone, A. Tovt, N.D. Tran, F.R. Negreiros et al., Creating single-atom Pt-ceria catalysts by surface step decoration. Nat. Commun. 7, 10801 (2016). https://doi.org/10.1038/ncomms10801
B. Zhang, H. Asakura, J. Zhang, J. Zhang, S. De et al., Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem. Int. Ed. 55(29), 8319–8323 (2016). https://doi.org/10.1002/anie.201602801
Y.J. Chen, S.F. Ji, W.M. Sun, Y.P. Lei, Q.C. Wang et al., Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem. Int. Ed. 59(3), 1295–1301 (2020). https://doi.org/10.1002/anie.201912439
S.H. Sun, G.X. Zhang, N. Gauquelin, N. Chen, J.G. Zhou et al., Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 3, 1775 (2013). https://doi.org/10.1038/srep01775
Y. Wang, J. Mao, X.G. Meng, L. Yu, D.H. Deng et al., Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem. Rev. 119(3), 1806–1854 (2019). https://doi.org/10.1021/acs.chemrev.8b00501
X.J. Cui, J.P. Xiao, Y.H. Wu, P.P. Du, R. Si et al., A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dye-sensitized solar cells. Angew. Chem. Int. Ed. 55(23), 6708–6712 (2016). https://doi.org/10.1002/anie.201602097
D.H. Deng, X.Q. Chen, L. Yu, X. Wu, Q.F. Liu et al., A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 1(11), e1500462 (2015). https://doi.org/10.1126/sciadv.1500462
J. Jones, H.F. Xiong, A.T. Delariva, E.J. Peterson, H. Pham et al., Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353(6295), 150–154 (2016). https://doi.org/10.1126/science.aaf8800
S.J. Wei, A. Li, J.C. Liu, Z. Li, W.X. Chen et al., Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13(9), 856–861 (2018). https://doi.org/10.1038/s41565-018-0197-9
W. Chen, J. Pei, C.T. He, J. Wan, H. Ren et al., Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 30(30), e1800396 (2018). https://doi.org/10.1002/adma.201800396
G. Vile, D. Albani, M. Nachtegaal, Z. Chen, D. Dontsova et al., A stable single-site palladium catalyst for hydrogenations. Angew. Chem. Int. Ed. 54(38), 11265–11269 (2015). https://doi.org/10.1002/anie.201505073
W. Wan, C.A. Triana, J. Lan, J. Li, C.S. Allen et al., Bifunctional single atom electrocatalysts: Coordination-performance correlations and reaction pathways. ACS Nano 14(10), 13279–13293 (2020). https://doi.org/10.1021/acsnano.0c05088
H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang et al., Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Adv. Mater. 31(48), e1904548 (2019). https://doi.org/10.1002/adma.201904548
Y. Han, Y. Wang, R. Xu, W. Chen, L. Zheng et al., Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 11(9), 2348–2352 (2018). https://doi.org/10.1039/c8ee01481g
W. Liu, L. Zhang, X. Liu, X. Liu, X. Yang et al., Discriminating catalytically active FeNx species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond. J. Am. Chem. Soc. 139(31), 10790–10798 (2017). https://doi.org/10.1021/jacs.7b05130
Z. Chen, W. Gong, Z. Liu, S. Cong, Z. Zheng et al., Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity. Nano Energy 60, 394–403 (2019). https://doi.org/10.1016/j.nanoen.2019.03.045
Z. Jakub, J. Hulva, M. Meier, R. Bliem, F. Kraushofer et al., Local structure and coordination define adsorption in a model Ir1/Fe3O4 single-atom catalyst. Angew. Chem. Int. Ed. 58(39), 13961–13968 (2019). https://doi.org/10.1002/anie.201907536
Y. Xu, M. Chu, F. Liu, X. Wang, Y. Liu et al., Revealing the correlation between catalytic selectivity and the local coordination environment of Pt single atom. Nano Lett. 20(9), 6865–6872 (2020). https://doi.org/10.1021/acs.nanolett.0c02940
H. Shen, E. Gracia-Espino, J. Ma, K. Zang, J. Luo et al., Synergistic effects between atomically dispersed Fe–N–C and C–S–C for the oxygen reduction reaction in acidic media. Angew. Chem. Int. Ed. 56(44), 13800–13804 (2017). https://doi.org/10.1002/anie.201706602
Y. Mun, S. Lee, K. Kim, S. Kim, S. Lee et al., Versatile strategy for tuning ORR activity of a single Fe–N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 141(15), 6254–6262 (2019). https://doi.org/10.1021/jacs.8b13543
Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong et al., Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9(1), 5422 (2018). https://doi.org/10.1038/s41467-018-07850-2
Z. Luo, H. Zhang, Y. Yang, X. Wang, Y. Li et al., Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nat. Commun. 11(1), 1116 (2020). https://doi.org/10.1038/s41467-020-14980-z
D. Liu, B. Wang, H. Li, S. Huang, M. Liu et al., Distinguished Zn, Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air Batteries. Nano Energy 58, 277–283 (2019). https://doi.org/10.1016/j.nanoen.2019.01.011
H. Li, L. Wang, Y. Dai, Z. Pu, Z. Lao et al., Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13(5), 411–417 (2018). https://doi.org/10.1038/s41565-018-0089-z
S. Tian, Q. Fu, W. Chen, Q. Feng, Z. Chen et al., Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 9(1), 2353 (2018). https://doi.org/10.1038/s41467-018-04845-x
X. Meng, C. Ma, L. Jiang, R. Si, X. Meng et al., Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem. Int. Ed. 59(26), 10502–10507 (2020). https://doi.org/10.1002/anie.202003484
P. Zhou, X. Hou, Y. Chao, W. Yang, W. Zhang et al., Synergetic interaction between neighboring platinum and ruthenium monomers boosts CO oxidation. Chem. Sci. 10(23), 5898–5905 (2019). https://doi.org/10.1039/c9sc00658c
Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao et al., An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 58(9), 2622–2626 (2019). https://doi.org/10.1002/anie.201810175
X. Han, X. Ling, D. Yu, D. Xie, L. Li et al., Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31(49), e1905622 (2019). https://doi.org/10.1002/adma.201905622
L.M. Liu, N. Wang, C.Z. Zhu, X.N. Liu, Y.H. Zhu et al., Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew. Chem. Int. Ed. 59(2), 819–825 (2020). https://doi.org/10.1002/anie.201909834
H. Zhang, P. An, W. Zhou, B.Y. Guan, P. Zhang et al., Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 4(1), eaao6657 (2018). https://doi.org/10.1126/sciadv.aao6657
X. Qiu, J. Chen, X. Zou, R. Fang, L. Chen et al., Encapsulation of C-N-decorated metal sub-nanoclusters/single atoms into a metal-organic framework for highly efficient catalysis. Chem. Sci. 9(48), 8962–8968 (2018). https://doi.org/10.1039/c8sc03549k
S.H. Lee, J. Kim, D.Y. Chung, J.M. Yoo, H.S. Lee et al., Design principle of Fe-N-C electrocatalysts: How to optimize multimodal porous structures? J. Am. Chem. Soc. 141(5), 2035–2045 (2019). https://doi.org/10.1021/jacs.8b11129
Q. Sun, N. Wang, T. Zhang, R. Bai, A. Mayoral et al., Zeolite-encaged single-atom rhodium catalysts: Highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew. Chem. Int. Ed. 58(51), 18570–18576 (2019). https://doi.org/10.1002/anie.201912367
S. Ji, Y. Chen, S. Zhao, W. Chen, L. Shi et al., Atomically dispersed ruthenium species inside metal-organic frameworks: Combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem. Int. Ed. 58(13), 4271–4275 (2019). https://doi.org/10.1002/anie.201814182
R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen et al., Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140(37), 11594–11598 (2018). https://doi.org/10.1021/jacs.8b07294
D. Liu, X. Li, S. Chen, H. Yan, C. Wang et al., Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4(6), 512–518 (2019). https://doi.org/10.1038/s41560-019-0402-6
H. Zhang, W. Zhou, X.F. Lu, T. Chen, X.W. Lou, Implanting isolated Ru atoms into edge-rich carbon matrix for efficient electrocatalytic hydrogen evolution. Adv. Energy Mater. 10(23), 2000882 (2020). https://doi.org/10.1002/aenm.202000882
H. Zhang, S. Zuo, M. Qiu, S. Wang, Y. Zhang et al., Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Sci. Adv. 6(39), eabb9823 (2020). https://doi.org/10.1126/sciadv.abb9823
Z.Y. Li, Z. Yuan, X.N. Li, Y.X. Zhao, S.G. He, CO oxidation catalyzed by single gold atoms supported on aluminum oxide clusters. J. Am. Chem. Soc. 136(40), 14307–14313 (2014). https://doi.org/10.1021/ja508547z
R. Lin, D. Albani, E. Fako, S.K. Kaiser, O.V. Safonova et al., Design of single gold atoms on nitrogen-doped carbon for molecular recognition in alkyne semi-hydrogenation. Angew. Chem. Int. Ed. 58(2), 504–509 (2019). https://doi.org/10.1002/anie.201805820
Z. Zhang, Y. Zhu, H. Asakura, B. Zhang, J. Zhang et al., Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 8, 16100 (2017). https://doi.org/10.1038/ncomms16100
X. Liu, M. Xu, L.Y. Wan, H.D. Zhu, K.X. Yao et al., Superior catalytic performance of atomically dispersed palladium on graphene in CO oxidation. ACS Catal. 10(5), 3084–3093 (2020). https://doi.org/10.1021/acscatal.9b04840
Y. Chen, J. Lin, L. Li, B. Qiao, J. Liu et al., Identifying size effects of Pt as single atoms and nanoparticles supported on FeOx for the water-gas shift reaction. ACS Catal. 8(2), 859–868 (2018). https://doi.org/10.1021/acscatal.7b02751
Q. Shen, C. Cao, R. Huang, L. Zhu, X. Zhou et al., Single chromium atoms supported on titanium dioxide nanoparticles for synergic catalytic methane conversion under mild conditions. Angew. Chem. Int. Ed. 59(3), 1216–1219 (2020). https://doi.org/10.1002/anie.201913309
Y.X. Zhao, Z.Y. Li, Z. Yuan, X.N. Li, S.G. He, Thermal methane conversion to formaldehyde promoted by single platinum atoms in PtAl2O4- cluster anions. Angew. Chem. Int. Ed. 53(36), 9482–9486 (2014). https://doi.org/10.1002/anie.201403953
X. Guo, G. Fang, G. Li, H. Ma, H. Fan et al., Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344(6184), 616–619 (2014). https://doi.org/10.1126/science.1253150
P. Xie, T. Pu, A. Nie, S. Hwang, S.C. Purdy et al., Nanoceria-supported single-atom platinum catalysts for direct methane conversion. ACS Catal. 8(5), 4044–4048 (2018). https://doi.org/10.1021/acscatal.8b00004
M. Zhang, Y.G. Wang, W. Chen, J. Dong, L. Zheng et al., Metal (hydr)oxides@polymer core-shell strategy to metal single-atom materials. J. Am. Chem. Soc. 139(32), 10976–10979 (2017). https://doi.org/10.1021/jacs.7b05372
H. Zhou, Y. Zhao, J. Gan, J. Xu, Y. Wang et al., Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene. J. Am. Chem. Soc. 142(29), 12643–12650 (2020). https://doi.org/10.1021/jacs.0c03415
S.W. Cao, H. Li, T. Tong, H.C. Chen, A.C. Yu et al., Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 28(32), 1802169 (2018). https://doi.org/10.1002/adfm.201802169
Q. Zhao, J. Sun, S.C. Li, C.P. Huang, W.F. Yao et al., Single nickel atoms anchored on nitrogen-doped graphene as a highly active cocatalyst for photocatalytic H2 evolution. ACS Catal. 8(12), 11863–11874 (2018). https://doi.org/10.1021/acscatal.8b03737
C. Gao, J. Low, R. Long, T. Kong, J. Zhu et al., Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 120(21), 12175–12216 (2020). https://doi.org/10.1021/acs.chemrev.9b00840
Y. Pan, Y. Qian, X. Zheng, S.Q. Chu, Y. Yang et al., Precise fabrication oaf single-atom alloy co-catalyst with optimal charge state for enhanced photocatalysis. Natl. Sci. Rev. 8, nwaa224 (2021). https://doi.org/10.1093/nsr/nwaa224
J. Xing, J.F. Chen, Y.H. Li, W.T. Yuan, Y. Zhou et al., Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution. Chem. Eur. J. 20(8), 2138–2144 (2014). https://doi.org/10.1002/chem.201303366
X. Li, W. Bi, L. Zhang, S. Tao, W. Chu et al., Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 28(12), 2427–2431 (2016). https://doi.org/10.1002/adma.201505281
X. Wu, H.B. Zhang, J.C. Dong, M. Qiu, J.T. Kong et al., Surface step decoration of isolated atom as electron pumping: Atomic-level insights into visible-light hydrogen evolution. Nano Energy 45, 109–117 (2018). https://doi.org/10.1016/j.nanoen.2017.12.039
J. Wang, T. Xia, L. Wang, X. Zheng, Z. Qi et al., Enabling visible-light-driven selective CO2 reduction by doping quantum dots: Trapping electrons and suppressing H2 evolution. Angew. Chem. Int. Ed. 57(50), 16447–16451 (2018). https://doi.org/10.1002/anie.201810550
J. Di, C. Chen, S.Z. Yang, S. Chen, M. Duan et al., Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 10(1), 2840 (2019). https://doi.org/10.1038/s41467-019-10392-w
S. Ji, Y. Qu, T. Wang, Y. Chen, G. Wang et al., Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 59(26), 10651–10657 (2020). https://doi.org/10.1002/anie.202003623
T. Chao, X. Luo, W. Chen, B. Jiang, J. Ge et al., Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem. Int. Ed. 56(50), 16047–16051 (2017). https://doi.org/10.1002/anie.201709803
M. Tavakkoli, N. Holmberg, R. Kronberg, H. Jiang, J. Sainio et al., Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction. ACS Catal. 7(5), 3121–3130 (2017). https://doi.org/10.1021/acscatal.7b00199
J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong et al., Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1(12), 985–992 (2018). https://doi.org/10.1038/s41929-018-0195-1
K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng et al., Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 10(1), 1743 (2019). https://doi.org/10.1038/s41467-019-09765-y
S. Fang, X. Zhu, X. Liu, J. Gu, W. Liu et al., Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 11(1), 1029 (2020). https://doi.org/10.1038/s41467-020-14848-2
J. Xu, C. Zhang, H. Liu, J. Sun, R. Xie et al., Amorphous MoOX-stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution. Nano Energy 70, 104529 (2020). https://doi.org/10.1016/j.nanoen.2020.104529
L. Zhang, K. Doyle-Davis, X. Sun, Pt-based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms. Energy Environ. Sci. 12(2), 492–517 (2019). https://doi.org/10.1039/c8ee02939c
J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng et al., Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8(5), 1594–1601 (2015). https://doi.org/10.1039/c5ee00751h
Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo et al., Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 9(1), 1460 (2018). https://doi.org/10.1038/s41467-018-03896-4
H. Zhang, L. Yu, T. Chen, W. Zhou, X.W.D. Lou, Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv. Funct. Mater. 28(51), 1807086 (2018). https://doi.org/10.1002/adfm.201807086
Y. Zhao, T. Ling, S. Chen, B. Jin, A. Vasileff et al., Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58(35), 12252–12257 (2019). https://doi.org/10.1002/anie.201905554
K. Qi, X. Cui, L. Gu, S. Yu, X. Fan et al., Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 10(1), 5231 (2019). https://doi.org/10.1038/s41467-019-12997-7
H. Fei, J. Dong, M.J. Arellano-Jimenez, G. Ye, N. Dong Kim et al., Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015). https://doi.org/10.1038/ncomms9668
K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc–air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
B.S. Yeo, Oxygen evolution by stabilized single Ru atoms. Nat. Catal. 2(4), 284–285 (2019). https://doi.org/10.1038/s41929-019-0271-1
Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam et al., Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10(1), 1392 (2019). https://doi.org/10.1038/s41467-019-09394-5
Y. Li, Z.S. Wu, P. Lu, X. Wang, W. Liu et al., High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction. Adv. Sci. 7(5), 1903089 (2020). https://doi.org/10.1002/advs.201903089
Q. Wang, X. Huang, Z.L. Zhao, M. Wang, B. Xiang et al., Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 142(16), 7425–7433 (2020). https://doi.org/10.1021/jacs.9b12642
W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang et al., Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx. J. Am. Chem. Soc. 138(10), 3570–3578 (2016). https://doi.org/10.1021/jacs.6b00757
C. Tang, Y. Jiao, B. Shi, J.N. Liu, Z. Xie et al., Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem. Int. Ed. 59(23), 9171–9176 (2020). https://doi.org/10.1002/anie.202003842
X. Luo, X. Wei, H. Wang, W. Gu, T. Kaneko et al., Secondary-atom-doping enables robust Fe–N–C single-atom catalysts with enhanced oxygen reduction reaction. Nano-Micro Lett. 12, 163 (2020). https://doi.org/10.1007/s40820-020-00502-5
C.H. Choi, M. Kim, H.C. Kwon, S.J. Cho, S. Yun et al., Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016). https://doi.org/10.1038/ncomms10922
J. Liu, M. Jiao, L. Lu, H.M. Barkholtz, Y. Li et al., High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 8, 15938 (2017). https://doi.org/10.1038/ncomms15938
S. Li, J. Liu, Z. Yin, P. Ren, L. Lin et al., Impact of the coordination environment on atomically dispersed Pt catalysts for oxygen reduction reaction. ACS Catal. 10(1), 907–913 (2019). https://doi.org/10.1021/acscatal.9b04558
J. Liu, M. Jiao, B. Mei, Y. Tong, Y. Li et al., Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction. Angew. Chem. Int. Ed. 58(4), 1163–1167 (2019). https://doi.org/10.1002/anie.201812423
W.H. Lai, B.W. Zhang, Z. Hu, X.M. Qu, Y.X. Jiang et al., The quasi-Pt-allotrope catalyst: Hollow PtCo@single-atom Pt1 on nitrogen-doped carbon toward superior oxygen reduction. Adv. Funct. Mater. 29(13), 1807340 (2019). https://doi.org/10.1002/adfm.201807340
M. Xiao, J. Zhu, G. Li, N. Li, S. Li et al., A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem. Int. Ed. 58(28), 9640–9645 (2019). https://doi.org/10.1002/anie.201905241
Z. Zhang, M. Dou, H. Liu, L. Dai, F. Wang, A facile route to bimetal and nitrogen-codoped 3D porous graphitic carbon networks for efficient oxygen reduction. Small 12(31), 4193–4199 (2016). https://doi.org/10.1002/smll.201601617
P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong et al., Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56(2), 610–614 (2017). https://doi.org/10.1002/anie.201610119
H.T. Chung, D.A. Cullen, D. Higgins, B.T. Sneed, E.F. Holby et al., Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357(6350), 479–484 (2017). https://doi.org/10.1126/science.aan2255
P. Song, M. Luo, X.Z. Liu, W. Xing, W.L. Xu et al., Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 27(28), 1700802 (2017). https://doi.org/10.1002/adfm.201700802
L. Jiao, G. Wan, R. Zhang, H. Zhou, S.H. Yu et al., From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem. Int. Ed. 57(28), 8525–8529 (2018). https://doi.org/10.1002/anie.201803262
F. Li, G.-F. Han, H.-J. Noh, S.-J. Kim, Y. Lu et al., Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ. Sci. 11(8), 2263–2269 (2018). https://doi.org/10.1039/c8ee01169a
C.C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu et al., Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 59(19), 7384–7389 (2020). https://doi.org/10.1002/anie.202002665
X. Wu, J.C. Dong, M. Qiu, Y. Li, Y.F. Zhang et al., Subnanometer iron clusters confined in a porous carbon matrix for highly efficient zinc-air batteries. Nanoscale Horiz. 5(2), 359–365 (2020). https://doi.org/10.1039/C9NH00510B
C.X. Zhao, B.Q. Li, J.N. Liu, Q. Zhang, Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60(9), 4448–4463 (2020). https://doi.org/10.1002/anie.202003917
X. Chen, L. Yu, S. Wang, D. Deng, X. Bao, Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy 32, 353–358 (2017). https://doi.org/10.1016/j.nanoen.2016.12.056
H. Zhang, W. Zhou, T. Chen, B.Y. Guan, Z. Li et al., A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction. Energy Environ. Sci. 11(8), 1980–1984 (2018). https://doi.org/10.1039/c8ee00901e
T. Wang, X. Sang, W. Zheng, B. Yang, S. Yao et al., Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO2 batteries. Adv. Mater. 32(29), e2002430 (2020). https://doi.org/10.1002/adma.202002430
W.Z. Zheng, F. Chen, Q. Zeng, Z.J. Li, B. Yang et al., A universal principle to accurately synthesize atomically dispersed metal-N4 sites for CO2 electroreduction. Nano-Micro Lett. 12(1), 108 (2020). https://doi.org/10.1007/s40820-020-00443-z
H. Zhang, W. Cheng, D. Luan, X.W. (David) Lou, Atomically dispersed reactive centers for electrocatalytic CO2 reduction and water splitting. Angew. Chem. Int. Ed. 60, 2–22 (2021). https://doi.org/10.1002/anie.202014112
Q. He, J.H. Lee, D. Liu, Y. Liu, Z. Lin et al., Accelerating CO2 electroreduction to CO over Pd single-atom catalyst. Adv. Funct. Mater. 30(17), 2000407 (2020). https://doi.org/10.1002/adfm.202000407
Y.N. Gong, L. Jiao, Y.Y. Qian, C.Y. Pan, L.R. Zheng et al., Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. Int. Ed. 59(7), 2705–2709 (2020). https://doi.org/10.1002/anie.201914977
P. Huang, M. Cheng, H. Zhang, M. Zuo, C. Xiao et al., Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene. Nano Energy 61, 428–434 (2019). https://doi.org/10.1016/j.nanoen.2019.05.003