Superflexible and Lead-Free Piezoelectric Nanogenerator as a Highly Sensitive Self-Powered Sensor for Human Motion Monitoring
Corresponding Author: Yiping Guo
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 117
Abstract
For traditional piezoelectric sensors based on poled ceramics, a low curie temperature (Tc) is a fatal flaw due to the depolarization phenomenon. However, in this study, we find the low Tc would be a benefit for flexible piezoelectric sensors because small alterations of force trigger large changes in polarization. BaTi0.88Sn0.12O3 (BTS) with high piezoelectric coefficient and low Tc close to human body temperature is taken as an example for materials of this kind. Continuous piezoelectric BTS films were deposited on the flexible glass fiber fabrics (GFF), self-powered sensors based on the ultra-thin, superflexible, and polarization-free BTS-GFF/PVDF composite piezoelectric films are used for human motion sensing. In the low force region (1–9 N), the sensors have the outstanding performance with voltage sensitivity of 1.23 V N−1 and current sensitivity of 41.0 nA N−1. The BTS-GFF/PVDF sensors can be used to detect the tiny forces of falling water drops, finger joint motion, tiny surface deformation, and fatigue driving with high sensitivity. This work provides a new paradigm for the preparation of superflexible, highly sensitive and wearable self-powered piezoelectric sensors, and this kind of sensors will have a broad application prospect in the fields of medical rehabilitation, human motion monitoring, and intelligent robot.
Highlights:
1 Continuous piezoelectric BaTi0.88Sn0.12O3 (BTS) films were deposited on glass fiber fabrics successfully.
2 Superflexible, highly sensitive self-powered piezoelectric sensors were fabricated based on polarization-free BTS.
3 Low curie temperature would be a benefit for flexible piezoelectric sensors because small alterations of force will trigger large changes in polarization.
4 The superflexible sensors are highly desirable for wearable devices to detect human motion.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Bu, T. Xiao, Z. Yang, G. Liu, X. Fu et al., Stretchable triboelectric-photonic smart skin for tactile and gesture sensing. Adv. Mater. 30(16), 1800066 (2018). https://doi.org/10.1002/adma.201800066
- C. Ning, K. Dong, R. Cheng, J. Yi, C. Ye et al., Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202006679
- D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly(vinyl alcohol)/mxene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13(1), 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
- F. Yi, L. Lin, S. Niu, P.K. Yang, Z. Wang et al., Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors. Adv. Funct. Mater. 25(24), 3688–3696 (2015). https://doi.org/10.1002/adfm.201500428
- Y. Ma, Q. Zheng, Y. Liu, B. Shi, X. Xue et al., Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Lett. 16(10), 6042–6051 (2016). https://doi.org/10.1021/acs.nanolett.6b01968
- Q. Zheng, H. Zhang, B. Shi, X. Xue, Z. Liu et al., In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 10(7), 6510–6518 (2016). https://doi.org/10.1021/acsnano.6b02693
- Z. Liu, Y. Ma, H. Ouyang, B. Shi, N. Li et al., Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv. Funct. Mater. 29(3), 1807560 (2019). https://doi.org/10.1002/adfm.201807560
- L. Zhao, H. Li, J. Meng, Z. Li, The recent advances in self-powered medical information sensors. Infomat 2(1), 212–234 (2020). https://doi.org/10.1002/inf2.12064
- P. Bai, G. Zhu, Q. Jing, J. Yang, J. Chen et al., Membrane-based self-powered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring. Adv. Funct. Mater. 24(37), 5807–5813 (2014). https://doi.org/10.1002/adfm.201401267
- Z. Li, Q. Zheng, Z.L. Wang, Z. Li, Nanogenerator-based self-powered sensors for wearable and implantable electronics. Research 2020, 8710686 (2020). https://doi.org/10.34133/2020/8710686
- H. Guo, X. Pu, J. Chen, Y. Meng, M.-H. Yeh et al., A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3(20), 2516 (2018). https://doi.org/10.1126/scirobotics.aat2516
- X. Pu, H. Guo, Q. Tang, J. Chen, L. Feng et al., Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor. Nano Energy 54, 453–460 (2018). https://doi.org/10.1016/j.nanoen.2018.10.044
- K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13(1), 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
- Q. Zheng, Q. Tang, Z.L. Wang, Z. Li, Self-powered cardiovascular electronic devices and systems. Nat. Rev. Cardiol. 18(1), 7–21 (2021). https://doi.org/10.1038/s41569-020-0426-4
- Z.L. Wang, Self-powered nanosensors and nanosystems. Adv. Mater. 24(2), 280–285 (2012). https://doi.org/10.1002/adma.201102958
- Z. Li, G. Zhu, R. Yang, A.C. Wang, Z.L. Wang, Muscle-driven in vivo nanogenerator. Adv. Mater. 22(23), 2534–2537 (2010). https://doi.org/10.1002/adma.200904355
- J. Sun, A. Yang, C. Zhao, F. Liu, Z. Li, Recent progress of nanogenerators acting as biomedical sensors in vivo. Sci. Bull. 64(18), 1336–1347 (2019). https://doi.org/10.1016/j.scib.2019.07.001
- D. Jiang, B. Shi, H. Ouyang, Y. Fan, Z.L. Wang et al., Emerging implantable energy harvesters and self-powered implantable medical electronics. ACS Nano 14(6), 6436–6448 (2020). https://doi.org/10.1021/acsnano.9b08268
- J. Jiang, S. Tu, R. Fu, J. Li, F. Hu et al., Flexible piezoelectric pressure tactile sensor based on electrospun BaTiO3/poly(vinylidene fluoride) nanocomposite membrane. ACS Appl. Mater. Interfaces 12(30), 33989–33998 (2020). https://doi.org/10.1021/acsami.0c08560
- J. Liu, B. Yang, L. Lu, X. Wang, X. Li et al., Flexible and lead-free piezoelectric nanogenerator as self-powered sensor based on electrospinning BZT-BCT/p(VDF-TRFE) nanofibers. Sens. Actuator A-Phys. 303, 111796 (2020). https://doi.org/10.1016/j.sna.2019.111796
- X. Chen, X. Li, J. Shao, N. An, H. Tian et al., High-performance piezoelectric nanogenerators with imprinted p(VDF-TRFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 13(23), 1604245 (2017). https://doi.org/10.1002/smll.201604245
- Z. Lin, J. Chen, X. Li, Z. Zhou, K. Meng et al., Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 11(9), 8830–8837 (2017). https://doi.org/10.1021/acsnano.7b02975
- Z. Lin, Z. Wu, B. Zhang, Y.-C. Wang, H. Guo et al., A triboelectric nanogenerator-based smart insole for multifunctional gait monitoring. Adv. Mater. Technol. 4(2), 1800360 (2019). https://doi.org/10.1002/admt.201800360
- X. Pu, J.-W. Zha, C.-L. Zhao, S.-B. Gong, J.-F. Gao et al., Flexible PVDF/nylon-11 electrospun fibrous membranes with aligned ZnO nanowires as potential triboelectric nanogenerators. Chem. Eng. J. 398, 125526 (2020). https://doi.org/10.1016/j.cej.2020.125526
- P. Bai, G. Zhu, Y. Liu, J. Chen, Q. Jing et al., Cylindrical rotating triboelectric nanogenerator. ACS Nano 7(7), 6361–6366 (2013). https://doi.org/10.1021/nn402491y
- T. Huang, M. Lu, H. Yu, Q. Zhang, H. Wang et al., Enhanced power output of a triboelectric nanogenerator composed of electrospun nanofiber mats doped with graphene oxide. Sci. Rep. 5, 13942 (2015). https://doi.org/10.1038/srep13942
- L. Shi, H. Jin, S. Dong, S. Huang, H. Kuang et al., High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting. Nano Energy 80, 105599 (2021). https://doi.org/10.1016/j.nanoen.2020.105599
- X. Yang, W.A. Daoud, Synergetic effects in composite-based flexible hybrid mechanical energy harvesting generator. J. Mater. Chem. A 5(19), 9113–9121 (2017). https://doi.org/10.1039/c7ta01524k
- S.W. Chen, X. Cao, N. Wang, L. Ma, H.R. Zhu et al., An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing. Adv. Energy Mater. 7(1), 1601255 (2017). https://doi.org/10.1002/aenm.201601255
- J. Bae, I. Baek, H. Choi, Efficacy of piezoelectric electrospun nanofiber membrane for water treatment. Chem. Eng. J. 307, 670–678 (2017). https://doi.org/10.1016/j.cej.2016.08.125
- C. Chang, V.H. Tran, J. Wang, Y.-K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10(2), 726–731 (2010). https://doi.org/10.1021/nl9040719
- S.-H. Park, H.B. Lee, S.M. Yeon, J. Park, N.K. Lee, Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates. ACS Appl. Mater. Interfaces 8(37), 24773–24781 (2016). https://doi.org/10.1021/acsami.6b07833
- Z. Hanani, I. Izanzar, M. Amjoud, D. Mezzane, M. Lahcini et al., Lead-free nanocomposite piezoelectric nanogenerator film for biomechanical energy harvesting. Nano Energy 81, 105661 (2021). https://doi.org/10.1016/j.nanoen.2020.105661
- X. Ren, H. Fan, Y. Zhao, Z. Liu, Flexible lead-free BiFeO3/PDMS-based nanogenerator as piezoelectric energy harvester. ACS Appl. Mater. Interfaces 8(39), 26190–26197 (2016). https://doi.org/10.1021/acsami.6b04497
- C.K. Jeong, J.H. Han, H. Palneedi, H. Park, G.-T. Hwang et al., Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. Apl. Mater. 5(7), 074102 (2017). https://doi.org/10.1063/1.4976803
- H.B. Kang, J. Chang, K. Koh, L. Lin, Y.S. Cho, High quality Mn-doped (Na, K)NbO3 nanofibers for flexible piezoelectric nanogenerators. ACS Appl. Mater. Interfaces 6(13), 10576–10582 (2014). https://doi.org/10.1021/am502234q
- Y. Huan, X. Zhang, J. Song, Y. Zhao, T. Wei et al., High-performance piezoelectric composite nanogenerator based on Ag/(K, Na)NbO3 heterostructure. Nano Energy 50, 62–69 (2018). https://doi.org/10.1016/j.nanoen.2018.05.012
- D. Wang, Z. Fan, G. Rao, G. Wang, Y. Liu et al., Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design. Nano Energy 76, 104944 (2020). https://doi.org/10.1016/j.nanoen.2020.104944
- T.P.P. Thi, Z. Yan, G. Nick, K. Hamideh, H.D.N. Phuc et al., Demonstration of enhanced piezo-catalysis for hydrogen generation and water treatment at the ferroelectric curie temperature. Iscience 23(5), 101095 (2020). https://doi.org/10.1016/j.isci.2020.101095
- Y. Liu, L. Zhao, L. Wang, H. Zheng, D. Li et al., Skin-integrated graphene-embedded lead zirconate titanate rubber for energy harvesting and mechanical sensing. Adv. Mater. Technol. 4(12), 1900744 (2019). https://doi.org/10.1002/admt.201900744
- S. Siddiqui, D.-I. Kim, D. Lee Thai, N. Minh Triet, S. Muhammad et al., High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 15, 177–185 (2015). https://doi.org/10.1016/j.nanoen.2015.04.030
- S.-H. Shin, Y.-H. Kim, M.H. Lee, J.-Y. Jung, J. Nah, Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano 8(3), 2766–2773 (2014). https://doi.org/10.1021/nn406481k
- J.S. Yun, C.K. Park, Y.H. Jeong, J.H. Cho, J.-H. Paik et al., The fabrication and characterization of piezoelectric PZT/PVDF electrospun nanofiber composites. Nanomater. Nanotechnol. 6, 62433 (2016). https://doi.org/10.5772/62433
- S.H. Ji, J.H. Cho, Y.H. Jeong, J.-H. Paik, J.D. Yun et al., Flexible lead-free piezoelectric nanofiber composites based on BNT-ST and PVDF for frequency sensor applications. Sens. Actuator A-Phys. 247, 316–322 (2016). https://doi.org/10.1016/j.sna.2016.06.011
- S. He, W. Dong, Y. Guo, L. Guan, H. Xiao et al., Piezoelectric thin film on glass fiber fabric with structural hierarchy: an approach to high-performance, superflexible, cost-effective, and large-scale nanogenerators. Nano Energy 59, 745–753 (2019). https://doi.org/10.1016/j.nanoen.2019.03.025
- D. Wang, G. Yuan, G. Hao, Y. Wang, All-inorganic flexible piezoelectric energy harvester enabled by two-dimensional mica. Nano Energy 43, 351–358 (2018). https://doi.org/10.1016/j.nanoen.2017.11.037
- P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39(4), 683–706 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006
- Z. Yin, B. Tian, Q. Zhu, C. Duan, Characterization and application of PVDF and its copolymer films prepared by spin-coating and langmuir-blodgett method. Polymers 11(12), 11122033 (2019). https://doi.org/10.3390/polym11122033
- B.P. Mahale, D. Bodas, S.A. Gangal, Development of pvdf based pressure sensor for low pressure application. In: 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems 658–661 (2011)
- J. Liu, B. Yang, J. Liu, Development of environmental-friendly BZT-BCT/p(VDF-TrFE) composite film for piezoelectric generator. J. Mater. Sci. Mater. Electron. 29(20), 17764–17770 (2018). https://doi.org/10.1007/s10854-018-9883-5
- J. Yu, X. Hou, J. He, M. Cui, C. Wang et al., Ultra-flexible and high-sensitive triboelectric nanogenerator as electronic skin for self-powered human physiological signal monitoring. Nano Energy 69, 104437 (2020). https://doi.org/10.1016/j.nanoen.2019.104437
- S. Mondal, T. Paul, S. Maiti, B.K. Das, K.K. Chattopadhyay, Human motion interactive mechanical energy harvester based on all inorganic perovskite-PVDF. Nano Energy 74, 104870 (2020). https://doi.org/10.1016/j.nanoen.2020.104870
- A. Gaur, C. Kumar, S. Tiwari, P. Maiti, Efficient energy harvesting using processed poly(vinylidene fluoride) nanogenerator. ACS Appl. Energy Mater. 1(7), 3019–3024 (2018). https://doi.org/10.1021/acsaem.8b00483
- S.H. Wankhade, S. Tiwari, A. Gaur, P. Maiti, PVDF–PZT nanohybrid based nanogenerator for energy harvesting applications. Energy Rep. 6, 358–364 (2020). https://doi.org/10.1016/j.egyr.2020.02.003
- Y. Wang, X. Zhang, X. Guo, D. Li, B. Cui et al., Hybrid nanogenerator of BaTiO3 nanowires and CNTs for harvesting energy. J. Mater. Sci. 53(18), 13081–13089 (2018). https://doi.org/10.1007/s10853-018-2540-9
- B. Dudem, D.H. Kim, L.K. Bharat, J.S. Yu, Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting. Appl. Energy 230, 865–874 (2018). https://doi.org/10.1016/j.apenergy.2018.09.009
- X. Xue, S. Wang, W. Guo, Y. Zhang, Z.L. Wang, Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett. 12(9), 5048–5054 (2012). https://doi.org/10.1021/nl302879t
- J. Chen, Y. Luo, X. Ou, G. Yuan, Y. Wang et al., Upward ferroelectric self-polarization induced by compressive epitaxial strain in (001) BaTiO3 films. J. Appl. Phys. 113(20), 204105 (2013). https://doi.org/10.1063/1.4807794
- M.D. Glinchuk, A.N. Morozovska, E.A. Eliseev, Ferroelectric thin film properties: peculiarities related to mismatch-induced polarization. Ferroelectrics 314(1), 85–95 (2005). https://doi.org/10.1080/00150190590926201
- H.W. Jang, S.H. Baek, D. Ortiz, C.M. Folkman, R.R. Das et al., Strain-induced polarization rotation in epitaxial (001) BiFeO3 thin films. Phys. Rev. Lett. 101(10), 107602 (2008). https://doi.org/10.1103/PhysRevLett.101.107602
- W. Ma, L.E. Cross, Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Appl. Phys. Lett. 82(19), 3293–3295 (2003). https://doi.org/10.1063/1.1570517
- H. Ouyang, Z. Liu, N. Li, B. Shi, Y. Zou et al., Symbiotic cardiac pacemaker. Nat. Commun. 10, 1821 (2019). https://doi.org/10.1038/s41467-019-09851-1
- X. Lu, L. Zheng, H. Zhang, W. Wang, Z.L. Wang et al., Stretchable, transparent triboelectric nanogenerator as a highly sensitive self-powered sensor for driver fatigue and distraction monitoring. Nano Energy 78, 105359 (2020). https://doi.org/10.1016/j.nanoen.2020.105359
- S.K. Ghosh, D. Mandal, Synergistically enhanced piezoelectric output in highly aligned 1d polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor. Nano Energy 53, 245–257 (2018). https://doi.org/10.1016/j.nanoen.2018.08.036
- X. Chen, H. Tian, X. Li, J. Shao, Y. Ding et al., A high performance p(VDF-TrFe) nanogenerator with self-connected and vertically integrated fibers by patterned ehd pulling. Nanoscale 7(27), 11536–11544 (2015). https://doi.org/10.1039/c5nr01746g
- X. Chen, J. Shao, N. An, X. Li, H. Tian et al., Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs. J. Mater. Chem. C 3(45), 11806–11814 (2015). https://doi.org/10.1039/c5tc02173a
- J. Liu, B. Yang, J. Liu, Development of environmental-friendly BZT–BCT/p(VDF–TrFe) composite film for piezoelectric generator. J. Mater. Sci. Mater. Electron. 29(20), 17764–17770 (2018). https://doi.org/10.1007/s10854-018-9883-5
References
T. Bu, T. Xiao, Z. Yang, G. Liu, X. Fu et al., Stretchable triboelectric-photonic smart skin for tactile and gesture sensing. Adv. Mater. 30(16), 1800066 (2018). https://doi.org/10.1002/adma.201800066
C. Ning, K. Dong, R. Cheng, J. Yi, C. Ye et al., Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202006679
D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly(vinyl alcohol)/mxene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13(1), 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
F. Yi, L. Lin, S. Niu, P.K. Yang, Z. Wang et al., Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors. Adv. Funct. Mater. 25(24), 3688–3696 (2015). https://doi.org/10.1002/adfm.201500428
Y. Ma, Q. Zheng, Y. Liu, B. Shi, X. Xue et al., Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Lett. 16(10), 6042–6051 (2016). https://doi.org/10.1021/acs.nanolett.6b01968
Q. Zheng, H. Zhang, B. Shi, X. Xue, Z. Liu et al., In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 10(7), 6510–6518 (2016). https://doi.org/10.1021/acsnano.6b02693
Z. Liu, Y. Ma, H. Ouyang, B. Shi, N. Li et al., Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv. Funct. Mater. 29(3), 1807560 (2019). https://doi.org/10.1002/adfm.201807560
L. Zhao, H. Li, J. Meng, Z. Li, The recent advances in self-powered medical information sensors. Infomat 2(1), 212–234 (2020). https://doi.org/10.1002/inf2.12064
P. Bai, G. Zhu, Q. Jing, J. Yang, J. Chen et al., Membrane-based self-powered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring. Adv. Funct. Mater. 24(37), 5807–5813 (2014). https://doi.org/10.1002/adfm.201401267
Z. Li, Q. Zheng, Z.L. Wang, Z. Li, Nanogenerator-based self-powered sensors for wearable and implantable electronics. Research 2020, 8710686 (2020). https://doi.org/10.34133/2020/8710686
H. Guo, X. Pu, J. Chen, Y. Meng, M.-H. Yeh et al., A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3(20), 2516 (2018). https://doi.org/10.1126/scirobotics.aat2516
X. Pu, H. Guo, Q. Tang, J. Chen, L. Feng et al., Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor. Nano Energy 54, 453–460 (2018). https://doi.org/10.1016/j.nanoen.2018.10.044
K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13(1), 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
Q. Zheng, Q. Tang, Z.L. Wang, Z. Li, Self-powered cardiovascular electronic devices and systems. Nat. Rev. Cardiol. 18(1), 7–21 (2021). https://doi.org/10.1038/s41569-020-0426-4
Z.L. Wang, Self-powered nanosensors and nanosystems. Adv. Mater. 24(2), 280–285 (2012). https://doi.org/10.1002/adma.201102958
Z. Li, G. Zhu, R. Yang, A.C. Wang, Z.L. Wang, Muscle-driven in vivo nanogenerator. Adv. Mater. 22(23), 2534–2537 (2010). https://doi.org/10.1002/adma.200904355
J. Sun, A. Yang, C. Zhao, F. Liu, Z. Li, Recent progress of nanogenerators acting as biomedical sensors in vivo. Sci. Bull. 64(18), 1336–1347 (2019). https://doi.org/10.1016/j.scib.2019.07.001
D. Jiang, B. Shi, H. Ouyang, Y. Fan, Z.L. Wang et al., Emerging implantable energy harvesters and self-powered implantable medical electronics. ACS Nano 14(6), 6436–6448 (2020). https://doi.org/10.1021/acsnano.9b08268
J. Jiang, S. Tu, R. Fu, J. Li, F. Hu et al., Flexible piezoelectric pressure tactile sensor based on electrospun BaTiO3/poly(vinylidene fluoride) nanocomposite membrane. ACS Appl. Mater. Interfaces 12(30), 33989–33998 (2020). https://doi.org/10.1021/acsami.0c08560
J. Liu, B. Yang, L. Lu, X. Wang, X. Li et al., Flexible and lead-free piezoelectric nanogenerator as self-powered sensor based on electrospinning BZT-BCT/p(VDF-TRFE) nanofibers. Sens. Actuator A-Phys. 303, 111796 (2020). https://doi.org/10.1016/j.sna.2019.111796
X. Chen, X. Li, J. Shao, N. An, H. Tian et al., High-performance piezoelectric nanogenerators with imprinted p(VDF-TRFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 13(23), 1604245 (2017). https://doi.org/10.1002/smll.201604245
Z. Lin, J. Chen, X. Li, Z. Zhou, K. Meng et al., Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 11(9), 8830–8837 (2017). https://doi.org/10.1021/acsnano.7b02975
Z. Lin, Z. Wu, B. Zhang, Y.-C. Wang, H. Guo et al., A triboelectric nanogenerator-based smart insole for multifunctional gait monitoring. Adv. Mater. Technol. 4(2), 1800360 (2019). https://doi.org/10.1002/admt.201800360
X. Pu, J.-W. Zha, C.-L. Zhao, S.-B. Gong, J.-F. Gao et al., Flexible PVDF/nylon-11 electrospun fibrous membranes with aligned ZnO nanowires as potential triboelectric nanogenerators. Chem. Eng. J. 398, 125526 (2020). https://doi.org/10.1016/j.cej.2020.125526
P. Bai, G. Zhu, Y. Liu, J. Chen, Q. Jing et al., Cylindrical rotating triboelectric nanogenerator. ACS Nano 7(7), 6361–6366 (2013). https://doi.org/10.1021/nn402491y
T. Huang, M. Lu, H. Yu, Q. Zhang, H. Wang et al., Enhanced power output of a triboelectric nanogenerator composed of electrospun nanofiber mats doped with graphene oxide. Sci. Rep. 5, 13942 (2015). https://doi.org/10.1038/srep13942
L. Shi, H. Jin, S. Dong, S. Huang, H. Kuang et al., High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting. Nano Energy 80, 105599 (2021). https://doi.org/10.1016/j.nanoen.2020.105599
X. Yang, W.A. Daoud, Synergetic effects in composite-based flexible hybrid mechanical energy harvesting generator. J. Mater. Chem. A 5(19), 9113–9121 (2017). https://doi.org/10.1039/c7ta01524k
S.W. Chen, X. Cao, N. Wang, L. Ma, H.R. Zhu et al., An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing. Adv. Energy Mater. 7(1), 1601255 (2017). https://doi.org/10.1002/aenm.201601255
J. Bae, I. Baek, H. Choi, Efficacy of piezoelectric electrospun nanofiber membrane for water treatment. Chem. Eng. J. 307, 670–678 (2017). https://doi.org/10.1016/j.cej.2016.08.125
C. Chang, V.H. Tran, J. Wang, Y.-K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10(2), 726–731 (2010). https://doi.org/10.1021/nl9040719
S.-H. Park, H.B. Lee, S.M. Yeon, J. Park, N.K. Lee, Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates. ACS Appl. Mater. Interfaces 8(37), 24773–24781 (2016). https://doi.org/10.1021/acsami.6b07833
Z. Hanani, I. Izanzar, M. Amjoud, D. Mezzane, M. Lahcini et al., Lead-free nanocomposite piezoelectric nanogenerator film for biomechanical energy harvesting. Nano Energy 81, 105661 (2021). https://doi.org/10.1016/j.nanoen.2020.105661
X. Ren, H. Fan, Y. Zhao, Z. Liu, Flexible lead-free BiFeO3/PDMS-based nanogenerator as piezoelectric energy harvester. ACS Appl. Mater. Interfaces 8(39), 26190–26197 (2016). https://doi.org/10.1021/acsami.6b04497
C.K. Jeong, J.H. Han, H. Palneedi, H. Park, G.-T. Hwang et al., Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. Apl. Mater. 5(7), 074102 (2017). https://doi.org/10.1063/1.4976803
H.B. Kang, J. Chang, K. Koh, L. Lin, Y.S. Cho, High quality Mn-doped (Na, K)NbO3 nanofibers for flexible piezoelectric nanogenerators. ACS Appl. Mater. Interfaces 6(13), 10576–10582 (2014). https://doi.org/10.1021/am502234q
Y. Huan, X. Zhang, J. Song, Y. Zhao, T. Wei et al., High-performance piezoelectric composite nanogenerator based on Ag/(K, Na)NbO3 heterostructure. Nano Energy 50, 62–69 (2018). https://doi.org/10.1016/j.nanoen.2018.05.012
D. Wang, Z. Fan, G. Rao, G. Wang, Y. Liu et al., Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design. Nano Energy 76, 104944 (2020). https://doi.org/10.1016/j.nanoen.2020.104944
T.P.P. Thi, Z. Yan, G. Nick, K. Hamideh, H.D.N. Phuc et al., Demonstration of enhanced piezo-catalysis for hydrogen generation and water treatment at the ferroelectric curie temperature. Iscience 23(5), 101095 (2020). https://doi.org/10.1016/j.isci.2020.101095
Y. Liu, L. Zhao, L. Wang, H. Zheng, D. Li et al., Skin-integrated graphene-embedded lead zirconate titanate rubber for energy harvesting and mechanical sensing. Adv. Mater. Technol. 4(12), 1900744 (2019). https://doi.org/10.1002/admt.201900744
S. Siddiqui, D.-I. Kim, D. Lee Thai, N. Minh Triet, S. Muhammad et al., High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 15, 177–185 (2015). https://doi.org/10.1016/j.nanoen.2015.04.030
S.-H. Shin, Y.-H. Kim, M.H. Lee, J.-Y. Jung, J. Nah, Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano 8(3), 2766–2773 (2014). https://doi.org/10.1021/nn406481k
J.S. Yun, C.K. Park, Y.H. Jeong, J.H. Cho, J.-H. Paik et al., The fabrication and characterization of piezoelectric PZT/PVDF electrospun nanofiber composites. Nanomater. Nanotechnol. 6, 62433 (2016). https://doi.org/10.5772/62433
S.H. Ji, J.H. Cho, Y.H. Jeong, J.-H. Paik, J.D. Yun et al., Flexible lead-free piezoelectric nanofiber composites based on BNT-ST and PVDF for frequency sensor applications. Sens. Actuator A-Phys. 247, 316–322 (2016). https://doi.org/10.1016/j.sna.2016.06.011
S. He, W. Dong, Y. Guo, L. Guan, H. Xiao et al., Piezoelectric thin film on glass fiber fabric with structural hierarchy: an approach to high-performance, superflexible, cost-effective, and large-scale nanogenerators. Nano Energy 59, 745–753 (2019). https://doi.org/10.1016/j.nanoen.2019.03.025
D. Wang, G. Yuan, G. Hao, Y. Wang, All-inorganic flexible piezoelectric energy harvester enabled by two-dimensional mica. Nano Energy 43, 351–358 (2018). https://doi.org/10.1016/j.nanoen.2017.11.037
P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39(4), 683–706 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006
Z. Yin, B. Tian, Q. Zhu, C. Duan, Characterization and application of PVDF and its copolymer films prepared by spin-coating and langmuir-blodgett method. Polymers 11(12), 11122033 (2019). https://doi.org/10.3390/polym11122033
B.P. Mahale, D. Bodas, S.A. Gangal, Development of pvdf based pressure sensor for low pressure application. In: 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems 658–661 (2011)
J. Liu, B. Yang, J. Liu, Development of environmental-friendly BZT-BCT/p(VDF-TrFE) composite film for piezoelectric generator. J. Mater. Sci. Mater. Electron. 29(20), 17764–17770 (2018). https://doi.org/10.1007/s10854-018-9883-5
J. Yu, X. Hou, J. He, M. Cui, C. Wang et al., Ultra-flexible and high-sensitive triboelectric nanogenerator as electronic skin for self-powered human physiological signal monitoring. Nano Energy 69, 104437 (2020). https://doi.org/10.1016/j.nanoen.2019.104437
S. Mondal, T. Paul, S. Maiti, B.K. Das, K.K. Chattopadhyay, Human motion interactive mechanical energy harvester based on all inorganic perovskite-PVDF. Nano Energy 74, 104870 (2020). https://doi.org/10.1016/j.nanoen.2020.104870
A. Gaur, C. Kumar, S. Tiwari, P. Maiti, Efficient energy harvesting using processed poly(vinylidene fluoride) nanogenerator. ACS Appl. Energy Mater. 1(7), 3019–3024 (2018). https://doi.org/10.1021/acsaem.8b00483
S.H. Wankhade, S. Tiwari, A. Gaur, P. Maiti, PVDF–PZT nanohybrid based nanogenerator for energy harvesting applications. Energy Rep. 6, 358–364 (2020). https://doi.org/10.1016/j.egyr.2020.02.003
Y. Wang, X. Zhang, X. Guo, D. Li, B. Cui et al., Hybrid nanogenerator of BaTiO3 nanowires and CNTs for harvesting energy. J. Mater. Sci. 53(18), 13081–13089 (2018). https://doi.org/10.1007/s10853-018-2540-9
B. Dudem, D.H. Kim, L.K. Bharat, J.S. Yu, Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting. Appl. Energy 230, 865–874 (2018). https://doi.org/10.1016/j.apenergy.2018.09.009
X. Xue, S. Wang, W. Guo, Y. Zhang, Z.L. Wang, Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett. 12(9), 5048–5054 (2012). https://doi.org/10.1021/nl302879t
J. Chen, Y. Luo, X. Ou, G. Yuan, Y. Wang et al., Upward ferroelectric self-polarization induced by compressive epitaxial strain in (001) BaTiO3 films. J. Appl. Phys. 113(20), 204105 (2013). https://doi.org/10.1063/1.4807794
M.D. Glinchuk, A.N. Morozovska, E.A. Eliseev, Ferroelectric thin film properties: peculiarities related to mismatch-induced polarization. Ferroelectrics 314(1), 85–95 (2005). https://doi.org/10.1080/00150190590926201
H.W. Jang, S.H. Baek, D. Ortiz, C.M. Folkman, R.R. Das et al., Strain-induced polarization rotation in epitaxial (001) BiFeO3 thin films. Phys. Rev. Lett. 101(10), 107602 (2008). https://doi.org/10.1103/PhysRevLett.101.107602
W. Ma, L.E. Cross, Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Appl. Phys. Lett. 82(19), 3293–3295 (2003). https://doi.org/10.1063/1.1570517
H. Ouyang, Z. Liu, N. Li, B. Shi, Y. Zou et al., Symbiotic cardiac pacemaker. Nat. Commun. 10, 1821 (2019). https://doi.org/10.1038/s41467-019-09851-1
X. Lu, L. Zheng, H. Zhang, W. Wang, Z.L. Wang et al., Stretchable, transparent triboelectric nanogenerator as a highly sensitive self-powered sensor for driver fatigue and distraction monitoring. Nano Energy 78, 105359 (2020). https://doi.org/10.1016/j.nanoen.2020.105359
S.K. Ghosh, D. Mandal, Synergistically enhanced piezoelectric output in highly aligned 1d polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor. Nano Energy 53, 245–257 (2018). https://doi.org/10.1016/j.nanoen.2018.08.036
X. Chen, H. Tian, X. Li, J. Shao, Y. Ding et al., A high performance p(VDF-TrFe) nanogenerator with self-connected and vertically integrated fibers by patterned ehd pulling. Nanoscale 7(27), 11536–11544 (2015). https://doi.org/10.1039/c5nr01746g
X. Chen, J. Shao, N. An, X. Li, H. Tian et al., Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs. J. Mater. Chem. C 3(45), 11806–11814 (2015). https://doi.org/10.1039/c5tc02173a
J. Liu, B. Yang, J. Liu, Development of environmental-friendly BZT–BCT/p(VDF–TrFe) composite film for piezoelectric generator. J. Mater. Sci. Mater. Electron. 29(20), 17764–17770 (2018). https://doi.org/10.1007/s10854-018-9883-5