Ultra-High Sensitivity Anisotropic Piezoelectric Sensors for Structural Health Monitoring and Robotic Perception
Corresponding Author: Yiping Guo
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 42
Abstract
Monitoring minuscule mechanical signals, both in magnitude and direction, is imperative in many application scenarios, e.g., structural health monitoring and robotic sensing systems. However, the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix, and achieving sensitivity for detecting micrometer-scale deformations is also challenging. Herein, we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement, capable of detecting minute anisotropic deformations. The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%, thereby enabling its utility in accurately discerning the 5 μm-height wrinkles in thin films and in monitoring human pulse waves. The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase. Additionally, when integrated with machine learning techniques, the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100% accuracy. The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli, offering a novel perspective for enhancing recognition accuracy.
Highlights:
1 A novel anisotropic sensor with oriented piezoelectric filaments was prepared, capable of detecting both the magnitude and direction of micro-deformations.
2 Due to the efficient load transfer of continuous fibers and the formation of porous ferroelectrets, an ultra-low strain detection limit of 0.06% was achieved in the sensor.
3 Given the sensor's ultra-low detection limit and deformation direction sensing capability, we developed the sensor for detecting micron-scale deformations in thin-film structures and for robotic tactile sensing applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Ota, A. Ando, D. Chiba, A flexible giant magnetoresistive device for sensing strain direction. Nat. Electron. 1, 124–129 (2018). https://doi.org/10.1038/s41928-018-0022-3
- M. Zarei, G. Lee, S.G. Lee, K. Cho, Advances in biodegradable electronic skin: material progress and recent applications in sensing, robotics, and human-machine interfaces. Adv. Mater. 35, e2203193 (2023). https://doi.org/10.1002/adma.202203193
- Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14, 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
- Y. Guo, F. Yin, Y. Li, G. Shen, J.-C. Lee, Incorporating wireless strategies to wearable devices enabled by a photocurable hydrogel for monitoring pressure information. Adv. Mater. 35, e2300855 (2023). https://doi.org/10.1002/adma.202300855
- H. Zhang, H. Li, Y. Li, Biomimetic electronic skin for robots aiming at superior dynamic-static perception and material cognition based on triboelectric-piezoresistive effects. Nano Lett. 24, 4002–4011 (2024). https://doi.org/10.1021/acs.nanolett.4c00623
- A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Self-healing MXene- and graphene-based composites: properties and applications. Nano-Micro Lett. 15, 100 (2023). https://doi.org/10.1007/s40820-023-01074-w
- J. Franco, A. Aris, B. Canberk, A.S. Uluagac, A survey of honeypots and honeynets for Internet of Things, industrial Internet of Things, and cyber-physical systems. IEEE Commun. Surv. Tutor. 23, 2351–2383 (2021). https://doi.org/10.1109/COMST.2021.3106669
- D. Melancon, B. Gorissen, C.J. García-Mora, C. Hoberman, K. Bertoldi, Multistable inflatable origami structures at the metre scale. Nature 592, 545–550 (2021). https://doi.org/10.1038/s41586-021-03407-4
- F. Shahzad, W. Jamshed, S.U.D. Sathyanarayanan, A. Aissa, P. Madheshwaran et al., Thermal analysis on Darcy-Forchheimer swirling Casson hybrid nanofluid flow inside parallel plates in parabolic trough solar collector: an application to solar aircraft. Int. J. Energy Res. 45, 20812–20834 (2021). https://doi.org/10.1002/er.7140
- J. Hjort, D. Streletskiy, G. Doré, Q. Wu, K. Bjella et al., Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth Environ. 3, 24–38 (2022). https://doi.org/10.1038/s43017-021-00247-8
- Q. Zhang, K. Barri, S.R. Kari, Z.L. Wang, A.H. Alavi, Multifunctional triboelectric nanogenerator-enabled structural elements for next generation civil infrastructure monitoring systems. Adv. Funct. Mater. 31, 2105825 (2021). https://doi.org/10.1002/adfm.202105825
- Z. Wang, X. Wang, M. Li, Y. Gao, Z. Hu et al., Highly sensitive flexible magnetic sensor based on anisotropic magnetoresistance effect. Adv. Mater. 28, 9370–9377 (2016). https://doi.org/10.1002/adma.201602910
- Z. Wang, P. Bi, Y. Yang, H. Ma, Y. Lan et al., Star-nose-inspired multi-mode sensor for anisotropic motion monitoring. Nano Energy 80, 105559 (2021). https://doi.org/10.1016/j.nanoen.2020.105559
- C. Jiang, J. Liu, L. Yang, J. Gong, H. Wei et al., A flexible artificial sensory nerve enabled by nanop-assembled synaptic devices for neuromorphic tactile recognition. Adv. Sci. 9, e2106124 (2022). https://doi.org/10.1002/advs.202106124
- H. Zhao, Y. Zhang, L. Han, W. Qian, J. Wang et al., Intelligent recognition using ultralight multifunctional nano-layered carbon aerogel sensors with human-like tactile perception. Nano-Micro Lett. 16, 11 (2023). https://doi.org/10.1007/s40820-023-01216-0
- X. Huang, W. Guo, S. Liu, Y. Li, Y. Qiu et al., Flexible mechanical metamaterials enabled electronic skin for real-time detection of unstable grasping in robotic manipulation. Adv. Funct. Mater. 32, 2270131 (2022). https://doi.org/10.1002/adfm.202270131
- T.O. Fossum, G.M. Fragoso, E.J. Davies, J.E. Ullgren, R. Mendes et al., Toward adaptive robotic sampling of phytoplankton in the coastal ocean. Sci. Robot 4, eaav3041 (2019). https://doi.org/10.1126/scirobotics.aav3041
- T. Reichhardt, NASA seeks robotic rescuers to give Hubble extra lease of life. Nature 428, 353 (2004). https://doi.org/10.1038/428353a
- X. Cao, Y. Xiong, J. Sun, X. Zhu, Q. Sun et al., Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence. Adv. Funct. Mater. 31, 2102983 (2021). https://doi.org/10.1002/adfm.202102983
- Y.H. Jung, S.K. Hong, H.S. Wang, J.H. Han, T.X. Pham et al., Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 32, e1904020 (2020). https://doi.org/10.1002/adma.201904020
- N. Jia, Q. Li, C. Li, H. Du, X. Gao et al., A wireless ultrasound energy harvester based on flexible relaxor ferroelectric crystal composite arrays for implanted bio-electronics. Energy Environ. Sci. 17, 1457–1467 (2024). https://doi.org/10.1039/D3EE03168C
- N.A. Shepelin, A.M. Glushenkov, V.C. Lussini, P.J. Fox, G.W. Dicinoski et al., New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ. Sci. 12, 1143–1176 (2019). https://doi.org/10.1039/C8EE03006E
- P.C. Sherrell, M. Fronzi, N.A. Shepelin, A. Corletto, D.A. Winkler et al., A bright future for engineering piezoelectric 2D crystals. Chem. Soc. Rev. 51, 650–671 (2022). https://doi.org/10.1039/d1cs00844g
- D. Yao, H. Cui, R. Hensleigh, P. Smith, S. Alford et al., Achieving the upper bound of piezoelectric response in tunable, wearable 3D printed nanocomposites. Adv. Funct. Mater. 29, 1903866 (2019). https://doi.org/10.1002/adfm.201903866
- B. Liang, Z. Zhang, W. Chen, D. Lu, L. Yang et al., Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Lett. 11, 92 (2019). https://doi.org/10.1007/s40820-019-0323-8
- S. An, H.S. Jo, G. Li, E. Samuel, S.S. Yoon et al., Sustainable nanotextured wave energy harvester based on ferroelectric fatigue-free and flexoelectricity-enhanced piezoelectric P(VDF-TrFE) nanofibers with BaSrTiO3 nanops. Adv. Funct. Mater. 30, 2001150 (2020). https://doi.org/10.1002/adfm.202001150
- Y. Jiang, S. Shiono, H. Hamada, T. Fujita, D. Zhang et al., Reactive ion etching of poly(vinylidene fluoride-trifluoroethylene) copolymer for flexible piezoelectric devices. Chin. Sci. Bull. 58, 2091–2094 (2013). https://doi.org/10.1007/s11434-013-5836-9
- R.A. Surmenev, T. Orlova, R.V. Chernozem, A.A. Ivanova, A. Bartasyte et al., Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: a review. Nano Energy 62, 475–506 (2019). https://doi.org/10.1016/j.nanoen.2019.04.090
- T. Li, Y. Li, T. Zhang, Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc. Chem. Res. 52, 288–296 (2019). https://doi.org/10.1021/acs.accounts.8b00497
- L. Zhang, J. Pan, Z. Zhang, H. Wu, N. Yao et al., Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron. Adv. 3, 19002201–19002207 (2020). https://doi.org/10.29026/oea.2020.190022
- J. Zhang, H. Yao, J. Mo, S. Chen, Y. Xie et al., Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency. Nat. Commun. 13, 5076 (2022). https://doi.org/10.1038/s41467-022-32827-7
- Z. Xiang, L. Li, Z. Lu, X. Yu, Y. Cao et al., High-performance microcone-array flexible piezoelectric acoustic sensor based on multicomponent lead-free perovskite rods. Matter 6, 554–569 (2023). https://doi.org/10.1016/j.matt.2022.11.023
- H. Yin, Y. Guan, Y. Li, Z. Zheng, Y. Guo, Modulation of piezoelectricity and mechanical strength in piezoelectric composites based on N0 5B0 51T-BNT nanocubes towards human-machine interfaces. Nano Energy 118, 109044 (2023). https://doi.org/10.1016/j.nanoen.2023.109044
- H. Cheng, P. Jiao, J. Wang, M. Qing, Y. Deng et al., Tunable and parabolic piezoelectricity in Hafnia under epitaxial strain. Nat. Commun. 15, 394 (2024). https://doi.org/10.1038/s41467-023-44207-w
- J. He, J. Feng, B. Huang, W. Duan, Z. Chen et al., Multi-directional strain sensor based on carbon nanotube array for human motion monitoring and gesture recognition. Carbon 226, 119201 (2024). https://doi.org/10.1016/j.carbon.2024.119201
- R. Yang, H. Song, Z. Zhou, S. Yang, X. Tang et al., Ultra-sensitive, multi-directional flexible strain sensors based on an mxene film with periodic wrinkles. ACS Appl. Mater. Interfaces 15, 8345–8354 (2023). https://doi.org/10.1021/acsami.2c22158
- T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li et al., The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci. 10, 528–537 (2017). https://doi.org/10.1039/c6ee03597c
- P. Li, J. Zhai, B. Shen, S. Zhang, X. Li et al., Ultrahigh piezoelectric properties in textured (K, Na)NbO3-based lead-free ceramics. Adv. Mater. 30, 1705171 (2018). https://doi.org/10.1002/adma.201705171
- D. Yu, Z. Zheng, J. Liu, H. Xiao, G. Huangfu et al., Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring. Nano-Micro Lett. 13, 117 (2021). https://doi.org/10.1007/s40820-021-00649-9
- N. Bai, Y. Xue, S. Chen, L. Shi, J. Shi et al., A robotic sensory system with high spatiotemporal resolution for texture recognition. Nat. Commun. 14, 7121 (2023). https://doi.org/10.1038/s41467-023-42722-4
- C.S. Litteken, S. Strohband, R.H. Dauskardt, Residual stress effects on plastic deformation and interfacial fracture in thin-film structures. Acta Mater. 53, 1955–1961 (2005). https://doi.org/10.1016/j.actamat.2005.01.005
- J. Guo, C. Shang, S. Gao, Y. Zhang, B. Fu et al., Flexible plasmonic optical tactile sensor for health monitoring and artificial haptic perception. Adv. Mater. Technol. 8, 2201506 (2023). https://doi.org/10.1002/admt.202201506
- S. Yun, S. Park, B. Park, Y. Kim, S.K. Park et al., Polymer-waveguide-based flexible tactile sensor array for dynamic response. Adv. Mater. 26, 4474–4480 (2014). https://doi.org/10.1002/adma.201305850
- J. Liu, X. Zhang, J. Liu, X. Liu, C. Zhang, 3D printing of anisotropic piezoresistive pressure sensors for directional force perception. Adv. Sci. 11, e2309607 (2024). https://doi.org/10.1002/advs.202309607
- Y. Hong, B. Wang, W. Lin, L. Jin, S. Liu et al., Highly anisotropic and flexible piezoceramic kirigami for preventing joint disorders. Sci. Adv. 7, eabf0795 (2021). https://doi.org/10.1126/sciadv.abf0795
- W. Yang, H. Kan, G. Shen, Y. Li, A network intrusion detection system with broadband WO3–x/WO3–x-Ag/WO3–x optoelectronic memristor. Adv. Funct. Mater. 34, 2312885 (2024). https://doi.org/10.1002/adfm.202312885
- Y. Li, Q. Lin, T. Sun, M. Qin, W. Yue et al., A perceptual and interactive integration strategy toward telemedicine healthcare based on electroluminescent display and triboelectric sensing 3D stacked device. Adv. Funct. Mater. 34, 2402356 (2024). https://doi.org/10.1002/adfm.202402356
- L. Lu, B. Yang, Y. Zhai, J. Liu, Electrospinning core-sheath piezoelectric microfibers for self-powered stitchable sensor. Nano Energy 76, 104966 (2020). https://doi.org/10.1016/j.nanoen.2020.104966
- G.-T. Hwang, V. Annapureddy, J.H. Han, D.J. Joe, C. Baek et al., Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Adv. Energy Mater. 6, 1600237 (2016). https://doi.org/10.1002/aenm.201600237
- K.I. Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu et al., Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26, 2514–2520 (2014). https://doi.org/10.1002/adma.201305659
- L. Daelemans, J. Faes, S. Allaoui, G. Hivet, M. Dierick et al., Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method. Compos. Sci. Technol. 137, 177–187 (2016). https://doi.org/10.1016/j.compscitech.2016.11.003
- L. Mercedes, G. Castellazzi, E. Bernat-Maso, L. Gil, Matrix and fabric contribution on the tensile behaviour of fabric reinforced cementitious matrix composites. Constr. Build. Mater. 363, 129693 (2023). https://doi.org/10.1016/j.conbuildmat.2022.129693
- W. Yan, G. Noel, G. Loke, E. Meiklejohn, T. Khudiyev et al., Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 603, 616–623 (2022). https://doi.org/10.1038/s41586-022-04476-9
- H. Liu, X. Lin, S. Zhang, Y. Huan, S. Huang et al., Enhanced performance of piezoelectric composite nanogenerator based on gradient porous PZT ceramic structure for energy harvesting. J. Mater. Chem. A 8, 19631–19640 (2020). https://doi.org/10.1039/D0TA03054F
- X. Wang, W.-Z. Song, M.-H. You, J. Zhang, M. Yu et al., Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano 12, 8588–8596 (2018). https://doi.org/10.1021/acsnano.8b04244
- X. Wan, P. Chen, Z. Xu, X. Mo, H. Jin et al., Hybrid-piezoelectret based highly efficient ultrasonic energy harvester for implantable electronics. Adv. Funct. Mater. 32, 2200589 (2022). https://doi.org/10.1002/adfm.202200589
- G. Zhang, P. Zhao, X. Zhang, K. Han, T. Zhao et al., Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting. Energy Environ. Sci. 11, 2046–2056 (2018). https://doi.org/10.1039/C8EE00595H
- Y. Liu, L. Ding, L. Dai, X. Gao, H. Wu et al., All-ceramic flexible piezoelectric energy harvester. Adv. Funct. Mater. 32, 2209297 (2022). https://doi.org/10.1002/adfm.202209297
- L. Pan, Y. Wang, Q. Jin, Z. Hu, Z. Zhou et al., Self-poled PVDF/recycled cellulose composite fibers utilizing cellulose nanocrystals to induce PVDF β-phase formation through wet-spinning as a flexible fabric piezoelectric sensor. Chem. Eng. J. 479, 147742 (2024). https://doi.org/10.1016/j.cej.2023.147742
- P. Zhou, Z. Zheng, B. Wang, Y. Guo, Self-powered flexible piezoelectric sensors based on self-assembled 10 nm BaTiO2 nanocubes on glass fiber fabric. Nano Energy 99, 107400 (2022). https://doi.org/10.1016/j.nanoen.2022.107400
- J. Briscoe, N. Jalali, P. Woolliams, M. Stewart, P.M. Weaver et al., Measurement techniques for piezoelectric nanogenerators. Energy Environ. Sci. 6, 3035 (2013). https://doi.org/10.1039/c3ee41889h
- J. Chen, N. Nabulsi, W. Wang, J.Y. Kim, M.-K. Kwon et al., Output characteristics of thin-film flexible piezoelectric generators: a numerical and experimental investigation. Appl. Energy 255, 113856 (2019). https://doi.org/10.1016/j.apenergy.2019.113856
References
S. Ota, A. Ando, D. Chiba, A flexible giant magnetoresistive device for sensing strain direction. Nat. Electron. 1, 124–129 (2018). https://doi.org/10.1038/s41928-018-0022-3
M. Zarei, G. Lee, S.G. Lee, K. Cho, Advances in biodegradable electronic skin: material progress and recent applications in sensing, robotics, and human-machine interfaces. Adv. Mater. 35, e2203193 (2023). https://doi.org/10.1002/adma.202203193
Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14, 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
Y. Guo, F. Yin, Y. Li, G. Shen, J.-C. Lee, Incorporating wireless strategies to wearable devices enabled by a photocurable hydrogel for monitoring pressure information. Adv. Mater. 35, e2300855 (2023). https://doi.org/10.1002/adma.202300855
H. Zhang, H. Li, Y. Li, Biomimetic electronic skin for robots aiming at superior dynamic-static perception and material cognition based on triboelectric-piezoresistive effects. Nano Lett. 24, 4002–4011 (2024). https://doi.org/10.1021/acs.nanolett.4c00623
A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Self-healing MXene- and graphene-based composites: properties and applications. Nano-Micro Lett. 15, 100 (2023). https://doi.org/10.1007/s40820-023-01074-w
J. Franco, A. Aris, B. Canberk, A.S. Uluagac, A survey of honeypots and honeynets for Internet of Things, industrial Internet of Things, and cyber-physical systems. IEEE Commun. Surv. Tutor. 23, 2351–2383 (2021). https://doi.org/10.1109/COMST.2021.3106669
D. Melancon, B. Gorissen, C.J. García-Mora, C. Hoberman, K. Bertoldi, Multistable inflatable origami structures at the metre scale. Nature 592, 545–550 (2021). https://doi.org/10.1038/s41586-021-03407-4
F. Shahzad, W. Jamshed, S.U.D. Sathyanarayanan, A. Aissa, P. Madheshwaran et al., Thermal analysis on Darcy-Forchheimer swirling Casson hybrid nanofluid flow inside parallel plates in parabolic trough solar collector: an application to solar aircraft. Int. J. Energy Res. 45, 20812–20834 (2021). https://doi.org/10.1002/er.7140
J. Hjort, D. Streletskiy, G. Doré, Q. Wu, K. Bjella et al., Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth Environ. 3, 24–38 (2022). https://doi.org/10.1038/s43017-021-00247-8
Q. Zhang, K. Barri, S.R. Kari, Z.L. Wang, A.H. Alavi, Multifunctional triboelectric nanogenerator-enabled structural elements for next generation civil infrastructure monitoring systems. Adv. Funct. Mater. 31, 2105825 (2021). https://doi.org/10.1002/adfm.202105825
Z. Wang, X. Wang, M. Li, Y. Gao, Z. Hu et al., Highly sensitive flexible magnetic sensor based on anisotropic magnetoresistance effect. Adv. Mater. 28, 9370–9377 (2016). https://doi.org/10.1002/adma.201602910
Z. Wang, P. Bi, Y. Yang, H. Ma, Y. Lan et al., Star-nose-inspired multi-mode sensor for anisotropic motion monitoring. Nano Energy 80, 105559 (2021). https://doi.org/10.1016/j.nanoen.2020.105559
C. Jiang, J. Liu, L. Yang, J. Gong, H. Wei et al., A flexible artificial sensory nerve enabled by nanop-assembled synaptic devices for neuromorphic tactile recognition. Adv. Sci. 9, e2106124 (2022). https://doi.org/10.1002/advs.202106124
H. Zhao, Y. Zhang, L. Han, W. Qian, J. Wang et al., Intelligent recognition using ultralight multifunctional nano-layered carbon aerogel sensors with human-like tactile perception. Nano-Micro Lett. 16, 11 (2023). https://doi.org/10.1007/s40820-023-01216-0
X. Huang, W. Guo, S. Liu, Y. Li, Y. Qiu et al., Flexible mechanical metamaterials enabled electronic skin for real-time detection of unstable grasping in robotic manipulation. Adv. Funct. Mater. 32, 2270131 (2022). https://doi.org/10.1002/adfm.202270131
T.O. Fossum, G.M. Fragoso, E.J. Davies, J.E. Ullgren, R. Mendes et al., Toward adaptive robotic sampling of phytoplankton in the coastal ocean. Sci. Robot 4, eaav3041 (2019). https://doi.org/10.1126/scirobotics.aav3041
T. Reichhardt, NASA seeks robotic rescuers to give Hubble extra lease of life. Nature 428, 353 (2004). https://doi.org/10.1038/428353a
X. Cao, Y. Xiong, J. Sun, X. Zhu, Q. Sun et al., Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence. Adv. Funct. Mater. 31, 2102983 (2021). https://doi.org/10.1002/adfm.202102983
Y.H. Jung, S.K. Hong, H.S. Wang, J.H. Han, T.X. Pham et al., Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 32, e1904020 (2020). https://doi.org/10.1002/adma.201904020
N. Jia, Q. Li, C. Li, H. Du, X. Gao et al., A wireless ultrasound energy harvester based on flexible relaxor ferroelectric crystal composite arrays for implanted bio-electronics. Energy Environ. Sci. 17, 1457–1467 (2024). https://doi.org/10.1039/D3EE03168C
N.A. Shepelin, A.M. Glushenkov, V.C. Lussini, P.J. Fox, G.W. Dicinoski et al., New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ. Sci. 12, 1143–1176 (2019). https://doi.org/10.1039/C8EE03006E
P.C. Sherrell, M. Fronzi, N.A. Shepelin, A. Corletto, D.A. Winkler et al., A bright future for engineering piezoelectric 2D crystals. Chem. Soc. Rev. 51, 650–671 (2022). https://doi.org/10.1039/d1cs00844g
D. Yao, H. Cui, R. Hensleigh, P. Smith, S. Alford et al., Achieving the upper bound of piezoelectric response in tunable, wearable 3D printed nanocomposites. Adv. Funct. Mater. 29, 1903866 (2019). https://doi.org/10.1002/adfm.201903866
B. Liang, Z. Zhang, W. Chen, D. Lu, L. Yang et al., Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Lett. 11, 92 (2019). https://doi.org/10.1007/s40820-019-0323-8
S. An, H.S. Jo, G. Li, E. Samuel, S.S. Yoon et al., Sustainable nanotextured wave energy harvester based on ferroelectric fatigue-free and flexoelectricity-enhanced piezoelectric P(VDF-TrFE) nanofibers with BaSrTiO3 nanops. Adv. Funct. Mater. 30, 2001150 (2020). https://doi.org/10.1002/adfm.202001150
Y. Jiang, S. Shiono, H. Hamada, T. Fujita, D. Zhang et al., Reactive ion etching of poly(vinylidene fluoride-trifluoroethylene) copolymer for flexible piezoelectric devices. Chin. Sci. Bull. 58, 2091–2094 (2013). https://doi.org/10.1007/s11434-013-5836-9
R.A. Surmenev, T. Orlova, R.V. Chernozem, A.A. Ivanova, A. Bartasyte et al., Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: a review. Nano Energy 62, 475–506 (2019). https://doi.org/10.1016/j.nanoen.2019.04.090
T. Li, Y. Li, T. Zhang, Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc. Chem. Res. 52, 288–296 (2019). https://doi.org/10.1021/acs.accounts.8b00497
L. Zhang, J. Pan, Z. Zhang, H. Wu, N. Yao et al., Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron. Adv. 3, 19002201–19002207 (2020). https://doi.org/10.29026/oea.2020.190022
J. Zhang, H. Yao, J. Mo, S. Chen, Y. Xie et al., Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency. Nat. Commun. 13, 5076 (2022). https://doi.org/10.1038/s41467-022-32827-7
Z. Xiang, L. Li, Z. Lu, X. Yu, Y. Cao et al., High-performance microcone-array flexible piezoelectric acoustic sensor based on multicomponent lead-free perovskite rods. Matter 6, 554–569 (2023). https://doi.org/10.1016/j.matt.2022.11.023
H. Yin, Y. Guan, Y. Li, Z. Zheng, Y. Guo, Modulation of piezoelectricity and mechanical strength in piezoelectric composites based on N0 5B0 51T-BNT nanocubes towards human-machine interfaces. Nano Energy 118, 109044 (2023). https://doi.org/10.1016/j.nanoen.2023.109044
H. Cheng, P. Jiao, J. Wang, M. Qing, Y. Deng et al., Tunable and parabolic piezoelectricity in Hafnia under epitaxial strain. Nat. Commun. 15, 394 (2024). https://doi.org/10.1038/s41467-023-44207-w
J. He, J. Feng, B. Huang, W. Duan, Z. Chen et al., Multi-directional strain sensor based on carbon nanotube array for human motion monitoring and gesture recognition. Carbon 226, 119201 (2024). https://doi.org/10.1016/j.carbon.2024.119201
R. Yang, H. Song, Z. Zhou, S. Yang, X. Tang et al., Ultra-sensitive, multi-directional flexible strain sensors based on an mxene film with periodic wrinkles. ACS Appl. Mater. Interfaces 15, 8345–8354 (2023). https://doi.org/10.1021/acsami.2c22158
T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li et al., The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci. 10, 528–537 (2017). https://doi.org/10.1039/c6ee03597c
P. Li, J. Zhai, B. Shen, S. Zhang, X. Li et al., Ultrahigh piezoelectric properties in textured (K, Na)NbO3-based lead-free ceramics. Adv. Mater. 30, 1705171 (2018). https://doi.org/10.1002/adma.201705171
D. Yu, Z. Zheng, J. Liu, H. Xiao, G. Huangfu et al., Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring. Nano-Micro Lett. 13, 117 (2021). https://doi.org/10.1007/s40820-021-00649-9
N. Bai, Y. Xue, S. Chen, L. Shi, J. Shi et al., A robotic sensory system with high spatiotemporal resolution for texture recognition. Nat. Commun. 14, 7121 (2023). https://doi.org/10.1038/s41467-023-42722-4
C.S. Litteken, S. Strohband, R.H. Dauskardt, Residual stress effects on plastic deformation and interfacial fracture in thin-film structures. Acta Mater. 53, 1955–1961 (2005). https://doi.org/10.1016/j.actamat.2005.01.005
J. Guo, C. Shang, S. Gao, Y. Zhang, B. Fu et al., Flexible plasmonic optical tactile sensor for health monitoring and artificial haptic perception. Adv. Mater. Technol. 8, 2201506 (2023). https://doi.org/10.1002/admt.202201506
S. Yun, S. Park, B. Park, Y. Kim, S.K. Park et al., Polymer-waveguide-based flexible tactile sensor array for dynamic response. Adv. Mater. 26, 4474–4480 (2014). https://doi.org/10.1002/adma.201305850
J. Liu, X. Zhang, J. Liu, X. Liu, C. Zhang, 3D printing of anisotropic piezoresistive pressure sensors for directional force perception. Adv. Sci. 11, e2309607 (2024). https://doi.org/10.1002/advs.202309607
Y. Hong, B. Wang, W. Lin, L. Jin, S. Liu et al., Highly anisotropic and flexible piezoceramic kirigami for preventing joint disorders. Sci. Adv. 7, eabf0795 (2021). https://doi.org/10.1126/sciadv.abf0795
W. Yang, H. Kan, G. Shen, Y. Li, A network intrusion detection system with broadband WO3–x/WO3–x-Ag/WO3–x optoelectronic memristor. Adv. Funct. Mater. 34, 2312885 (2024). https://doi.org/10.1002/adfm.202312885
Y. Li, Q. Lin, T. Sun, M. Qin, W. Yue et al., A perceptual and interactive integration strategy toward telemedicine healthcare based on electroluminescent display and triboelectric sensing 3D stacked device. Adv. Funct. Mater. 34, 2402356 (2024). https://doi.org/10.1002/adfm.202402356
L. Lu, B. Yang, Y. Zhai, J. Liu, Electrospinning core-sheath piezoelectric microfibers for self-powered stitchable sensor. Nano Energy 76, 104966 (2020). https://doi.org/10.1016/j.nanoen.2020.104966
G.-T. Hwang, V. Annapureddy, J.H. Han, D.J. Joe, C. Baek et al., Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Adv. Energy Mater. 6, 1600237 (2016). https://doi.org/10.1002/aenm.201600237
K.I. Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu et al., Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26, 2514–2520 (2014). https://doi.org/10.1002/adma.201305659
L. Daelemans, J. Faes, S. Allaoui, G. Hivet, M. Dierick et al., Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method. Compos. Sci. Technol. 137, 177–187 (2016). https://doi.org/10.1016/j.compscitech.2016.11.003
L. Mercedes, G. Castellazzi, E. Bernat-Maso, L. Gil, Matrix and fabric contribution on the tensile behaviour of fabric reinforced cementitious matrix composites. Constr. Build. Mater. 363, 129693 (2023). https://doi.org/10.1016/j.conbuildmat.2022.129693
W. Yan, G. Noel, G. Loke, E. Meiklejohn, T. Khudiyev et al., Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 603, 616–623 (2022). https://doi.org/10.1038/s41586-022-04476-9
H. Liu, X. Lin, S. Zhang, Y. Huan, S. Huang et al., Enhanced performance of piezoelectric composite nanogenerator based on gradient porous PZT ceramic structure for energy harvesting. J. Mater. Chem. A 8, 19631–19640 (2020). https://doi.org/10.1039/D0TA03054F
X. Wang, W.-Z. Song, M.-H. You, J. Zhang, M. Yu et al., Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano 12, 8588–8596 (2018). https://doi.org/10.1021/acsnano.8b04244
X. Wan, P. Chen, Z. Xu, X. Mo, H. Jin et al., Hybrid-piezoelectret based highly efficient ultrasonic energy harvester for implantable electronics. Adv. Funct. Mater. 32, 2200589 (2022). https://doi.org/10.1002/adfm.202200589
G. Zhang, P. Zhao, X. Zhang, K. Han, T. Zhao et al., Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting. Energy Environ. Sci. 11, 2046–2056 (2018). https://doi.org/10.1039/C8EE00595H
Y. Liu, L. Ding, L. Dai, X. Gao, H. Wu et al., All-ceramic flexible piezoelectric energy harvester. Adv. Funct. Mater. 32, 2209297 (2022). https://doi.org/10.1002/adfm.202209297
L. Pan, Y. Wang, Q. Jin, Z. Hu, Z. Zhou et al., Self-poled PVDF/recycled cellulose composite fibers utilizing cellulose nanocrystals to induce PVDF β-phase formation through wet-spinning as a flexible fabric piezoelectric sensor. Chem. Eng. J. 479, 147742 (2024). https://doi.org/10.1016/j.cej.2023.147742
P. Zhou, Z. Zheng, B. Wang, Y. Guo, Self-powered flexible piezoelectric sensors based on self-assembled 10 nm BaTiO2 nanocubes on glass fiber fabric. Nano Energy 99, 107400 (2022). https://doi.org/10.1016/j.nanoen.2022.107400
J. Briscoe, N. Jalali, P. Woolliams, M. Stewart, P.M. Weaver et al., Measurement techniques for piezoelectric nanogenerators. Energy Environ. Sci. 6, 3035 (2013). https://doi.org/10.1039/c3ee41889h
J. Chen, N. Nabulsi, W. Wang, J.Y. Kim, M.-K. Kwon et al., Output characteristics of thin-film flexible piezoelectric generators: a numerical and experimental investigation. Appl. Energy 255, 113856 (2019). https://doi.org/10.1016/j.apenergy.2019.113856