Towards High-Energy and Anti-Self-Discharge Zn-Ion Hybrid Supercapacitors with New Understanding of the Electrochemistry
Corresponding Author: Liubing Dong
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 95
Abstract
Aqueous Zn-ion hybrid supercapacitors (ZHSs) are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance, high safety and low cost. Herein, high-energy and anti-self-discharge ZHSs are realized based on the fibrous carbon cathodes with hierarchically porous surface and O/N heteroatom functional groups. Hierarchically porous surface of the fabricated free-standing fibrous carbon cathodes not only provides abundant active sites for divalent ion storage, but also optimizes ion transport kinetics. Consequently, the cathodes show a high gravimetric capacity of 156 mAh g−1, superior rate capability (79 mAh g−1 with a very short charge/discharge time of 14 s) and exceptional cycling stability. Meanwhile, hierarchical pore structure and suitable surface functional groups of the cathodes endow ZHSs with a high energy density of 127 Wh kg−1, a high power density of 15.3 kW kg−1 and good anti-self-discharge performance. Mechanism investigation reveals that ZHS electrochemistry involves cation adsorption/desorption and Zn4SO4(OH)6·5H2O formation/dissolution at low voltage and anion adsorption/desorption at high voltage on carbon cathodes. The roles of these reactions in energy storage of ZHSs are elucidated. This work not only paves a way for high-performance cathode materials of ZHSs, but also provides a deeper understanding of ZHS electrochemistry.
Highlights:
1 A surface engineering strategy was proposed to design hierarchically porous structure on fibrous carbon cathodes with O/N heteroatom functional groups.
2 High-energy and anti-self-discharge Zn-ion hybrid supercapacitors (ZHSs) were realized.
3 ZHS electrochemistry was investigated and new insights were provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008). https://doi.org/10.1038/nmat2297
- M.C. Lin, M. Gong, B. Lu, Y. Wu, D.Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520, 324 (2015). https://doi.org/10.1038/nature14340
- L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30, 1800804 (2018). https://doi.org/10.1002/adma.201800804
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933 (2012). https://doi.org/10.1002/ange.201106307
- S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang et al., Challenges and perspectives for nasicon-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 29, 1700431 (2017). https://doi.org/10.1002/adma.201700431
- B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12, 3288 (2019). https://doi.org/10.1039/C9EE02526J
- Q. Tan, X. Li, B. Zhang, X. Chen, Y. Tian et al., Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery. Adv. Energy Mater. 10, 2001050 (2020). https://doi.org/10.1002/aenm.202001050
- Y. Wang, Y. Xia, Recent progress in supercapacitors: from materials design to system construction. Adv. Mater. 25, 5336 (2013). https://doi.org/10.1002/adma.201301932
- L. Dong, W. Yang, W. Yang, Y. Li, W. Wu et al., Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. J. Mater. Chem. A 7, 13810 (2019). https://doi.org/10.1039/C9TA02678A
- X. Liu, G.A. Elia, B. Qin, H. Zhang, P. Ruschhaupt et al., High-power Na-ion and K-ion hybrid capacitors exploiting cointercalation in graphite negative electrodes. ACS Energy Lett. 4, 2675 (2019). https://doi.org/10.1021/acsenergylett.9b01675
- Q. Tan, X. Chen, H. Wan, B. Zhang, X. Liu et al., Metal-organic framework-derived high conductivity Fe3C with porous carbon on graphene as advanced anode materials for aqueous battery-supercapacitor hybrid devices. J. Power Sources 448, 227403 (2020). https://doi.org/10.1016/j.jpowsour.2019.227403
- Y. Gan, C. Wang, X. Chen, P. Liang, H. Wan et al., High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices. Chem. Eng. J. 392, 123661 (2020). https://doi.org/10.1016/j.cej.2019.123661
- C. Wang, Z. Song, H. Wan, X. Chen, Q. Tan et al., Ni-Co selenide nanowires supported on conductive wearable textile as cathode for flexible battery-supercapacitor hybrid devices. Chem. Eng. J. 400, 125955 (2020). https://doi.org/10.1016/j.cej.2020.125955
- L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
- X. Ma, J. Cheng, L. Dong, W. Liu, J. Mou et al., Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Mater. 20, 335 (2019). https://doi.org/10.1016/j.ensm.2018.10.020
- H. Wang, M. Wang, Y. Tang, A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 13, 1 (2018). https://doi.org/10.1016/j.ensm.2017.12.022
- Y. Tian, R. Amal, D.W. Wang, An aqueous metal-ion capacitor with oxidized carbon nanotubes and metallic zinc electrodes. Front. Energy Res. 4, 34 (2016). https://doi.org/10.3389/fenrg.2016.00034
- L. Dong, W. Yang, W. Yang, C. Wang, Y. Li et al., High-power and ultralong-life aqueous zinc-ion hybrid capacitors based on pseudocapacitive charge storage. Nano-Micro Lett. 11, 94 (2019). https://doi.org/10.1007/s40820-019-0328-3
- S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng et al., An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 cycles. Adv. Energy Mater. 9, 1902915 (2019). https://doi.org/10.1002/aenm.201902915
- X. Zhang, Z. Pei, C. Wang, Z. Yuan, L. Wei et al., Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics. Small 15, 1903817 (2019). https://doi.org/10.1002/smll.201903817
- S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi et al., A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J. Mater. Chem. A 7, 7784 (2019). https://doi.org/10.1039/C9TA00733D
- H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu et al., Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 31, 1904948 (2019). https://doi.org/10.1002/adma.201904948
- P. Liu, W. Liu, Y. Huang, P. Li, J. Yan et al., Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage. Energy Storage Mater. 25, 858 (2020). https://doi.org/10.1016/j.ensm.2019.09.004
- Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji et al., High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 66, 104132 (2019). https://doi.org/10.1016/j.nanoen.2019.104132
- S. Chen, G. Yang, X. Zhao, N. Wang, T. Luo et al., Hollow mesoporous carbon spheres for high performance symmetrical and aqueous zinc-ion hybrid supercapacitor. Front. Chem. 8, 663 (2020). https://doi.org/10.3389/fchem.2020.00663
- G. Sun, H. Yang, G. Zhang, J. Gao, X. Jin et al., A capacity recoverable zinc-ion micro-supercapacitor. Energy Environ. Sci. 11, 3367 (2018). https://doi.org/10.1039/C8EE02567C
- C. Wang, S. Wei, S. Chen, D. Cao, L. Song, Delaminating vanadium carbides for zinc-ion storage: hydrate precipitation and H+/Zn2+ co-action mechanism. Small Methods 3, 1900495 (2019). https://doi.org/10.1002/smtd.201900495
- Z. Huang, A. Chen, F. Mo, G. Liang, X. Li et al., Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors. Adv. Energy Mater. 10, 2001024 (2020). https://doi.org/10.1002/aenm.202001024
- J. Han, K. Wang, W. Liu, C. Li, X. Sun et al., Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell. Nanoscale 10, 13083 (2018). https://doi.org/10.1039/C8NR03889A
- Z. Jian, N. Yang, M. Vogel, S. Leith, A. Schulte et al., Flexible diamond fibers for high-energy-density zinc-ion supercapacitors. Adv. Energy Mater. 10, 2002202 (2020). https://doi.org/10.1002/aenm.202002202
- Q. Chen, J. Jin, Z. Kou, C. Liao, Z. Liu et al., Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density. Small 16, 2000091 (2020). https://doi.org/10.1002/smll.202000091
- W. Zhang, W. Yang, H. Zhou, Z. Zhang, M. Zhao et al., Self-discharge of supercapacitors based on carbon nanotubes with different diameters. Electrochim. Acta 357, 136855 (2020). https://doi.org/10.1016/j.electacta.2020.136855
- Q. Zhang, C. Cai, J. Qin, B. Wei, Tunable self-discharge process of carbon nanotube based supercapacitors. Nano Energy 4, 14 (2014). https://doi.org/10.1016/j.nanoen.2013.12.005
- L. Xie, F. Su, L. Xie, X. Guo, Z. Wang et al., Effect of pore structure and doping species on charge storage mechanisms in porous carbon-based supercapacitors. Mater. Chem. Front. 4, 2610 (2020). https://doi.org/10.1039/D0QM00180E
- J. Black, H.A. Andreas, Prediction of the self-discharge profile of an electrochemical capacitor electrode in the presence of both activation-controlled discharge and charge redistribution. J. Power Sources 195, 929 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.040
- J. Wang, B. Ding, X. Hao, Y. Xu, Y. Wang et al., A modified molten-salt method to prepare graphene electrode with high capacitance and low self-discharge rate. Carbon 102, 255 (2016). https://doi.org/10.1016/j.carbon.2016.02.047
- L. He, Y. Liu, C. Li, D. Yang, W. Wang et al., A low-cost Zn-based aqueous supercapacitor with high energy density. ACS Appl. Energy Mater. 2, 5835 (2019). https://doi.org/10.1021/acsaem.9b00981
- X. Deng, J. Li, Z. Shan, J. Sha, L. Ma et al., A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. J. Mater. Chem. A 8, 11617 (2020). https://doi.org/10.1039/D0TA02770G
- N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang et al., High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Adv. Energy Mater. 6, 1501458 (2016). https://doi.org/10.1002/aenm.201501458
- Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou et al., Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24, 5713 (2012). https://doi.org/10.1002/adma.201202930
- Y.S. Yun, S.Y. Cho, J. Shim, B.H. Kim, S.J. Chang et al., Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 25, 1993 (2013). https://doi.org/10.1002/adma.201204692
- Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537 (2011). https://doi.org/10.1126/science.1200770
- S. He, C. Zhang, C. Du, C. Cheng, W. Chen, High rate-performance supercapacitor based on nitrogen-doped hollow hexagonal carbon nanoprism arrays with ultrathin wall thickness in situ fabricated on carbon cloth. J. Power Sources 434, 226701 (2019). https://doi.org/10.1016/j.jpowsour.2019.226701
- Y. Zhao, L. Zhao, K.X. Yao, Y. Yang, Q. Zhang et al., Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture. J. Mater. Chem. 22, 19726 (2012). https://doi.org/10.1039/C2JM33091A
- X. Fan, W. Peng, Y. Li, X. Li, S. Wang et al., Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20, 4490 (2008). https://doi.org/10.1002/adma.200801306
- W. Yang, J. Zhou, S. Wang, W. Zhang, Z. Wang et al., Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 12, 1605 (2019). https://doi.org/10.1039/C9EE00536F
- Y. Zheng, W. Zhao, D. Jia, Y. Liu, L. Cui et al., Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chem. Eng. J. 387, 124161 (2020). https://doi.org/10.1016/j.cej.2020.124161
- P. Zhang, Y. Li, G. Wang, F. Wang, S. Yang et al., Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability. Adv. Mater. 31, 1806005 (2019). https://doi.org/10.1002/adma.201806005
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894 (2016). https://doi.org/10.1021/jacs.6b05958
- H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm et al., Li+ ion insertion in TiO2 (Anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 101, 7717 (1997). https://doi.org/10.1021/jp970490q
- H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 16, 454 (2017). https://doi.org/10.1038/nmat4810
- H.D. Yoo, S.D. Han, R.D. Bayliss, A.A. Gewirth, B. Genorio et al., "Rocking-chair”-type metal hybrid supercapacitors. ACS Appl. Mater. Interfaces 8, 30853 (2016). https://doi.org/10.1021/acsami.6b08367
- B. Lee, H.R. Seo, H.R. Lee, C.S. Yoon, J.H. Kim et al., Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. Chemsuschem 9, 2948 (2016). https://doi.org/10.1002/cssc.201600702
- T. Qin, Z. Xu, Z. Wang, S. Peng, D. He, 2.5 V salt-in-water supercapacitors based on alkali type double salt/carbon composite anode. J. Mater. Chem. A 7, 26011 (2019). https://doi.org/10.1039/C9TA08490H
- F. Miao, C. Shao, X. Li, K. Wang, N. Lu et al., Three-dimensional freestanding hierarchically porous carbon materials as binder-free electrodes for supercapacitors: high capacitive property and long-term cycling stability. J. Mater. Chem. A 4, 5623 (2016). https://doi.org/10.1039/C6TA00830E
- H.A. Andreas, K. Lussier, A.M. Oickle, Effect of Fe-contamination on rate of self-discharge in carbon-based aqueous electrochemical capacitors. J. Power Sources 187, 275 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.096
References
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008). https://doi.org/10.1038/nmat2297
M.C. Lin, M. Gong, B. Lu, Y. Wu, D.Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520, 324 (2015). https://doi.org/10.1038/nature14340
L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30, 1800804 (2018). https://doi.org/10.1002/adma.201800804
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933 (2012). https://doi.org/10.1002/ange.201106307
S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang et al., Challenges and perspectives for nasicon-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 29, 1700431 (2017). https://doi.org/10.1002/adma.201700431
B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12, 3288 (2019). https://doi.org/10.1039/C9EE02526J
Q. Tan, X. Li, B. Zhang, X. Chen, Y. Tian et al., Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery. Adv. Energy Mater. 10, 2001050 (2020). https://doi.org/10.1002/aenm.202001050
Y. Wang, Y. Xia, Recent progress in supercapacitors: from materials design to system construction. Adv. Mater. 25, 5336 (2013). https://doi.org/10.1002/adma.201301932
L. Dong, W. Yang, W. Yang, Y. Li, W. Wu et al., Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. J. Mater. Chem. A 7, 13810 (2019). https://doi.org/10.1039/C9TA02678A
X. Liu, G.A. Elia, B. Qin, H. Zhang, P. Ruschhaupt et al., High-power Na-ion and K-ion hybrid capacitors exploiting cointercalation in graphite negative electrodes. ACS Energy Lett. 4, 2675 (2019). https://doi.org/10.1021/acsenergylett.9b01675
Q. Tan, X. Chen, H. Wan, B. Zhang, X. Liu et al., Metal-organic framework-derived high conductivity Fe3C with porous carbon on graphene as advanced anode materials for aqueous battery-supercapacitor hybrid devices. J. Power Sources 448, 227403 (2020). https://doi.org/10.1016/j.jpowsour.2019.227403
Y. Gan, C. Wang, X. Chen, P. Liang, H. Wan et al., High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices. Chem. Eng. J. 392, 123661 (2020). https://doi.org/10.1016/j.cej.2019.123661
C. Wang, Z. Song, H. Wan, X. Chen, Q. Tan et al., Ni-Co selenide nanowires supported on conductive wearable textile as cathode for flexible battery-supercapacitor hybrid devices. Chem. Eng. J. 400, 125955 (2020). https://doi.org/10.1016/j.cej.2020.125955
L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
X. Ma, J. Cheng, L. Dong, W. Liu, J. Mou et al., Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Mater. 20, 335 (2019). https://doi.org/10.1016/j.ensm.2018.10.020
H. Wang, M. Wang, Y. Tang, A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 13, 1 (2018). https://doi.org/10.1016/j.ensm.2017.12.022
Y. Tian, R. Amal, D.W. Wang, An aqueous metal-ion capacitor with oxidized carbon nanotubes and metallic zinc electrodes. Front. Energy Res. 4, 34 (2016). https://doi.org/10.3389/fenrg.2016.00034
L. Dong, W. Yang, W. Yang, C. Wang, Y. Li et al., High-power and ultralong-life aqueous zinc-ion hybrid capacitors based on pseudocapacitive charge storage. Nano-Micro Lett. 11, 94 (2019). https://doi.org/10.1007/s40820-019-0328-3
S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng et al., An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 cycles. Adv. Energy Mater. 9, 1902915 (2019). https://doi.org/10.1002/aenm.201902915
X. Zhang, Z. Pei, C. Wang, Z. Yuan, L. Wei et al., Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics. Small 15, 1903817 (2019). https://doi.org/10.1002/smll.201903817
S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi et al., A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J. Mater. Chem. A 7, 7784 (2019). https://doi.org/10.1039/C9TA00733D
H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu et al., Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 31, 1904948 (2019). https://doi.org/10.1002/adma.201904948
P. Liu, W. Liu, Y. Huang, P. Li, J. Yan et al., Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage. Energy Storage Mater. 25, 858 (2020). https://doi.org/10.1016/j.ensm.2019.09.004
Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji et al., High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 66, 104132 (2019). https://doi.org/10.1016/j.nanoen.2019.104132
S. Chen, G. Yang, X. Zhao, N. Wang, T. Luo et al., Hollow mesoporous carbon spheres for high performance symmetrical and aqueous zinc-ion hybrid supercapacitor. Front. Chem. 8, 663 (2020). https://doi.org/10.3389/fchem.2020.00663
G. Sun, H. Yang, G. Zhang, J. Gao, X. Jin et al., A capacity recoverable zinc-ion micro-supercapacitor. Energy Environ. Sci. 11, 3367 (2018). https://doi.org/10.1039/C8EE02567C
C. Wang, S. Wei, S. Chen, D. Cao, L. Song, Delaminating vanadium carbides for zinc-ion storage: hydrate precipitation and H+/Zn2+ co-action mechanism. Small Methods 3, 1900495 (2019). https://doi.org/10.1002/smtd.201900495
Z. Huang, A. Chen, F. Mo, G. Liang, X. Li et al., Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors. Adv. Energy Mater. 10, 2001024 (2020). https://doi.org/10.1002/aenm.202001024
J. Han, K. Wang, W. Liu, C. Li, X. Sun et al., Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell. Nanoscale 10, 13083 (2018). https://doi.org/10.1039/C8NR03889A
Z. Jian, N. Yang, M. Vogel, S. Leith, A. Schulte et al., Flexible diamond fibers for high-energy-density zinc-ion supercapacitors. Adv. Energy Mater. 10, 2002202 (2020). https://doi.org/10.1002/aenm.202002202
Q. Chen, J. Jin, Z. Kou, C. Liao, Z. Liu et al., Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density. Small 16, 2000091 (2020). https://doi.org/10.1002/smll.202000091
W. Zhang, W. Yang, H. Zhou, Z. Zhang, M. Zhao et al., Self-discharge of supercapacitors based on carbon nanotubes with different diameters. Electrochim. Acta 357, 136855 (2020). https://doi.org/10.1016/j.electacta.2020.136855
Q. Zhang, C. Cai, J. Qin, B. Wei, Tunable self-discharge process of carbon nanotube based supercapacitors. Nano Energy 4, 14 (2014). https://doi.org/10.1016/j.nanoen.2013.12.005
L. Xie, F. Su, L. Xie, X. Guo, Z. Wang et al., Effect of pore structure and doping species on charge storage mechanisms in porous carbon-based supercapacitors. Mater. Chem. Front. 4, 2610 (2020). https://doi.org/10.1039/D0QM00180E
J. Black, H.A. Andreas, Prediction of the self-discharge profile of an electrochemical capacitor electrode in the presence of both activation-controlled discharge and charge redistribution. J. Power Sources 195, 929 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.040
J. Wang, B. Ding, X. Hao, Y. Xu, Y. Wang et al., A modified molten-salt method to prepare graphene electrode with high capacitance and low self-discharge rate. Carbon 102, 255 (2016). https://doi.org/10.1016/j.carbon.2016.02.047
L. He, Y. Liu, C. Li, D. Yang, W. Wang et al., A low-cost Zn-based aqueous supercapacitor with high energy density. ACS Appl. Energy Mater. 2, 5835 (2019). https://doi.org/10.1021/acsaem.9b00981
X. Deng, J. Li, Z. Shan, J. Sha, L. Ma et al., A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. J. Mater. Chem. A 8, 11617 (2020). https://doi.org/10.1039/D0TA02770G
N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang et al., High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Adv. Energy Mater. 6, 1501458 (2016). https://doi.org/10.1002/aenm.201501458
Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou et al., Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24, 5713 (2012). https://doi.org/10.1002/adma.201202930
Y.S. Yun, S.Y. Cho, J. Shim, B.H. Kim, S.J. Chang et al., Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 25, 1993 (2013). https://doi.org/10.1002/adma.201204692
Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537 (2011). https://doi.org/10.1126/science.1200770
S. He, C. Zhang, C. Du, C. Cheng, W. Chen, High rate-performance supercapacitor based on nitrogen-doped hollow hexagonal carbon nanoprism arrays with ultrathin wall thickness in situ fabricated on carbon cloth. J. Power Sources 434, 226701 (2019). https://doi.org/10.1016/j.jpowsour.2019.226701
Y. Zhao, L. Zhao, K.X. Yao, Y. Yang, Q. Zhang et al., Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture. J. Mater. Chem. 22, 19726 (2012). https://doi.org/10.1039/C2JM33091A
X. Fan, W. Peng, Y. Li, X. Li, S. Wang et al., Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20, 4490 (2008). https://doi.org/10.1002/adma.200801306
W. Yang, J. Zhou, S. Wang, W. Zhang, Z. Wang et al., Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 12, 1605 (2019). https://doi.org/10.1039/C9EE00536F
Y. Zheng, W. Zhao, D. Jia, Y. Liu, L. Cui et al., Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chem. Eng. J. 387, 124161 (2020). https://doi.org/10.1016/j.cej.2020.124161
P. Zhang, Y. Li, G. Wang, F. Wang, S. Yang et al., Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability. Adv. Mater. 31, 1806005 (2019). https://doi.org/10.1002/adma.201806005
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894 (2016). https://doi.org/10.1021/jacs.6b05958
H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm et al., Li+ ion insertion in TiO2 (Anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 101, 7717 (1997). https://doi.org/10.1021/jp970490q
H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 16, 454 (2017). https://doi.org/10.1038/nmat4810
H.D. Yoo, S.D. Han, R.D. Bayliss, A.A. Gewirth, B. Genorio et al., "Rocking-chair”-type metal hybrid supercapacitors. ACS Appl. Mater. Interfaces 8, 30853 (2016). https://doi.org/10.1021/acsami.6b08367
B. Lee, H.R. Seo, H.R. Lee, C.S. Yoon, J.H. Kim et al., Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. Chemsuschem 9, 2948 (2016). https://doi.org/10.1002/cssc.201600702
T. Qin, Z. Xu, Z. Wang, S. Peng, D. He, 2.5 V salt-in-water supercapacitors based on alkali type double salt/carbon composite anode. J. Mater. Chem. A 7, 26011 (2019). https://doi.org/10.1039/C9TA08490H
F. Miao, C. Shao, X. Li, K. Wang, N. Lu et al., Three-dimensional freestanding hierarchically porous carbon materials as binder-free electrodes for supercapacitors: high capacitive property and long-term cycling stability. J. Mater. Chem. A 4, 5623 (2016). https://doi.org/10.1039/C6TA00830E
H.A. Andreas, K. Lussier, A.M. Oickle, Effect of Fe-contamination on rate of self-discharge in carbon-based aqueous electrochemical capacitors. J. Power Sources 187, 275 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.096