Natural Cocoons Enabling Flexible and Stable Fabric Lithium–Sulfur Full Batteries
Corresponding Author: Chaoyang Wang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 84
Abstract
Lithium–sulfur batteries are highly appealing as high-energy power systems and hold great application prospects for flexible and wearable electronics. However, the easy formation of lithium dendrites, shuttle effect of dissolved polysulfides, random deposition of insulating lithium sulfides, and poor mechanical flexibility of both electrodes seriously restrict the utilization of lithium and stabilities of lithium and sulfur for practical applications. Herein, we present a cooperative strategy employing silk fibroin/sericin to stabilize flexible lithium–sulfur full batteries by simultaneously inhibiting lithium dendrites, adsorbing liquid polysulfides, and anchoring solid lithium sulfides. Benefiting from the abundant nitrogen- and oxygen-containing functional groups, the carbonized fibroin fabric serves as a lithiophilic fabric host for stabilizing the lithium anode, while the carbonized fibroin fabric and the extracted sericin are used as sulfiphilic hosts and adhesive binders, respectively, for stabilizing the sulfur cathode. Consequently, the assembled Li–S full battery provided a high areal capacity (5.6 mAh cm−2), limited lithium excess (90%), a high volumetric energy density (457.2 Wh L−1), high-capacity retention (99.8% per cycle), and remarkable bending capability (6000 flexing cycles at a small radius of 5 mm).
Highlights:
1 A creative cooperative strategy involving silk fibroin/sericin is proposed for stabilizing high-performance flexible Li–S full batteries with a limited Li excess of 90% by simultaneously inhibiting lithium dendrites, adsorbing liquid polysulfides, and anchoring solid lithium sulfides.
2 Such fabric Li–S full batteries offer high volumetric energy density (457.2 Wh L−1), high-capacity retention (99.8% per cycle), and remarkable bending capability (6000 flexing cycles at a small radius of 5 mm).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Chang, J. Shang, Y. Sun, L.K. Ono, D. Wang et al., Flexible and stable high-energy lithium–sulfur full batteries with only 100% oversized lithium. Nat. Commun. 9(1), 4480 (2018). https://doi.org/10.1038/s41467-018-06879-7
- Y. Gao, Q. Guo, Q. Zhang, Y. Cui, Z. Zheng, Fibrous materials for flexible Li–S battery. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202002580
- J.-H. Kim, Y.-H. Lee, S.-J. Cho, J.-G. Gwon, H.-J. Cho et al., Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced li metal anodes: towards ultrahigh energy density and flexibility. Energy Environ. Sci. 12(1), 177–186 (2019). https://doi.org/10.1039/c8ee01879k
- C. Sun, T. Wu, J. Wang, W. Li, J. Jin et al., Favorable lithium deposition behaviors on flexible carbon microtube skeleton enable a high-performance lithium metal anode. J. Mater. Chem. A 6(39), 19159–19166 (2018). https://doi.org/10.1039/c8ta06828c
- C. Jiang, L. Xiang, S. Miao, L. Shi, D. Xie et al., Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv. Mater. 32(17), e1908470 (2020). https://doi.org/10.1002/adma.201908470
- Y. Zhu, M. Yang, Q. Huang, D. Wang, R. Yu et al., V2O5 textile cathodes with high capacity and stability for flexible lithium-ion batteries. Adv. Mater. 32(7), e1906205 (2020). https://doi.org/10.1002/adma.201906205
- C.X. Zhao, W.J. Chen, M. Zhao, Y.W. Song, J.N. Liu et al., Redox mediator assists electron transfer in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes. EcoMat (2020). https://doi.org/10.1002/eom2.12066
- H. Yi, Y. Yang, T. Lan, T. Zhang, S. Xiang et al., Water-based dual-cross-linked polymer binders for high-energy-density lithium–sulfur batteries. ACS Appl. Mater. Interfaces 12(26), 29316–29323 (2020). https://doi.org/10.1021/acsami.0c05910
- H.-J. Peng, J.-Q. Huang, X.-B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7(24), 1700260 (2017). https://doi.org/10.1002/aenm.201700260
- H. Yuan, J.-Q. Huang, H.-J. Peng, M.-M. Titirici, R. Xiang et al., A review of functional binders in lithium–sulfur batteries. Adv. Energy Mater. 8(31), 1802107 (2018). https://doi.org/10.1002/aenm.201802107
- J. Liu, D.G.D. Galpaya, L. Yan, M. Sun, Z. Lin et al., Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li–S battery. Energy Environ. Sci. 10(3), 750–755 (2017). https://doi.org/10.1039/c6ee03033e
- R. Razaq, N. Zhang, Y. Xin, Q. Li, J. Wang et al., Electrocatalytic conversion of lithium polysulfides by highly dispersed ultrafine Mo2C nanoparticles on hollow n-doped carbon flowers for Li–S batteries. EcoMat 2(2), e12020 (2020). https://doi.org/10.1002/eom2.12020
- N. Song, Z. Gao, Y. Zhang, X. Li, B4C nanoskeleton enabled, flexible lithium–sulfur batteries. Nano Energy 58, 30–39 (2019). https://doi.org/10.1016/j.nanoen.2019.01.018
- C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), e1801072 (2019). https://doi.org/10.1002/adma.201801072
- B. Han, D. Feng, S. Li, Z. Zhang, Y. Zou et al., Self-regulated phenomenon of inorganic artificial solid electrolyte interphase for lithium metal batteries. Nano Lett. 20(5), 4029–4037 (2020). https://doi.org/10.1021/acs.nanolett.0c01400
- Q. Pang, X. Liang, I.R. Kochetkov, P. Hartmann, L.F. Nazar, Stabilizing lithium plating by a biphasic surface layer formed in situ. Angew. Chem. Int. Ed. 57(31), 9795–9798 (2018). https://doi.org/10.1002/anie.201805456
- S. Liu, X. Ji, J. Yue, S. Hou, P. Wang et al., High interfacial-energy interphase promoting safe lithium metal batteries. J. Am. Chem. Soc. 142(5), 2438–2447 (2020). https://doi.org/10.1021/jacs.9b11750
- M. Wang, Z. Peng, W. Luo, F. Ren, Z. Li et al., Tailoring lithium deposition via an sei-functionalized membrane derived from LiF decorated layered carbon structure. Adv. Energy Mater. 9(12), 1802912 (2019). https://doi.org/10.1002/aenm.201802912
- R. Fang, H. Xu, B. Xu, X. Li, Y. Li et al., Reaction mechanism optimization of solid-state Li–S batteries with a PEO-based electrolyte. Adv. Funct. Mater. 31(2), 2001812 (2020). https://doi.org/10.1002/adfm.202001812
- H.J. Peng, J.Q. Huang, Q. Zhang, A review of flexible lithium–sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 46(17), 5237–5288 (2017). https://doi.org/10.1039/c7cs00139h
- L. Luo, S.H. Chung, H. Yaghoobnejad Asl, A. Manthiram, Long-life lithium–sulfur batteries with a bifunctional cathode substrate configured with boron carbide nanowires. Adv. Mater. 30(39), e1804149 (2018). https://doi.org/10.1002/adma.201804149
- C.-H. Chang, S.-H. Chung, A. Manthiram, Highly flexible, freestanding tandem sulfur cathodes for foldable Li–S batteries with a high areal capacity. Mater. Horiz. 4(2), 249–258 (2017). https://doi.org/10.1039/c6mh00426a
- X. Song, S. Wang, Y. Bao, G. Liu, W. Sun et al., A high strength, free-standing cathode constructed by regulating graphitization and the pore structure in nitrogen-doped carbon nanofibers for flexible lithium–sulfur batteries. J. Mater. Chem. A 5(15), 6832–6839 (2017). https://doi.org/10.1039/c7ta01171g
- Z. Wang, J. Shen, J. Liu, X. Xu, Z. Liu et al., Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium–sulfur batteries. Adv. Mater. 31(33), e1902228 (2019). https://doi.org/10.1002/adma.201902228
- Z. Cheng, H. Pan, J. Chen, X. Meng, R. Wang, Separator modified by cobalt-embedded carbon nanosheets enabling chemisorption and catalytic effects of polysulfides for high-energy-density lithium–sulfur batteries. Adv. Energy Mater. 9(32), 1901609 (2019). https://doi.org/10.1002/aenm.201901609
- J.H. Yun, J.H. Kim, D.K. Kim, H.W. Lee, Suppressing polysulfide dissolution via cohesive forces by interwoven carbon nanofibers for high-areal-capacity lithium–sulfur batteries. Nano Lett. 18(1), 475–481 (2018). https://doi.org/10.1021/acs.nanolett.7b04425
- S. Liu, J. Li, X. Yan, Q. Su, Y. Lu et al., Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium–sulfur batteries. Adv. Mater. 30(12), e1706895 (2018). https://doi.org/10.1002/adma.201706895
- N. Li, K. Zhang, K. Xie, W. Wei, Y. Gao et al., Reduced-graphene-oxide-guided directional growth of planar lithium layers. Adv. Mater. 32(7), e1907079 (2020). https://doi.org/10.1002/adma.201907079
- L. Guan, H. Hu, L. Li, Y. Pan, Y. Zhu et al., Intrinsic defect-rich hierarchically porous carbon architectures enabling enhanced capture and catalytic conversion of polysulfides. ACS Nano 14(5), 6222–6231 (2020). https://doi.org/10.1021/acsnano.0c02294
- Q. Li, Z. Ma, J. Li, Z. Liu, L. Fan et al., Core–shell-structured sulfur cathode: ultrathin delta-MnO2 nanosheets as the catalytic conversion shell for lithium polysulfides in high sulfur content lithium–sulfur batteries. ACS Appl. Mater. Interfaces 12(31), 35049–35057 (2020). https://doi.org/10.1021/acsami.0c09583
- Y. Dong, Y. Liu, Y. Hu, K. Ma, H. Jiang et al., Boosting reaction kinetics and reversibility in Mott–Schottky VS2/MoS2 heterojunctions for enhanced lithium storage. Sci. Bull. 65(17), 1470–1478 (2020). https://doi.org/10.1016/j.scib.2020.05.007
- Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang et al., Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium–sulfur batteries. Nat. Commun. 8, 14627 (2017). https://doi.org/10.1038/ncomms14627
- L. Luo, J. Li, H. Yaghoobnejad Asl, A. Manthiram, A 3d lithiophilic Mo2N-modified carbon nanofiber architecture for dendrite-free lithium-metal anodes in a full cell. Adv. Mater. 31(48), e1904537 (2019). https://doi.org/10.1002/adma.201904537
- P. Zhai, T. Wang, W. Yang, S. Cui, P. Zhang et al., Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes. Adv. Energy Mater. 9(18), 1804019 (2019). https://doi.org/10.1002/aenm.201804019
- Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141(9), 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
- R. Pathak, K. Chen, A. Gurung, K.M. Reza, B. Bahrami et al., Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 11(1), 93 (2020). https://doi.org/10.1038/s41467-019-13774-2
- X. Chen, T. Hou, K.A. Persson, Q. Zhang, Combining theory and experiment in lithium–sulfur batteries: current progress and future perspectives. Mater. Today 22, 142–158 (2019). https://doi.org/10.1016/j.mattod.2018.04.007
- L. Liu, Y.-X. Yin, J.-Y. Li, S.-H. Wang, Y.-G. Guo et al., Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv. Mater. 30(10), 1706216 (2018). https://doi.org/10.1002/adma.201706216
- J. Chang, Q. Huang, Z. Zheng, A figure of merit for flexible batteries. Joule 4(7), 1346–1349 (2020). https://doi.org/10.1016/j.joule.2020.05.015
- C. Wang, X. Li, E. Gao, M. Jian, K. Xia et al., Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 28(31), 6640–6648 (2016). https://doi.org/10.1002/adma.201601572
- W. Lu, M. Jian, Q. Wang, K. Xia, M. Zhang et al., Hollow core-sheath nanocarbon spheres grown on carbonized silk fabrics for self-supported and nonenzymatic glucose sensing. Nanoscale 11(24), 11856–11863 (2019). https://doi.org/10.1039/c9nr01791g
- X. Li, J. Zhao, Z. Cai, F. Ge, A dyeing-induced heteroatom-co-doped route toward flexible carbon electrode derived from silk fabric. J. Mater. Sci. 53(10), 7735–7743 (2018). https://doi.org/10.1007/s10853-018-2100-3
- X. Li, C. Sun, Z. Cai, F. Ge, High-performance all-solid-state supercapacitor derived from PPY coated carbonized silk fabric. Appl. Surf. Sci. 473, 967–975 (2019). https://doi.org/10.1016/j.apsusc.2018.12.244
- L.K.H. Rocha, L.I.L. Favaro, A.C. Rios, E.C. Silva, W.F. Silva et al., Sericin from bombyx mori cocoons. Part i: extraction and physicochemical-biological characterization for biopharmaceutical applications. Process Biochem. 61, 163–177 (2017). https://doi.org/10.1016/j.procbio.2017.06.019
- C.J. Park, J. Ryoo, C.S. Ki, J.W. Kim, I.S. Kim et al., Effect of molecular weight on the structure and mechanical properties of silk sericin gel, film, and sponge. Int. J. Biol. Macromol. 119, 821–832 (2018). https://doi.org/10.1016/j.ijbiomac.2018.08.006
- C. Wu, L. Fu, J. Maier, Y. Yu, Free-standing graphene-based porous carbon films with three-dimensional hierarchical architecture for advanced flexible li–sulfur batteries. J. Mater. Chem. A 3(18), 9438–9445 (2015). https://doi.org/10.1039/c5ta00343a
- J. Chen, H. Zhang, H. Yang, J. Lei, A. Naveed et al., Towards practical Li–S battery with dense and flexible electrode containing lean electrolyte. Energy Storage Mater. 27, 307–315 (2020). https://doi.org/10.1016/j.ensm.2020.02.013
- G. Zhou, L. Li, D.W. Wang, X.Y. Shan, S. Pei et al., A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv. Mater. 27(4), 641–647 (2015). https://doi.org/10.1002/adma.201404210
- M. Xiang, H. Wu, H. Liu, J. Huang, Y. Zheng et al., A flexible 3d multifunctional MgO-decorated carbon foam@cnts hybrid as self-supported cathode for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 27(37), 1702573 (2017). https://doi.org/10.1002/adfm.201702573
- Y. Mao, G. Li, Y. Guo, Z. Li, C. Liang et al., Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nat. Commun. 8, 14628 (2017). https://doi.org/10.1038/ncomms14628
- P. Xiao, F. Bu, G. Yang, Y. Zhang, Y. Xu, Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium–sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices. Adv. Mater. 29(40), 1703324 (2017). https://doi.org/10.1002/adma.201703324
- M. Yu, Z. Wang, Y. Wang, Y. Dong, J. Qiu, Freestanding flexible Li2S paper electrode with high mass and capacity loading for high-energy Li–S batteries. Adv. Energy Mater. 7(17), 1700018 (2017). https://doi.org/10.1002/aenm.201700018
References
J. Chang, J. Shang, Y. Sun, L.K. Ono, D. Wang et al., Flexible and stable high-energy lithium–sulfur full batteries with only 100% oversized lithium. Nat. Commun. 9(1), 4480 (2018). https://doi.org/10.1038/s41467-018-06879-7
Y. Gao, Q. Guo, Q. Zhang, Y. Cui, Z. Zheng, Fibrous materials for flexible Li–S battery. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202002580
J.-H. Kim, Y.-H. Lee, S.-J. Cho, J.-G. Gwon, H.-J. Cho et al., Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced li metal anodes: towards ultrahigh energy density and flexibility. Energy Environ. Sci. 12(1), 177–186 (2019). https://doi.org/10.1039/c8ee01879k
C. Sun, T. Wu, J. Wang, W. Li, J. Jin et al., Favorable lithium deposition behaviors on flexible carbon microtube skeleton enable a high-performance lithium metal anode. J. Mater. Chem. A 6(39), 19159–19166 (2018). https://doi.org/10.1039/c8ta06828c
C. Jiang, L. Xiang, S. Miao, L. Shi, D. Xie et al., Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv. Mater. 32(17), e1908470 (2020). https://doi.org/10.1002/adma.201908470
Y. Zhu, M. Yang, Q. Huang, D. Wang, R. Yu et al., V2O5 textile cathodes with high capacity and stability for flexible lithium-ion batteries. Adv. Mater. 32(7), e1906205 (2020). https://doi.org/10.1002/adma.201906205
C.X. Zhao, W.J. Chen, M. Zhao, Y.W. Song, J.N. Liu et al., Redox mediator assists electron transfer in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes. EcoMat (2020). https://doi.org/10.1002/eom2.12066
H. Yi, Y. Yang, T. Lan, T. Zhang, S. Xiang et al., Water-based dual-cross-linked polymer binders for high-energy-density lithium–sulfur batteries. ACS Appl. Mater. Interfaces 12(26), 29316–29323 (2020). https://doi.org/10.1021/acsami.0c05910
H.-J. Peng, J.-Q. Huang, X.-B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7(24), 1700260 (2017). https://doi.org/10.1002/aenm.201700260
H. Yuan, J.-Q. Huang, H.-J. Peng, M.-M. Titirici, R. Xiang et al., A review of functional binders in lithium–sulfur batteries. Adv. Energy Mater. 8(31), 1802107 (2018). https://doi.org/10.1002/aenm.201802107
J. Liu, D.G.D. Galpaya, L. Yan, M. Sun, Z. Lin et al., Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li–S battery. Energy Environ. Sci. 10(3), 750–755 (2017). https://doi.org/10.1039/c6ee03033e
R. Razaq, N. Zhang, Y. Xin, Q. Li, J. Wang et al., Electrocatalytic conversion of lithium polysulfides by highly dispersed ultrafine Mo2C nanoparticles on hollow n-doped carbon flowers for Li–S batteries. EcoMat 2(2), e12020 (2020). https://doi.org/10.1002/eom2.12020
N. Song, Z. Gao, Y. Zhang, X. Li, B4C nanoskeleton enabled, flexible lithium–sulfur batteries. Nano Energy 58, 30–39 (2019). https://doi.org/10.1016/j.nanoen.2019.01.018
C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), e1801072 (2019). https://doi.org/10.1002/adma.201801072
B. Han, D. Feng, S. Li, Z. Zhang, Y. Zou et al., Self-regulated phenomenon of inorganic artificial solid electrolyte interphase for lithium metal batteries. Nano Lett. 20(5), 4029–4037 (2020). https://doi.org/10.1021/acs.nanolett.0c01400
Q. Pang, X. Liang, I.R. Kochetkov, P. Hartmann, L.F. Nazar, Stabilizing lithium plating by a biphasic surface layer formed in situ. Angew. Chem. Int. Ed. 57(31), 9795–9798 (2018). https://doi.org/10.1002/anie.201805456
S. Liu, X. Ji, J. Yue, S. Hou, P. Wang et al., High interfacial-energy interphase promoting safe lithium metal batteries. J. Am. Chem. Soc. 142(5), 2438–2447 (2020). https://doi.org/10.1021/jacs.9b11750
M. Wang, Z. Peng, W. Luo, F. Ren, Z. Li et al., Tailoring lithium deposition via an sei-functionalized membrane derived from LiF decorated layered carbon structure. Adv. Energy Mater. 9(12), 1802912 (2019). https://doi.org/10.1002/aenm.201802912
R. Fang, H. Xu, B. Xu, X. Li, Y. Li et al., Reaction mechanism optimization of solid-state Li–S batteries with a PEO-based electrolyte. Adv. Funct. Mater. 31(2), 2001812 (2020). https://doi.org/10.1002/adfm.202001812
H.J. Peng, J.Q. Huang, Q. Zhang, A review of flexible lithium–sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 46(17), 5237–5288 (2017). https://doi.org/10.1039/c7cs00139h
L. Luo, S.H. Chung, H. Yaghoobnejad Asl, A. Manthiram, Long-life lithium–sulfur batteries with a bifunctional cathode substrate configured with boron carbide nanowires. Adv. Mater. 30(39), e1804149 (2018). https://doi.org/10.1002/adma.201804149
C.-H. Chang, S.-H. Chung, A. Manthiram, Highly flexible, freestanding tandem sulfur cathodes for foldable Li–S batteries with a high areal capacity. Mater. Horiz. 4(2), 249–258 (2017). https://doi.org/10.1039/c6mh00426a
X. Song, S. Wang, Y. Bao, G. Liu, W. Sun et al., A high strength, free-standing cathode constructed by regulating graphitization and the pore structure in nitrogen-doped carbon nanofibers for flexible lithium–sulfur batteries. J. Mater. Chem. A 5(15), 6832–6839 (2017). https://doi.org/10.1039/c7ta01171g
Z. Wang, J. Shen, J. Liu, X. Xu, Z. Liu et al., Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium–sulfur batteries. Adv. Mater. 31(33), e1902228 (2019). https://doi.org/10.1002/adma.201902228
Z. Cheng, H. Pan, J. Chen, X. Meng, R. Wang, Separator modified by cobalt-embedded carbon nanosheets enabling chemisorption and catalytic effects of polysulfides for high-energy-density lithium–sulfur batteries. Adv. Energy Mater. 9(32), 1901609 (2019). https://doi.org/10.1002/aenm.201901609
J.H. Yun, J.H. Kim, D.K. Kim, H.W. Lee, Suppressing polysulfide dissolution via cohesive forces by interwoven carbon nanofibers for high-areal-capacity lithium–sulfur batteries. Nano Lett. 18(1), 475–481 (2018). https://doi.org/10.1021/acs.nanolett.7b04425
S. Liu, J. Li, X. Yan, Q. Su, Y. Lu et al., Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium–sulfur batteries. Adv. Mater. 30(12), e1706895 (2018). https://doi.org/10.1002/adma.201706895
N. Li, K. Zhang, K. Xie, W. Wei, Y. Gao et al., Reduced-graphene-oxide-guided directional growth of planar lithium layers. Adv. Mater. 32(7), e1907079 (2020). https://doi.org/10.1002/adma.201907079
L. Guan, H. Hu, L. Li, Y. Pan, Y. Zhu et al., Intrinsic defect-rich hierarchically porous carbon architectures enabling enhanced capture and catalytic conversion of polysulfides. ACS Nano 14(5), 6222–6231 (2020). https://doi.org/10.1021/acsnano.0c02294
Q. Li, Z. Ma, J. Li, Z. Liu, L. Fan et al., Core–shell-structured sulfur cathode: ultrathin delta-MnO2 nanosheets as the catalytic conversion shell for lithium polysulfides in high sulfur content lithium–sulfur batteries. ACS Appl. Mater. Interfaces 12(31), 35049–35057 (2020). https://doi.org/10.1021/acsami.0c09583
Y. Dong, Y. Liu, Y. Hu, K. Ma, H. Jiang et al., Boosting reaction kinetics and reversibility in Mott–Schottky VS2/MoS2 heterojunctions for enhanced lithium storage. Sci. Bull. 65(17), 1470–1478 (2020). https://doi.org/10.1016/j.scib.2020.05.007
Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang et al., Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium–sulfur batteries. Nat. Commun. 8, 14627 (2017). https://doi.org/10.1038/ncomms14627
L. Luo, J. Li, H. Yaghoobnejad Asl, A. Manthiram, A 3d lithiophilic Mo2N-modified carbon nanofiber architecture for dendrite-free lithium-metal anodes in a full cell. Adv. Mater. 31(48), e1904537 (2019). https://doi.org/10.1002/adma.201904537
P. Zhai, T. Wang, W. Yang, S. Cui, P. Zhang et al., Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes. Adv. Energy Mater. 9(18), 1804019 (2019). https://doi.org/10.1002/aenm.201804019
Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141(9), 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
R. Pathak, K. Chen, A. Gurung, K.M. Reza, B. Bahrami et al., Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 11(1), 93 (2020). https://doi.org/10.1038/s41467-019-13774-2
X. Chen, T. Hou, K.A. Persson, Q. Zhang, Combining theory and experiment in lithium–sulfur batteries: current progress and future perspectives. Mater. Today 22, 142–158 (2019). https://doi.org/10.1016/j.mattod.2018.04.007
L. Liu, Y.-X. Yin, J.-Y. Li, S.-H. Wang, Y.-G. Guo et al., Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv. Mater. 30(10), 1706216 (2018). https://doi.org/10.1002/adma.201706216
J. Chang, Q. Huang, Z. Zheng, A figure of merit for flexible batteries. Joule 4(7), 1346–1349 (2020). https://doi.org/10.1016/j.joule.2020.05.015
C. Wang, X. Li, E. Gao, M. Jian, K. Xia et al., Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 28(31), 6640–6648 (2016). https://doi.org/10.1002/adma.201601572
W. Lu, M. Jian, Q. Wang, K. Xia, M. Zhang et al., Hollow core-sheath nanocarbon spheres grown on carbonized silk fabrics for self-supported and nonenzymatic glucose sensing. Nanoscale 11(24), 11856–11863 (2019). https://doi.org/10.1039/c9nr01791g
X. Li, J. Zhao, Z. Cai, F. Ge, A dyeing-induced heteroatom-co-doped route toward flexible carbon electrode derived from silk fabric. J. Mater. Sci. 53(10), 7735–7743 (2018). https://doi.org/10.1007/s10853-018-2100-3
X. Li, C. Sun, Z. Cai, F. Ge, High-performance all-solid-state supercapacitor derived from PPY coated carbonized silk fabric. Appl. Surf. Sci. 473, 967–975 (2019). https://doi.org/10.1016/j.apsusc.2018.12.244
L.K.H. Rocha, L.I.L. Favaro, A.C. Rios, E.C. Silva, W.F. Silva et al., Sericin from bombyx mori cocoons. Part i: extraction and physicochemical-biological characterization for biopharmaceutical applications. Process Biochem. 61, 163–177 (2017). https://doi.org/10.1016/j.procbio.2017.06.019
C.J. Park, J. Ryoo, C.S. Ki, J.W. Kim, I.S. Kim et al., Effect of molecular weight on the structure and mechanical properties of silk sericin gel, film, and sponge. Int. J. Biol. Macromol. 119, 821–832 (2018). https://doi.org/10.1016/j.ijbiomac.2018.08.006
C. Wu, L. Fu, J. Maier, Y. Yu, Free-standing graphene-based porous carbon films with three-dimensional hierarchical architecture for advanced flexible li–sulfur batteries. J. Mater. Chem. A 3(18), 9438–9445 (2015). https://doi.org/10.1039/c5ta00343a
J. Chen, H. Zhang, H. Yang, J. Lei, A. Naveed et al., Towards practical Li–S battery with dense and flexible electrode containing lean electrolyte. Energy Storage Mater. 27, 307–315 (2020). https://doi.org/10.1016/j.ensm.2020.02.013
G. Zhou, L. Li, D.W. Wang, X.Y. Shan, S. Pei et al., A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv. Mater. 27(4), 641–647 (2015). https://doi.org/10.1002/adma.201404210
M. Xiang, H. Wu, H. Liu, J. Huang, Y. Zheng et al., A flexible 3d multifunctional MgO-decorated carbon foam@cnts hybrid as self-supported cathode for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 27(37), 1702573 (2017). https://doi.org/10.1002/adfm.201702573
Y. Mao, G. Li, Y. Guo, Z. Li, C. Liang et al., Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nat. Commun. 8, 14628 (2017). https://doi.org/10.1038/ncomms14628
P. Xiao, F. Bu, G. Yang, Y. Zhang, Y. Xu, Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium–sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices. Adv. Mater. 29(40), 1703324 (2017). https://doi.org/10.1002/adma.201703324
M. Yu, Z. Wang, Y. Wang, Y. Dong, J. Qiu, Freestanding flexible Li2S paper electrode with high mass and capacity loading for high-energy Li–S batteries. Adv. Energy Mater. 7(17), 1700018 (2017). https://doi.org/10.1002/aenm.201700018