Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications
Corresponding Author: Weihong Tan
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 103
Abstract
Investigation of metal–organic frameworks (MOFs) for biomedical applications has attracted much attention in recent years. MOFs are regarded as a promising class of nanocarriers for drug delivery owing to well-defined structure, ultrahigh surface area and porosity, tunable pore size, and easy chemical functionalization. In this review, the unique properties of MOFs and their advantages as nanocarriers for drug delivery in biomedical applications were discussed in the first section. Then, state-of-the-art strategies to functionalize MOFs with therapeutic agents were summarized, including surface adsorption, pore encapsulation, covalent binding, and functional molecules as building blocks. In the third section, the most recent biological applications of MOFs for intracellular delivery of drugs, proteins, and nucleic acids, especially aptamers, were presented. Finally, challenges and prospects were comprehensively discussed to provide context for future development of MOFs as efficient drug delivery systems.
Highlights:
1 Recent advances in biomedical applications of metal–organic framework (MOF) nanocarriers for drug delivery are summarized.
2 State-of-the-art strategies to functionalize MOFs with therapeutic agents, as well as their merits and drawbacks, are comprehensively discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.T. Meek, J.A. Greathouse, M.D. Allendorf, Metal–organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv. Mater. 23, 249–267 (2011). https://doi.org/10.1002/adma.201002854
- H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to Metal–organic frameworks. Chem. Rev. 112, 673–674 (2012). https://doi.org/10.1021/cr300014x
- H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The Chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013). https://doi.org/10.1126/science.1230444
- O.M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995). https://doi.org/10.1038/378703a0
- H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999). https://doi.org/10.1038/46248
- J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009). https://doi.org/10.1039/B802426J
- Y.-S. Bae, R.Q. Snurr, Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem. Int. Ed. 50, 11586–11596 (2011). https://doi.org/10.1002/anie.201101891
- K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, J.R. Long, Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012). https://doi.org/10.1021/cr2003272
- M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Hydrogen storage in metal–organic frameworks. Chem. Rev. 112, 782–835 (2012). https://doi.org/10.1021/cr200274s
- B. Chen, S. Xiang, G. Qian, Metal−organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 43, 1115–1124 (2010). https://doi.org/10.1021/ar100023y
- N.A. Khan, S.H. Jhung, Adsorptive removal and separation of chemicals with metal-organic frameworks: contribution of π-complexation. J. Hazard. Mater. 325, 198–213 (2017). https://doi.org/10.1016/j.jhazmat.2016.11.070
- J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009). https://doi.org/10.1039/B807080F
- J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011–6061 (2014). https://doi.org/10.1039/C4CS00094C
- Y.-B. Huang, J. Liang, X.-S. Wang, R. Cao, Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chem. Soc. Rev. 46, 126–157 (2017). https://doi.org/10.1039/C6CS00250A
- J.-D. Xiao, H.-L. Jiang, Metal–organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 52, 356–366 (2019). https://doi.org/10.1021/acs.accounts.8b00521
- Z. Hu, B.J. Deibert, J. Li, Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43, 5815–5840 (2014). https://doi.org/10.1039/C4CS00010B
- Y. Cui, B. Chen, G. Qian, Lanthanide metal–organic frameworks for luminescent sensing and light-emitting applications. Coord. Chem. Rev. 273–274, 76–86 (2014). https://doi.org/10.1016/j.ccr.2013.10.023
- X. Zhang, W. Wang, Z. Hu, G. Wang, K. Uvdal, Coordination polymers for energy transfer: preparations, properties, sensing applications, and perspectives. Coord. Chem. Rev. 284, 206–235 (2015). https://doi.org/10.1016/j.ccr.2014.10.006
- W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li, S.K. Ghosh, Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46, 3242–3285 (2017). https://doi.org/10.1039/C6CS00930A
- Y. Xu, Q. Li, H. Xue, H. Pang, Metal–organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 376, 292–318 (2018). https://doi.org/10.1016/j.ccr.2018.08.010
- S. Li, F. Huo, Metal–organic framework composites: from fundamentals to applications. Nanoscale 7, 7482–7501 (2015). https://doi.org/10.1039/C5NR00518C
- Y. Zhang, L. Yang, L. Yan, G. Wang, A. Liu, Recent advances in the synthesis of spherical and nanoMOF-derived multifunctional porous carbon for nanomedicine applications. Coord. Chem. Rev. 391, 69–89 (2019). https://doi.org/10.1016/j.ccr.2019.04.006
- R.C. Huxford, J.D. Rocca, W. Lin, Metal–organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol. 14, 262–268 (2010). https://doi.org/10.1016/j.cbpa.2009.12.012
- C.Y. Sun, C. Qin, X.L. Wang, Z.M. Su, Metal–organic frameworks as potential drug delivery systems. Expert Opin. Drug Deliv. 10, 89–101 (2013). https://doi.org/10.1517/17425247.2013.741583
- M. Giménez-Marqués, T. Hidalgo, C. Serre, P. Horcajada, Nanostructured metal–organic frameworks and their bio-related applications. Coord. Chem. Rev. 307, 342–360 (2016). https://doi.org/10.1016/j.ccr.2015.08.008
- B.A. Lakshmi, S. Kim, Current and emerging applications of nanostructured metal–organic frameworks in cancer-targeted theranostics. Mater. Sci. Eng. C 105, 110091 (2019). https://doi.org/10.1016/j.msec.2019.110091
- L. Zhidong, F. Shuran, G. Chuying, L. Weicong, C. Jinxiang, L. Baohong, L. Jianqiang, Metal–organic framework (MOF)-based nanomaterials for biomedical applications. Curr. Med. Chem. 26, 3341–3369 (2019). https://doi.org/10.2174/0929867325666180214123500
- J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, MdP Rodriguez-Torres et al., Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018). https://doi.org/10.1186/s12951-018-0392-8
- B. Yan, Lanthanide-functionalized metal–organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Acc. Chem. Res. 50, 2789–2798 (2017). https://doi.org/10.1021/acs.accounts.7b00387
- O.K. Farha, J.T. Hupp, Rational design, synthesis, purification, and activation of metal−organic framework materials. Acc. Chem. Res. 43, 1166–1175 (2010). https://doi.org/10.1021/ar1000617
- K.K. Tanabe, S.M. Cohen, Postsynthetic modification of metal–organic frameworks—a progress report. Chem. Soc. Rev. 40, 498–519 (2011). https://doi.org/10.1039/C0CS00031K
- W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park et al., Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014). https://doi.org/10.1039/C4CS00003J
- R. Anand, F. Borghi, F. Manoli, I. Manet, V. Agostoni, P. Reschiglian, R. Gref, S. Monti, Host–guest interactions in Fe(III)-Trimesate MOF nanoparticles loaded with doxorubicin. J. Phys. Chem. B 118, 8532–8539 (2014). https://doi.org/10.1021/jp503809w
- H. Ren, L. Zhang, J. An, T. Wang, L. Li et al., Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release. Chem. Commun. 50, 1000–1002 (2014). https://doi.org/10.1039/C3CC47666A
- C. Adhikari, A. Chakraborty, Smart approach for in situ one-step encapsulation and controlled delivery of a chemotherapeutic drug using metal–organic framework-drug composites in aqueous media. ChemPhysChem 17, 1070–1077 (2016). https://doi.org/10.1002/cphc.201501012
- X. Chen, M. Zhang, S. Li, L. Li, L. Zhang et al., Facile synthesis of polypyrrole@metal–organic framework core–shell nanocomposites for dual-mode imaging and synergistic chemo-photothermal therapy of cancer cells. J. Mater. Chem. B 5, 1772–1778 (2017). https://doi.org/10.1039/C6TB03218D
- A. Bhattacharjee, S. Gumma, M.K. Purkait, Fe3O4 promoted metal organic framework MIL-100(Fe) for the controlled release of doxorubicin hydrochloride. Microporous Mesoporous Mater. 259, 203–210 (2018). https://doi.org/10.1016/j.micromeso.2017.10.020
- W.J. Rieter, K.M. Pott, K.M.L. Taylor, W. Lin, Nanoscale coordination polymers for platinum-based anticancer drug delivery. J. Am. Chem. Soc. 130, 11584–11585 (2008). https://doi.org/10.1021/ja803383k
- M.R. di Nunzio, V. Agostoni, B. Cohen, R. Gref, A. Douhal, A “ship in a bottle” strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery. J. Med. Chem. 57, 411–420 (2014). https://doi.org/10.1021/jm4017202
- J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana, C.-K. Tsung, Optimized metal–organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano 8, 2812–2819 (2014). https://doi.org/10.1021/nn406590q
- F.-M. Zhang, H. Dong, X. Zhang, X.-J. Sun, M. Liu, D.-D. Yang, X. Liu, J.-Z. Wei, Postsynthetic modification of ZIF-90 for potential targeted codelivery of two anticancer drugs. ACS Appl. Mater. Interfaces 9, 27332–27337 (2017). https://doi.org/10.1021/acsami.7b08451
- W. Cai, H. Gao, C. Chu, X. Wang, J. Wang et al., Engineering phototheranostic nanoscale metal–organic frameworks for multimodal imaging-guided cancer therapy. ACS Appl. Mater. Interfaces 9, 2040–2051 (2017). https://doi.org/10.1021/acsami.6b11579
- W. Wang, L. Wang, S. Liu, Z. Xie, Metal–organic frameworks@polymer composites containing cyanines for near-infrared fluorescence imaging and photothermal tumor therapy. Bioconjugate Chem. 28, 2784–2793 (2017). https://doi.org/10.1021/acs.bioconjchem.7b00508
- K. Lu, C. He, W. Lin, Nanoscale metal–organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 136, 16712–16715 (2014). https://doi.org/10.1021/ja508679h
- M. Lismont, L. Dreesen, S. Wuttke, Metal–organic framework nanoparticles in photodynamic therapy: current status and perspectives. Adv. Funct. Mater. 27, 1606314 (2017). https://doi.org/10.1002/adfm.201606314
- J. Zhuang, A.P. Young, C.-K. Tsung, Integration of biomolecules with metal–organic frameworks. Small 13, 1700880 (2017). https://doi.org/10.1002/smll.201700880
- J. Mehta, N. Bhardwaj, S.K. Bhardwaj, K.-H. Kim, A. Deep, Recent advances in enzyme immobilization techniques: metal–organic frameworks as novel substrates. Coord. Chem. Rev. 322, 30–40 (2016). https://doi.org/10.1016/j.ccr.2016.05.007
- T.J. Pisklak, M. Macías, D.H. Coutinho, R.S. Huang, K.J. Balkus, Hybrid materials for immobilization of MP-11 catalyst. Top. Catal. 38, 269–278 (2006). https://doi.org/10.1007/s11244-006-0025-6
- W.-L. Liu, S.-H. Lo, B. Singco, C.-C. Yang, H.-Y. Huang, C.-H. Lin, Novel trypsin–FITC@MOF bioreactor efficiently catalyzes protein digestion. J. Mater. Chem. B 1, 928–932 (2013). https://doi.org/10.1039/C3TB00257H
- W.-L. Liu, C.-Y. Wu, C.-Y. Chen, B. Singco, C.-H. Lin, H.-Y. Huang, Fast multipoint immobilized MOF bioreactor. Chem. Eur. J. 20, 8923–8928 (2014). https://doi.org/10.1002/chem.201400270
- W. Ma, Q. Jiang, P. Yu, L. Yang, L. Mao, Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Anal. Chem. 85, 7550–7557 (2013). https://doi.org/10.1021/ac401576u
- G.-H. Qiu, Z.-H. Weng, P.-P. Hu, W.-J. Duan, B.-P. Xie, B. Sun, X.-Y. Tang, J.-X. Chen, Synchronous detection of ebolavirus conserved RNA sequences and ebolavirus-encoded miRNA-like fragment based on a zwitterionic copper (II) metal–organic framework. Talanta 180, 396–402 (2018). https://doi.org/10.1016/j.talanta.2017.12.045
- S. Peng, B. Bie, Y. Sun, M. Liu, H. Cong et al., Metal–organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat. Commun. 9, 1293 (2018). https://doi.org/10.1038/s41467-018-03650-w
- T. Simon-Yarza, A. Mielcarek, P. Couvreur, C. Serre, Nanoparticles of metal–organic frameworks: on the road to in vivo efficacy in biomedicine. Adv. Mater. 30, 1707365 (2018). https://doi.org/10.1002/adma.201707365
- X. Chen, R. Tong, Z. Shi, B. Yang, H. Liu et al., MOF nanoparticles with encapsulated autophagy inhibitor in controlled drug delivery system for antitumor. ACS Appl. Mater. Interfaces 10, 2328–2337 (2018). https://doi.org/10.1021/acsami.7b16522
- X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal–organic frameworks in a biomolecule-friendly environment. Chem. Commun. 51, 13408–13411 (2015). https://doi.org/10.1039/C5CC05136C
- C. Hou, Y. Wang, Q. Ding, L. Jiang, M. Li et al., Facile synthesis of enzyme-embedded magnetic metal–organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor. Nanoscale 7, 18770–18779 (2015). https://doi.org/10.1039/C5NR04994F
- V. Lykourinou, Y. Chen, X.-S. Wang, L. Meng, T. Hoang, L.-J. Ming, R.L. Musselman, S. Ma, Immobilization of MP-11 into a mesoporous metal–organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis. J. Am. Chem. Soc. 133, 10382–10385 (2011). https://doi.org/10.1021/ja2038003
- Y. Chen, V. Lykourinou, C. Vetromile, T. Hoang, L.-J. Ming, R.W. Larsen, S. Ma, How can proteins enter the interior of a MOF? investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows. J. Am. Chem. Soc. 134, 13188–13191 (2012). https://doi.org/10.1021/ja305144x
- D. Feng, T.-F. Liu, J. Su, M. Bosch, Z. Wei et al., Stable metal–organic frameworks containing single-molecule traps for enzyme encapsulation. Nat. Commun. 6, 5979 (2015). https://doi.org/10.1038/ncomms6979
- Z. Wang, S.M. Cohen, Postsynthetic modification of metal–organic frameworks. Chem. Soc. Rev. 38, 1315–1329 (2009). https://doi.org/10.1039/B802258P
- S. Jung, Y. Kim, S.-J. Kim, T.-H. Kwon, S. Huh, S. Park, Bio-functionalization of metal–organic frameworks by covalent protein conjugation. Chem. Commun. 47, 2904–2906 (2011). https://doi.org/10.1039/C0CC03288C
- Y.-H. Shih, S.-H. Lo, N.-S. Yang, B. Singco, Y.-J. Cheng et al., Trypsin-immobilized metal–organic framework as a biocatalyst in proteomics analysis. ChemPlusChem 77, 982–986 (2012). https://doi.org/10.1002/cplu.201200186
- C. Tudisco, G. Zolubas, B. Seoane, H.R. Zafarani, M. Kazemzad, J. Gascon, P.L. Hagedoorn, L. Rassaei, Covalent immobilization of glucose oxidase on amino MOFs via post-synthetic modification. RSC Adv. 6, 108051–108055 (2016). https://doi.org/10.1039/C6RA19976C
- S.-L. Cao, D.-M. Yue, X.-H. Li, T.J. Smith, N. Li et al., Novel nano-/micro-biocatalyst: soybean epoxide hydrolase immobilized on UiO-66-NH2 MOF for efficient biosynthesis of enantiopure (R)-1, 2-octanediol in deep eutectic solvents. ACS Sustainable Chem. Eng. 4, 3586–3595 (2016). https://doi.org/10.1021/acssuschemeng.6b00777
- A.H. El-Sagheer, T. Brown, Click chemistry with DNA. Chem. Soc. Rev. 39, 1388–1405 (2010). https://doi.org/10.1039/B901971P
- P.-Z. Li, X.-J. Wang, Y. Zhao, Click chemistry as a versatile reaction for construction and modification of metal–organic frameworks. Coord. Chem. Rev. 380, 484–518 (2019). https://doi.org/10.1016/j.ccr.2018.11.006
- W. Morris, W.E. Briley, E. Auyeung, M.D. Cabezas, C.A. Mirkin, Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc. 136, 7261–7264 (2014). https://doi.org/10.1021/ja503215w
- S. Wang, C.M. McGuirk, M.B. Ross, S. Wang, P. Chen, H. Xing, Y. Liu, C.A. Mirkin, General and direct method for preparing oligonucleotide-functionalized metal–organic framework nanoparticles. J. Am. Chem. Soc. 139, 9827–9830 (2017). https://doi.org/10.1021/jacs.7b05633
- Y. Sun, L. Sun, D. Feng, H.-C. Zhou, An in situ one-pot synthetic approach towards multivariate zirconium MOFs. Angew. Chem. Int. Ed. 55, 6471–6475 (2016). https://doi.org/10.1002/anie.201602274
- C.D.L. Saunders, N. Burford, U. Werner-Zwanziger, R. McDonald, Preparation and comprehensive characterization of [Hg6(Alanine)4(NO3)4]·H2O. Inorg. Chem. 47, 3693–3699 (2008). https://doi.org/10.1021/ic702321d
- J. Rabone, Y.-F. Yue, S.Y. Chong, K.C. Stylianou, J. Bacsa et al., An adaptable peptide-based porous material. Science 329, 1053–1057 (2010). https://doi.org/10.1126/science.1190672
- A.P. Katsoulidis, K.S. Park, D. Antypov, C. Martí-Gastaldo, G.J. Miller et al., Guest-adaptable and water-stable peptide-based porous materials by imidazolate side chain control. Angew. Chem. Int. Ed. 53, 193–198 (2014). https://doi.org/10.1002/anie.201307074
- S.L. Anderson, K.C. Stylianou, Biologically derived metal organic frameworks. Coord. Chem. Rev. 349, 102–128 (2017). https://doi.org/10.1016/j.ccr.2017.07.012
- S. Rojas, T. Devic, P. Horcajada, Metal organic frameworks based on bioactive components. J. Mater. Chem. B 5, 2560–2573 (2017). https://doi.org/10.1039/C6TB03217F
- S. Verma, A.K. Mishra, J. Kumar, The many facets of adenine: coordination, crystal patterns, and catalysis. Acc. Chem. Res. 43, 79–91 (2010). https://doi.org/10.1021/ar9001334
- J. An, S.J. Geib, N.L. Rosi, Cation-triggered drug release from a porous zinc−adeninate metal−organic framework. J. Am. Chem. Soc. 131, 8376–8377 (2009). https://doi.org/10.1021/ja902972w
- J. An, O.K. Farha, J.T. Hupp, E. Pohl, J.I. Yeh, N.L. Rosi, Metal–adeninate vertices for the construction of an exceptionally porous metal–organic framework. Nat. Commun. 3, 604 (2012). https://doi.org/10.1038/ncomms1618
- M. Zhang, W. Lu, J.-R. Li, M. Bosch, Y.-P. Chen et al., Design and synthesis of nucleobase-incorporated metal–organic materials. Inorg. Chem. Front. 1, 159–162 (2014). https://doi.org/10.1039/C3QI00042G
- L. Galluzzi, A. Buqué, O. Kepp, L. Zitvogel, G. Kroemer, Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015). https://doi.org/10.1016/j.ccell.2015.10.012
- D. Mao, F. Hu, Kenry, S. Ji, W. Wu, D. Ding, D. Kong, B. Liu, Metal–organic-framework-assisted in vivo bacterial metabolic labeling and precise antibacterial therapy. Adv. Mater. 30, 1706831 (2018). https://doi.org/10.1002/adma.201706831
- Y. Chen, P. Li, J.A. Modica, R.J. Drout, O.K. Farha, Acid-resistant mesoporous metal–organic framework toward oral insulin delivery: protein encapsulation, protection, and release. J. Am. Chem. Soc. 140, 5678–5681 (2018). https://doi.org/10.1021/jacs.8b02089
- D.F. Sava Gallis, K.S. Butler, J.O. Agola, C.J. Pearce, A.A. McBride, Antibacterial countermeasures via metal–organic framework-supported sustained therapeutic release. ACS Appl. Mater. Interfaces 11, 7782–7791 (2019). https://doi.org/10.1021/acsami.8b21698
- J. Gandara-Loe, I. Ortuño-Lizarán, L. Fernández-Sanchez, J.L. Alió, N. Cuenca, A. Vega-Estrada, J. Silvestre-Albero, Metal–organic frameworks as drug delivery platforms for ocular therapeutics. ACS Appl. Mater. Interfaces 11, 1924–1931 (2019). https://doi.org/10.1021/acsami.8b20222
- I. Mellman, Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625 (1996). https://doi.org/10.1146/annurev.cellbio.12.1.575
- J. Rejman, V. Oberle, I.S. Zuhorn, D. Hoekstra, Size-dependent internalization of particles via the pathways of clathrin—and caveolae-mediated endocytosis. Biochem. J. 377, 159–169 (2004). https://doi.org/10.1042/bj20031253
- S. Sevimli, S. Sagnella, A. Macmillan, R. Whan, M. Kavallaris, V. Bulmus, T.P. Davis, The endocytic pathway and therapeutic efficiency of doxorubicin conjugated cholesterol-derived polymers. Biomater. Sci. 3, 323–335 (2015). https://doi.org/10.1039/C4BM00224E
- H.T. McMahon, E. Boucrot, Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011). https://doi.org/10.1038/nrm3151
- L. Pelkmans, T. Bürli, M. Zerial, A. Helenius, Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118, 767–780 (2004). https://doi.org/10.1016/j.cell.2004.09.003
- S. Mayor, R.E. Pagano, Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8, 603–612 (2007). https://doi.org/10.1038/nrm2216
- Y. Fu, Q. Feng, Y. Chen, Y. Shen, Q. Su, Y. Zhang, X. Zhou, Y. Cheng, Comparison of two approaches for the attachment of a drug to gold nanoparticles and their anticancer activities. Mol. Pharm. 13, 3308–3317 (2016). https://doi.org/10.1021/acs.molpharmaceut.6b00619
- G. Vassal, A. Gouyette, O. Hartmann, J.L. Pico, J. Lemerle, Pharmacokinetics of high-dose busulfan in children. Cancer Chemother. Pharmacol. 24, 386–390 (1989). https://doi.org/10.1007/bf00257448
- J. Sehouli, G. Oskay-Özcelik, Current role and future aspects of topotecan in relapsed ovarian cancer. Curr. Med. Res. Opin. 25, 639–651 (2009). https://doi.org/10.1185/03007990802707139
- S.J. Nicum, M.E.R. O’Brien, Topotecan for the treatment of small-cell lung cancer. Expert Rev. Anticancer Ther. 7, 795–801 (2007). https://doi.org/10.1586/14737140.7.6.795
- M.-X. Wu, Y.-W. Yang, Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29, 1606134 (2017). https://doi.org/10.1002/adma.201606134
- S.R. Venna, J.B. Jasinski, M.A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 132, 18030–18033 (2010). https://doi.org/10.1021/ja109268m
- Q. Yang, S. Ren, Q. Zhao, R. Lu, C. Hang, Z. Chen, H. Zheng, Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chem. Eng. J. 333, 49–57 (2018). https://doi.org/10.1016/j.cej.2017.09.099
- Z. Wang, X. Tang, X. Wang, D. Yang, C. Yang, Y. Lou, J. Chen, N. He, Near-infrared light-induced dissociation of zeolitic imidazole framework-8 (ZIF-8) with encapsulated CuS nanoparticles and their application as a therapeutic nanoplatform. Chem. Commun. 52, 12210–12213 (2016). https://doi.org/10.1039/C6CC06616J
- B. Chen, Z. Yang, Y. Zhu, Y. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem. A 2, 16811–16831 (2014). https://doi.org/10.1039/C4TA02984D
- K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 103, 10186–10191 (2006). https://doi.org/10.1073/pnas.0602439103
- I.B. Vasconcelos, T.G. da Silva, G.C.G. Militão, T.A. Soares, N.M. Rodrigues et al., Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Adv. 2, 9437–9442 (2012). https://doi.org/10.1039/C2RA21087H
- C.-Y. Sun, C. Qin, X.-L. Wang, G.-S. Yang, K.-Z. Shao et al., Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans. 41, 6906–6909 (2012). https://doi.org/10.1039/C2DT30357D
- H. Zheng, Y. Zhang, L. Liu, W. Wan, P. Guo, A.M. Nyström, X. Zou, One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 138, 962–968 (2016). https://doi.org/10.1021/jacs.5b11720
- F. Wang, D. Zhang, Q. Zhang, Y. Chen, D. Zheng et al., Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel -polymer micelles to overcome multi-drug resistance. Biomaterials 32, 9444–9456 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.041
- H.M. Abdallah, A.M. Al-Abd, R.S. El-Dine, A.M. El-Halawany, P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: a review. J. Adv. Res. 6, 45–62 (2015). https://doi.org/10.1016/j.jare.2014.11.008
- H. Zhang, W. Jiang, R. Liu, J. Zhang, D. Zhang, Z. Li, Y. Luan, Rational design of metal organic framework nanocarrier-based codelivery system of doxorubicin hydrochloride/verapamil hydrochloride for overcoming multidrug resistance with efficient targeted cancer therapy. ACS Appl. Mater. Interfaces 9, 19687–19697 (2017). https://doi.org/10.1021/acsami.7b05142
- Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986). https://doi.org/10.1016/0304-3835(86)90075-3
- H. Maeda, Y. Matsumura, Tumoritropic and lymphotropic principles of macromolecular drugs. Crit. Rev. Ther, Drug 6, 193–210 (1989). https://europepmc.org/article/med/2692843
- X. Qi, Z. Chang, D. Zhang, K.J. Binder, S. Shen et al., Harnessing surface-functionalized metal–organic frameworks for selective tumor cell capture. Chem. Mater. 29, 8052–8056 (2017). https://doi.org/10.1021/acs.chemmater.7b03269
- P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006). https://doi.org/10.1002/anie.200601878
- P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie et al., Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172–178 (2010). https://doi.org/10.1038/nmat2608
- K.M.L. Taylor-Pashow, J. Della Rocca, Z. Xie, S. Tran, W. Lin, Postsynthetic modifications of iron-carboxylate nanoscale metal−organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 131, 14261–14263 (2009). https://doi.org/10.1021/ja906198y
- X.-G. Wang, Z.-Y. Dong, H. Cheng, S.-S. Wan, W.-H. Chen et al., A multifunctional metal–organic framework based tumor targeting drug delivery system for cancer therapy. Nanoscale 7, 16061–16070 (2015). https://doi.org/10.1039/C5NR04045K
- B. Illes, P. Hirschle, S. Barnert, V. Cauda, S. Wuttke, H. Engelke, Exosome-coated metal–organic framework nanoparticles: an efficient drug delivery platform. Chem. Mater. 29, 8042–8046 (2017). https://doi.org/10.1021/acs.chemmater.7b02358
- S. Senapati, A.K. Mahanta, S. Kumar, P. Maiti, Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 3, 7 (2018). https://doi.org/10.1038/s41392-017-0004-3
- S. Sharma, K. Sethi, I. Roy, Magnetic nanoscale metal–organic frameworks for magnetically aided drug delivery and photodynamic therapy. New J. Chem. 41, 11860–11866 (2017). https://doi.org/10.1039/C7NJ02032E
- J. Chen, J. Liu, Y. Hu, Z. Tian, Y. Zhu, Metal–organic framework-coated magnetite nanoparticles for synergistic magnetic hyperthermia and chemotherapy with pH-triggered drug release. Sci. Technol. Adv. Mater. 20, 1043–1054 (2019). https://doi.org/10.1080/14686996.2019.1682467
- X. Du, R. Fan, L. Qiang, K. Xing, H. Ye et al., Controlled Zn2+-triggered drug release by preferred coordination of open active sites within functionalization indium metal organic frameworks. ACS Appl. Mater. Interfaces 9, 28939–28948 (2017). https://doi.org/10.1021/acsami.7b09227
- X. Meng, J. Deng, F. Liu, T. Guo, M. Liu et al., Triggered all-active metal organic framework: ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy. Nano Lett. 19, 7866–7876 (2019). https://doi.org/10.1021/acs.nanolett.9b02904
- M.H. Teplensky, M. Fantham, P. Li, T.C. Wang, J.P. Mehta et al., Temperature treatment of highly porous zirconium-containing metal–organic frameworks extends drug delivery release. J. Am. Chem. Soc. 139, 7522–7532 (2017). https://doi.org/10.1021/jacs.7b01451
- W. Lin, Y. Cui, Y. Yang, Q. Hu, G. Qian, A biocompatible metal–organic framework as a pH and temperature dual-responsive drug carrier. Dalton Trans. 47, 15882–15887 (2018). https://doi.org/10.1039/C8DT03202E
- K. Jiang, L. Zhang, Q. Hu, D. Zhao, T. Xia et al., Pressure controlled drug release in a Zr-cluster-based MOF. J. Mater. Chem. B 4, 6398–6401 (2016). https://doi.org/10.1039/C6TB01756H
- E. Lashkari, H. Wang, L. Liu, J. Li, K. Yam, Innovative application of metal-organic frameworks for encapsulation and controlled release of allyl isothiocyanate. Food Chem. 221, 926–935 (2017). https://doi.org/10.1016/j.foodchem.2016.11.072
- B. Lei, M. Wang, Z. Jiang, W. Qi, R. Su, Z. He, Constructing redox-responsive metal–organic framework nanocarriers for anticancer drug delivery. ACS Appl. Mater. Interfaces 10, 16698–16706 (2018). https://doi.org/10.1021/acsami.7b19693
- Y. Duan, F. Ye, Y. Huang, Y. Qin, C. He, S. Zhao, One-pot synthesis of a metal–organic framework-based drug carrier for intelligent glucose-responsive insulin delivery. Chem. Commun. 54, 5377–5380 (2018). https://doi.org/10.1039/C8CC02708K
- Z. Luo, L. Jiang, S. Yang, Z. Li, W.M.W. Soh, L. Zheng, X.J. Loh, Y.-L. Wu, Light-induced redox-responsive smart drug delivery system by using selenium-containing polymer@MOF shell/core nanocomposite. Adv. Healthcare Mater. 8, 1900406 (2019). https://doi.org/10.1002/adhm.201900406
- Y. Li, K. Zhang, P. Liu, M. Chen, Y. Zhong et al., Encapsulation of plasmid DNA by nanoscale metal–organic frameworks for efficient gene transportation and expression. Adv. Mater. 31, 1901570 (2019). https://doi.org/10.1002/adma.201901570
- A. Fire, S. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver, C.C. Mello, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998). https://doi.org/10.1038/35888
- C. He, K. Lu, D. Liu, W. Lin, Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 136, 5181–5184 (2014). https://doi.org/10.1021/ja4098862
- Q. Chen, M. Xu, W. Zheng, T. Xu, H. Deng, J. Liu, Se/Ru-decorated porous metal–organic framework nanoparticles for the delivery of pooled siRNAs to reversing multidrug resistance in taxol-resistant breast cancer cells. ACS Appl. Mater. Interfaces 9, 6712–6724 (2017). https://doi.org/10.1021/acsami.6b12792
- R. Stoltenburg, C. Reinemann, B. Strehlitz, SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 24, 381–403 (2007). https://doi.org/10.1016/j.bioeng.2007.06.001
- K.-M. Song, S. Lee, C. Ban, Aptamers and their biological applications. Sensors 12, 612–631 (2012). https://doi.org/10.3390/s120100612
- P. Röthlisberger, M. Hollenstein, Aptamer chemistry. Adv. Drug Delivery Rev. 134, 3–21 (2018). https://doi.org/10.1016/j.addr.2018.04.007
- A.D. Keefe, S. Pai, A. Ellington, Aptamers as therapeutics. Nat. Rev. Drug Discovery 9, 537–550 (2010). https://doi.org/10.1038/nrd3141
- P. Sundaram, H. Kurniawan, M.E. Byrne, J. Wower, Therapeutic RNA aptamers in clinical trials. Eur. J. Pharm. Sci. 48, 259–271 (2013). https://doi.org/10.1016/j.ejps.2012.10.014
- H.-M. Meng, H. Liu, H. Kuai, R. Peng, L. Mo, X.-B. Zhang, Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem. Soc. Rev. 45, 2583–2602 (2016). https://doi.org/10.1039/C5CS00645G
- M. Liu, X. Yu, Z. Chen, T. Yang, D. Yang et al., Aptamer selection and applications for breast cancer diagnostics and therapy. J. Nanobiotechnology 15, 81 (2017). https://doi.org/10.1186/s12951-017-0311-4
- D. Shangguan, Y. Li, Z. Tang, Z.C. Cao, H.W. Chen et al., Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA 103, 11838–11843 (2006). https://doi.org/10.1073/pnas.0602615103
- X. Fang, W. Tan, Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc. Chem. Res. 43, 48–57 (2010). https://doi.org/10.1021/ar900101s
- K. Sefah, D. Shangguan, X. Xiong, M.B. O'Donoghue, W. Tan, Development of DNA aptamers using cell-SELEX. Nat. Protoc. 5, 1169–1185 (2010). https://doi.org/10.1038/nprot.2010.66
- W. Tan, M.J. Donovan, J. Jiang, Aptamers from cell-based selection for bioanalytical applications. Chem. Rev. 113, 2842–2862 (2013). https://doi.org/10.1021/cr300468w
- G. Wang, J. Liu, K. Chen, Y. Xu, B. Liu et al., Selection and characterization of DNA aptamer against glucagon receptor by cell-SELEX. Sci. Rep. 7, 7179 (2017). https://doi.org/10.1038/s41598-017-05840-w
- K. Sefah, Z.W. Tang, D.H. Shangguan, H. Chen, D. Lopez-Colon et al., Molecular recognition of acute myeloid leukemia using aptamers. Leukemia 23, 235–244 (2009). https://doi.org/10.1038/leu.2008.335
- H.W. Chen, C.D. Medley, K. Sefah, D. Shangguan, Z. Tang, L. Meng, J.E. Smith, W. Tan, Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem 3, 991–1001 (2008). https://doi.org/10.1002/cmdc.200800030
- P. Parekh, Z. Tang, P.C. Turner, R.W. Moyer, W. Tan, Aptamers recognizing glycosylated hemagglutinin expressed on the surface of vaccinia virus-infected cells. Anal. Chem. 82, 8642–8649 (2010). https://doi.org/10.1021/ac101801j
- I.T. Teng, X. Li, H.A. Yadikar, Z. Yang, L. Li et al., Identification and characterization of DNA aptamers specific for phosphorylation epitopes of Tau protein. J. Am. Chem. Soc. 140, 14314–14323 (2018). https://doi.org/10.1021/jacs.8b08645
- F. Su, Q. Jia, Z. Li, M. Wang, L. He et al., Aptamer-templated silver nanoclusters embedded in zirconium metal–organic framework for targeted antitumor drug delivery. Microporous Mesoporous Mater. 275, 152–162 (2019). https://doi.org/10.1016/j.micromeso.2018.08.026
- W.-H. Chen, X. Yu, W.-C. Liao, Y.S. Sohn, A. Cecconello, A. Kozell, R. Nechushtai, I. Willner, ATP-responsive aptamer-based metal–organic framework nanoparticles (NMOFs) for the controlled release of loads and drugs. Adv. Funct. Mater. 27, 1702102 (2017). https://doi.org/10.1002/adfm.201702102
- W.-H. Chen, G.-F. Luo, M. Vázquez-González, R. Cazelles, Y.S. Sohn, R. Nechushtai, Y. Mandel, I. Willner, Glucose-responsive metal–organic-framework nanoparticles act as “smart” sense-and-treat carriers. ACS Nano 12, 7538–7545 (2018). https://doi.org/10.1021/acsnano.8b03417
- Z. Wang, Y. Fu, Z. Kang, X. Liu, N. Chen et al., Organelle-specific triggered release of immunostimulatory oligonucleotides from intrinsically coordinated DNA–metal–organic frameworks with soluble exoskeleton. J. Am. Chem. Soc. 139, 15784–15791 (2017). https://doi.org/10.1021/jacs.7b07895
- S. Wang, Y. Chen, S. Wang, P. Li, C.A. Mirkin, O.K. Farha, DNA-functionalized metal–organic framework nanoparticles for intracellular delivery of proteins. J. Am. Chem. Soc. 141, 2215–2219 (2019). https://doi.org/10.1021/jacs.8b12705
- Z. Liang, Z. Yang, H. Yuan, C. Wang, J. Qi, K. Liu, R. Cao, H. Zheng, A protein@metal–organic framework nanocomposite for pH-triggered anticancer drug delivery. Dalton Trans. 47, 10223–10228 (2018). https://doi.org/10.1039/C8DT01789A
- X. Yang, Q. Tang, Y. Jiang, M. Zhang, M. Wang, L. Mao, Nanoscale ATP-responsive zeolitic imidazole framework-90 as a general platform for cytosolic protein delivery and genome editing. J. Am. Chem. Soc. 141, 3782–3786 (2019). https://doi.org/10.1021/jacs.8b11996
- E. Gkaniatsou, C. Sicard, R. Ricoux, J.-P. Mahy, N. Steunou, C. Serre, Metal–organic frameworks: a novel host platform for enzymatic catalysis and detection. Mater. Horiz. 4, 55–63 (2017). https://doi.org/10.1039/C6MH00312E
- S. Kempahanumakkagari, V. Kumar, P. Samaddar, P. Kumar, T. Ramakrishnappa, K.-H. Kim, Biomolecule-embedded metal-organic frameworks as an innovative sensing platform. Biotechnol. Adv. 36, 467–481 (2018). https://doi.org/10.1016/j.biotechadv.2018.01.014
- Q. Qiu, H. Chen, Y. Wang, Y. Ying, Recent advances in the rational synthesis and sensing applications of metal-organic framework biocomposites. Coord. Chem. Rev. 387, 60–78 (2019). https://doi.org/10.1016/j.ccr.2019.02.009
- H. An, M. Li, J. Gao, Z. Zhang, S. Ma, Y. Chen, Incorporation of biomolecules in metal-organic frameworks for advanced applications. Coord. Chem. Rev. 384, 90–106 (2019). https://doi.org/10.1016/j.ccr.2019.01.001
- X. Lian, Y. Huang, Y. Zhu, Y. Fang, R. Zhao et al., Enzyme-MOF nanoreactor activates nontoxic paracetamol for cancer therapy. Angew. Chem. Int. Ed. 57, 5725–5730 (2018). https://doi.org/10.1002/anie.201801378
- S. Rojas, I. Colinet, D. Cunha, T. Hidalgo, F. Salles, C. Serre, N. Guillou, P. Horcajada, Toward understanding drug incorporation and delivery from biocompatible metal–organic frameworks in view of cutaneous administration. ACS Omega 3, 2994–3003 (2018). https://doi.org/10.1021/acsomega.8b00185
- C. Tamames-Tabar, D. Cunha, E. Imbuluzqueta, F. Ragon, C. Serre, M.J. Blanco-Prieto, P. Horcajada, Cytotoxicity of nanoscaled metal–organic frameworks. J. Mater. Chem. B 2, 262–271 (2014). https://doi.org/10.1039/C3TB20832J
- À. Ruyra, A. Yazdi, J. Espín, A. Carné-Sánchez, N. Roher, J. Lorenzo, I. Imaz, D. Maspoch, Synthesis, culture medium stability, and in vitro and in vivo zebrafish embryo toxicity of metal–organic framework nanoparticles. Chem. Eur. J. 21, 2508–2518 (2015). https://doi.org/10.1002/chem.201405380
- T. Baati, L. Njim, F. Neffati, A. Kerkeni, M. Bouttemi et al., In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal–organic frameworks. Chem. Sci. 4, 1597–1607 (2013). https://doi.org/10.1039/C3SC22116D
- N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012). https://doi.org/10.1021/cr200304e
- E. Abbasi, S.F. Aval, A. Akbarzadeh, M. Milani, H.T. Nasrabadi et al., Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett. 9, 247 (2014). https://doi.org/10.1186/1556-276X-9-247
- Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink, Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590–2605 (2012). https://doi.org/10.1039/C1CS15246G
- S. Wang, C.M. McGuirk, A. d'Aquino, J.A. Mason, C.A. Mirkin, Metal–organic framework nanoparticles. Adv. Mater. 30, 1800202 (2018). https://doi.org/10.1002/adma.201800202
- P. Hirschle, T. Preiß, F. Auras, A. Pick, J. Völkner et al., Exploration of MOF nanoparticle sizes using various physical characterization methods—is what you measure what you get? CrystEngComm 18, 4359–4368 (2016). https://doi.org/10.1039/C6CE00198J
- S. Svenson, Dendrimers as versatile platform in drug delivery applications. Eur. J. Pharm. Biopharm. 71, 445–462 (2009). https://doi.org/10.1016/j.ejpb.2008.09.023
- Y.-S. Lin, K.R. Hurley, C.L. Haynes, Critical considerations in the biomedical use of mesoporous silica nanoparticles. J. Phys. Chem. Lett. 3, 364–374 (2012). https://doi.org/10.1021/jz2013837
- M. Vallet-Regí, F. Balas, D. Arcos, Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. 46, 7548–7558 (2007). https://doi.org/10.1002/anie.200604488
- J. Zhu, X. Shi, Dendrimer-based nanodevices for targeted drug delivery applications. J. Mater. Chem. B 1, 4199–4211 (2013). https://doi.org/10.1039/C3TB20724B
- E.M. Flanigen, J.M. Bennett, R.W. Grose, J.P. Cohen, R.L. Patton, R.M. Kirchner, J.V. Smith, Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature 271, 512–516 (1978). https://doi.org/10.1038/271512a0
- O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003). https://doi.org/10.1038/nature01650
- O.A. Matthews, A.N. Shipway, J.F. Stoddart, Dendrimers—Branching out from curiosities into new technologies. Prog. Polym. Sci. 23, 1–56 (1998). https://doi.org/10.1016/S0079-6700(97)00025-7
- C. Argyo, V. Weiss, C. Bräuchle, T. Bein, Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater. 26, 435–451 (2014). https://doi.org/10.1021/cm402592t
- A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R.A. Fischer, Flexible metal–organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014). https://doi.org/10.1039/C4CS00101J
- J. Siefker, P. Karande, M.-O. Coppens, Packaging biological cargoes in mesoporous materials: opportunities for drug delivery. Expert Opin. Drug Deliv. 11, 1781–1793 (2014). https://doi.org/10.1517/17425247.2014.938636
References
S.T. Meek, J.A. Greathouse, M.D. Allendorf, Metal–organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv. Mater. 23, 249–267 (2011). https://doi.org/10.1002/adma.201002854
H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to Metal–organic frameworks. Chem. Rev. 112, 673–674 (2012). https://doi.org/10.1021/cr300014x
H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The Chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013). https://doi.org/10.1126/science.1230444
O.M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995). https://doi.org/10.1038/378703a0
H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999). https://doi.org/10.1038/46248
J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009). https://doi.org/10.1039/B802426J
Y.-S. Bae, R.Q. Snurr, Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem. Int. Ed. 50, 11586–11596 (2011). https://doi.org/10.1002/anie.201101891
K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, J.R. Long, Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012). https://doi.org/10.1021/cr2003272
M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Hydrogen storage in metal–organic frameworks. Chem. Rev. 112, 782–835 (2012). https://doi.org/10.1021/cr200274s
B. Chen, S. Xiang, G. Qian, Metal−organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 43, 1115–1124 (2010). https://doi.org/10.1021/ar100023y
N.A. Khan, S.H. Jhung, Adsorptive removal and separation of chemicals with metal-organic frameworks: contribution of π-complexation. J. Hazard. Mater. 325, 198–213 (2017). https://doi.org/10.1016/j.jhazmat.2016.11.070
J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009). https://doi.org/10.1039/B807080F
J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011–6061 (2014). https://doi.org/10.1039/C4CS00094C
Y.-B. Huang, J. Liang, X.-S. Wang, R. Cao, Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chem. Soc. Rev. 46, 126–157 (2017). https://doi.org/10.1039/C6CS00250A
J.-D. Xiao, H.-L. Jiang, Metal–organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 52, 356–366 (2019). https://doi.org/10.1021/acs.accounts.8b00521
Z. Hu, B.J. Deibert, J. Li, Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43, 5815–5840 (2014). https://doi.org/10.1039/C4CS00010B
Y. Cui, B. Chen, G. Qian, Lanthanide metal–organic frameworks for luminescent sensing and light-emitting applications. Coord. Chem. Rev. 273–274, 76–86 (2014). https://doi.org/10.1016/j.ccr.2013.10.023
X. Zhang, W. Wang, Z. Hu, G. Wang, K. Uvdal, Coordination polymers for energy transfer: preparations, properties, sensing applications, and perspectives. Coord. Chem. Rev. 284, 206–235 (2015). https://doi.org/10.1016/j.ccr.2014.10.006
W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li, S.K. Ghosh, Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46, 3242–3285 (2017). https://doi.org/10.1039/C6CS00930A
Y. Xu, Q. Li, H. Xue, H. Pang, Metal–organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 376, 292–318 (2018). https://doi.org/10.1016/j.ccr.2018.08.010
S. Li, F. Huo, Metal–organic framework composites: from fundamentals to applications. Nanoscale 7, 7482–7501 (2015). https://doi.org/10.1039/C5NR00518C
Y. Zhang, L. Yang, L. Yan, G. Wang, A. Liu, Recent advances in the synthesis of spherical and nanoMOF-derived multifunctional porous carbon for nanomedicine applications. Coord. Chem. Rev. 391, 69–89 (2019). https://doi.org/10.1016/j.ccr.2019.04.006
R.C. Huxford, J.D. Rocca, W. Lin, Metal–organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol. 14, 262–268 (2010). https://doi.org/10.1016/j.cbpa.2009.12.012
C.Y. Sun, C. Qin, X.L. Wang, Z.M. Su, Metal–organic frameworks as potential drug delivery systems. Expert Opin. Drug Deliv. 10, 89–101 (2013). https://doi.org/10.1517/17425247.2013.741583
M. Giménez-Marqués, T. Hidalgo, C. Serre, P. Horcajada, Nanostructured metal–organic frameworks and their bio-related applications. Coord. Chem. Rev. 307, 342–360 (2016). https://doi.org/10.1016/j.ccr.2015.08.008
B.A. Lakshmi, S. Kim, Current and emerging applications of nanostructured metal–organic frameworks in cancer-targeted theranostics. Mater. Sci. Eng. C 105, 110091 (2019). https://doi.org/10.1016/j.msec.2019.110091
L. Zhidong, F. Shuran, G. Chuying, L. Weicong, C. Jinxiang, L. Baohong, L. Jianqiang, Metal–organic framework (MOF)-based nanomaterials for biomedical applications. Curr. Med. Chem. 26, 3341–3369 (2019). https://doi.org/10.2174/0929867325666180214123500
J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, MdP Rodriguez-Torres et al., Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018). https://doi.org/10.1186/s12951-018-0392-8
B. Yan, Lanthanide-functionalized metal–organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Acc. Chem. Res. 50, 2789–2798 (2017). https://doi.org/10.1021/acs.accounts.7b00387
O.K. Farha, J.T. Hupp, Rational design, synthesis, purification, and activation of metal−organic framework materials. Acc. Chem. Res. 43, 1166–1175 (2010). https://doi.org/10.1021/ar1000617
K.K. Tanabe, S.M. Cohen, Postsynthetic modification of metal–organic frameworks—a progress report. Chem. Soc. Rev. 40, 498–519 (2011). https://doi.org/10.1039/C0CS00031K
W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park et al., Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014). https://doi.org/10.1039/C4CS00003J
R. Anand, F. Borghi, F. Manoli, I. Manet, V. Agostoni, P. Reschiglian, R. Gref, S. Monti, Host–guest interactions in Fe(III)-Trimesate MOF nanoparticles loaded with doxorubicin. J. Phys. Chem. B 118, 8532–8539 (2014). https://doi.org/10.1021/jp503809w
H. Ren, L. Zhang, J. An, T. Wang, L. Li et al., Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release. Chem. Commun. 50, 1000–1002 (2014). https://doi.org/10.1039/C3CC47666A
C. Adhikari, A. Chakraborty, Smart approach for in situ one-step encapsulation and controlled delivery of a chemotherapeutic drug using metal–organic framework-drug composites in aqueous media. ChemPhysChem 17, 1070–1077 (2016). https://doi.org/10.1002/cphc.201501012
X. Chen, M. Zhang, S. Li, L. Li, L. Zhang et al., Facile synthesis of polypyrrole@metal–organic framework core–shell nanocomposites for dual-mode imaging and synergistic chemo-photothermal therapy of cancer cells. J. Mater. Chem. B 5, 1772–1778 (2017). https://doi.org/10.1039/C6TB03218D
A. Bhattacharjee, S. Gumma, M.K. Purkait, Fe3O4 promoted metal organic framework MIL-100(Fe) for the controlled release of doxorubicin hydrochloride. Microporous Mesoporous Mater. 259, 203–210 (2018). https://doi.org/10.1016/j.micromeso.2017.10.020
W.J. Rieter, K.M. Pott, K.M.L. Taylor, W. Lin, Nanoscale coordination polymers for platinum-based anticancer drug delivery. J. Am. Chem. Soc. 130, 11584–11585 (2008). https://doi.org/10.1021/ja803383k
M.R. di Nunzio, V. Agostoni, B. Cohen, R. Gref, A. Douhal, A “ship in a bottle” strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery. J. Med. Chem. 57, 411–420 (2014). https://doi.org/10.1021/jm4017202
J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana, C.-K. Tsung, Optimized metal–organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano 8, 2812–2819 (2014). https://doi.org/10.1021/nn406590q
F.-M. Zhang, H. Dong, X. Zhang, X.-J. Sun, M. Liu, D.-D. Yang, X. Liu, J.-Z. Wei, Postsynthetic modification of ZIF-90 for potential targeted codelivery of two anticancer drugs. ACS Appl. Mater. Interfaces 9, 27332–27337 (2017). https://doi.org/10.1021/acsami.7b08451
W. Cai, H. Gao, C. Chu, X. Wang, J. Wang et al., Engineering phototheranostic nanoscale metal–organic frameworks for multimodal imaging-guided cancer therapy. ACS Appl. Mater. Interfaces 9, 2040–2051 (2017). https://doi.org/10.1021/acsami.6b11579
W. Wang, L. Wang, S. Liu, Z. Xie, Metal–organic frameworks@polymer composites containing cyanines for near-infrared fluorescence imaging and photothermal tumor therapy. Bioconjugate Chem. 28, 2784–2793 (2017). https://doi.org/10.1021/acs.bioconjchem.7b00508
K. Lu, C. He, W. Lin, Nanoscale metal–organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 136, 16712–16715 (2014). https://doi.org/10.1021/ja508679h
M. Lismont, L. Dreesen, S. Wuttke, Metal–organic framework nanoparticles in photodynamic therapy: current status and perspectives. Adv. Funct. Mater. 27, 1606314 (2017). https://doi.org/10.1002/adfm.201606314
J. Zhuang, A.P. Young, C.-K. Tsung, Integration of biomolecules with metal–organic frameworks. Small 13, 1700880 (2017). https://doi.org/10.1002/smll.201700880
J. Mehta, N. Bhardwaj, S.K. Bhardwaj, K.-H. Kim, A. Deep, Recent advances in enzyme immobilization techniques: metal–organic frameworks as novel substrates. Coord. Chem. Rev. 322, 30–40 (2016). https://doi.org/10.1016/j.ccr.2016.05.007
T.J. Pisklak, M. Macías, D.H. Coutinho, R.S. Huang, K.J. Balkus, Hybrid materials for immobilization of MP-11 catalyst. Top. Catal. 38, 269–278 (2006). https://doi.org/10.1007/s11244-006-0025-6
W.-L. Liu, S.-H. Lo, B. Singco, C.-C. Yang, H.-Y. Huang, C.-H. Lin, Novel trypsin–FITC@MOF bioreactor efficiently catalyzes protein digestion. J. Mater. Chem. B 1, 928–932 (2013). https://doi.org/10.1039/C3TB00257H
W.-L. Liu, C.-Y. Wu, C.-Y. Chen, B. Singco, C.-H. Lin, H.-Y. Huang, Fast multipoint immobilized MOF bioreactor. Chem. Eur. J. 20, 8923–8928 (2014). https://doi.org/10.1002/chem.201400270
W. Ma, Q. Jiang, P. Yu, L. Yang, L. Mao, Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Anal. Chem. 85, 7550–7557 (2013). https://doi.org/10.1021/ac401576u
G.-H. Qiu, Z.-H. Weng, P.-P. Hu, W.-J. Duan, B.-P. Xie, B. Sun, X.-Y. Tang, J.-X. Chen, Synchronous detection of ebolavirus conserved RNA sequences and ebolavirus-encoded miRNA-like fragment based on a zwitterionic copper (II) metal–organic framework. Talanta 180, 396–402 (2018). https://doi.org/10.1016/j.talanta.2017.12.045
S. Peng, B. Bie, Y. Sun, M. Liu, H. Cong et al., Metal–organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat. Commun. 9, 1293 (2018). https://doi.org/10.1038/s41467-018-03650-w
T. Simon-Yarza, A. Mielcarek, P. Couvreur, C. Serre, Nanoparticles of metal–organic frameworks: on the road to in vivo efficacy in biomedicine. Adv. Mater. 30, 1707365 (2018). https://doi.org/10.1002/adma.201707365
X. Chen, R. Tong, Z. Shi, B. Yang, H. Liu et al., MOF nanoparticles with encapsulated autophagy inhibitor in controlled drug delivery system for antitumor. ACS Appl. Mater. Interfaces 10, 2328–2337 (2018). https://doi.org/10.1021/acsami.7b16522
X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal–organic frameworks in a biomolecule-friendly environment. Chem. Commun. 51, 13408–13411 (2015). https://doi.org/10.1039/C5CC05136C
C. Hou, Y. Wang, Q. Ding, L. Jiang, M. Li et al., Facile synthesis of enzyme-embedded magnetic metal–organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor. Nanoscale 7, 18770–18779 (2015). https://doi.org/10.1039/C5NR04994F
V. Lykourinou, Y. Chen, X.-S. Wang, L. Meng, T. Hoang, L.-J. Ming, R.L. Musselman, S. Ma, Immobilization of MP-11 into a mesoporous metal–organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis. J. Am. Chem. Soc. 133, 10382–10385 (2011). https://doi.org/10.1021/ja2038003
Y. Chen, V. Lykourinou, C. Vetromile, T. Hoang, L.-J. Ming, R.W. Larsen, S. Ma, How can proteins enter the interior of a MOF? investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows. J. Am. Chem. Soc. 134, 13188–13191 (2012). https://doi.org/10.1021/ja305144x
D. Feng, T.-F. Liu, J. Su, M. Bosch, Z. Wei et al., Stable metal–organic frameworks containing single-molecule traps for enzyme encapsulation. Nat. Commun. 6, 5979 (2015). https://doi.org/10.1038/ncomms6979
Z. Wang, S.M. Cohen, Postsynthetic modification of metal–organic frameworks. Chem. Soc. Rev. 38, 1315–1329 (2009). https://doi.org/10.1039/B802258P
S. Jung, Y. Kim, S.-J. Kim, T.-H. Kwon, S. Huh, S. Park, Bio-functionalization of metal–organic frameworks by covalent protein conjugation. Chem. Commun. 47, 2904–2906 (2011). https://doi.org/10.1039/C0CC03288C
Y.-H. Shih, S.-H. Lo, N.-S. Yang, B. Singco, Y.-J. Cheng et al., Trypsin-immobilized metal–organic framework as a biocatalyst in proteomics analysis. ChemPlusChem 77, 982–986 (2012). https://doi.org/10.1002/cplu.201200186
C. Tudisco, G. Zolubas, B. Seoane, H.R. Zafarani, M. Kazemzad, J. Gascon, P.L. Hagedoorn, L. Rassaei, Covalent immobilization of glucose oxidase on amino MOFs via post-synthetic modification. RSC Adv. 6, 108051–108055 (2016). https://doi.org/10.1039/C6RA19976C
S.-L. Cao, D.-M. Yue, X.-H. Li, T.J. Smith, N. Li et al., Novel nano-/micro-biocatalyst: soybean epoxide hydrolase immobilized on UiO-66-NH2 MOF for efficient biosynthesis of enantiopure (R)-1, 2-octanediol in deep eutectic solvents. ACS Sustainable Chem. Eng. 4, 3586–3595 (2016). https://doi.org/10.1021/acssuschemeng.6b00777
A.H. El-Sagheer, T. Brown, Click chemistry with DNA. Chem. Soc. Rev. 39, 1388–1405 (2010). https://doi.org/10.1039/B901971P
P.-Z. Li, X.-J. Wang, Y. Zhao, Click chemistry as a versatile reaction for construction and modification of metal–organic frameworks. Coord. Chem. Rev. 380, 484–518 (2019). https://doi.org/10.1016/j.ccr.2018.11.006
W. Morris, W.E. Briley, E. Auyeung, M.D. Cabezas, C.A. Mirkin, Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc. 136, 7261–7264 (2014). https://doi.org/10.1021/ja503215w
S. Wang, C.M. McGuirk, M.B. Ross, S. Wang, P. Chen, H. Xing, Y. Liu, C.A. Mirkin, General and direct method for preparing oligonucleotide-functionalized metal–organic framework nanoparticles. J. Am. Chem. Soc. 139, 9827–9830 (2017). https://doi.org/10.1021/jacs.7b05633
Y. Sun, L. Sun, D. Feng, H.-C. Zhou, An in situ one-pot synthetic approach towards multivariate zirconium MOFs. Angew. Chem. Int. Ed. 55, 6471–6475 (2016). https://doi.org/10.1002/anie.201602274
C.D.L. Saunders, N. Burford, U. Werner-Zwanziger, R. McDonald, Preparation and comprehensive characterization of [Hg6(Alanine)4(NO3)4]·H2O. Inorg. Chem. 47, 3693–3699 (2008). https://doi.org/10.1021/ic702321d
J. Rabone, Y.-F. Yue, S.Y. Chong, K.C. Stylianou, J. Bacsa et al., An adaptable peptide-based porous material. Science 329, 1053–1057 (2010). https://doi.org/10.1126/science.1190672
A.P. Katsoulidis, K.S. Park, D. Antypov, C. Martí-Gastaldo, G.J. Miller et al., Guest-adaptable and water-stable peptide-based porous materials by imidazolate side chain control. Angew. Chem. Int. Ed. 53, 193–198 (2014). https://doi.org/10.1002/anie.201307074
S.L. Anderson, K.C. Stylianou, Biologically derived metal organic frameworks. Coord. Chem. Rev. 349, 102–128 (2017). https://doi.org/10.1016/j.ccr.2017.07.012
S. Rojas, T. Devic, P. Horcajada, Metal organic frameworks based on bioactive components. J. Mater. Chem. B 5, 2560–2573 (2017). https://doi.org/10.1039/C6TB03217F
S. Verma, A.K. Mishra, J. Kumar, The many facets of adenine: coordination, crystal patterns, and catalysis. Acc. Chem. Res. 43, 79–91 (2010). https://doi.org/10.1021/ar9001334
J. An, S.J. Geib, N.L. Rosi, Cation-triggered drug release from a porous zinc−adeninate metal−organic framework. J. Am. Chem. Soc. 131, 8376–8377 (2009). https://doi.org/10.1021/ja902972w
J. An, O.K. Farha, J.T. Hupp, E. Pohl, J.I. Yeh, N.L. Rosi, Metal–adeninate vertices for the construction of an exceptionally porous metal–organic framework. Nat. Commun. 3, 604 (2012). https://doi.org/10.1038/ncomms1618
M. Zhang, W. Lu, J.-R. Li, M. Bosch, Y.-P. Chen et al., Design and synthesis of nucleobase-incorporated metal–organic materials. Inorg. Chem. Front. 1, 159–162 (2014). https://doi.org/10.1039/C3QI00042G
L. Galluzzi, A. Buqué, O. Kepp, L. Zitvogel, G. Kroemer, Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015). https://doi.org/10.1016/j.ccell.2015.10.012
D. Mao, F. Hu, Kenry, S. Ji, W. Wu, D. Ding, D. Kong, B. Liu, Metal–organic-framework-assisted in vivo bacterial metabolic labeling and precise antibacterial therapy. Adv. Mater. 30, 1706831 (2018). https://doi.org/10.1002/adma.201706831
Y. Chen, P. Li, J.A. Modica, R.J. Drout, O.K. Farha, Acid-resistant mesoporous metal–organic framework toward oral insulin delivery: protein encapsulation, protection, and release. J. Am. Chem. Soc. 140, 5678–5681 (2018). https://doi.org/10.1021/jacs.8b02089
D.F. Sava Gallis, K.S. Butler, J.O. Agola, C.J. Pearce, A.A. McBride, Antibacterial countermeasures via metal–organic framework-supported sustained therapeutic release. ACS Appl. Mater. Interfaces 11, 7782–7791 (2019). https://doi.org/10.1021/acsami.8b21698
J. Gandara-Loe, I. Ortuño-Lizarán, L. Fernández-Sanchez, J.L. Alió, N. Cuenca, A. Vega-Estrada, J. Silvestre-Albero, Metal–organic frameworks as drug delivery platforms for ocular therapeutics. ACS Appl. Mater. Interfaces 11, 1924–1931 (2019). https://doi.org/10.1021/acsami.8b20222
I. Mellman, Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625 (1996). https://doi.org/10.1146/annurev.cellbio.12.1.575
J. Rejman, V. Oberle, I.S. Zuhorn, D. Hoekstra, Size-dependent internalization of particles via the pathways of clathrin—and caveolae-mediated endocytosis. Biochem. J. 377, 159–169 (2004). https://doi.org/10.1042/bj20031253
S. Sevimli, S. Sagnella, A. Macmillan, R. Whan, M. Kavallaris, V. Bulmus, T.P. Davis, The endocytic pathway and therapeutic efficiency of doxorubicin conjugated cholesterol-derived polymers. Biomater. Sci. 3, 323–335 (2015). https://doi.org/10.1039/C4BM00224E
H.T. McMahon, E. Boucrot, Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011). https://doi.org/10.1038/nrm3151
L. Pelkmans, T. Bürli, M. Zerial, A. Helenius, Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118, 767–780 (2004). https://doi.org/10.1016/j.cell.2004.09.003
S. Mayor, R.E. Pagano, Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8, 603–612 (2007). https://doi.org/10.1038/nrm2216
Y. Fu, Q. Feng, Y. Chen, Y. Shen, Q. Su, Y. Zhang, X. Zhou, Y. Cheng, Comparison of two approaches for the attachment of a drug to gold nanoparticles and their anticancer activities. Mol. Pharm. 13, 3308–3317 (2016). https://doi.org/10.1021/acs.molpharmaceut.6b00619
G. Vassal, A. Gouyette, O. Hartmann, J.L. Pico, J. Lemerle, Pharmacokinetics of high-dose busulfan in children. Cancer Chemother. Pharmacol. 24, 386–390 (1989). https://doi.org/10.1007/bf00257448
J. Sehouli, G. Oskay-Özcelik, Current role and future aspects of topotecan in relapsed ovarian cancer. Curr. Med. Res. Opin. 25, 639–651 (2009). https://doi.org/10.1185/03007990802707139
S.J. Nicum, M.E.R. O’Brien, Topotecan for the treatment of small-cell lung cancer. Expert Rev. Anticancer Ther. 7, 795–801 (2007). https://doi.org/10.1586/14737140.7.6.795
M.-X. Wu, Y.-W. Yang, Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29, 1606134 (2017). https://doi.org/10.1002/adma.201606134
S.R. Venna, J.B. Jasinski, M.A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 132, 18030–18033 (2010). https://doi.org/10.1021/ja109268m
Q. Yang, S. Ren, Q. Zhao, R. Lu, C. Hang, Z. Chen, H. Zheng, Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chem. Eng. J. 333, 49–57 (2018). https://doi.org/10.1016/j.cej.2017.09.099
Z. Wang, X. Tang, X. Wang, D. Yang, C. Yang, Y. Lou, J. Chen, N. He, Near-infrared light-induced dissociation of zeolitic imidazole framework-8 (ZIF-8) with encapsulated CuS nanoparticles and their application as a therapeutic nanoplatform. Chem. Commun. 52, 12210–12213 (2016). https://doi.org/10.1039/C6CC06616J
B. Chen, Z. Yang, Y. Zhu, Y. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem. A 2, 16811–16831 (2014). https://doi.org/10.1039/C4TA02984D
K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 103, 10186–10191 (2006). https://doi.org/10.1073/pnas.0602439103
I.B. Vasconcelos, T.G. da Silva, G.C.G. Militão, T.A. Soares, N.M. Rodrigues et al., Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Adv. 2, 9437–9442 (2012). https://doi.org/10.1039/C2RA21087H
C.-Y. Sun, C. Qin, X.-L. Wang, G.-S. Yang, K.-Z. Shao et al., Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans. 41, 6906–6909 (2012). https://doi.org/10.1039/C2DT30357D
H. Zheng, Y. Zhang, L. Liu, W. Wan, P. Guo, A.M. Nyström, X. Zou, One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 138, 962–968 (2016). https://doi.org/10.1021/jacs.5b11720
F. Wang, D. Zhang, Q. Zhang, Y. Chen, D. Zheng et al., Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel -polymer micelles to overcome multi-drug resistance. Biomaterials 32, 9444–9456 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.041
H.M. Abdallah, A.M. Al-Abd, R.S. El-Dine, A.M. El-Halawany, P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: a review. J. Adv. Res. 6, 45–62 (2015). https://doi.org/10.1016/j.jare.2014.11.008
H. Zhang, W. Jiang, R. Liu, J. Zhang, D. Zhang, Z. Li, Y. Luan, Rational design of metal organic framework nanocarrier-based codelivery system of doxorubicin hydrochloride/verapamil hydrochloride for overcoming multidrug resistance with efficient targeted cancer therapy. ACS Appl. Mater. Interfaces 9, 19687–19697 (2017). https://doi.org/10.1021/acsami.7b05142
Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986). https://doi.org/10.1016/0304-3835(86)90075-3
H. Maeda, Y. Matsumura, Tumoritropic and lymphotropic principles of macromolecular drugs. Crit. Rev. Ther, Drug 6, 193–210 (1989). https://europepmc.org/article/med/2692843
X. Qi, Z. Chang, D. Zhang, K.J. Binder, S. Shen et al., Harnessing surface-functionalized metal–organic frameworks for selective tumor cell capture. Chem. Mater. 29, 8052–8056 (2017). https://doi.org/10.1021/acs.chemmater.7b03269
P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006). https://doi.org/10.1002/anie.200601878
P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie et al., Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172–178 (2010). https://doi.org/10.1038/nmat2608
K.M.L. Taylor-Pashow, J. Della Rocca, Z. Xie, S. Tran, W. Lin, Postsynthetic modifications of iron-carboxylate nanoscale metal−organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 131, 14261–14263 (2009). https://doi.org/10.1021/ja906198y
X.-G. Wang, Z.-Y. Dong, H. Cheng, S.-S. Wan, W.-H. Chen et al., A multifunctional metal–organic framework based tumor targeting drug delivery system for cancer therapy. Nanoscale 7, 16061–16070 (2015). https://doi.org/10.1039/C5NR04045K
B. Illes, P. Hirschle, S. Barnert, V. Cauda, S. Wuttke, H. Engelke, Exosome-coated metal–organic framework nanoparticles: an efficient drug delivery platform. Chem. Mater. 29, 8042–8046 (2017). https://doi.org/10.1021/acs.chemmater.7b02358
S. Senapati, A.K. Mahanta, S. Kumar, P. Maiti, Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 3, 7 (2018). https://doi.org/10.1038/s41392-017-0004-3
S. Sharma, K. Sethi, I. Roy, Magnetic nanoscale metal–organic frameworks for magnetically aided drug delivery and photodynamic therapy. New J. Chem. 41, 11860–11866 (2017). https://doi.org/10.1039/C7NJ02032E
J. Chen, J. Liu, Y. Hu, Z. Tian, Y. Zhu, Metal–organic framework-coated magnetite nanoparticles for synergistic magnetic hyperthermia and chemotherapy with pH-triggered drug release. Sci. Technol. Adv. Mater. 20, 1043–1054 (2019). https://doi.org/10.1080/14686996.2019.1682467
X. Du, R. Fan, L. Qiang, K. Xing, H. Ye et al., Controlled Zn2+-triggered drug release by preferred coordination of open active sites within functionalization indium metal organic frameworks. ACS Appl. Mater. Interfaces 9, 28939–28948 (2017). https://doi.org/10.1021/acsami.7b09227
X. Meng, J. Deng, F. Liu, T. Guo, M. Liu et al., Triggered all-active metal organic framework: ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy. Nano Lett. 19, 7866–7876 (2019). https://doi.org/10.1021/acs.nanolett.9b02904
M.H. Teplensky, M. Fantham, P. Li, T.C. Wang, J.P. Mehta et al., Temperature treatment of highly porous zirconium-containing metal–organic frameworks extends drug delivery release. J. Am. Chem. Soc. 139, 7522–7532 (2017). https://doi.org/10.1021/jacs.7b01451
W. Lin, Y. Cui, Y. Yang, Q. Hu, G. Qian, A biocompatible metal–organic framework as a pH and temperature dual-responsive drug carrier. Dalton Trans. 47, 15882–15887 (2018). https://doi.org/10.1039/C8DT03202E
K. Jiang, L. Zhang, Q. Hu, D. Zhao, T. Xia et al., Pressure controlled drug release in a Zr-cluster-based MOF. J. Mater. Chem. B 4, 6398–6401 (2016). https://doi.org/10.1039/C6TB01756H
E. Lashkari, H. Wang, L. Liu, J. Li, K. Yam, Innovative application of metal-organic frameworks for encapsulation and controlled release of allyl isothiocyanate. Food Chem. 221, 926–935 (2017). https://doi.org/10.1016/j.foodchem.2016.11.072
B. Lei, M. Wang, Z. Jiang, W. Qi, R. Su, Z. He, Constructing redox-responsive metal–organic framework nanocarriers for anticancer drug delivery. ACS Appl. Mater. Interfaces 10, 16698–16706 (2018). https://doi.org/10.1021/acsami.7b19693
Y. Duan, F. Ye, Y. Huang, Y. Qin, C. He, S. Zhao, One-pot synthesis of a metal–organic framework-based drug carrier for intelligent glucose-responsive insulin delivery. Chem. Commun. 54, 5377–5380 (2018). https://doi.org/10.1039/C8CC02708K
Z. Luo, L. Jiang, S. Yang, Z. Li, W.M.W. Soh, L. Zheng, X.J. Loh, Y.-L. Wu, Light-induced redox-responsive smart drug delivery system by using selenium-containing polymer@MOF shell/core nanocomposite. Adv. Healthcare Mater. 8, 1900406 (2019). https://doi.org/10.1002/adhm.201900406
Y. Li, K. Zhang, P. Liu, M. Chen, Y. Zhong et al., Encapsulation of plasmid DNA by nanoscale metal–organic frameworks for efficient gene transportation and expression. Adv. Mater. 31, 1901570 (2019). https://doi.org/10.1002/adma.201901570
A. Fire, S. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver, C.C. Mello, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998). https://doi.org/10.1038/35888
C. He, K. Lu, D. Liu, W. Lin, Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 136, 5181–5184 (2014). https://doi.org/10.1021/ja4098862
Q. Chen, M. Xu, W. Zheng, T. Xu, H. Deng, J. Liu, Se/Ru-decorated porous metal–organic framework nanoparticles for the delivery of pooled siRNAs to reversing multidrug resistance in taxol-resistant breast cancer cells. ACS Appl. Mater. Interfaces 9, 6712–6724 (2017). https://doi.org/10.1021/acsami.6b12792
R. Stoltenburg, C. Reinemann, B. Strehlitz, SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 24, 381–403 (2007). https://doi.org/10.1016/j.bioeng.2007.06.001
K.-M. Song, S. Lee, C. Ban, Aptamers and their biological applications. Sensors 12, 612–631 (2012). https://doi.org/10.3390/s120100612
P. Röthlisberger, M. Hollenstein, Aptamer chemistry. Adv. Drug Delivery Rev. 134, 3–21 (2018). https://doi.org/10.1016/j.addr.2018.04.007
A.D. Keefe, S. Pai, A. Ellington, Aptamers as therapeutics. Nat. Rev. Drug Discovery 9, 537–550 (2010). https://doi.org/10.1038/nrd3141
P. Sundaram, H. Kurniawan, M.E. Byrne, J. Wower, Therapeutic RNA aptamers in clinical trials. Eur. J. Pharm. Sci. 48, 259–271 (2013). https://doi.org/10.1016/j.ejps.2012.10.014
H.-M. Meng, H. Liu, H. Kuai, R. Peng, L. Mo, X.-B. Zhang, Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem. Soc. Rev. 45, 2583–2602 (2016). https://doi.org/10.1039/C5CS00645G
M. Liu, X. Yu, Z. Chen, T. Yang, D. Yang et al., Aptamer selection and applications for breast cancer diagnostics and therapy. J. Nanobiotechnology 15, 81 (2017). https://doi.org/10.1186/s12951-017-0311-4
D. Shangguan, Y. Li, Z. Tang, Z.C. Cao, H.W. Chen et al., Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA 103, 11838–11843 (2006). https://doi.org/10.1073/pnas.0602615103
X. Fang, W. Tan, Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc. Chem. Res. 43, 48–57 (2010). https://doi.org/10.1021/ar900101s
K. Sefah, D. Shangguan, X. Xiong, M.B. O'Donoghue, W. Tan, Development of DNA aptamers using cell-SELEX. Nat. Protoc. 5, 1169–1185 (2010). https://doi.org/10.1038/nprot.2010.66
W. Tan, M.J. Donovan, J. Jiang, Aptamers from cell-based selection for bioanalytical applications. Chem. Rev. 113, 2842–2862 (2013). https://doi.org/10.1021/cr300468w
G. Wang, J. Liu, K. Chen, Y. Xu, B. Liu et al., Selection and characterization of DNA aptamer against glucagon receptor by cell-SELEX. Sci. Rep. 7, 7179 (2017). https://doi.org/10.1038/s41598-017-05840-w
K. Sefah, Z.W. Tang, D.H. Shangguan, H. Chen, D. Lopez-Colon et al., Molecular recognition of acute myeloid leukemia using aptamers. Leukemia 23, 235–244 (2009). https://doi.org/10.1038/leu.2008.335
H.W. Chen, C.D. Medley, K. Sefah, D. Shangguan, Z. Tang, L. Meng, J.E. Smith, W. Tan, Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem 3, 991–1001 (2008). https://doi.org/10.1002/cmdc.200800030
P. Parekh, Z. Tang, P.C. Turner, R.W. Moyer, W. Tan, Aptamers recognizing glycosylated hemagglutinin expressed on the surface of vaccinia virus-infected cells. Anal. Chem. 82, 8642–8649 (2010). https://doi.org/10.1021/ac101801j
I.T. Teng, X. Li, H.A. Yadikar, Z. Yang, L. Li et al., Identification and characterization of DNA aptamers specific for phosphorylation epitopes of Tau protein. J. Am. Chem. Soc. 140, 14314–14323 (2018). https://doi.org/10.1021/jacs.8b08645
F. Su, Q. Jia, Z. Li, M. Wang, L. He et al., Aptamer-templated silver nanoclusters embedded in zirconium metal–organic framework for targeted antitumor drug delivery. Microporous Mesoporous Mater. 275, 152–162 (2019). https://doi.org/10.1016/j.micromeso.2018.08.026
W.-H. Chen, X. Yu, W.-C. Liao, Y.S. Sohn, A. Cecconello, A. Kozell, R. Nechushtai, I. Willner, ATP-responsive aptamer-based metal–organic framework nanoparticles (NMOFs) for the controlled release of loads and drugs. Adv. Funct. Mater. 27, 1702102 (2017). https://doi.org/10.1002/adfm.201702102
W.-H. Chen, G.-F. Luo, M. Vázquez-González, R. Cazelles, Y.S. Sohn, R. Nechushtai, Y. Mandel, I. Willner, Glucose-responsive metal–organic-framework nanoparticles act as “smart” sense-and-treat carriers. ACS Nano 12, 7538–7545 (2018). https://doi.org/10.1021/acsnano.8b03417
Z. Wang, Y. Fu, Z. Kang, X. Liu, N. Chen et al., Organelle-specific triggered release of immunostimulatory oligonucleotides from intrinsically coordinated DNA–metal–organic frameworks with soluble exoskeleton. J. Am. Chem. Soc. 139, 15784–15791 (2017). https://doi.org/10.1021/jacs.7b07895
S. Wang, Y. Chen, S. Wang, P. Li, C.A. Mirkin, O.K. Farha, DNA-functionalized metal–organic framework nanoparticles for intracellular delivery of proteins. J. Am. Chem. Soc. 141, 2215–2219 (2019). https://doi.org/10.1021/jacs.8b12705
Z. Liang, Z. Yang, H. Yuan, C. Wang, J. Qi, K. Liu, R. Cao, H. Zheng, A protein@metal–organic framework nanocomposite for pH-triggered anticancer drug delivery. Dalton Trans. 47, 10223–10228 (2018). https://doi.org/10.1039/C8DT01789A
X. Yang, Q. Tang, Y. Jiang, M. Zhang, M. Wang, L. Mao, Nanoscale ATP-responsive zeolitic imidazole framework-90 as a general platform for cytosolic protein delivery and genome editing. J. Am. Chem. Soc. 141, 3782–3786 (2019). https://doi.org/10.1021/jacs.8b11996
E. Gkaniatsou, C. Sicard, R. Ricoux, J.-P. Mahy, N. Steunou, C. Serre, Metal–organic frameworks: a novel host platform for enzymatic catalysis and detection. Mater. Horiz. 4, 55–63 (2017). https://doi.org/10.1039/C6MH00312E
S. Kempahanumakkagari, V. Kumar, P. Samaddar, P. Kumar, T. Ramakrishnappa, K.-H. Kim, Biomolecule-embedded metal-organic frameworks as an innovative sensing platform. Biotechnol. Adv. 36, 467–481 (2018). https://doi.org/10.1016/j.biotechadv.2018.01.014
Q. Qiu, H. Chen, Y. Wang, Y. Ying, Recent advances in the rational synthesis and sensing applications of metal-organic framework biocomposites. Coord. Chem. Rev. 387, 60–78 (2019). https://doi.org/10.1016/j.ccr.2019.02.009
H. An, M. Li, J. Gao, Z. Zhang, S. Ma, Y. Chen, Incorporation of biomolecules in metal-organic frameworks for advanced applications. Coord. Chem. Rev. 384, 90–106 (2019). https://doi.org/10.1016/j.ccr.2019.01.001
X. Lian, Y. Huang, Y. Zhu, Y. Fang, R. Zhao et al., Enzyme-MOF nanoreactor activates nontoxic paracetamol for cancer therapy. Angew. Chem. Int. Ed. 57, 5725–5730 (2018). https://doi.org/10.1002/anie.201801378
S. Rojas, I. Colinet, D. Cunha, T. Hidalgo, F. Salles, C. Serre, N. Guillou, P. Horcajada, Toward understanding drug incorporation and delivery from biocompatible metal–organic frameworks in view of cutaneous administration. ACS Omega 3, 2994–3003 (2018). https://doi.org/10.1021/acsomega.8b00185
C. Tamames-Tabar, D. Cunha, E. Imbuluzqueta, F. Ragon, C. Serre, M.J. Blanco-Prieto, P. Horcajada, Cytotoxicity of nanoscaled metal–organic frameworks. J. Mater. Chem. B 2, 262–271 (2014). https://doi.org/10.1039/C3TB20832J
À. Ruyra, A. Yazdi, J. Espín, A. Carné-Sánchez, N. Roher, J. Lorenzo, I. Imaz, D. Maspoch, Synthesis, culture medium stability, and in vitro and in vivo zebrafish embryo toxicity of metal–organic framework nanoparticles. Chem. Eur. J. 21, 2508–2518 (2015). https://doi.org/10.1002/chem.201405380
T. Baati, L. Njim, F. Neffati, A. Kerkeni, M. Bouttemi et al., In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal–organic frameworks. Chem. Sci. 4, 1597–1607 (2013). https://doi.org/10.1039/C3SC22116D
N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012). https://doi.org/10.1021/cr200304e
E. Abbasi, S.F. Aval, A. Akbarzadeh, M. Milani, H.T. Nasrabadi et al., Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett. 9, 247 (2014). https://doi.org/10.1186/1556-276X-9-247
Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink, Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590–2605 (2012). https://doi.org/10.1039/C1CS15246G
S. Wang, C.M. McGuirk, A. d'Aquino, J.A. Mason, C.A. Mirkin, Metal–organic framework nanoparticles. Adv. Mater. 30, 1800202 (2018). https://doi.org/10.1002/adma.201800202
P. Hirschle, T. Preiß, F. Auras, A. Pick, J. Völkner et al., Exploration of MOF nanoparticle sizes using various physical characterization methods—is what you measure what you get? CrystEngComm 18, 4359–4368 (2016). https://doi.org/10.1039/C6CE00198J
S. Svenson, Dendrimers as versatile platform in drug delivery applications. Eur. J. Pharm. Biopharm. 71, 445–462 (2009). https://doi.org/10.1016/j.ejpb.2008.09.023
Y.-S. Lin, K.R. Hurley, C.L. Haynes, Critical considerations in the biomedical use of mesoporous silica nanoparticles. J. Phys. Chem. Lett. 3, 364–374 (2012). https://doi.org/10.1021/jz2013837
M. Vallet-Regí, F. Balas, D. Arcos, Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. 46, 7548–7558 (2007). https://doi.org/10.1002/anie.200604488
J. Zhu, X. Shi, Dendrimer-based nanodevices for targeted drug delivery applications. J. Mater. Chem. B 1, 4199–4211 (2013). https://doi.org/10.1039/C3TB20724B
E.M. Flanigen, J.M. Bennett, R.W. Grose, J.P. Cohen, R.L. Patton, R.M. Kirchner, J.V. Smith, Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature 271, 512–516 (1978). https://doi.org/10.1038/271512a0
O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003). https://doi.org/10.1038/nature01650
O.A. Matthews, A.N. Shipway, J.F. Stoddart, Dendrimers—Branching out from curiosities into new technologies. Prog. Polym. Sci. 23, 1–56 (1998). https://doi.org/10.1016/S0079-6700(97)00025-7
C. Argyo, V. Weiss, C. Bräuchle, T. Bein, Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater. 26, 435–451 (2014). https://doi.org/10.1021/cm402592t
A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R.A. Fischer, Flexible metal–organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014). https://doi.org/10.1039/C4CS00101J
J. Siefker, P. Karande, M.-O. Coppens, Packaging biological cargoes in mesoporous materials: opportunities for drug delivery. Expert Opin. Drug Deliv. 11, 1781–1793 (2014). https://doi.org/10.1517/17425247.2014.938636