Efficient Two-Dimensional Perovskite Solar Cells Realized by Incorporation of Ti3C2Tx MXene as Nano-Dopants
Corresponding Author: Xiao‑Feng Wang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 68
Abstract
Two-dimensional (2D) perovskites solar cells (PSCs) have attracted considerable attention owing to their excellent stability against humidity; however, some imperfectness of 2D perovskites, such as poor crystallinity, disordered orientation, and inferior charge transport still limit the power conversion efficiency (PCE) of 2D PSCs. In this work, 2D Ti3C2Tx MXene nanosheets with high electrical conductivity and mobility were employed as a nanosized additive to prepare 2D Ruddlesden–Popper perovskite films. The PCE of solar cells was increased from 13.69 (without additive) to 15.71% after incorporating the Ti3C2Tx nanosheets with an optimized concentration. This improved performance is attributed to the enhanced crystallinity, orientation, and passivated trap states in the 3D phase that result in accelerated charge transfer process in vertical direction. More importantly, the unencapsulated cells exhibited excellent stability under ambient conditions with 55 ± 5% relative humidity.
Highlights:
1 2D Ti3C2Tx MXene nanosheets with high electrical conductivity and mobility were employed as a nanosized additive to prepare 2D perovskite films.
2 Doping of Ti3C2Tx nanosheets can passivate the defects on the perovskite films surface and accelerate charge transfer process in vertical direction.
3 Enhanced crystallinity and orientation of the perovskite films result in a significant increase in short-circuit current density and power conversion efficiency.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
- G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam et al., Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
- C.T. Zuo, H.J. Bolink, H.W. Han, J.S. Huang, D. Cahen et al., Advances in perovskite solar cells. Adv. Sci. 3(7), 1500324 (2016). https://doi.org/10.1002/advs.201500324
- T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1(1), 16 (2016). https://doi.org/10.1038/natrevmats.2015.7
- S.-W. Lee, S. Bae, D. Kim, H.-S. Lee, Historical analysis of high-efficiency, large-area solar cells: toward upscaling of perovskite solar cells. Adv. Mater. (2020). https://doi.org/10.1002/adma.202002202
- M.A. Green, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita et al., Solar cell efficiency tables (version 55). Prog. Photovolt. 28(1), 3–15 (2020). https://doi.org/10.1002/pip.3228
- P. Buin, J.X. Pietsch, O. Xu, A.H.I. Voznyy et al., Materials processing routes to trap-free halide perovskites. Nano Lett. 14(11), 6281–6286 (2014). https://doi.org/10.1021/nl502612m
- I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53(42), 11232–11235 (2014). https://doi.org/10.1002/anie.201406466
- H.H. Tsai, W.Y. Nie, J.C. Blancon, C.C.S. Toumpos, R. Asadpour et al., High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536(7616), 312–316 (2016). https://doi.org/10.1038/nature18306
- S. Chen, G.Q. Shi, Two-dimensional materials for halide perovskite-based optoelectronic devices. Adv. Mater. 29(24), 1605448 (2017). https://doi.org/10.1002/adma.201605448
- L.L. Mao, C.C. Stoumpos, M.G. Kanatzidis, Two-dimensional hybrid halide perovskites: principles and Promises. J. Am. Chem. Soc. 141(3), 1171–1190 (2019). https://doi.org/10.1021/jacs.8b10851
- L.N. Quan, M.J. Yuan, R. Comin, O. Voznyy, E.M. Beauregard et al., Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138(8), 2649–2655 (2016). https://doi.org/10.1021/jacs.5b11740
- P.R. Cheng, P.J. Wang, Z. Xu, X.G. Jia, Q.L. Wei et al., Ligand-size related dimensionality control in metal halide perovskites. ACS Energy Lett. 4(8), 1830–1838 (2019). https://doi.org/10.1021/acsenergylett.9b01100
- X. Xiao, J. Dai, Y.J. Fang, J.J. Zhao, X.P. Zheng et al., Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 3(3), 684–688 (2018). https://doi.org/10.1021/acsenergylett.8b00047
- P. Ortiz-Cervantes, D. Carmona-Monroy, Solis-Ibarra, two-dimensional halide perovskites in solar cells: 2D or not 2D? Chemsuschem 12(8), 1560–1575 (2019). https://doi.org/10.1002/cssc.201802992
- H.H. Tsai, R. Asadpour, J.C. Blancon, C.C. Stoumpos, J. Even et al., Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat. Commun. 9(9), 2130 (2018). https://doi.org/10.1038/s41467-018-04430-2
- X.Q. Zhang, G. Wu, W.F. Fu, M.C. Qin, W.T. Yang et al., Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Adv. Energy Mater. 8(14), 9 (2018). https://doi.org/10.1002/aenm.201702498
- J.S. Shi, Y.R. Gao, X. Gao, Y. Zhang, J.J. Zhang et al., Fluorinated low-dimensional Ruddlesden–Popper perovskite solar cells with over 17% power conversion efficiency and improved stability. Adv. Mater. 31(37), 1901673 (2019). https://doi.org/10.1002/adma.201901673
- S.Q. Tan, N. Zhou, Y.H. Chen, L. Li, G.L. Liu et al., Effect of high dipole moment cation on layered 2D organic-inorganic halide perovskite solar cells. Adv. Energy Mater. 9(5), 1803024 (2019). https://doi.org/10.1002/aenm.201803024
- W. Chen, L.M. Xu, X.Y. Feng, J.S. Jie, Z.B. He, Metal acetylacetonate series in interface engineering for full low-temperature-processed, high-performance, and stable planar perovskite solar cells with conversion efficiency over 16% on 1 cm(2) scale. Adv. Mater. 29(16), 1603923 (2017). https://doi.org/10.1002/adma.201603923
- J. Qiu, Y.T. Zheng, Y.D. Xia, L.F. Chao, Y.H. Chen et al., Rapid crystallization for efficient 2D Ruddlesden–Popper (2DRP) perovskite solar cells. Adv. Funct. Mater. 29(47), 1806831 (2019). https://doi.org/10.1002/adfm.201806831
- X. Zhang, X.D. Ren, B. Liu, R. Munir, X.J. Zhu et al., Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ. Sci. 10(10), 2095–2102 (2017). https://doi.org/10.1039/c7ee01145h
- G.B. Wu, X. Li, J.Y. Zhou, J.Q. Zhang, X.N. Zhang et al., Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing. Adv. Mater. 31(42), 1903889 (2019). https://doi.org/10.1002/adma.201903889
- J. Zhang, J.J. Qin, M.S. Wang, Y.J. Bai, H. Zou et al., Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells. Joule 3(12), 3061–3071 (2019). https://doi.org/10.1016/j.joule.2019.09.020
- H.T. Lai, B. Kan, T.T. Liu, N. Zheng, Z.Q. Xie et al., Two-dimensional Ruddlesden–Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. J. Am. Chem. Soc. 140(37), 11639–11646 (2018). https://doi.org/10.1021/jacs.8b04604
- X.M. Lian, J.H. Chen, R.L. Fu, T.K. Lau, Y.Z. Zhang et al., An inverted planar solar cell with 13% efficiency and a sensitive visible light detector based on orientation regulated 2D perovskites. J. Mater. Chem. A 6(47), 24633–24640 (2018). https://doi.org/10.1039/c8ta08203k
- Z.Y. Xu, D. Lu, F. Liu, H.T. Lai, X.J. Wan et al., Phase distribution and carrier dynamics in multiple-ring aromatic spacer-based two-dimensional Ruddlesden–Popper perovskite solar cells. ACS Nano 14(4), 4871–4881 (2020). https://doi.org/10.1021/acsnano.0c00875
- C.T. Zuo, A. Scully, D. Yak, W.L. Tan, X.C. Jiao et al., Self-assembled 2D perovskite layers for efficient printable solar cells. Adv. Energy Mater. 9(4), 1803258 (2019). https://doi.org/10.1002/aenm.201803258
- A. Zuo, T.W. Scully, F. Liang, K.G. Zheng et al., Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells. Commun. Mater. 1, 33 (2020). https://doi.org/10.1038/s43246-020-0036-z
- X. Li, G. Wu, M. Wang, B. Yu, J. Zhou et al., Water-assisted crystal growth in quasi-2D perovskites with enhanced charge transport and photovoltaic performance. Adv. Energy Mater. 10(37), 2001832 (2020). https://doi.org/10.1002/aenm.202001832
- L.G. Gao, F. Zhang, X.H. Chen, C.X. Xiao, B.W. Larson et al., Enhanced charge transport by incorporating formamidinium and cesium cations into two-dimensional perovskite solar cells. Angew. Chem. Int. Ed. 58(34), 11737–11741 (2019). https://doi.org/10.1002/anie.201905690
- F. Zhang, D.H. Kim, H.P. Lu, J.S. Park, B.W. Larson et al., Enhanced charge transport in 2D perovskites via fluorination of organic cation. J. Am. Chem. Soc. 141(14), 5972–5979 (2019). https://doi.org/10.1021/jacs.9b00972
- X. Zhang, R. Munir, Z. Xu, Y.C. Liu, H. Tsai et al., Phase transition control for high performance Ruddlesden–Popper perovskite solar cells. Adv. Mater. 30(21), 1707166 (2018). https://doi.org/10.1002/adma.201707166
- J. Hu, I.W.H. Oswald, S.J. Stuard, M.M. Nahid, N.H. Zhou et al., Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nat. Commun. 10, 1276 (2019). https://doi.org/10.1038/s41467-019-08980-x
- M. Zhou, C.B. Fei, J.S. Sarmiento, H. Wang, Manipulating the phase distributions and carrier transfers in hybrid quasi-two-dimensional perovskite films. Sol. RRL 3(4), 1800359 (2019). https://doi.org/10.1002/solr.201800359
- Q. Jiang, Y. Zhao, X.W. Zhang, X.L. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13(7), 460 (2019). https://doi.org/10.1038/s41566-019-0398-2
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mat. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
- Y. Dall’Agnese, B. Dall’Agnese, W. Anasori, S. Sugimoto, Mori, Oxidized Ti3C2 MXene nanosheets for dye-sensitized solar cells. New. J. Chem. 42(20), 16446–16450 (2018). https://doi.org/10.1039/c8nj03246g
- H.C. Fu, V. Ramalingam, H. Kim, C.H. Lin, X.S. Fang et al., MXene-contacted silicon solar cells with 11.5% efficiency. Adv. Energy Mater. 9(22), 1900180 (2019). https://doi.org/10.1002/aenm.201900180
- Z. Yu, W. Feng, W. Lu, B. Li, H. Yao et al., MXenes with tunable work functions and their application as electron- and hole-transport materials in non-fullerene organic solar cells. J. Mater. Chem. A 7(18), 11160–11169 (2019). https://doi.org/10.1039/c9ta01195a
- L. Yang, C. Dall’Agnese, Y. Dall’Agnese, G. Chen, Y. Gao et al., Surface-modified metallic Ti3C2Tx MXene as electron transport layer for planar heterojunction perovskite solar cells. Adv. Funct. Mater. 29(46), 1905694 (2019). https://doi.org/10.1002/adfm.201905694
- L. Yang, Y. Dall’Agnese, K. Hantanasirisakul, C.E. Shuck, K. Maleski et al., SnO2–Ti3C2 MXene electron transport layers for perovskite solar cells. J. Mater. Chem. A 7(10), 5635–5642 (2019). https://doi.org/10.1039/c8ta12140k
- L.S. Huang, X.W. Zhou, R. Xue, P.F. Xu, S.L. Wang et al., Low-temperature growing anatase TiO2/SnO2 multi-dimensional heterojunctions at MXene conductive network for high-efficient perovskite solar cells. Nano-Micro Lett. 12(1), 19 (2020). https://doi.org/10.1007/s40820-020-0379-5
- Z.L. Guo, L.G. Gao, Z.H. Xu, S. Teo, C. Zhang et al., High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells. Small 14(47), 1802738 (2018). https://doi.org/10.1002/smll.201802738
- N. Zhou, Y. Shen, L. Li, S. Tan, N. Liu et al., Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc. 140(1), 459–465 (2018). https://doi.org/10.1021/jacs.7b11157
- Y. Cao, N.N. Wang, H. Tian, J.S. Guo, Y.Q. Wei et al., Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562(7726), 249–253 (2018). https://doi.org/10.1038/s41586-018-0576-2
- Z.G. Xiao, Q.F. Dong, C. Bi, Y.C. Shao, Y.B. Yuan et al., Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26(37), 6503–6509 (2014). https://doi.org/10.1002/adma.201401685
- J. Liu, J. Leng, K. Wu, J. Zhang, S. Jin, Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J. Am. Chem. Soc. 139(4), 1432–1435 (2017). https://doi.org/10.1021/jacs.6b12581
- B.R. Wygant, G.T. Geberth, A.Z. Ye, A. Dolocan, D.E. Cotton et al., Moisture-driven formation and growth of quasi-2-D organolead halide perovskite crystallites. ACS Appl. Energy Mater. 3(7), 6280–6290 (2020). https://doi.org/10.1021/acsaem.0c00423
- N. Liu, P.F. Liu, H.X. Ren, H.P. Xie, N. Zhou et al., Probing phase distribution in 2D perovskites for efficient device design. ACS Appl. Mater. Interfaces 12(2), 3127–3133 (2020). https://doi.org/10.1021/acsami.9b17047
- A.H. Proppe, R. Quintero-Bermudez, H. Tan, O. Voznyy, S.O. Kelley et al., Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. J. Am. Chem. Soc. 140(8), 2890–2896 (2018). https://doi.org/10.1021/jacs.7b12551
- R. Wu, J. Yao, S. Wang, X. Zhou, Q. Wang et al., Ultracompact, well-packed perovskite flat crystals: preparation and application in planar solar cells with high efficiency and humidity tolerance. ACS Appl. Mater. Interfaces 11(12), 11283–11291 (2019). https://doi.org/10.1021/acsami.8b17300
- Y. Ma, N. Wei, Q. Wang, C. Wu, W. Zeng et al., Ultrathin PEDOT:PSS/rGO aerogel providing tape-like self-healable electrode for sensing space electric field with electrochemical mechanism. Adv. Electron. Mater. 5(12), 1900637 (2019). https://doi.org/10.1002/aelm.201900637
- H.Y. Zheng, G.Z. Liu, L.Z. Zhu, J.J. Ye, X.H. Zhang et al., The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Adv. Energy Mater. 8(21), 1800051 (2018). https://doi.org/10.1002/aenm.201800051
- H.Y. Zheng, W.W. Wu, H.F. Xu, F.C. Zheng, G.Z. Liu et al., Self-additive low-dimensional Ruddlesden–Popper perovskite by the incorporation of glycine hydrochloride for high-performance and stable solar cells. Adv. Funct. Mater. 30(15), 2000034 (2020). https://doi.org/10.1002/adfm.202000034
- B.R. Wygant, A.Z. Ye, A. Dolocan, Q. Vu, D.M. Abbot et al., Probing the degradation chemistry and enhanced stability of 2D organolead halide perovskites. J. Am. Chem. Soc. 141(45), 18170–18181 (2019). https://doi.org/10.1021/jacs.9b08895
References
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam et al., Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
C.T. Zuo, H.J. Bolink, H.W. Han, J.S. Huang, D. Cahen et al., Advances in perovskite solar cells. Adv. Sci. 3(7), 1500324 (2016). https://doi.org/10.1002/advs.201500324
T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1(1), 16 (2016). https://doi.org/10.1038/natrevmats.2015.7
S.-W. Lee, S. Bae, D. Kim, H.-S. Lee, Historical analysis of high-efficiency, large-area solar cells: toward upscaling of perovskite solar cells. Adv. Mater. (2020). https://doi.org/10.1002/adma.202002202
M.A. Green, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita et al., Solar cell efficiency tables (version 55). Prog. Photovolt. 28(1), 3–15 (2020). https://doi.org/10.1002/pip.3228
P. Buin, J.X. Pietsch, O. Xu, A.H.I. Voznyy et al., Materials processing routes to trap-free halide perovskites. Nano Lett. 14(11), 6281–6286 (2014). https://doi.org/10.1021/nl502612m
I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53(42), 11232–11235 (2014). https://doi.org/10.1002/anie.201406466
H.H. Tsai, W.Y. Nie, J.C. Blancon, C.C.S. Toumpos, R. Asadpour et al., High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536(7616), 312–316 (2016). https://doi.org/10.1038/nature18306
S. Chen, G.Q. Shi, Two-dimensional materials for halide perovskite-based optoelectronic devices. Adv. Mater. 29(24), 1605448 (2017). https://doi.org/10.1002/adma.201605448
L.L. Mao, C.C. Stoumpos, M.G. Kanatzidis, Two-dimensional hybrid halide perovskites: principles and Promises. J. Am. Chem. Soc. 141(3), 1171–1190 (2019). https://doi.org/10.1021/jacs.8b10851
L.N. Quan, M.J. Yuan, R. Comin, O. Voznyy, E.M. Beauregard et al., Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138(8), 2649–2655 (2016). https://doi.org/10.1021/jacs.5b11740
P.R. Cheng, P.J. Wang, Z. Xu, X.G. Jia, Q.L. Wei et al., Ligand-size related dimensionality control in metal halide perovskites. ACS Energy Lett. 4(8), 1830–1838 (2019). https://doi.org/10.1021/acsenergylett.9b01100
X. Xiao, J. Dai, Y.J. Fang, J.J. Zhao, X.P. Zheng et al., Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 3(3), 684–688 (2018). https://doi.org/10.1021/acsenergylett.8b00047
P. Ortiz-Cervantes, D. Carmona-Monroy, Solis-Ibarra, two-dimensional halide perovskites in solar cells: 2D or not 2D? Chemsuschem 12(8), 1560–1575 (2019). https://doi.org/10.1002/cssc.201802992
H.H. Tsai, R. Asadpour, J.C. Blancon, C.C. Stoumpos, J. Even et al., Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat. Commun. 9(9), 2130 (2018). https://doi.org/10.1038/s41467-018-04430-2
X.Q. Zhang, G. Wu, W.F. Fu, M.C. Qin, W.T. Yang et al., Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Adv. Energy Mater. 8(14), 9 (2018). https://doi.org/10.1002/aenm.201702498
J.S. Shi, Y.R. Gao, X. Gao, Y. Zhang, J.J. Zhang et al., Fluorinated low-dimensional Ruddlesden–Popper perovskite solar cells with over 17% power conversion efficiency and improved stability. Adv. Mater. 31(37), 1901673 (2019). https://doi.org/10.1002/adma.201901673
S.Q. Tan, N. Zhou, Y.H. Chen, L. Li, G.L. Liu et al., Effect of high dipole moment cation on layered 2D organic-inorganic halide perovskite solar cells. Adv. Energy Mater. 9(5), 1803024 (2019). https://doi.org/10.1002/aenm.201803024
W. Chen, L.M. Xu, X.Y. Feng, J.S. Jie, Z.B. He, Metal acetylacetonate series in interface engineering for full low-temperature-processed, high-performance, and stable planar perovskite solar cells with conversion efficiency over 16% on 1 cm(2) scale. Adv. Mater. 29(16), 1603923 (2017). https://doi.org/10.1002/adma.201603923
J. Qiu, Y.T. Zheng, Y.D. Xia, L.F. Chao, Y.H. Chen et al., Rapid crystallization for efficient 2D Ruddlesden–Popper (2DRP) perovskite solar cells. Adv. Funct. Mater. 29(47), 1806831 (2019). https://doi.org/10.1002/adfm.201806831
X. Zhang, X.D. Ren, B. Liu, R. Munir, X.J. Zhu et al., Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ. Sci. 10(10), 2095–2102 (2017). https://doi.org/10.1039/c7ee01145h
G.B. Wu, X. Li, J.Y. Zhou, J.Q. Zhang, X.N. Zhang et al., Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing. Adv. Mater. 31(42), 1903889 (2019). https://doi.org/10.1002/adma.201903889
J. Zhang, J.J. Qin, M.S. Wang, Y.J. Bai, H. Zou et al., Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells. Joule 3(12), 3061–3071 (2019). https://doi.org/10.1016/j.joule.2019.09.020
H.T. Lai, B. Kan, T.T. Liu, N. Zheng, Z.Q. Xie et al., Two-dimensional Ruddlesden–Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. J. Am. Chem. Soc. 140(37), 11639–11646 (2018). https://doi.org/10.1021/jacs.8b04604
X.M. Lian, J.H. Chen, R.L. Fu, T.K. Lau, Y.Z. Zhang et al., An inverted planar solar cell with 13% efficiency and a sensitive visible light detector based on orientation regulated 2D perovskites. J. Mater. Chem. A 6(47), 24633–24640 (2018). https://doi.org/10.1039/c8ta08203k
Z.Y. Xu, D. Lu, F. Liu, H.T. Lai, X.J. Wan et al., Phase distribution and carrier dynamics in multiple-ring aromatic spacer-based two-dimensional Ruddlesden–Popper perovskite solar cells. ACS Nano 14(4), 4871–4881 (2020). https://doi.org/10.1021/acsnano.0c00875
C.T. Zuo, A. Scully, D. Yak, W.L. Tan, X.C. Jiao et al., Self-assembled 2D perovskite layers for efficient printable solar cells. Adv. Energy Mater. 9(4), 1803258 (2019). https://doi.org/10.1002/aenm.201803258
A. Zuo, T.W. Scully, F. Liang, K.G. Zheng et al., Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells. Commun. Mater. 1, 33 (2020). https://doi.org/10.1038/s43246-020-0036-z
X. Li, G. Wu, M. Wang, B. Yu, J. Zhou et al., Water-assisted crystal growth in quasi-2D perovskites with enhanced charge transport and photovoltaic performance. Adv. Energy Mater. 10(37), 2001832 (2020). https://doi.org/10.1002/aenm.202001832
L.G. Gao, F. Zhang, X.H. Chen, C.X. Xiao, B.W. Larson et al., Enhanced charge transport by incorporating formamidinium and cesium cations into two-dimensional perovskite solar cells. Angew. Chem. Int. Ed. 58(34), 11737–11741 (2019). https://doi.org/10.1002/anie.201905690
F. Zhang, D.H. Kim, H.P. Lu, J.S. Park, B.W. Larson et al., Enhanced charge transport in 2D perovskites via fluorination of organic cation. J. Am. Chem. Soc. 141(14), 5972–5979 (2019). https://doi.org/10.1021/jacs.9b00972
X. Zhang, R. Munir, Z. Xu, Y.C. Liu, H. Tsai et al., Phase transition control for high performance Ruddlesden–Popper perovskite solar cells. Adv. Mater. 30(21), 1707166 (2018). https://doi.org/10.1002/adma.201707166
J. Hu, I.W.H. Oswald, S.J. Stuard, M.M. Nahid, N.H. Zhou et al., Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nat. Commun. 10, 1276 (2019). https://doi.org/10.1038/s41467-019-08980-x
M. Zhou, C.B. Fei, J.S. Sarmiento, H. Wang, Manipulating the phase distributions and carrier transfers in hybrid quasi-two-dimensional perovskite films. Sol. RRL 3(4), 1800359 (2019). https://doi.org/10.1002/solr.201800359
Q. Jiang, Y. Zhao, X.W. Zhang, X.L. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13(7), 460 (2019). https://doi.org/10.1038/s41566-019-0398-2
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mat. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
Y. Dall’Agnese, B. Dall’Agnese, W. Anasori, S. Sugimoto, Mori, Oxidized Ti3C2 MXene nanosheets for dye-sensitized solar cells. New. J. Chem. 42(20), 16446–16450 (2018). https://doi.org/10.1039/c8nj03246g
H.C. Fu, V. Ramalingam, H. Kim, C.H. Lin, X.S. Fang et al., MXene-contacted silicon solar cells with 11.5% efficiency. Adv. Energy Mater. 9(22), 1900180 (2019). https://doi.org/10.1002/aenm.201900180
Z. Yu, W. Feng, W. Lu, B. Li, H. Yao et al., MXenes with tunable work functions and their application as electron- and hole-transport materials in non-fullerene organic solar cells. J. Mater. Chem. A 7(18), 11160–11169 (2019). https://doi.org/10.1039/c9ta01195a
L. Yang, C. Dall’Agnese, Y. Dall’Agnese, G. Chen, Y. Gao et al., Surface-modified metallic Ti3C2Tx MXene as electron transport layer for planar heterojunction perovskite solar cells. Adv. Funct. Mater. 29(46), 1905694 (2019). https://doi.org/10.1002/adfm.201905694
L. Yang, Y. Dall’Agnese, K. Hantanasirisakul, C.E. Shuck, K. Maleski et al., SnO2–Ti3C2 MXene electron transport layers for perovskite solar cells. J. Mater. Chem. A 7(10), 5635–5642 (2019). https://doi.org/10.1039/c8ta12140k
L.S. Huang, X.W. Zhou, R. Xue, P.F. Xu, S.L. Wang et al., Low-temperature growing anatase TiO2/SnO2 multi-dimensional heterojunctions at MXene conductive network for high-efficient perovskite solar cells. Nano-Micro Lett. 12(1), 19 (2020). https://doi.org/10.1007/s40820-020-0379-5
Z.L. Guo, L.G. Gao, Z.H. Xu, S. Teo, C. Zhang et al., High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells. Small 14(47), 1802738 (2018). https://doi.org/10.1002/smll.201802738
N. Zhou, Y. Shen, L. Li, S. Tan, N. Liu et al., Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc. 140(1), 459–465 (2018). https://doi.org/10.1021/jacs.7b11157
Y. Cao, N.N. Wang, H. Tian, J.S. Guo, Y.Q. Wei et al., Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562(7726), 249–253 (2018). https://doi.org/10.1038/s41586-018-0576-2
Z.G. Xiao, Q.F. Dong, C. Bi, Y.C. Shao, Y.B. Yuan et al., Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26(37), 6503–6509 (2014). https://doi.org/10.1002/adma.201401685
J. Liu, J. Leng, K. Wu, J. Zhang, S. Jin, Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J. Am. Chem. Soc. 139(4), 1432–1435 (2017). https://doi.org/10.1021/jacs.6b12581
B.R. Wygant, G.T. Geberth, A.Z. Ye, A. Dolocan, D.E. Cotton et al., Moisture-driven formation and growth of quasi-2-D organolead halide perovskite crystallites. ACS Appl. Energy Mater. 3(7), 6280–6290 (2020). https://doi.org/10.1021/acsaem.0c00423
N. Liu, P.F. Liu, H.X. Ren, H.P. Xie, N. Zhou et al., Probing phase distribution in 2D perovskites for efficient device design. ACS Appl. Mater. Interfaces 12(2), 3127–3133 (2020). https://doi.org/10.1021/acsami.9b17047
A.H. Proppe, R. Quintero-Bermudez, H. Tan, O. Voznyy, S.O. Kelley et al., Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. J. Am. Chem. Soc. 140(8), 2890–2896 (2018). https://doi.org/10.1021/jacs.7b12551
R. Wu, J. Yao, S. Wang, X. Zhou, Q. Wang et al., Ultracompact, well-packed perovskite flat crystals: preparation and application in planar solar cells with high efficiency and humidity tolerance. ACS Appl. Mater. Interfaces 11(12), 11283–11291 (2019). https://doi.org/10.1021/acsami.8b17300
Y. Ma, N. Wei, Q. Wang, C. Wu, W. Zeng et al., Ultrathin PEDOT:PSS/rGO aerogel providing tape-like self-healable electrode for sensing space electric field with electrochemical mechanism. Adv. Electron. Mater. 5(12), 1900637 (2019). https://doi.org/10.1002/aelm.201900637
H.Y. Zheng, G.Z. Liu, L.Z. Zhu, J.J. Ye, X.H. Zhang et al., The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Adv. Energy Mater. 8(21), 1800051 (2018). https://doi.org/10.1002/aenm.201800051
H.Y. Zheng, W.W. Wu, H.F. Xu, F.C. Zheng, G.Z. Liu et al., Self-additive low-dimensional Ruddlesden–Popper perovskite by the incorporation of glycine hydrochloride for high-performance and stable solar cells. Adv. Funct. Mater. 30(15), 2000034 (2020). https://doi.org/10.1002/adfm.202000034
B.R. Wygant, A.Z. Ye, A. Dolocan, Q. Vu, D.M. Abbot et al., Probing the degradation chemistry and enhanced stability of 2D organolead halide perovskites. J. Am. Chem. Soc. 141(45), 18170–18181 (2019). https://doi.org/10.1021/jacs.9b08895