2D MXenes as Co-catalysts in Photocatalysis: Synthetic Methods
Corresponding Author: Xiao‑Feng Wang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 79
Abstract
Since their seminal discovery in 2011, two-dimensional (2D) transition metal carbides/nitrides known as MXenes, that constitute a large family of 2D materials, have been targeted toward various applications due to their outstanding electronic properties. MXenes functioning as co-catalyst in combination with certain photocatalysts have been applied in photocatalytic systems to enhance photogenerated charge separation, suppress rapid charge recombination, and convert solar energy into chemical energy or use it in the degradation of organic compounds. The photocatalytic performance greatly depends on the composition and morphology of the photocatalyst, which, in turn, are determined by the method of preparation used. Here, we review the four different synthesis methods (mechanical mixing, self-assembly, in situ decoration, and oxidation) reported for MXenes in view of their application as co-catalyst in photocatalysis. In addition, the working mechanism for MXenes application in photocatalysis is discussed and an outlook for future research is also provided.
Highlights:
1 Two-dimensional transition metal carbides/nitrides (MXenes) as co-catalysts were summarized and classified according to the different synthesis methods used: mechanical mixing, self-assembly, in situ decoration, and oxidation.
2 The working mechanism for MXenes application in photocatalysis was discussed. The improved photocatalytic performance was attributed to enhancement of charge separation and suppression of charge recombination.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- M. Liu, Z. Yang, H. Sun, C. Lai, X. Zhao, H. Peng, T. Liu, A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Res. 9, 3735–3746 (2016). https://doi.org/10.1007/s12274-016-1244-1
- C. Hou, Z. Tai, L. Zhao, Y. Zhai, Y. Hou et al., High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. J. Mater. Chem. A 6, 9723–9736 (2018). https://doi.org/10.1039/c8ta02863j
- B. Kirubasankar, V. Murugadoss, J. Lin, T. Ding, M. Dong et al., In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10, 20414–20425 (2018). https://doi.org/10.1039/c8nr06345a
- M. Liu, Q. Meng, Z. Yang, X. Zhao, T. Liu, Ultra-long-term cycling stability of an integrated carbon-sulfur membrane with dual shuttle-inhibiting layers of graphene “nets” and a porous carbon skin. Chem. Commun. 54, 5090–5093 (2018). https://doi.org/10.1039/c8cc01889h
- W. Du, X. Wang, J. Zhan, X. Sun, L. Kang et al., Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim. Acta 296, 907–915 (2019). https://doi.org/10.1016/j.electacta.2018.11.074
- C. Hou, J. Wang, W. Du, J. Wang, Y. Du et al., One-pot synthesized molybdenum dioxide–molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage. J. Mater. Chem. A 7, 13460–13472 (2019). https://doi.org/10.1039/c9ta03551f
- M. Idrees, S. Batool, J. Kong, Q. Zhuang, H. Liu et al., Polyborosilazane derived ceramics-nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochim. Acta 296, 925–937 (2019). https://doi.org/10.1016/j.electacta.2018.11.088
- K. Le, Z. Wang, F. Wang, Q. Wang, Q. Shao et al., Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Trans. 48, 5193–5202 (2019). https://doi.org/10.1039/c9dt00615j
- R. Li, X. Zhu, Q. Fu, G. Liang, Y. Chen et al., Nanosheet-based Nb12O29 hierarchical microspheres for enhanced lithium storage. Chem. Commun. 55, 2493–2496 (2019). https://doi.org/10.1039/c8cc09924c
- Y. Ma, C. Hou, H. Zhang, Q. Zhang, H. Liu, S. Wu, Z. Guo, Three-dimensional core-shell Fe3O4/polyaniline coaxial heterogeneous nanonets: Preparation and high performance supercapacitor electrodes. Electrochim. Acta 315, 114–123 (2019). https://doi.org/10.1016/j.electacta.2019.05.073
- L. Yang, M. Shi, J. Jiang, Y. Liu, C. Yan, H. Liu, Z. Guo, Heterogeneous interface induced formation of balsam pear-like ppy for high performance supercapacitors. Electrochim. Acta 244, 27–30 (2019). https://doi.org/10.1016/j.matlet.2019.02.064
- M. Liu, Y. Liu, Y. Yan, F. Wang, J. Liu, T. Liu, A highly conductive carbon–sulfur film with interconnected mesopores as an advanced cathode for lithium-sulfur batteries. Chem. Commun. 53, 9097–9100 (2017). https://doi.org/10.1039/c7cc04523a
- T. Hisatomi, K. Domen, Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. Faraday Discuss. 198, 11–35 (2017). https://doi.org/10.1039/c6fd00221h
- V.-H. Nguyen, J.C.S. Wu, Recent developments in the design of photoreactors for solar energy conversion from water splitting and CO2 reduction. Appl. Cataly. A Gen. 550, 122–141 (2018). https://doi.org/10.1016/j.apcata.2017.11.002
- X. Zhang, Z. Zhang, J. Li, X. Zhao, D. Wu, Z. Zhou, Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction. J. Mater. Chem. A 5, 12899–12903 (2017). https://doi.org/10.1039/c7ta03557h
- Q. Liu, L. Ai, J. Jiang, MXene-derived TiO2@C/g-C3N4 heterojunctions for highly efficient nitrogen photofixation. J. Mater. Chem. A 6, 4102–4110 (2018). https://doi.org/10.1039/c7ta09350k
- J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29, 1601694–1601713 (2017). https://doi.org/10.1002/adma.201601694
- D. Pan, S. Ge, J. Zhao, Q. Shao, L. Guo, X. Zhang, J. Lin, G. Xu, Z. Guo, Synthesis, characterization and photocatalytic activity of mixed-metal oxides derived from NiCoFe ternary layered double hydroxides. Dalton Trans. 47, 9765–9778 (2018). https://doi.org/10.1039/c8dt01045e
- J. Zhao, S. Ge, D. Pan, Q. Shao, J. Lin et al., Solvothermal synthesis, characterization and photocatalytic property of zirconium dioxide doped titanium dioxide spinous hollow microspheres with sunflower pollen as bio-templates. J. Colloid Interface Sci. 529, 111–121 (2018). https://doi.org/10.1016/j.jcis.2018.05.091
- Y. Sheng, J. Yang, F. Wang, L. Liu, H. Liu, C. Yan, Z. Guo, Sol-gel synthesized hexagonal boron nitride/titania nanocomposites with enhanced photocatalytic activity. Appl. Surf. Sci. 465, 154–163 (2019). https://doi.org/10.1016/j.apsusc.2018.09.137
- J. Tian, Q. Shao, J. Zhao, D. Pan, M. Dong et al., Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine B. J. Colloid Interface Sci. 541, 18–29 (2019). https://doi.org/10.1016/j.jcis.2019.01.069
- J. Zhao, S. Ge, D. Pan, Y. Pan, V. Murugadoss et al., Microwave hydrothermal synthesis of In2O3-ZnO nanocomposites and their enhanced photoelectrochemical properties. J. Electrochem. Soc. 166, H3074–H3083 (2019). https://doi.org/10.1149/2.0071905jes
- H. Shindume, L.Z. Zhao, N. Wang, H. Liu, A. Umar, J. Zhang, T. Wu, Z. Guo, Enhanced photocatalytic activity of B, N-codoped TiO2 by a new molten nitrate process. Electrochim. Acta 19, 839–849 (2019). https://doi.org/10.1166/jnn.2019.15745
- Z. Zhao, H. An, J. Lin, M. Feng, V. Murugadoss et al., Progress on the photocatalytic reduction removal of chromium contamination. Chem. Rec. 19, 873–882 (2019). https://doi.org/10.1002/tcr.201800153
- G. Zheng, J. Wang, H. Liu, V. Murugadoss, G. Zu et al., Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale (advance Article, 2019). https://doi.org/10.1039/c9nr03474a
- B. Lin, Z. Lin, S. Chen, M. Yu, W. Li et al., Surface intercalated spherical MoS2xSe2(1−x) nanocatalysts for highly efficient and durable hydrogen evolution reactions. Dalton Trans. 48, 8279–8287 (2019). https://doi.org/10.1039/c9dt01218d
- T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8, 2253–2276 (2018). https://doi.org/10.1021/acscatal.7b03437
- M. Ge, J. Cai, J. Iocozzia, C. Cao, J. Huang et al., A review of TiO2 nanostructured catalysts for sustainable H2 generation. Int. J. Hydrog. Energy 42, 8418–8449 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.052
- L. Clarizia, D. Russo, I. Di Somma, R. Andreozzi, R. Marotta, Hydrogen generation through solar photocatalytic processes: a review of the configuration and the properties of effective metal-based semiconductor nanomaterials. Energies 10, 1624–1644 (2017). https://doi.org/10.3390/en10101624
- X. Zhang, Z. Zhang, Z. Zhou, MXene-based materials for electrochemical energy storage. J. Energy Chem. 27, 73–85 (2018). https://doi.org/10.1016/j.jechem.2017.08.004
- Z. Guo, J. Zhou, Z. Sun, New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A 5, 23530–23535 (2017). https://doi.org/10.1039/c7ta08665b
- H. Jiang, Z. Wang, Q. Yang, L. Tan, L. Dong, M. Dong, Ultrathin Ti3C2T (MXene) nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting. Nano-Micro Lett. 11, 31 (2019). https://doi.org/10.1007/s40820-019-0261-5
- Y.T. Liu, P. Zhang, N. Sun, B. Anasori, Q.Z. Zhu, H. Liu, Y. Gogotsi, B. Xu, Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30, 1707334 (2018). https://doi.org/10.1002/adma.201707334
- L. Yu, L. Hu, B. Anasori, Y.-T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 3, 1597–1603 (2018). https://doi.org/10.1021/acsenergylett.8b00718
- H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu et al., Electrostatic self-assembly of 0D-2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 11, 65 (2019). https://doi.org/10.1007/s40820-019-0296-7
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, H.S. Man, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137 (2016). https://doi.org/10.1126/science.aag2421
- M. Han, X. Yin, X. Li, B. Anasori, L. Zhang, L. Cheng, Y. Gogotsi, Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces 9, 20038–20045 (2017). https://doi.org/10.1021/acsami.7b04602
- J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang et al., Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 352, 306–327 (2017). https://doi.org/10.1016/j.ccr.2017.09.012
- A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori, Y. Gogotsi, 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4, eaau0920 (2018). https://doi.org/10.1126/sciadv.aau0920
- Y. Ying, Y. Liu, X. Wang, Y. Mao, W. Cao, P. Hu, X. Peng, Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Appl. Mater. Interfaces 7, 1795–1803 (2015). https://doi.org/10.1021/am5074722
- N. Liu, N. Lu, Y. Su, P. Wang, X. Quan, Fabrication of g-C3N4/Ti3C2 composite and its visible-light photocatalytic capability for ciprofloxacin degradation. Sep. Purif. Technol. 211, 782–789 (2019). https://doi.org/10.1016/j.seppur.2018.10.027
- C. Dall’Agnese, Y. Dall’Agnese, B. Anasori, W. Sugimoto, S. Mori, Oxidized Ti3C2 MXene nanosheets for dye-sensitized solar cells. New J. Chem. 42, 16446–16450 (2018). https://doi.org/10.1039/c8nj03246g
- L. Yang, Y. Dall’Agnese, K. Hantanasirisakul, C.E. Shuck, K. Maleski et al., SnO2–Ti3C2 MXene electron transport layers for perovskite solar cells. J. Mater. Chem. A 7, 5635–5642 (2019). https://doi.org/10.1039/c8ta12140k
- H.C. Fu, V. Ramalingam, H. Kim, C.H. Lin, X. Fang, H.N. Alshareef, J.H. He, MXene-contacted silicon solar cells with 11.5% efficiency. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201900180
- H. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou, X. Wang, J.W. Chew, Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges. Adv. Mater. 30, 1704561 (2018). https://doi.org/10.1002/adma.201704561
- M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
- X. Lu, K. Xu, P. Chen, K. Jia, S. Liu, C. Wu, Facile one step method realizing scalable production of g-c3n4 nanosheets and study of their photocatalytic H2 evolution activity. J. Mater. Chem. A 2, 18924–18928 (2014). https://doi.org/10.1039/c4ta04487h
- J. Peng, X. Chen, W.-J. Ong, X. Zhao, N. Li, Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem 5, 18–50 (2019). https://doi.org/10.1016/j.chempr.2018.08.037
- Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016). https://doi.org/10.1021/acsenergylett.6b00247
- M. Alhabeb, K. Maleski, T.S. Mathis, A. Sarycheva, C.B. Hatter, S. Uzun, A. Levitt, Y. Gogotsi, Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed. 57, 5444–5448 (2018). https://doi.org/10.1002/anie.201802232
- J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng et al., Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 128, 14789–14794 (2016). https://doi.org/10.1002/ange.201606643
- S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe, P.W.M. Blom, X. Feng, Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57, 15491–15495 (2018). https://doi.org/10.1002/anie.201809662
- M.R. Lukatskaya, J. Halim, B. Dyatkin, M. Naguib, Y.S. Buranova et al., Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew. Chem. Int. Ed. 53, 4877–4880 (2014). https://doi.org/10.1002/anie.201402513
- S.Y. Pang, Y.T. Wong, S. Yuan, Y. Liu, M.K. Tsang et al., Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141(24), 9610–9616 (2019). https://doi.org/10.1021/jacs.9b02578
- T. Li, L. Yao, Q. Liu, J. Gu, R. Luo et al., Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57, 6115–6119 (2018). https://doi.org/10.1002/anie.201800887
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- X. Xiao, H. Wang, P. Urbankowski, Y. Gogotsi, Topochemical synthesis of 2D materials. Chem. Soc. Rev. 47, 8744–8765 (2018). https://doi.org/10.1039/c8cs00649k
- V.M. Ng, H. Huang, K. Zhou, P.S. Lee, W. Que, J.Z. Xu, L.B. Kong, Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5(7), 3039–3068 (2017). https://doi.org/10.1039/c6ta06772g
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/c8cs00324f
- Z. Guo, J. Zhou, L. Zhu, Z. Sun, MXene: a promising photocatalyst for water splitting. J. Mater. Chem. A 4, 11446–11452 (2016). https://doi.org/10.1039/c6ta04414j
- S.-Y. Xie, J.-H. Su, H. Zheng, Group-IV analogues of MXene: promising two-dimensional semiconductors. Solid State Commun. 291, 51–53 (2019). https://doi.org/10.1016/j.ssc.2019.01.017
- C.-F. Fu, X. Li, Q. Luo, J. Yang, Two-dimensional multilayer M2CO2 (M = Sc, Zr, Hf) as photocatalysts for hydrogen production from water splitting: a first principles study. J. Mater. Chem. A 5, 24972–24980 (2017). https://doi.org/10.1039/c7ta08812d
- Z. Guo, N. Miao, J. Zhou, B. Sa, Z. Sun, Strain-mediated type-I/type-II transition in MXene/blue phosphorene van der Waals heterostructures for flexible optical/electronic devices. J. Mater. Chem. C 5, 978–984 (2017). https://doi.org/10.1039/c6tc04349f
- J. Cui, Q. Peng, J. Zhou, Z. Sun, Strain-tunable electronic structures and optical properties of semiconducting MXenes. Nanotechnology 30, 345205 (2019). https://doi.org/10.1088/1361-6528/ab1f22
- A. Mostafaei, E. Faizabadi, E.H. Semiromi, Theoretical studies and tuning the electronic and optical properties of Zr2CO2 monolayer using biaxial strain effect: modified Becke–Johnson calculation. Physica E 114, 113559 (2019). https://doi.org/10.1016/j.physe.2019.113559
- M. Ye, X. Wang, E. Liu, J. Ye, D. Wang, Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst. Chemsuschem 11, 1606–1611 (2018). https://doi.org/10.1002/cssc.201800083
- J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, S.Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017). https://doi.org/10.1038/ncomms13907
- C. Peng, X. Yang, Y. Li, H. Yu, H. Wang, F. Peng, Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 8, 6051–6060 (2016). https://doi.org/10.1021/acsami.5b11973
- X. An, W. Wang, J. Wang, H. Duan, J. Shi, X. Yu, The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys. Chem. Chem. Phys. 20, 11405–11411 (2018). https://doi.org/10.1039/c8cp01123k
- X. Xie, N. Zhang, Z.-R. Tang, M. Anpo, Y.-J. Xu, Ti3C2Tx MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion. Appl. Catal. B 237, 43–49 (2018). https://doi.org/10.1016/j.apcatb.2018.05.070
- Y. Sun, D. Jin, Y. Sun, X. Meng, Y. Gao et al., G-C3N4/Ti3C2Tx (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 6, 9124–9131 (2018). https://doi.org/10.1039/c8ta02706d
- T. Cai, L. Wang, Y. Liu, S. Zhang, W. Dong et al., Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Appl. Catal. B 239, 545–554 (2018). https://doi.org/10.1016/j.apcatb.2018.08.053
- H. Zhang, M. Li, J. Cao, Q. Tang, P. Kang, C. Zhu, M. Ma, 2D a-Fe2O3 doped Ti3C2 MXene composite with enhanced visible light photocatalytic activity for degradation of Rhodamine B. Ceram. Int. 44, 19958–19962 (2018). https://doi.org/10.1016/j.ceramint.2018.07.262
- T. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo et al., Monolayer Ti3C2Tx as an effective co-catalyst for enhanced photocatalytic hydrogen production over TiO2. ACS Appl. Energy Mater. 2, 4640–4651 (2019). https://doi.org/10.1021/acsaem.8b02268
- T. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo et al., 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. Nanoscale 11, 8138–8149 (2019). https://doi.org/10.1039/c9nr00168a
- J.-H. Zhao, L.-W. Liu, K. Li, T. Li, F.-T. Liu, Conductive Ti3C2 and MOF-derived CoSx boosting the photocatalytic hydrogen production activity of TiO2. CrystEngComm 21, 2416–2421 (2019). https://doi.org/10.1039/c8ce02050g
- R. Chen, P. Wang, J. Chen, C. Wang, Y. Ao, Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation. Appl. Surf. Sci. 473, 11–19 (2019). https://doi.org/10.1016/j.apsusc.2018.12.071
- M. Shao, Y. Shao, J. Chai, Y. Qu, M. Yang et al., Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. J. Mater. Chem. A 5, 16748–16756 (2017). https://doi.org/10.1039/c7ta04122e
- Y. Xu, S. Wang, J. Yang, B. Han, R. Nie et al., Highly efficient photoelectrocatalytic reduction of CO2 on the Ti3C2/g-C3N4 heterojunction with rich Ti3+ and pyri-N species. J. Mater. Chem. A 6, 15213–15220 (2018). https://doi.org/10.1039/c8ta03315c
- Y. Gao, L. Wang, A. Zhou, Z. Li, J. Chen, H. Bala, Q. Hu, X. Cao, Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 150, 62–64 (2015). https://doi.org/10.1016/j.matlet.2015.02.135
- H. Wang, R. Peng, Z.D. Hood, M. Naguib, S.P. Adhikari, Z. Wu, Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. Chemsuschem 9, 1490–1497 (2016). https://doi.org/10.1002/cssc.201600165
- L. Shi, C. Xu, D. Jiang, X. Sun, X. Wang et al., Enhanced interaction in TiO2/BiVO4 heterostructures via MXene Ti3C2-derived 2D-carbon for highly efficient visible-light photocatalysis. Nanotechnology 30, 075601 (2019). https://doi.org/10.1088/1361-6528/aaf313
- Q. Luo, B. Chai, M. Xu, Q. Cai, Preparation and photocatalytic activity of TiO2-loaded Ti3C2 with small interlayer spacing. Appl. Phys. A 124, 495 (2018). https://doi.org/10.1007/s00339-018-1909-6
- C. Liu, Q. Xu, Q. Zhang, Y. Zhu, M. Ji et al., Layered BiOBr/Ti3C2 MXene composite with improved visible-light photocatalytic activity. J. Mater. Sci. 54, 2458–2471 (2018). https://doi.org/10.1007/s10853-018-2990-0
- S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 28, 1800136 (2018). https://doi.org/10.1002/adfm.201800136
- A. Tariq, S.I. Ali, D. Akinwande, S. Rizwan, Efficient visible-light photocatalysis of 2D-MXene nanohybrids with Gd3+- and Sn4+-codoped bismuth ferrite. ACS Omega 3, 13828–13836 (2018). https://doi.org/10.1021/acsomega.8b01951
- H. Wang, Y. Wu, T. Xiao, X. Yuan, G. Zeng et al., Formation of quasi-core-shell In2S3/anatase TiO2 @metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Appl. Catalysis B 233, 213–225 (2018). https://doi.org/10.1016/j.apcatb.2018.04.012
- L. Tie, S. Yang, C. Yu, H. Chen, Y. Liu, S. Dong, J. Sun, J. Sun, In situ decoration of ZnS nanoparticles with Ti3C2 MXene nanosheets for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 545, 63–70 (2019). https://doi.org/10.1016/j.jcis.2019.03.014
- T. Wojciechowski, A. Rozmyslowska-Wojciechowska, G. Matyszczak, M. Wrzecionek, A. Olszyna et al., Ti2C MXene modified with ceramic oxide and noble metal nanoparticles: synthesis, morphostructural properties, and high photocatalytic activity. Inorg. Chem. 58, 7602–7614 (2019). https://doi.org/10.1021/acs.inorgchem.9b01015
- C. Peng, H. Wang, H. Yu, F. Peng, (111) TiO2−x/Ti3C2: Synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity. Mater. Res. Bull. 89, 16–25 (2017). https://doi.org/10.1016/j.materresbull.2016.12.049
- G. Jia, Y. Wang, X. Cui, W. Zheng, Highly carbon-doped TiO2 derived from MXene boosting the photocatalytic hydrogen evolution. ACS Sustain. Chem. Eng. 6, 13480–13486 (2018). https://doi.org/10.1021/acssuschemeng.8b03406
- C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao et al., High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy 53, 97–107 (2018). https://doi.org/10.1016/j.nanoen.2018.08.040
- Y. Lu, M. Yao, A. Zhou, Q. Hu, L. Wang, Preparation and photocatalytic performance of Ti3C2/TiO2/CuO ternary nanocomposites. J. Nanomater. 2017, 1978764 (2017). https://doi.org/10.1155/2017/1978764
- W. Yuan, L. Cheng, Y. Zhang, H. Wu, L. Zheng, 2D layered Carbon/TiO2 hybrids derived from Ti3C2 MXenes for photocatalytic hydrogen evolution under visible light irradiation. Adv. Mater. Interfaces 4, 1700577 (2017). https://doi.org/10.1002/admi.201700577
- J. Low, L. Zhang, T. Tong, B. Shen, J. Yu, TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 361, 255–266 (2018). https://doi.org/10.1016/j.jcat.2018.03.009
- T. Su, R. Peng, Z.D. Hood, M. Naguib, I.N. Ivanov et al., One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. Chemsuschem 11, 688–699 (2018). https://doi.org/10.1002/cssc.201702317
- X. Cheng, L. Zu, Y. Jiang, D. Shi, X. Cai, Y. Ni, S. Lin, Y. Qin, A titanium-based photo-fenton bifunctional catalyst of mp-MXene/TiO2−x nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes. Chem. Commun. 54, 11622–11625 (2018). https://doi.org/10.1039/c8cc05866k
- J. Li, S. Wang, Y. Du, W. Liao, Enhanced photocatalytic performance of TiO2@C nanosheets derived from two-dimensional Ti2CTx. Ceram. Int. 44, 7042–7046 (2018). https://doi.org/10.1016/j.ceramint.2018.01.139
- Y. Sun, Y. Sun, X. Meng, Y. Gao, Y. Dall’Agnese et al., Eosin Y-sensitized partially oxidized Ti3C2 MXene for photocatalytic hydrogen evolution. Catal. Sci. Technol. 9, 310–315 (2019). https://doi.org/10.1039/c8cy02240b
- Y. Li, X. Deng, J. Tian, Z. Liang, H. Cui, Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting. Appl. Mater. Today 13, 217–227 (2018). https://doi.org/10.1016/j.apmt.2018.09.004
- W. Yuan, L. Cheng, Y. An, S. Lv, H. Wu, X. Fan, Y. Zhang, X. Guo, J. Tang, Laminated hybrid junction of sulfur-doped TiO2 and a carbon substrate derived from Ti3C2 MXenes: toward highly visible light-driven photocatalytic hydrogen evolution. Adv. Sci. 5, 1700870 (2018). https://doi.org/10.1002/advs.201700870
- A. Shahzad, K. Rasool, M. Nawaz, W. Miran, J. Jang et al., Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 349, 748–755 (2018). https://doi.org/10.1016/j.cej.2018.05.148
- Y. Li, Z. Yin, G. Ji, Z. Liang, Y. Xue et al., 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity. Appl. Catal. B 246, 12–20 (2019). https://doi.org/10.1016/j.apcatb.2019.01.051
- C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29, 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
- M. Sharma, S. Vaidya, A.K. Ganguli, Enhanced photocatalytic activity of g-C3N4-TiO2 nanocomposites for degradation of Rhodamine B dye. J. Photochem. Photobiol. A 335, 287–293 (2017). https://doi.org/10.1016/j.jphotochem.2016.12.002
- L.T. Alameda, P. Moradifar, Z.P. Metzger, N. Alem, R.E. Schaak, Topochemical deintercalation of Al from MoAlB: stepwise etching pathway, layered intergrowth structures, and two-dimensional MBene. J. Am. Chem. Soc. 140, 8833–8840 (2018). https://doi.org/10.1021/jacs.8b04705
References
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
M. Liu, Z. Yang, H. Sun, C. Lai, X. Zhao, H. Peng, T. Liu, A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Res. 9, 3735–3746 (2016). https://doi.org/10.1007/s12274-016-1244-1
C. Hou, Z. Tai, L. Zhao, Y. Zhai, Y. Hou et al., High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. J. Mater. Chem. A 6, 9723–9736 (2018). https://doi.org/10.1039/c8ta02863j
B. Kirubasankar, V. Murugadoss, J. Lin, T. Ding, M. Dong et al., In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10, 20414–20425 (2018). https://doi.org/10.1039/c8nr06345a
M. Liu, Q. Meng, Z. Yang, X. Zhao, T. Liu, Ultra-long-term cycling stability of an integrated carbon-sulfur membrane with dual shuttle-inhibiting layers of graphene “nets” and a porous carbon skin. Chem. Commun. 54, 5090–5093 (2018). https://doi.org/10.1039/c8cc01889h
W. Du, X. Wang, J. Zhan, X. Sun, L. Kang et al., Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim. Acta 296, 907–915 (2019). https://doi.org/10.1016/j.electacta.2018.11.074
C. Hou, J. Wang, W. Du, J. Wang, Y. Du et al., One-pot synthesized molybdenum dioxide–molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage. J. Mater. Chem. A 7, 13460–13472 (2019). https://doi.org/10.1039/c9ta03551f
M. Idrees, S. Batool, J. Kong, Q. Zhuang, H. Liu et al., Polyborosilazane derived ceramics-nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochim. Acta 296, 925–937 (2019). https://doi.org/10.1016/j.electacta.2018.11.088
K. Le, Z. Wang, F. Wang, Q. Wang, Q. Shao et al., Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Trans. 48, 5193–5202 (2019). https://doi.org/10.1039/c9dt00615j
R. Li, X. Zhu, Q. Fu, G. Liang, Y. Chen et al., Nanosheet-based Nb12O29 hierarchical microspheres for enhanced lithium storage. Chem. Commun. 55, 2493–2496 (2019). https://doi.org/10.1039/c8cc09924c
Y. Ma, C. Hou, H. Zhang, Q. Zhang, H. Liu, S. Wu, Z. Guo, Three-dimensional core-shell Fe3O4/polyaniline coaxial heterogeneous nanonets: Preparation and high performance supercapacitor electrodes. Electrochim. Acta 315, 114–123 (2019). https://doi.org/10.1016/j.electacta.2019.05.073
L. Yang, M. Shi, J. Jiang, Y. Liu, C. Yan, H. Liu, Z. Guo, Heterogeneous interface induced formation of balsam pear-like ppy for high performance supercapacitors. Electrochim. Acta 244, 27–30 (2019). https://doi.org/10.1016/j.matlet.2019.02.064
M. Liu, Y. Liu, Y. Yan, F. Wang, J. Liu, T. Liu, A highly conductive carbon–sulfur film with interconnected mesopores as an advanced cathode for lithium-sulfur batteries. Chem. Commun. 53, 9097–9100 (2017). https://doi.org/10.1039/c7cc04523a
T. Hisatomi, K. Domen, Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. Faraday Discuss. 198, 11–35 (2017). https://doi.org/10.1039/c6fd00221h
V.-H. Nguyen, J.C.S. Wu, Recent developments in the design of photoreactors for solar energy conversion from water splitting and CO2 reduction. Appl. Cataly. A Gen. 550, 122–141 (2018). https://doi.org/10.1016/j.apcata.2017.11.002
X. Zhang, Z. Zhang, J. Li, X. Zhao, D. Wu, Z. Zhou, Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction. J. Mater. Chem. A 5, 12899–12903 (2017). https://doi.org/10.1039/c7ta03557h
Q. Liu, L. Ai, J. Jiang, MXene-derived TiO2@C/g-C3N4 heterojunctions for highly efficient nitrogen photofixation. J. Mater. Chem. A 6, 4102–4110 (2018). https://doi.org/10.1039/c7ta09350k
J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29, 1601694–1601713 (2017). https://doi.org/10.1002/adma.201601694
D. Pan, S. Ge, J. Zhao, Q. Shao, L. Guo, X. Zhang, J. Lin, G. Xu, Z. Guo, Synthesis, characterization and photocatalytic activity of mixed-metal oxides derived from NiCoFe ternary layered double hydroxides. Dalton Trans. 47, 9765–9778 (2018). https://doi.org/10.1039/c8dt01045e
J. Zhao, S. Ge, D. Pan, Q. Shao, J. Lin et al., Solvothermal synthesis, characterization and photocatalytic property of zirconium dioxide doped titanium dioxide spinous hollow microspheres with sunflower pollen as bio-templates. J. Colloid Interface Sci. 529, 111–121 (2018). https://doi.org/10.1016/j.jcis.2018.05.091
Y. Sheng, J. Yang, F. Wang, L. Liu, H. Liu, C. Yan, Z. Guo, Sol-gel synthesized hexagonal boron nitride/titania nanocomposites with enhanced photocatalytic activity. Appl. Surf. Sci. 465, 154–163 (2019). https://doi.org/10.1016/j.apsusc.2018.09.137
J. Tian, Q. Shao, J. Zhao, D. Pan, M. Dong et al., Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine B. J. Colloid Interface Sci. 541, 18–29 (2019). https://doi.org/10.1016/j.jcis.2019.01.069
J. Zhao, S. Ge, D. Pan, Y. Pan, V. Murugadoss et al., Microwave hydrothermal synthesis of In2O3-ZnO nanocomposites and their enhanced photoelectrochemical properties. J. Electrochem. Soc. 166, H3074–H3083 (2019). https://doi.org/10.1149/2.0071905jes
H. Shindume, L.Z. Zhao, N. Wang, H. Liu, A. Umar, J. Zhang, T. Wu, Z. Guo, Enhanced photocatalytic activity of B, N-codoped TiO2 by a new molten nitrate process. Electrochim. Acta 19, 839–849 (2019). https://doi.org/10.1166/jnn.2019.15745
Z. Zhao, H. An, J. Lin, M. Feng, V. Murugadoss et al., Progress on the photocatalytic reduction removal of chromium contamination. Chem. Rec. 19, 873–882 (2019). https://doi.org/10.1002/tcr.201800153
G. Zheng, J. Wang, H. Liu, V. Murugadoss, G. Zu et al., Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale (advance Article, 2019). https://doi.org/10.1039/c9nr03474a
B. Lin, Z. Lin, S. Chen, M. Yu, W. Li et al., Surface intercalated spherical MoS2xSe2(1−x) nanocatalysts for highly efficient and durable hydrogen evolution reactions. Dalton Trans. 48, 8279–8287 (2019). https://doi.org/10.1039/c9dt01218d
T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8, 2253–2276 (2018). https://doi.org/10.1021/acscatal.7b03437
M. Ge, J. Cai, J. Iocozzia, C. Cao, J. Huang et al., A review of TiO2 nanostructured catalysts for sustainable H2 generation. Int. J. Hydrog. Energy 42, 8418–8449 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.052
L. Clarizia, D. Russo, I. Di Somma, R. Andreozzi, R. Marotta, Hydrogen generation through solar photocatalytic processes: a review of the configuration and the properties of effective metal-based semiconductor nanomaterials. Energies 10, 1624–1644 (2017). https://doi.org/10.3390/en10101624
X. Zhang, Z. Zhang, Z. Zhou, MXene-based materials for electrochemical energy storage. J. Energy Chem. 27, 73–85 (2018). https://doi.org/10.1016/j.jechem.2017.08.004
Z. Guo, J. Zhou, Z. Sun, New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A 5, 23530–23535 (2017). https://doi.org/10.1039/c7ta08665b
H. Jiang, Z. Wang, Q. Yang, L. Tan, L. Dong, M. Dong, Ultrathin Ti3C2T (MXene) nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting. Nano-Micro Lett. 11, 31 (2019). https://doi.org/10.1007/s40820-019-0261-5
Y.T. Liu, P. Zhang, N. Sun, B. Anasori, Q.Z. Zhu, H. Liu, Y. Gogotsi, B. Xu, Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30, 1707334 (2018). https://doi.org/10.1002/adma.201707334
L. Yu, L. Hu, B. Anasori, Y.-T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 3, 1597–1603 (2018). https://doi.org/10.1021/acsenergylett.8b00718
H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu et al., Electrostatic self-assembly of 0D-2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 11, 65 (2019). https://doi.org/10.1007/s40820-019-0296-7
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, H.S. Man, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137 (2016). https://doi.org/10.1126/science.aag2421
M. Han, X. Yin, X. Li, B. Anasori, L. Zhang, L. Cheng, Y. Gogotsi, Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces 9, 20038–20045 (2017). https://doi.org/10.1021/acsami.7b04602
J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang et al., Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 352, 306–327 (2017). https://doi.org/10.1016/j.ccr.2017.09.012
A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori, Y. Gogotsi, 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4, eaau0920 (2018). https://doi.org/10.1126/sciadv.aau0920
Y. Ying, Y. Liu, X. Wang, Y. Mao, W. Cao, P. Hu, X. Peng, Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Appl. Mater. Interfaces 7, 1795–1803 (2015). https://doi.org/10.1021/am5074722
N. Liu, N. Lu, Y. Su, P. Wang, X. Quan, Fabrication of g-C3N4/Ti3C2 composite and its visible-light photocatalytic capability for ciprofloxacin degradation. Sep. Purif. Technol. 211, 782–789 (2019). https://doi.org/10.1016/j.seppur.2018.10.027
C. Dall’Agnese, Y. Dall’Agnese, B. Anasori, W. Sugimoto, S. Mori, Oxidized Ti3C2 MXene nanosheets for dye-sensitized solar cells. New J. Chem. 42, 16446–16450 (2018). https://doi.org/10.1039/c8nj03246g
L. Yang, Y. Dall’Agnese, K. Hantanasirisakul, C.E. Shuck, K. Maleski et al., SnO2–Ti3C2 MXene electron transport layers for perovskite solar cells. J. Mater. Chem. A 7, 5635–5642 (2019). https://doi.org/10.1039/c8ta12140k
H.C. Fu, V. Ramalingam, H. Kim, C.H. Lin, X. Fang, H.N. Alshareef, J.H. He, MXene-contacted silicon solar cells with 11.5% efficiency. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201900180
H. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou, X. Wang, J.W. Chew, Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges. Adv. Mater. 30, 1704561 (2018). https://doi.org/10.1002/adma.201704561
M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
X. Lu, K. Xu, P. Chen, K. Jia, S. Liu, C. Wu, Facile one step method realizing scalable production of g-c3n4 nanosheets and study of their photocatalytic H2 evolution activity. J. Mater. Chem. A 2, 18924–18928 (2014). https://doi.org/10.1039/c4ta04487h
J. Peng, X. Chen, W.-J. Ong, X. Zhao, N. Li, Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem 5, 18–50 (2019). https://doi.org/10.1016/j.chempr.2018.08.037
Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016). https://doi.org/10.1021/acsenergylett.6b00247
M. Alhabeb, K. Maleski, T.S. Mathis, A. Sarycheva, C.B. Hatter, S. Uzun, A. Levitt, Y. Gogotsi, Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed. 57, 5444–5448 (2018). https://doi.org/10.1002/anie.201802232
J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng et al., Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 128, 14789–14794 (2016). https://doi.org/10.1002/ange.201606643
S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe, P.W.M. Blom, X. Feng, Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57, 15491–15495 (2018). https://doi.org/10.1002/anie.201809662
M.R. Lukatskaya, J. Halim, B. Dyatkin, M. Naguib, Y.S. Buranova et al., Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew. Chem. Int. Ed. 53, 4877–4880 (2014). https://doi.org/10.1002/anie.201402513
S.Y. Pang, Y.T. Wong, S. Yuan, Y. Liu, M.K. Tsang et al., Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141(24), 9610–9616 (2019). https://doi.org/10.1021/jacs.9b02578
T. Li, L. Yao, Q. Liu, J. Gu, R. Luo et al., Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57, 6115–6119 (2018). https://doi.org/10.1002/anie.201800887
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
X. Xiao, H. Wang, P. Urbankowski, Y. Gogotsi, Topochemical synthesis of 2D materials. Chem. Soc. Rev. 47, 8744–8765 (2018). https://doi.org/10.1039/c8cs00649k
V.M. Ng, H. Huang, K. Zhou, P.S. Lee, W. Que, J.Z. Xu, L.B. Kong, Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5(7), 3039–3068 (2017). https://doi.org/10.1039/c6ta06772g
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/c8cs00324f
Z. Guo, J. Zhou, L. Zhu, Z. Sun, MXene: a promising photocatalyst for water splitting. J. Mater. Chem. A 4, 11446–11452 (2016). https://doi.org/10.1039/c6ta04414j
S.-Y. Xie, J.-H. Su, H. Zheng, Group-IV analogues of MXene: promising two-dimensional semiconductors. Solid State Commun. 291, 51–53 (2019). https://doi.org/10.1016/j.ssc.2019.01.017
C.-F. Fu, X. Li, Q. Luo, J. Yang, Two-dimensional multilayer M2CO2 (M = Sc, Zr, Hf) as photocatalysts for hydrogen production from water splitting: a first principles study. J. Mater. Chem. A 5, 24972–24980 (2017). https://doi.org/10.1039/c7ta08812d
Z. Guo, N. Miao, J. Zhou, B. Sa, Z. Sun, Strain-mediated type-I/type-II transition in MXene/blue phosphorene van der Waals heterostructures for flexible optical/electronic devices. J. Mater. Chem. C 5, 978–984 (2017). https://doi.org/10.1039/c6tc04349f
J. Cui, Q. Peng, J. Zhou, Z. Sun, Strain-tunable electronic structures and optical properties of semiconducting MXenes. Nanotechnology 30, 345205 (2019). https://doi.org/10.1088/1361-6528/ab1f22
A. Mostafaei, E. Faizabadi, E.H. Semiromi, Theoretical studies and tuning the electronic and optical properties of Zr2CO2 monolayer using biaxial strain effect: modified Becke–Johnson calculation. Physica E 114, 113559 (2019). https://doi.org/10.1016/j.physe.2019.113559
M. Ye, X. Wang, E. Liu, J. Ye, D. Wang, Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst. Chemsuschem 11, 1606–1611 (2018). https://doi.org/10.1002/cssc.201800083
J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, S.Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017). https://doi.org/10.1038/ncomms13907
C. Peng, X. Yang, Y. Li, H. Yu, H. Wang, F. Peng, Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 8, 6051–6060 (2016). https://doi.org/10.1021/acsami.5b11973
X. An, W. Wang, J. Wang, H. Duan, J. Shi, X. Yu, The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys. Chem. Chem. Phys. 20, 11405–11411 (2018). https://doi.org/10.1039/c8cp01123k
X. Xie, N. Zhang, Z.-R. Tang, M. Anpo, Y.-J. Xu, Ti3C2Tx MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion. Appl. Catal. B 237, 43–49 (2018). https://doi.org/10.1016/j.apcatb.2018.05.070
Y. Sun, D. Jin, Y. Sun, X. Meng, Y. Gao et al., G-C3N4/Ti3C2Tx (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 6, 9124–9131 (2018). https://doi.org/10.1039/c8ta02706d
T. Cai, L. Wang, Y. Liu, S. Zhang, W. Dong et al., Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Appl. Catal. B 239, 545–554 (2018). https://doi.org/10.1016/j.apcatb.2018.08.053
H. Zhang, M. Li, J. Cao, Q. Tang, P. Kang, C. Zhu, M. Ma, 2D a-Fe2O3 doped Ti3C2 MXene composite with enhanced visible light photocatalytic activity for degradation of Rhodamine B. Ceram. Int. 44, 19958–19962 (2018). https://doi.org/10.1016/j.ceramint.2018.07.262
T. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo et al., Monolayer Ti3C2Tx as an effective co-catalyst for enhanced photocatalytic hydrogen production over TiO2. ACS Appl. Energy Mater. 2, 4640–4651 (2019). https://doi.org/10.1021/acsaem.8b02268
T. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo et al., 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. Nanoscale 11, 8138–8149 (2019). https://doi.org/10.1039/c9nr00168a
J.-H. Zhao, L.-W. Liu, K. Li, T. Li, F.-T. Liu, Conductive Ti3C2 and MOF-derived CoSx boosting the photocatalytic hydrogen production activity of TiO2. CrystEngComm 21, 2416–2421 (2019). https://doi.org/10.1039/c8ce02050g
R. Chen, P. Wang, J. Chen, C. Wang, Y. Ao, Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation. Appl. Surf. Sci. 473, 11–19 (2019). https://doi.org/10.1016/j.apsusc.2018.12.071
M. Shao, Y. Shao, J. Chai, Y. Qu, M. Yang et al., Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. J. Mater. Chem. A 5, 16748–16756 (2017). https://doi.org/10.1039/c7ta04122e
Y. Xu, S. Wang, J. Yang, B. Han, R. Nie et al., Highly efficient photoelectrocatalytic reduction of CO2 on the Ti3C2/g-C3N4 heterojunction with rich Ti3+ and pyri-N species. J. Mater. Chem. A 6, 15213–15220 (2018). https://doi.org/10.1039/c8ta03315c
Y. Gao, L. Wang, A. Zhou, Z. Li, J. Chen, H. Bala, Q. Hu, X. Cao, Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 150, 62–64 (2015). https://doi.org/10.1016/j.matlet.2015.02.135
H. Wang, R. Peng, Z.D. Hood, M. Naguib, S.P. Adhikari, Z. Wu, Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. Chemsuschem 9, 1490–1497 (2016). https://doi.org/10.1002/cssc.201600165
L. Shi, C. Xu, D. Jiang, X. Sun, X. Wang et al., Enhanced interaction in TiO2/BiVO4 heterostructures via MXene Ti3C2-derived 2D-carbon for highly efficient visible-light photocatalysis. Nanotechnology 30, 075601 (2019). https://doi.org/10.1088/1361-6528/aaf313
Q. Luo, B. Chai, M. Xu, Q. Cai, Preparation and photocatalytic activity of TiO2-loaded Ti3C2 with small interlayer spacing. Appl. Phys. A 124, 495 (2018). https://doi.org/10.1007/s00339-018-1909-6
C. Liu, Q. Xu, Q. Zhang, Y. Zhu, M. Ji et al., Layered BiOBr/Ti3C2 MXene composite with improved visible-light photocatalytic activity. J. Mater. Sci. 54, 2458–2471 (2018). https://doi.org/10.1007/s10853-018-2990-0
S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 28, 1800136 (2018). https://doi.org/10.1002/adfm.201800136
A. Tariq, S.I. Ali, D. Akinwande, S. Rizwan, Efficient visible-light photocatalysis of 2D-MXene nanohybrids with Gd3+- and Sn4+-codoped bismuth ferrite. ACS Omega 3, 13828–13836 (2018). https://doi.org/10.1021/acsomega.8b01951
H. Wang, Y. Wu, T. Xiao, X. Yuan, G. Zeng et al., Formation of quasi-core-shell In2S3/anatase TiO2 @metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Appl. Catalysis B 233, 213–225 (2018). https://doi.org/10.1016/j.apcatb.2018.04.012
L. Tie, S. Yang, C. Yu, H. Chen, Y. Liu, S. Dong, J. Sun, J. Sun, In situ decoration of ZnS nanoparticles with Ti3C2 MXene nanosheets for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 545, 63–70 (2019). https://doi.org/10.1016/j.jcis.2019.03.014
T. Wojciechowski, A. Rozmyslowska-Wojciechowska, G. Matyszczak, M. Wrzecionek, A. Olszyna et al., Ti2C MXene modified with ceramic oxide and noble metal nanoparticles: synthesis, morphostructural properties, and high photocatalytic activity. Inorg. Chem. 58, 7602–7614 (2019). https://doi.org/10.1021/acs.inorgchem.9b01015
C. Peng, H. Wang, H. Yu, F. Peng, (111) TiO2−x/Ti3C2: Synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity. Mater. Res. Bull. 89, 16–25 (2017). https://doi.org/10.1016/j.materresbull.2016.12.049
G. Jia, Y. Wang, X. Cui, W. Zheng, Highly carbon-doped TiO2 derived from MXene boosting the photocatalytic hydrogen evolution. ACS Sustain. Chem. Eng. 6, 13480–13486 (2018). https://doi.org/10.1021/acssuschemeng.8b03406
C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao et al., High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy 53, 97–107 (2018). https://doi.org/10.1016/j.nanoen.2018.08.040
Y. Lu, M. Yao, A. Zhou, Q. Hu, L. Wang, Preparation and photocatalytic performance of Ti3C2/TiO2/CuO ternary nanocomposites. J. Nanomater. 2017, 1978764 (2017). https://doi.org/10.1155/2017/1978764
W. Yuan, L. Cheng, Y. Zhang, H. Wu, L. Zheng, 2D layered Carbon/TiO2 hybrids derived from Ti3C2 MXenes for photocatalytic hydrogen evolution under visible light irradiation. Adv. Mater. Interfaces 4, 1700577 (2017). https://doi.org/10.1002/admi.201700577
J. Low, L. Zhang, T. Tong, B. Shen, J. Yu, TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 361, 255–266 (2018). https://doi.org/10.1016/j.jcat.2018.03.009
T. Su, R. Peng, Z.D. Hood, M. Naguib, I.N. Ivanov et al., One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. Chemsuschem 11, 688–699 (2018). https://doi.org/10.1002/cssc.201702317
X. Cheng, L. Zu, Y. Jiang, D. Shi, X. Cai, Y. Ni, S. Lin, Y. Qin, A titanium-based photo-fenton bifunctional catalyst of mp-MXene/TiO2−x nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes. Chem. Commun. 54, 11622–11625 (2018). https://doi.org/10.1039/c8cc05866k
J. Li, S. Wang, Y. Du, W. Liao, Enhanced photocatalytic performance of TiO2@C nanosheets derived from two-dimensional Ti2CTx. Ceram. Int. 44, 7042–7046 (2018). https://doi.org/10.1016/j.ceramint.2018.01.139
Y. Sun, Y. Sun, X. Meng, Y. Gao, Y. Dall’Agnese et al., Eosin Y-sensitized partially oxidized Ti3C2 MXene for photocatalytic hydrogen evolution. Catal. Sci. Technol. 9, 310–315 (2019). https://doi.org/10.1039/c8cy02240b
Y. Li, X. Deng, J. Tian, Z. Liang, H. Cui, Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting. Appl. Mater. Today 13, 217–227 (2018). https://doi.org/10.1016/j.apmt.2018.09.004
W. Yuan, L. Cheng, Y. An, S. Lv, H. Wu, X. Fan, Y. Zhang, X. Guo, J. Tang, Laminated hybrid junction of sulfur-doped TiO2 and a carbon substrate derived from Ti3C2 MXenes: toward highly visible light-driven photocatalytic hydrogen evolution. Adv. Sci. 5, 1700870 (2018). https://doi.org/10.1002/advs.201700870
A. Shahzad, K. Rasool, M. Nawaz, W. Miran, J. Jang et al., Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 349, 748–755 (2018). https://doi.org/10.1016/j.cej.2018.05.148
Y. Li, Z. Yin, G. Ji, Z. Liang, Y. Xue et al., 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity. Appl. Catal. B 246, 12–20 (2019). https://doi.org/10.1016/j.apcatb.2019.01.051
C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29, 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
M. Sharma, S. Vaidya, A.K. Ganguli, Enhanced photocatalytic activity of g-C3N4-TiO2 nanocomposites for degradation of Rhodamine B dye. J. Photochem. Photobiol. A 335, 287–293 (2017). https://doi.org/10.1016/j.jphotochem.2016.12.002
L.T. Alameda, P. Moradifar, Z.P. Metzger, N. Alem, R.E. Schaak, Topochemical deintercalation of Al from MoAlB: stepwise etching pathway, layered intergrowth structures, and two-dimensional MBene. J. Am. Chem. Soc. 140, 8833–8840 (2018). https://doi.org/10.1021/jacs.8b04705