Highly Dispersed Cobalt Nanoparticles Embedded in Nitrogen-Doped Graphitized Carbon for Fast and Durable Potassium Storage
Corresponding Author: Jiang Zhou
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 21
Abstract
Potassium-ion batteries (KIBs) have great potential for applications in large-scale energy storage devices. However, the larger radius of K+ leads to sluggish kinetics and inferior cycling performance, severely restricting its practical applicability. Herein, we propose a rational strategy involving a Prussian blue analogue-derived graphitized carbon anode with fast and durable potassium storage capability, which is constructed by encapsulating cobalt nanoparticles in nitrogen-doped graphitized carbon (Co-NC). Both experimental and theoretical results show that N-doping effectively promotes the uniform dispersion of cobalt nanoparticles in the carbon matrix through Co–N bonds. Moreover, the cobalt nanoparticles and strong Co–N bonds synergistically form a three-dimensional conductive network, increase the number of adsorption sites, and reduce the diffusion energy barrier, thereby facilitating the adsorption and the diffusion kinetics. These multiple effects lead to enhanced reversible capacities of 305 and 208.6 mAh g−1 after 100 and 300 cycles at 0.05 and 0.1 A g−1, respectively, demonstrating the applicability of the Co-NC anode for KIBs.
Highlights:
1 Small cobalt nanoparticles are carefully encapsulated into a N-doped carbon shell (Co-NC) by calcining a Prussian blue analogue precursor.
2 The presence of cobalt nanoparticles and Co-N bonds not only promotes adsorption behavior, but also reduces the diffusion energy barrier, enabling fast diffusion kinetics of K+ ions.
3 The good diffusion kinetics and capacitive adsorption behavior of the Co-NC material synergistically contributes to enhanced potassium storage performances.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Kim, J.C. Kim, M. Bianchini, D.H. Seo, J. Rodriguez-Garcia, G. Ceder, Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8(9), 1702384 (2018). https://doi.org/10.1002/aenm.201702384
- S. Chou, Y. Yu, Next generation batteries: Aim for the future. Adv. Energy Mater. 7(24), 1703223 (2017). https://doi.org/10.1002/aenm.201703223
- H. Jiang, L. Huang, Y. Wei, B. Wang, H. Wu et al., Bio-derived hierarchical multicore-shell Fe2N-nanoparticle impregnated N-doped carbon nanofiber bundles: A host material for lithium/potassium-ion storage. Nano-Micro Lett. 11(1), 56 (2019). https://doi.org/10.1007/s40820-019-0290-0
- J. Ge, B. Wang, J. Wang, Q. Zhang, B. Lu, Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv. Energy Mater. 10(4), 1903277 (2019). https://doi.org/10.1002/aenm.201903277
- R. Zhang, J. Bao, Y. Pan, C.F. Sun, Highly reversible potassium-ion intercalation in tungsten disulfide. Chem. Sci. 10(9), 2604–2612 (2019). https://doi.org/10.1039/c8sc04350g
- X. Zhou, L. Chen, W. Zhang, J. Wang, Z. Liu et al., Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 19(8), 4965–4973 (2019). https://doi.org/10.1021/acs.nanolett.9b01127
- H. Tian, J. Liang, J. Liu, Nanoengineering carbon spheres as nanoreactors for sustainable energy applications. Adv. Mater. 31(50), 1903886 (2019). https://doi.org/10.1002/adma.201903886
- F. Yang, H. Gao, J. Hao, S. Zhang, P. Li et al., Yolk-shell structured Fep@C nanoboxes as advanced anode materials for rechargeable lithium/potassium-ion batteries. Adv. Funct. Mater. 29(16), 1808291 (2019). https://doi.org/10.1002/adfm.201808291
- X. Chen, S. Zeng, H. Muheiyati, Y. Zhai, C. Li et al., Double-shelled Ni-Fe-P/N-doped carbon nanobox derived from a prussian blue analogue as an electrode material for K-ion batteries and Li-S batteries. ACS Energy Lett. 4(7), 1496–1504 (2019). https://doi.org/10.1021/acsenergylett.9b00573
- J. Zheng, Y. Yang, X. Fan, G. Ji, X. Ji et al., Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 12(2), 615–623 (2019). https://doi.org/10.1039/c8ee02836b
- Y. Han, T. Li, Y. Li, J. Tian, Z. Yi, N. Lin, Y. Qian, Stabilizing antimony nanocrystals within ultrathin carbon nanosheets for high-performance K-ion storage. Energy Storage Mater. 20, 46–54 (2019). https://doi.org/10.1016/j.ensm.2018.11.004
- X. Wu, Y. Chen, Z. Xing, C.W.K. Lam, S.S. Pang, W. Zhang, Z. Ju, Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 9(21), 1900343 (2019). https://doi.org/10.1002/aenm.201900343
- X. Liu, G.A. Elia, B. Qin, H. Zhang, P. Ruschhaupt et al., High-power Na-ion and K-ion hybrid capacitors exploiting cointercalation in graphite negative electrodes. ACS Energy Lett. 4(11), 2675–2682 (2019). https://doi.org/10.1021/acsenergylett.9b01675
- D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 8(34), 1802386 (2018). https://doi.org/10.1002/aenm.201802386
- Y. Qian, S. Jiang, Y. Li, Z. Yi, J. Zhou et al., In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries. Adv. Energy Mater. 9(34), 1901676 (2019). https://doi.org/10.1002/aenm.201901676
- B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8(25), 1801149 (2018). https://doi.org/10.1002/aenm.201801149
- Y. Qian, S. Jiang, Y. Li, Z. Yi, J. Zhou et al., Water-induced growth of a highly oriented mesoporous graphitic carbon nanospring for fast potassium-ion adsorption/intercalation storage. Angew. Chem. Int. Ed. 58(50), 18108–18115 (2019). https://doi.org/10.1002/anie.201912287
- L. Fan, R.F. Ma, Q.F. Zhang, X.X. Jia, B.G. Lu, Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem. Int. Ed. 58(31), 10500–10505 (2019). https://doi.org/10.1002/anie.201904258
- L. Qin, N. Xiao, J. Zheng, Y. Lei, D. Zhai, Y. Wu, Localized high-concentration electrolytes boost potassium storage in high-loading graphite. Adv. Energy Mater. 9(44), 1902618 (2019). https://doi.org/10.1002/aenm.201902618
- X. Huang, T. Shen, T. Zhang, H. Qiu, X. Gu, Z. Ali, Y. Hou, Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species. Adv. Energy Mater. 10(11), 1900375 (2019). https://doi.org/10.1002/aenm.201900375
- P. Wang, Z. Zhang, X. Yan, M. Xu, Y. Chen et al., Pomegranate-like microclusters organized by ultrafine cobalt nanoparticles@nitrogen-doped carbon subunits as sulfur hosts for long-life lithium-sulfur batteries. J. Mater. Chem. A 6(29), 14178–14187 (2018). https://doi.org/10.1039/c8ta04214d
- J. Zhang, M. Huang, B. Xi, K. Mi, A. Yuan, S. Xiong, Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries. Adv. Energy Mater. 8(2), 1701330 (2018). https://doi.org/10.1002/aenm.201701330
- T.S. Wang, X. Liu, X. Zhao, P. He, C.W. Nan, L.Z. Fan, Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries. Adv. Funct. Mater. 30(16), 2000786 (2020). https://doi.org/10.1002/adfm.202000786
- Y. Xie, J. Hu, Z. Han, T. Wang, J. Zheng et al., Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries. Energy Storage Mater. 30, 1–8 (2020). https://doi.org/10.1016/j.ensm.2020.05.008
- Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu, Y. Wang, Y. Xia, A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3, 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
- C. Yan, X. Gu, L. Zhang, Y. Wang, L. Yan et al., Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: Promising anode materials for sodium and potassium ion batteries. J. Mater. Chem. A 6(36), 17371–17377 (2018). https://doi.org/10.1039/c8ta05297b
- M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 30(10), 1705431 (2018). https://doi.org/10.1002/adma.201705431
- P. Ge, S. Li, H. Shuai, W. Xu, Y. Tian et al., Ultrafast sodium full batteries derived from XFe (X=Co, Ni, Mn) prussian blue analogs. Adv. Mater. 31(3), 1806092 (2019). https://doi.org/10.1002/adma.201806092
- S. Liu, J. Li, X. Yan, Q. Su, Y. Lu et al., Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries. Adv. Mater. 30, 1706895 (2018). https://doi.org/10.1002/adma.201706895
- P. Chen, N. Zhang, S. Wang, T. Zhou, Y. Tong et al., Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. USA 116(14), 6635–6640 (2019). https://doi.org/10.1073/pnas.1817881116
- Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han et al., Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5(1), 1–8 (2014). https://doi.org/10.1038/ncomms4783
- Y. Tong, P. Chen, T. Zhou, K. Xu, W. Chu, C. Wu, Y. Xie, A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: Cobalt oxide nanoparticles strongly coupled to B. N-décor. graphene. Angew. Chem. Int. Ed. 56(25), 7121–7125 (2017). https://doi.org/10.1002/anie.201702430
- Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011). https://doi.org/10.1038/nmat3087
- H. Liu, X. Chen, X.B. Cheng, B.Q. Li, R. Zhang et al., Uniform lithium nucleation guided by atomically dispersed lithiophilic CoNx sites for safe lithium metal batteries. Small Methods 3(9), 1800354 (2018). https://doi.org/10.1002/smtd.201800354
- Z. Zhang, L.L. Kong, S. Liu, G.R. Li, X.P. Gao, A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery. Adv. Energy Mater. 7(11), 1602543 (2017). https://doi.org/10.1002/aenm.201602543
- Y.J. Li, J.M. Fan, M.S. Zheng, Q.F. Dong, A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy Enviro. Sci. 9(6), 1998–2004 (2016). https://doi.org/10.1039/C6EE00104A
- J. Liu, T. Yin, B. Tian, B. Zhang, C. Qian et al., Unraveling the potassium storage mechanism in graphite foam. Adv. Energy Mater. 9(22), 1900579 (2019). https://doi.org/10.1002/aenm.201900579
- W. Zhang, J. Ming, W. Zhao, X. Dong, M.N. Hedhili, P.M.F.J. Costa, H.N. Alshareef, Graphitic nanocarbon with engineered defects for high performance potassium ion battery anodes. Adv. Funct. Mater. 29(35), 1903641 (2019). https://doi.org/10.1002/adfm.201903641
- Z. Liu, J. Wang, X. Jia, W. Li, Q. Zhang et al., Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries. ACS Nano 13(9), 10631–10642 (2019). https://doi.org/10.1021/acsnano.9b04893
- K. Share, A.P. Cohn, R. Carter, B. Rogers, C.L. Pint, Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 10(10), 9738–9744 (2016). https://doi.org/10.1021/acsnano.6b05998
- X. Lin, J. Huang, B. Zhang, Correlation between the microstructure of carbon materials and their potassium ion storage performance. Carbon 143, 138–146 (2019). https://doi.org/10.1016/j.carbon.2018.11.001
- Y. Cui, W. Liu, X. Wang, J. Li, Y. Zhang et al., Bioinspired mineralization under freezing conditions: An approach to fabricate porous carbons with complicated architecture and superior K+ storage performance. ACS Nano 13(10), 11582–11592 (2019). https://doi.org/10.1021/acsnano.9b05284
- Z. Zhang, B. Jia, L. Liu, Y. Zhao, H. Wu et al., Hollow multihole carbon bowls: A stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries. ACS Nano 13(10), 11363–11371 (2019). https://doi.org/10.1021/acsnano.9b04728
- L. Liu, Y. Chen, Y. Xie, P. Tao, Q. Li, C. Yan, Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 28(29), 1801989 (2018). https://doi.org/10.1002/adfm.201801989
- P. Ge, H. Hou, S. Li, L. Yang, X. Ji, Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv. Funct. Mater. 28(30), 1801765 (2018). https://doi.org/10.1002/adfm.201801765
- P. Ge, S. Li, H. Shuai, W. Xu, Y. Tian et al., Engineering 1D chain-like architecture with conducting polymer towards ultra-fast and high-capacity energy storage by reinforced pseudo-capacitance. Nano Energy 54, 26–38 (2018). https://doi.org/10.1016/j.nanoen.2018.09.062
- G. Fang, Q. Wang, J. Zhou, Y. Lei, Z. Chen et al., Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13(5), 5635–5645 (2019). https://doi.org/10.1021/acsnano.9b00816
- G. Fang, Z. Wu, J. Zhou, C. Zhu, X. Cao et al., Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv. Energy Mater. 8(19), 1703155 (2018). https://doi.org/10.1002/aenm.201703155
- Y.Q. Lu, Y.J. Wu, T. Sheng, X.X. Peng, Z.G. Gao et al., Novel sulfur host composed of cobalt and porous graphitic carbon derived from MOFs for the high-performance Li-S battery. ACS Appl. Mater. Interfaces 10(16), 13499–13508 (2018). https://doi.org/10.1021/acsami.8b00915
- J. He, Y. Chen, W. Lv, K. Wen, C. Xu et al., From metal-organic framework to Li2S@C-Co-N nanoporous architecture: A high-capacity cathode for lithium-sulfur batteries. ACS Nano 10(12), 10981–10987 (2016). https://doi.org/10.1021/acsnano.6b05696
- Z. Li, C. Li, X. Ge, J. Ma, Z. Zhang et al., Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 23, 15–26 (2016). https://doi.org/10.1016/j.nanoen.2016.02.049
- M.E. Zhong, J. Guan, Q. Feng, X. Wu, Z. Xiao et al., Accelerated polysulfide redox kinetics revealed by ternary sandwich-type S@Co/N-doped carbon nanosheet for high-performance lithium-sulfur batteries. Carbon 128, 86–96 (2018). https://doi.org/10.1016/j.carbon.2017.11.084
- T. Chen, B. Cheng, G. Zhu, R. Chen, Y. Hu et al., Highly efficient retention of polysulfides in “sea urchin”-like carbon nanotube/nanopolyhedra superstructures as cathode material for ultralong-life lithium-sulfur batteries. Nano Lett. 17(1), 437–444 (2017). https://doi.org/10.1021/acs.nanolett.6b04433
- C. Chen, Z. Wang, B. Zhang, L. Miao, J. Cai et al., Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 8, 161–168 (2017). https://doi.org/10.1016/j.ensm.2017.05.010
- W. Yang, J. Zhou, S. Wang, Z. Wang, F. Lv et al., A three-dimensional carbon framework constructed by N/S co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage. ACS Energy Lett. 5(5), 1653–1661 (2020). https://doi.org/10.1021/acsenergylett.0c00413
- C. Lv, W. Xu, H. Liu, L. Zhang, S. Chen, X. Yang, X. Xu, D. Yang, 3D sulfur and nitrogen codoped carbon nanofiber aerogels with optimized electronic structure and enlarged interlayer spacing boost potassium-ion storage. Small 15(23), 1900816 (2019). https://doi.org/10.1002/smll.201900816
References
H. Kim, J.C. Kim, M. Bianchini, D.H. Seo, J. Rodriguez-Garcia, G. Ceder, Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8(9), 1702384 (2018). https://doi.org/10.1002/aenm.201702384
S. Chou, Y. Yu, Next generation batteries: Aim for the future. Adv. Energy Mater. 7(24), 1703223 (2017). https://doi.org/10.1002/aenm.201703223
H. Jiang, L. Huang, Y. Wei, B. Wang, H. Wu et al., Bio-derived hierarchical multicore-shell Fe2N-nanoparticle impregnated N-doped carbon nanofiber bundles: A host material for lithium/potassium-ion storage. Nano-Micro Lett. 11(1), 56 (2019). https://doi.org/10.1007/s40820-019-0290-0
J. Ge, B. Wang, J. Wang, Q. Zhang, B. Lu, Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv. Energy Mater. 10(4), 1903277 (2019). https://doi.org/10.1002/aenm.201903277
R. Zhang, J. Bao, Y. Pan, C.F. Sun, Highly reversible potassium-ion intercalation in tungsten disulfide. Chem. Sci. 10(9), 2604–2612 (2019). https://doi.org/10.1039/c8sc04350g
X. Zhou, L. Chen, W. Zhang, J. Wang, Z. Liu et al., Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 19(8), 4965–4973 (2019). https://doi.org/10.1021/acs.nanolett.9b01127
H. Tian, J. Liang, J. Liu, Nanoengineering carbon spheres as nanoreactors for sustainable energy applications. Adv. Mater. 31(50), 1903886 (2019). https://doi.org/10.1002/adma.201903886
F. Yang, H. Gao, J. Hao, S. Zhang, P. Li et al., Yolk-shell structured Fep@C nanoboxes as advanced anode materials for rechargeable lithium/potassium-ion batteries. Adv. Funct. Mater. 29(16), 1808291 (2019). https://doi.org/10.1002/adfm.201808291
X. Chen, S. Zeng, H. Muheiyati, Y. Zhai, C. Li et al., Double-shelled Ni-Fe-P/N-doped carbon nanobox derived from a prussian blue analogue as an electrode material for K-ion batteries and Li-S batteries. ACS Energy Lett. 4(7), 1496–1504 (2019). https://doi.org/10.1021/acsenergylett.9b00573
J. Zheng, Y. Yang, X. Fan, G. Ji, X. Ji et al., Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 12(2), 615–623 (2019). https://doi.org/10.1039/c8ee02836b
Y. Han, T. Li, Y. Li, J. Tian, Z. Yi, N. Lin, Y. Qian, Stabilizing antimony nanocrystals within ultrathin carbon nanosheets for high-performance K-ion storage. Energy Storage Mater. 20, 46–54 (2019). https://doi.org/10.1016/j.ensm.2018.11.004
X. Wu, Y. Chen, Z. Xing, C.W.K. Lam, S.S. Pang, W. Zhang, Z. Ju, Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 9(21), 1900343 (2019). https://doi.org/10.1002/aenm.201900343
X. Liu, G.A. Elia, B. Qin, H. Zhang, P. Ruschhaupt et al., High-power Na-ion and K-ion hybrid capacitors exploiting cointercalation in graphite negative electrodes. ACS Energy Lett. 4(11), 2675–2682 (2019). https://doi.org/10.1021/acsenergylett.9b01675
D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 8(34), 1802386 (2018). https://doi.org/10.1002/aenm.201802386
Y. Qian, S. Jiang, Y. Li, Z. Yi, J. Zhou et al., In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries. Adv. Energy Mater. 9(34), 1901676 (2019). https://doi.org/10.1002/aenm.201901676
B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8(25), 1801149 (2018). https://doi.org/10.1002/aenm.201801149
Y. Qian, S. Jiang, Y. Li, Z. Yi, J. Zhou et al., Water-induced growth of a highly oriented mesoporous graphitic carbon nanospring for fast potassium-ion adsorption/intercalation storage. Angew. Chem. Int. Ed. 58(50), 18108–18115 (2019). https://doi.org/10.1002/anie.201912287
L. Fan, R.F. Ma, Q.F. Zhang, X.X. Jia, B.G. Lu, Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem. Int. Ed. 58(31), 10500–10505 (2019). https://doi.org/10.1002/anie.201904258
L. Qin, N. Xiao, J. Zheng, Y. Lei, D. Zhai, Y. Wu, Localized high-concentration electrolytes boost potassium storage in high-loading graphite. Adv. Energy Mater. 9(44), 1902618 (2019). https://doi.org/10.1002/aenm.201902618
X. Huang, T. Shen, T. Zhang, H. Qiu, X. Gu, Z. Ali, Y. Hou, Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species. Adv. Energy Mater. 10(11), 1900375 (2019). https://doi.org/10.1002/aenm.201900375
P. Wang, Z. Zhang, X. Yan, M. Xu, Y. Chen et al., Pomegranate-like microclusters organized by ultrafine cobalt nanoparticles@nitrogen-doped carbon subunits as sulfur hosts for long-life lithium-sulfur batteries. J. Mater. Chem. A 6(29), 14178–14187 (2018). https://doi.org/10.1039/c8ta04214d
J. Zhang, M. Huang, B. Xi, K. Mi, A. Yuan, S. Xiong, Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries. Adv. Energy Mater. 8(2), 1701330 (2018). https://doi.org/10.1002/aenm.201701330
T.S. Wang, X. Liu, X. Zhao, P. He, C.W. Nan, L.Z. Fan, Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries. Adv. Funct. Mater. 30(16), 2000786 (2020). https://doi.org/10.1002/adfm.202000786
Y. Xie, J. Hu, Z. Han, T. Wang, J. Zheng et al., Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries. Energy Storage Mater. 30, 1–8 (2020). https://doi.org/10.1016/j.ensm.2020.05.008
Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu, Y. Wang, Y. Xia, A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3, 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
C. Yan, X. Gu, L. Zhang, Y. Wang, L. Yan et al., Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: Promising anode materials for sodium and potassium ion batteries. J. Mater. Chem. A 6(36), 17371–17377 (2018). https://doi.org/10.1039/c8ta05297b
M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 30(10), 1705431 (2018). https://doi.org/10.1002/adma.201705431
P. Ge, S. Li, H. Shuai, W. Xu, Y. Tian et al., Ultrafast sodium full batteries derived from XFe (X=Co, Ni, Mn) prussian blue analogs. Adv. Mater. 31(3), 1806092 (2019). https://doi.org/10.1002/adma.201806092
S. Liu, J. Li, X. Yan, Q. Su, Y. Lu et al., Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries. Adv. Mater. 30, 1706895 (2018). https://doi.org/10.1002/adma.201706895
P. Chen, N. Zhang, S. Wang, T. Zhou, Y. Tong et al., Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. USA 116(14), 6635–6640 (2019). https://doi.org/10.1073/pnas.1817881116
Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han et al., Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5(1), 1–8 (2014). https://doi.org/10.1038/ncomms4783
Y. Tong, P. Chen, T. Zhou, K. Xu, W. Chu, C. Wu, Y. Xie, A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: Cobalt oxide nanoparticles strongly coupled to B. N-décor. graphene. Angew. Chem. Int. Ed. 56(25), 7121–7125 (2017). https://doi.org/10.1002/anie.201702430
Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011). https://doi.org/10.1038/nmat3087
H. Liu, X. Chen, X.B. Cheng, B.Q. Li, R. Zhang et al., Uniform lithium nucleation guided by atomically dispersed lithiophilic CoNx sites for safe lithium metal batteries. Small Methods 3(9), 1800354 (2018). https://doi.org/10.1002/smtd.201800354
Z. Zhang, L.L. Kong, S. Liu, G.R. Li, X.P. Gao, A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery. Adv. Energy Mater. 7(11), 1602543 (2017). https://doi.org/10.1002/aenm.201602543
Y.J. Li, J.M. Fan, M.S. Zheng, Q.F. Dong, A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy Enviro. Sci. 9(6), 1998–2004 (2016). https://doi.org/10.1039/C6EE00104A
J. Liu, T. Yin, B. Tian, B. Zhang, C. Qian et al., Unraveling the potassium storage mechanism in graphite foam. Adv. Energy Mater. 9(22), 1900579 (2019). https://doi.org/10.1002/aenm.201900579
W. Zhang, J. Ming, W. Zhao, X. Dong, M.N. Hedhili, P.M.F.J. Costa, H.N. Alshareef, Graphitic nanocarbon with engineered defects for high performance potassium ion battery anodes. Adv. Funct. Mater. 29(35), 1903641 (2019). https://doi.org/10.1002/adfm.201903641
Z. Liu, J. Wang, X. Jia, W. Li, Q. Zhang et al., Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries. ACS Nano 13(9), 10631–10642 (2019). https://doi.org/10.1021/acsnano.9b04893
K. Share, A.P. Cohn, R. Carter, B. Rogers, C.L. Pint, Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 10(10), 9738–9744 (2016). https://doi.org/10.1021/acsnano.6b05998
X. Lin, J. Huang, B. Zhang, Correlation between the microstructure of carbon materials and their potassium ion storage performance. Carbon 143, 138–146 (2019). https://doi.org/10.1016/j.carbon.2018.11.001
Y. Cui, W. Liu, X. Wang, J. Li, Y. Zhang et al., Bioinspired mineralization under freezing conditions: An approach to fabricate porous carbons with complicated architecture and superior K+ storage performance. ACS Nano 13(10), 11582–11592 (2019). https://doi.org/10.1021/acsnano.9b05284
Z. Zhang, B. Jia, L. Liu, Y. Zhao, H. Wu et al., Hollow multihole carbon bowls: A stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries. ACS Nano 13(10), 11363–11371 (2019). https://doi.org/10.1021/acsnano.9b04728
L. Liu, Y. Chen, Y. Xie, P. Tao, Q. Li, C. Yan, Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 28(29), 1801989 (2018). https://doi.org/10.1002/adfm.201801989
P. Ge, H. Hou, S. Li, L. Yang, X. Ji, Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv. Funct. Mater. 28(30), 1801765 (2018). https://doi.org/10.1002/adfm.201801765
P. Ge, S. Li, H. Shuai, W. Xu, Y. Tian et al., Engineering 1D chain-like architecture with conducting polymer towards ultra-fast and high-capacity energy storage by reinforced pseudo-capacitance. Nano Energy 54, 26–38 (2018). https://doi.org/10.1016/j.nanoen.2018.09.062
G. Fang, Q. Wang, J. Zhou, Y. Lei, Z. Chen et al., Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13(5), 5635–5645 (2019). https://doi.org/10.1021/acsnano.9b00816
G. Fang, Z. Wu, J. Zhou, C. Zhu, X. Cao et al., Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv. Energy Mater. 8(19), 1703155 (2018). https://doi.org/10.1002/aenm.201703155
Y.Q. Lu, Y.J. Wu, T. Sheng, X.X. Peng, Z.G. Gao et al., Novel sulfur host composed of cobalt and porous graphitic carbon derived from MOFs for the high-performance Li-S battery. ACS Appl. Mater. Interfaces 10(16), 13499–13508 (2018). https://doi.org/10.1021/acsami.8b00915
J. He, Y. Chen, W. Lv, K. Wen, C. Xu et al., From metal-organic framework to Li2S@C-Co-N nanoporous architecture: A high-capacity cathode for lithium-sulfur batteries. ACS Nano 10(12), 10981–10987 (2016). https://doi.org/10.1021/acsnano.6b05696
Z. Li, C. Li, X. Ge, J. Ma, Z. Zhang et al., Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 23, 15–26 (2016). https://doi.org/10.1016/j.nanoen.2016.02.049
M.E. Zhong, J. Guan, Q. Feng, X. Wu, Z. Xiao et al., Accelerated polysulfide redox kinetics revealed by ternary sandwich-type S@Co/N-doped carbon nanosheet for high-performance lithium-sulfur batteries. Carbon 128, 86–96 (2018). https://doi.org/10.1016/j.carbon.2017.11.084
T. Chen, B. Cheng, G. Zhu, R. Chen, Y. Hu et al., Highly efficient retention of polysulfides in “sea urchin”-like carbon nanotube/nanopolyhedra superstructures as cathode material for ultralong-life lithium-sulfur batteries. Nano Lett. 17(1), 437–444 (2017). https://doi.org/10.1021/acs.nanolett.6b04433
C. Chen, Z. Wang, B. Zhang, L. Miao, J. Cai et al., Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 8, 161–168 (2017). https://doi.org/10.1016/j.ensm.2017.05.010
W. Yang, J. Zhou, S. Wang, Z. Wang, F. Lv et al., A three-dimensional carbon framework constructed by N/S co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage. ACS Energy Lett. 5(5), 1653–1661 (2020). https://doi.org/10.1021/acsenergylett.0c00413
C. Lv, W. Xu, H. Liu, L. Zhang, S. Chen, X. Yang, X. Xu, D. Yang, 3D sulfur and nitrogen codoped carbon nanofiber aerogels with optimized electronic structure and enlarged interlayer spacing boost potassium-ion storage. Small 15(23), 1900816 (2019). https://doi.org/10.1002/smll.201900816