Effect of Silver Nanoparticles on Growth of Eukaryotic Green Algae
Corresponding Author: Anjali Dash
Nano-Micro Letters,
Vol. 4 No. 3 (2012), Article Number: 158-165
Abstract
Silver nanoparticles, endowed with powerful antimicrobial property, are the most widely used nanomaterial in consumer products, with associated risk of their easy access to environment and freshwater ecosystems by surface runoff. Although toxic effects of nanosilver on bacterial, fungal and mammalian cells have been documented, its impact on algal growth remains unknown. Pithophora oedogonia and Chara vulgaris are predominant members of photosynthetic eukaryotic algae, which form major component of global aquatic ecosystem. Here we report for the first time that nanosilver has significant adverse effects on growth and morphology of these filamentous green algae in a dose-dependent manner. Exposure of algal thalli to increasing concentrations of silver nanoparticles resulted in progressive depletion in algal chlorophyll content, chromosome instability and mitotic disturbance, associated with morphological malformations in algal filaments. SEM micrographs revealed dramatic alterations in cell wall in nanoparticle-treated algae, characterized with cell wall rupture and degradation in Pithophora. Although these observations underscore severe deleterious effects of nanosilver on aquatic environment, the information can also be exploited as a bioengineering strategy to control unwanted and persistent growth of noxious algal weeds that clog the municipal water supply and water channels and produce fouling of water bodies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. L. Colvin, Nat. Biotechnol. 21, 1166 (2003). http://dx.doi.org/10.1038/nbt875
- R. F. Service, Science 322, 1779 (2008). http://dx.doi.org/10.1126/science.322.5909.1779a
- D. Y. Lee, C. Fortin and P. G. C. Campbell, Aquat. Toxicol. 75, 127 (2005). http://dx.doi.org/10.1016/j.aquatox.2005.06.011
- S. A. Masurkar, P. R. Chaudhari, V. B. Shidore and S. P. Kamble, Nano-Micro Lett. 3, 189 (2011). http://dx.doi.org/10.3786/nml.v3i3.p189-194
- S. K. R. Namasivayam, K. E. Gnanendra and R. Reepika, Nano-Micro Lett. 2, 160 (2010). http://dx.doi.org/10.5101/nml.v2i3.p160-163
- P. R. Chaudhari, S. A. Masurkar, V. B. Shidore and S. P. Kamble, Nano-Micro Lett. 4, 34 (2012). http://dx.doi.org/10.3786/nml.v4i1.p34-39
- J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez and M. J. Yacaman, Nanotechnology 16, 2346 (2005). http://dx.doi.org/10.1088/0957-4484/16/10/059
- M. Raffi, F. Hussain, T. M. Bhatti, J. I. Akhter, A. Hameed and M. Hasan, J. Mater. Sci. Technol 24, 192 (2008).
- S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao and D. Dash, Nanotechnology 18, 225103 (2007). http://dx.doi.org/10.1088/0957-4484/18/22/225103
- K. J. Kim, W. S. Sung, B. K. Suh, S. K. Moon, J. S. Choi, J. G. Kim and D. G. Lee, Biometals 22, 235 (2009). http://dx.doi.org/10.1007/s10534-008-9159-2
- S. Shrivastava, T. Bera, S. K. Singh, G. Singh, P. Ramachandrarao and D. Dash, ACS Nano 3, 1357 (2009). http://dx.doi.org/10.1021/nn900277t
- E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi and N. Odzak, Environ. Sci. Technol. 42, 8959 (2008). http://dx.doi.org/10.1021/es801785m
- A. J. Miao, K. A. Schwehr, C. Xu, S. J. Zhang, Z. Luo, A. Quigg and P. H. Santschi, Environ. Pollut. 157, 3034 (2009). http://dx.doi.org/10.1016/j.envpol.2009.05.047
- A. Saison, F. Perreault, J. C. Daigle, C. Fortin, J. Claverie, M. Morin and R. Povoic, Aquatic Toxicol. 96, 109 (2010). http://dx.doi.org/10.1016/j.aquatox.2009.10.002
- N. M. Franklin, N. J. Rogers, S. C. Apte, G. E. Batley, G. E. Gadd and P. S. Casey, Environ. Sci. Technol. 41, 8484 (2007). http://dx.doi.org/10.1021/es071445r
- E. G. Pringsheim, J. Ecol. 33, 193 (1946). http://dx.doi.org/10.2307/2256465
- H. C. Bold, Bot. Rev. 8, 69 (1942). http://dx.doi.org/10.1007/BF02879474
- S. K. Singh, S. Shrivastava, M. K. Nayak. A. S. K. Sinha, M. Jagannadham and D. Dash, J. Bionanosci. 3, 88 (2009). http://dx.doi.org/10.1166/jbns.2009.1012
- I. Sondi and S. B. Sondi, J. Colloid. Interf. Sci. 275, 177 (2004). http://dx.doi.org/10.1016/j.jcis.2004.02.012
- D. I. Arnon, Plant Physiol. 24, 1 (1949). http://dx.doi.org/10.1104/pp.24.1.1
- M. B. E. Godward, Nature 161, 203 (1948). http://dx.doi.org/10.1038/161203a0
- M. Kumari, A. Mukherjee and N. Chandrasekaran, Sci. Total Environ. 407, 5243 (2009). http://dx.doi.org/10.1016/j.scitotenv.2009.06.024
- P. V. AshaRani, M. P. Hande and S. Valiyaveettil, BMC Cell Biol. 10, 65 (2009).
- B. Nowack and T. D. Bucheli, Environ. Pollut. 150, 5 (2007). http://dx.doi.org/10.1016/j.envpol.2007.06.006
- O. Raize, Y. Argaman and S. Yannai, Biotechnol. Bioeng. 87, 451 (2004). http://dx.doi.org/10.1002/bit.20136
- T. Fujino and T. Itoh, Plant Cell Physiol. 39, 1315 (1998). http://dx.doi.org/10.1093/oxfordjournals.pcp.a029336
- A. Fleischer, M. A. O’Neill and R. Ehwald, Plant Physiol. 121, 829 (1999). http://dx.doi.org/10.1104/pp.121.3.829
- W. L. Zemke-White, K. D. Clements and P. J. Harris, J. Exp. Mar. Bio. Ecol. 245, 57 (2000). http://dx.doi.org/10.1016/S0022-0981(99)00151-3
- E. Navarro, A. Baun, R. Behra and N. Hartmann, Ecotoxicol. 17, 372 (2008). http://dx.doi.org/10.1007/s10646-008-0214-0
- W. M. Lee, Y. J. An, H. Yoon and H. S. Kweon, Environ. Toxicol. Chem. 27, 1915 (2008). http://dx.doi.org/10.1897/07-481.1
- V. Aruoja, H. Dubourguier, K. Kasemets and A. Kahru, Sci. Tot. Environ. 407, 1461 (2009). http://dx.doi.org/10.1016/j.scitotenv.2008.10.053
- A. Thill, O. Zeyons, O. Spalla and F. Chauvat, Environ. Sci. Technol. 40, 6151 (2006). http://dx.doi.org/10.1021/es060999b
- L. Yeung, W. K. Leung, N. Yao and S. Cao, Catal. Today 143, 218 (2009). http://dx.doi.org/10.1016/j.cattod.2008.09.036
- K. Adams, D. Y. Lyon and P. J. Alvarez, Water Res. 40, 3527 (2006). http://dx.doi.org/10.1016/j.watres.2006.08.004
- J. Ma, N. Lu, W. Qin, R. Xu, Y. Wang and X. Chen, Ecotox. Environ. Safe. 63, 268 (2006). http://dx.doi.org/10.1016/j.ecoenv.2004.12.002
- C. Wei, Y. Zhang, J. Guo, B. Han, X. Yang and J. Yuan, J. Environ. Sci. 22, 155 (2010). http://dx.doi.org/10.1016/S1001-0742(09)60087-5
- Xiong, P. Xie, X. M. Sheng, Z. B. Wu and L. Q. Xie, Ecotox. Environ. Safe. 60, 188 (2005)
- X. S. Zhu, L. Zhu, S. Y. Tian, Y. P. Lang and Y. Li, Acta Ecol. Sin. 28, 3507 (2008).
- J. Wang, X. Zhang, Y. Chen, M. Sommerfeld and Q. Hu, Chemosphere 73, 1121 (2008). http://dx.doi.org/10.1016/j.chemosphere.2008.07.040
- W. Jiang, H. Mashayekhi and B. Xing, Environ. Pollut. 157, 1619 (2009). http://dx.doi.org/10.1016/j.envpol.2008.12.025
- A. Johansen, L. A. Pedersen, A. K. Jensen, U. Karlson, M. B. Hansen, J. J. Scott-Fordsmand and A. Winding, Environ. Toxicol. Chem. 27, 1895 (2008). http://dx.doi.org/10.1897/07-375.1
References
V. L. Colvin, Nat. Biotechnol. 21, 1166 (2003). http://dx.doi.org/10.1038/nbt875
R. F. Service, Science 322, 1779 (2008). http://dx.doi.org/10.1126/science.322.5909.1779a
D. Y. Lee, C. Fortin and P. G. C. Campbell, Aquat. Toxicol. 75, 127 (2005). http://dx.doi.org/10.1016/j.aquatox.2005.06.011
S. A. Masurkar, P. R. Chaudhari, V. B. Shidore and S. P. Kamble, Nano-Micro Lett. 3, 189 (2011). http://dx.doi.org/10.3786/nml.v3i3.p189-194
S. K. R. Namasivayam, K. E. Gnanendra and R. Reepika, Nano-Micro Lett. 2, 160 (2010). http://dx.doi.org/10.5101/nml.v2i3.p160-163
P. R. Chaudhari, S. A. Masurkar, V. B. Shidore and S. P. Kamble, Nano-Micro Lett. 4, 34 (2012). http://dx.doi.org/10.3786/nml.v4i1.p34-39
J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez and M. J. Yacaman, Nanotechnology 16, 2346 (2005). http://dx.doi.org/10.1088/0957-4484/16/10/059
M. Raffi, F. Hussain, T. M. Bhatti, J. I. Akhter, A. Hameed and M. Hasan, J. Mater. Sci. Technol 24, 192 (2008).
S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao and D. Dash, Nanotechnology 18, 225103 (2007). http://dx.doi.org/10.1088/0957-4484/18/22/225103
K. J. Kim, W. S. Sung, B. K. Suh, S. K. Moon, J. S. Choi, J. G. Kim and D. G. Lee, Biometals 22, 235 (2009). http://dx.doi.org/10.1007/s10534-008-9159-2
S. Shrivastava, T. Bera, S. K. Singh, G. Singh, P. Ramachandrarao and D. Dash, ACS Nano 3, 1357 (2009). http://dx.doi.org/10.1021/nn900277t
E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi and N. Odzak, Environ. Sci. Technol. 42, 8959 (2008). http://dx.doi.org/10.1021/es801785m
A. J. Miao, K. A. Schwehr, C. Xu, S. J. Zhang, Z. Luo, A. Quigg and P. H. Santschi, Environ. Pollut. 157, 3034 (2009). http://dx.doi.org/10.1016/j.envpol.2009.05.047
A. Saison, F. Perreault, J. C. Daigle, C. Fortin, J. Claverie, M. Morin and R. Povoic, Aquatic Toxicol. 96, 109 (2010). http://dx.doi.org/10.1016/j.aquatox.2009.10.002
N. M. Franklin, N. J. Rogers, S. C. Apte, G. E. Batley, G. E. Gadd and P. S. Casey, Environ. Sci. Technol. 41, 8484 (2007). http://dx.doi.org/10.1021/es071445r
E. G. Pringsheim, J. Ecol. 33, 193 (1946). http://dx.doi.org/10.2307/2256465
H. C. Bold, Bot. Rev. 8, 69 (1942). http://dx.doi.org/10.1007/BF02879474
S. K. Singh, S. Shrivastava, M. K. Nayak. A. S. K. Sinha, M. Jagannadham and D. Dash, J. Bionanosci. 3, 88 (2009). http://dx.doi.org/10.1166/jbns.2009.1012
I. Sondi and S. B. Sondi, J. Colloid. Interf. Sci. 275, 177 (2004). http://dx.doi.org/10.1016/j.jcis.2004.02.012
D. I. Arnon, Plant Physiol. 24, 1 (1949). http://dx.doi.org/10.1104/pp.24.1.1
M. B. E. Godward, Nature 161, 203 (1948). http://dx.doi.org/10.1038/161203a0
M. Kumari, A. Mukherjee and N. Chandrasekaran, Sci. Total Environ. 407, 5243 (2009). http://dx.doi.org/10.1016/j.scitotenv.2009.06.024
P. V. AshaRani, M. P. Hande and S. Valiyaveettil, BMC Cell Biol. 10, 65 (2009).
B. Nowack and T. D. Bucheli, Environ. Pollut. 150, 5 (2007). http://dx.doi.org/10.1016/j.envpol.2007.06.006
O. Raize, Y. Argaman and S. Yannai, Biotechnol. Bioeng. 87, 451 (2004). http://dx.doi.org/10.1002/bit.20136
T. Fujino and T. Itoh, Plant Cell Physiol. 39, 1315 (1998). http://dx.doi.org/10.1093/oxfordjournals.pcp.a029336
A. Fleischer, M. A. O’Neill and R. Ehwald, Plant Physiol. 121, 829 (1999). http://dx.doi.org/10.1104/pp.121.3.829
W. L. Zemke-White, K. D. Clements and P. J. Harris, J. Exp. Mar. Bio. Ecol. 245, 57 (2000). http://dx.doi.org/10.1016/S0022-0981(99)00151-3
E. Navarro, A. Baun, R. Behra and N. Hartmann, Ecotoxicol. 17, 372 (2008). http://dx.doi.org/10.1007/s10646-008-0214-0
W. M. Lee, Y. J. An, H. Yoon and H. S. Kweon, Environ. Toxicol. Chem. 27, 1915 (2008). http://dx.doi.org/10.1897/07-481.1
V. Aruoja, H. Dubourguier, K. Kasemets and A. Kahru, Sci. Tot. Environ. 407, 1461 (2009). http://dx.doi.org/10.1016/j.scitotenv.2008.10.053
A. Thill, O. Zeyons, O. Spalla and F. Chauvat, Environ. Sci. Technol. 40, 6151 (2006). http://dx.doi.org/10.1021/es060999b
L. Yeung, W. K. Leung, N. Yao and S. Cao, Catal. Today 143, 218 (2009). http://dx.doi.org/10.1016/j.cattod.2008.09.036
K. Adams, D. Y. Lyon and P. J. Alvarez, Water Res. 40, 3527 (2006). http://dx.doi.org/10.1016/j.watres.2006.08.004
J. Ma, N. Lu, W. Qin, R. Xu, Y. Wang and X. Chen, Ecotox. Environ. Safe. 63, 268 (2006). http://dx.doi.org/10.1016/j.ecoenv.2004.12.002
C. Wei, Y. Zhang, J. Guo, B. Han, X. Yang and J. Yuan, J. Environ. Sci. 22, 155 (2010). http://dx.doi.org/10.1016/S1001-0742(09)60087-5
Xiong, P. Xie, X. M. Sheng, Z. B. Wu and L. Q. Xie, Ecotox. Environ. Safe. 60, 188 (2005)
X. S. Zhu, L. Zhu, S. Y. Tian, Y. P. Lang and Y. Li, Acta Ecol. Sin. 28, 3507 (2008).
J. Wang, X. Zhang, Y. Chen, M. Sommerfeld and Q. Hu, Chemosphere 73, 1121 (2008). http://dx.doi.org/10.1016/j.chemosphere.2008.07.040
W. Jiang, H. Mashayekhi and B. Xing, Environ. Pollut. 157, 1619 (2009). http://dx.doi.org/10.1016/j.envpol.2008.12.025
A. Johansen, L. A. Pedersen, A. K. Jensen, U. Karlson, M. B. Hansen, J. J. Scott-Fordsmand and A. Winding, Environ. Toxicol. Chem. 27, 1895 (2008). http://dx.doi.org/10.1897/07-375.1