Voltage-Dependent Electronic Transport Properties of Reduced Graphene Oxide with Various Coverage Ratios
Corresponding Author: Serhan Yamacli
Nano-Micro Letters,
Vol. 7 No. 1 (2015), Article Number: 42-50
Abstract
Graphene is mainly implemented by these methods: exfoliating, unzipping of carbon nanotubes, chemical vapour deposition, epitaxial growth and the reduction of graphene oxide. The latter option has the advantage of low cost and precision. However, reduced graphene oxide (rGO) contains hydrogen and/or oxygen atoms hence the structure and properties of the rGO and intrinsic graphene are different. Considering the advantages of the implementation and utilization of rGO, voltage-dependent electronic transport properties of several rGO samples with various coverage ratios are investigated in this work. Ab initio simulations based on density functional theory combined with non-equilibrium Green’s function formalism are used to obtain the current–voltage characteristics and the voltage-dependent transmission spectra of rGO samples. It is shown that the transport properties of rGO are strongly dependent on the coverage ratio. Obtained results indicate that some of the rGO samples have negative differential resistance characteristics while normally insulating rGO can behave as conducting beyond a certain threshold voltage. The reasons of the peculiar electronic transport behaviour of rGO samples are further investigated, taking the transmission eigenstates and their localization degree into consideration. The findings of this study are expected to be helpful for engineering the characteristics of rGO structures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(4), 183–191 (2007). doi:10.1038/nmat1849
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Giorgieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896
- Y. Zhang, D.Q. Wang, S.L. Zhang, Y.H. Wen, Z.Z. Zhu, Structures and electronic properties of oxidized graphene from first-principles study. Europhys. Lett. 105(3), 37005 (2014). doi:10.1209/0295-5075/105/37005
- S. Mao, H. Pu, J. Chen, Graphene oxide and its reduction: modeling and experimental progress. RCS Adv. 2(11), 2643–2662 (2012). doi:10.1039/c2ra00663d
- J. Robertson, G. Zhong, S. Esconjauregui, C. Zhang, S. Hofmann, Synthesis of carbon nanotubes and graphene for VLSI interconnects. Microelectron. Eng. 107(4), 210–218 (2013). doi:10.1016/j.mee.2012.08.010
- M. Saremi, M. Saremi, H. Niazi, A.Y. Goharrizi, Modeling of lightly doped drain and source graphene nanoribbon field effect transistors. Superlatt. Microstruct. 60(8), 67–72 (2013). doi:10.1016/j.spmi.2013.04.013
- H.F. Xiang, Z.D. Li, K. Xie, J.Z. Jiang, J.J. Chen, P.C. Lian, J.S. Wu, Y. Yu, H.H. Wang, Graphene sheets as anode materials for Li-ion batteries: preparation, structure, electrochemical properties and mechanism for lithium storage. RCS Adv. 2(5), 6792–6799 (2012). doi:10.1039/c2ra20549a
- X. Ma, H. Zhang, Fabrication of graphene films with high transparent conducting characteristics. Nanoscale Res. Lett. 8(3), 440–445 (2013). doi:10.1186/1556-276X-8-440
- Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329–2339 (2013). doi:10.1021/ar300203n
- W. de Heer, C. Berger, M. Ruan, M. Sprinkle, X. Li, Y. Hu, B. Zhang, J. Hankinson, E. Conrad, Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Nat. Acad. Sci. 108(41), 16900–16905 (2011). doi:10.1073/pnas.1105113108
- K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136(16), 6083–6091 (2014). doi:10.1021/ja5017156
- D.W. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(2), 872–876 (2009). doi:10.1038/nature07872
- D.B. Shinde, M. Majumder, V.K. Pillai, Counter-ion dependent, longitudinal unzipping of multi-walled carbon nanotubes to highly conductive and transparent graphene nanoribbons. Sci. Rep. 4(3), 4363 (2014). doi:10.1038/srep04363
- B.C. Brodie, On the atomic weight of graphite. Phil. Trans. R .Soc. Lond.149, 249–259 (1859). doi:10.1098/rstl.1859.0013
- C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43(10), 291–312 (2014). doi:10.1039/c3cs60303b
- Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M.Y. Yakes, A.R. Laracuente, Z. Dai, S.R. Marder, C. Berger, W.P. King, W.A. de Heer, P.H. Sheean, E. Rideo, Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328(6), 1373–1376 (2010). doi:10.1126/science.1188119
- L.J. Cote, R. Cruz-Silva, J. Huang, Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 131(31), 11027–11032 (2009). doi:10.1021/ja902348k
- M.-F. El-Kady, R. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4(2), 1475 (2013). doi:10.1038/ncomms2446
- S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Muroff, Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9), 3019–3023 (2011). doi:10.1016/j.carbon.2011.02.071
- W. Chen, L. Yan, P.R. Bangai, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4), 1146–1152 (2010). doi:10.1016/j.carbon.2009.11.037
- D.W. Boukhvalov, M.I. Katsnelson, Modeling of graphene oxide. J. Am. Chem. Soc. 130(32), 10697–10701 (2008). doi:10.1039/c2ra00663d
- D.R. Dreyer, A.D. Todd, C.W. Bielawski, Harnessing the chemistry of graphene. Chem. Soc. Rev. 43(15), 5288–5301 (2014). doi:10.1039/C4CS00060A
- U. Hofmann, R. Holst, The acid nature and methylation of graphitic oxide. Ber. Dtsc. Chem. Ges. 72, 754–771 (1939). doi:10.1002/cber.19390720417
- T. Nakajima, N. Matsuo, Formation process and structure of graphite oxide. Carbon 32(3), 469–475 (1994). doi:10.1016/0008-6223(94)90168-6
- G. Ruess, Über das graphitoxyhydroxyd (graphitoxyd). Mntsf. Chem. Teil. Wssnchn. 76(3), 381–417 (1946). doi:10.1007/BF00898987
- W. Sholz, H.P. Boehm, Untersuchungen am graphitoxid betrachtungen zur struktur des graphitoxid. Zeit. Anorg. Allg. Chem. 396(3), 327–340 (1969). doi:10.1002/zaac.19693690322
- T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, I. Dekany, Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mat. 18(11), 2740–2749 (2006). doi:10.1021/cm060258+
- A. Lerf, H. He, T. Riedl, M. Forster, J. Klinowski, 13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives. Sol. Stat. Ion. 101(2), 857–862 (1997). doi:10.1016/S0167-2738(97)00319-6
- D.R. Dreyer, S. Park, C.W. Beilawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(11), 228–240 (2010). doi:10.1039/b917103g
- X. Mu, X. Wu, T. Zhang, D.B. Go, T. Luo, Thermal transport in graphene oxide-from ballistic extreme to amorphous limit. Sci. Rep. 4(1), 3909 (2014). doi:10.1038/srep03909
- J.T. Paci, T. Belytschko, G.C. Shatz, Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. J.Phys. Chem. 111(49), 18099–18111 (2007). doi:10.1021/jp075799g
- C. Gomez-Navarro, R.T. Weitz, A.M. Bittner, M. Scholari, A. Mews, M. Burghard, K. Kern, Electronic transport properties of individually chemically reduced graphene oxide sheets. Nano. Lett. 7(11), 2503–3499 (2007). doi:10.1021/nl072090c
- S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, A chemical route to graphene for device applications. Nano. Lett. 7(11), 3394–3398 (2007). doi:10.1021/nl0717715
- M. Hirata, T. Gotou, M. Ohba, Thin-film particles of graphene oxide 2: preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits. Carbon 43(3), 503–510 (2005). doi:10.1016/j.carbon.2004.10.009
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). doi:10.1016/j.carbon.2007.02.034
- J.-A. Yan, M.Y. Chou, Oxidation functional groups on graphene: structural and electronic properties. Phys. Rev. B 82(9), 125403 (2010). doi:10.1103/PhysRevB.82.125403
- J.-A. Yan, L. Xian, M.Y. Chou, Structural and electronics properties of oxidized graphene. Phys. Rev. Lett. 103(8), 086802.1–086802.4 (2009). doi:10.1103/PhysRevLett.103.086802
- K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano. Lett. 8(1), 36–41 (2008). doi:10.1021/nl071822y
- L.B. Casabianca, M.A. Shaibat, W.W. Cai, S. Park, R. Piner, R.S. Ruoff, Y. Ishii, NMR based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations. J. Am. Chem. Soc. 132(16), 5672–5676 (2010). doi:10.1021/ja9030243
- Z. Xu, K. Xue, Engineering graphene by oxidation: a first principles study. Nanotechnology 21(8), 045704 (2010). doi:10.1088/0957-4484/21/4/045704
- C.Q. Qu, C.Y. Wang, L. Qiao, S.S. Yu, H.B. Li, Transport properties of chemically functionalized graphene nanoribbon. Chem. Phys. Lett. 578(7), 97–101 (2013). doi:10.1016/j.cplett.2013.05.071
- W. Sukkabot, Electronic structure and optical properties of colloidal InAs/InP core/shell nanocrystals: tight-binding calculations. Phys. E. Low. Dimens. Sys. Nanostruct. 63(9), 235–240 (2014). doi:10.1016/j.physe.2014.05.014
- M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th Frauenheim, S. Suhai, G. Seifert, Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58(9), 7260.1–7260.5 (1998). doi:10.1103/PhysRevB.58.7260
- J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation. J. Phys. Cond. Matter. 14(11), 2745–2779 (2002). doi:10.1088/0953-8984/14/11/302
- S. Yamacli, M. Avci, Accurate SPICE compatible CNT interconnect and CNTFET models for circuit design and simulation. Math. Comp. Mod. 58(1), 368–378 (2013). doi:10.1016/j.mcm.2012.11.014
- M. Oubal, S. Pichaud, M.T. Rayez, J.C. Rayez, Adsorption of atmospheric oxidants at divacancy sites of graphene: a DFT study. Comp. Theor. Chem. 1016(7), 22–27 (2013). doi:10.1016/j.comptc.2013.04.017
- M.H. Hoang, D.H. Choi, S.J. Lee, Organic field-effect transistors based on semiconducting porphyrin single crystals. Synth. Metal. 162(5), 419–425 (2012). doi:10.1016/j.synthmet.2012.01.005
- M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65(3), 16540 (2002). doi:10.1103/PhysRevB.65.165401
- K. Stokbro, J. Taylor, M. Brandbyge, P. Ordejón, TranSIESTA: a spice for molecular electronics. Ann. N.Y. Acad. Sci. 1006(12), 212–226 (2003). doi:10.1196/annals.1292.014
- G.B. Abadir, K. Walus, D.L. Pulfrey, Basis set choice for DFT/NEGF simulations of carbon nanotubes. J. Comp. Elec. 8(1), 1–9 (2009). doi:10.1007/s10825-009-0263-5
- C. Cao, L. Chen, W. Huang, H. Xu, Electronic transport of zigzag graphene nanoribbons with edge hydrogenation and oxidation. Open. Chem. Phys. J. 4(1), 1–7 (2012). doi:10.2174/1874412501204010001
- International Technology Roadmap for Semiconductors (ITRS) Roadmap (2013), http://www.itrs.net/. Accessed 27 May 2014
- S. Datta, Quantum Transport: Atom to Transistor, 1st edn. (UK, Cambridge, 2005), pp. 11–30
- M. Paulsson, M. Brandbyge, Transmission eigenchannels from nonequilibrium Green’s functions. Phys. Rev. B 76(9), 115–117 (2007). doi:10.1103/PhysRevB.76.115117
References
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(4), 183–191 (2007). doi:10.1038/nmat1849
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Giorgieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896
Y. Zhang, D.Q. Wang, S.L. Zhang, Y.H. Wen, Z.Z. Zhu, Structures and electronic properties of oxidized graphene from first-principles study. Europhys. Lett. 105(3), 37005 (2014). doi:10.1209/0295-5075/105/37005
S. Mao, H. Pu, J. Chen, Graphene oxide and its reduction: modeling and experimental progress. RCS Adv. 2(11), 2643–2662 (2012). doi:10.1039/c2ra00663d
J. Robertson, G. Zhong, S. Esconjauregui, C. Zhang, S. Hofmann, Synthesis of carbon nanotubes and graphene for VLSI interconnects. Microelectron. Eng. 107(4), 210–218 (2013). doi:10.1016/j.mee.2012.08.010
M. Saremi, M. Saremi, H. Niazi, A.Y. Goharrizi, Modeling of lightly doped drain and source graphene nanoribbon field effect transistors. Superlatt. Microstruct. 60(8), 67–72 (2013). doi:10.1016/j.spmi.2013.04.013
H.F. Xiang, Z.D. Li, K. Xie, J.Z. Jiang, J.J. Chen, P.C. Lian, J.S. Wu, Y. Yu, H.H. Wang, Graphene sheets as anode materials for Li-ion batteries: preparation, structure, electrochemical properties and mechanism for lithium storage. RCS Adv. 2(5), 6792–6799 (2012). doi:10.1039/c2ra20549a
X. Ma, H. Zhang, Fabrication of graphene films with high transparent conducting characteristics. Nanoscale Res. Lett. 8(3), 440–445 (2013). doi:10.1186/1556-276X-8-440
Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329–2339 (2013). doi:10.1021/ar300203n
W. de Heer, C. Berger, M. Ruan, M. Sprinkle, X. Li, Y. Hu, B. Zhang, J. Hankinson, E. Conrad, Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Nat. Acad. Sci. 108(41), 16900–16905 (2011). doi:10.1073/pnas.1105113108
K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136(16), 6083–6091 (2014). doi:10.1021/ja5017156
D.W. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(2), 872–876 (2009). doi:10.1038/nature07872
D.B. Shinde, M. Majumder, V.K. Pillai, Counter-ion dependent, longitudinal unzipping of multi-walled carbon nanotubes to highly conductive and transparent graphene nanoribbons. Sci. Rep. 4(3), 4363 (2014). doi:10.1038/srep04363
B.C. Brodie, On the atomic weight of graphite. Phil. Trans. R .Soc. Lond.149, 249–259 (1859). doi:10.1098/rstl.1859.0013
C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43(10), 291–312 (2014). doi:10.1039/c3cs60303b
Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M.Y. Yakes, A.R. Laracuente, Z. Dai, S.R. Marder, C. Berger, W.P. King, W.A. de Heer, P.H. Sheean, E. Rideo, Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328(6), 1373–1376 (2010). doi:10.1126/science.1188119
L.J. Cote, R. Cruz-Silva, J. Huang, Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 131(31), 11027–11032 (2009). doi:10.1021/ja902348k
M.-F. El-Kady, R. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4(2), 1475 (2013). doi:10.1038/ncomms2446
S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Muroff, Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9), 3019–3023 (2011). doi:10.1016/j.carbon.2011.02.071
W. Chen, L. Yan, P.R. Bangai, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4), 1146–1152 (2010). doi:10.1016/j.carbon.2009.11.037
D.W. Boukhvalov, M.I. Katsnelson, Modeling of graphene oxide. J. Am. Chem. Soc. 130(32), 10697–10701 (2008). doi:10.1039/c2ra00663d
D.R. Dreyer, A.D. Todd, C.W. Bielawski, Harnessing the chemistry of graphene. Chem. Soc. Rev. 43(15), 5288–5301 (2014). doi:10.1039/C4CS00060A
U. Hofmann, R. Holst, The acid nature and methylation of graphitic oxide. Ber. Dtsc. Chem. Ges. 72, 754–771 (1939). doi:10.1002/cber.19390720417
T. Nakajima, N. Matsuo, Formation process and structure of graphite oxide. Carbon 32(3), 469–475 (1994). doi:10.1016/0008-6223(94)90168-6
G. Ruess, Über das graphitoxyhydroxyd (graphitoxyd). Mntsf. Chem. Teil. Wssnchn. 76(3), 381–417 (1946). doi:10.1007/BF00898987
W. Sholz, H.P. Boehm, Untersuchungen am graphitoxid betrachtungen zur struktur des graphitoxid. Zeit. Anorg. Allg. Chem. 396(3), 327–340 (1969). doi:10.1002/zaac.19693690322
T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, I. Dekany, Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mat. 18(11), 2740–2749 (2006). doi:10.1021/cm060258+
A. Lerf, H. He, T. Riedl, M. Forster, J. Klinowski, 13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives. Sol. Stat. Ion. 101(2), 857–862 (1997). doi:10.1016/S0167-2738(97)00319-6
D.R. Dreyer, S. Park, C.W. Beilawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(11), 228–240 (2010). doi:10.1039/b917103g
X. Mu, X. Wu, T. Zhang, D.B. Go, T. Luo, Thermal transport in graphene oxide-from ballistic extreme to amorphous limit. Sci. Rep. 4(1), 3909 (2014). doi:10.1038/srep03909
J.T. Paci, T. Belytschko, G.C. Shatz, Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. J.Phys. Chem. 111(49), 18099–18111 (2007). doi:10.1021/jp075799g
C. Gomez-Navarro, R.T. Weitz, A.M. Bittner, M. Scholari, A. Mews, M. Burghard, K. Kern, Electronic transport properties of individually chemically reduced graphene oxide sheets. Nano. Lett. 7(11), 2503–3499 (2007). doi:10.1021/nl072090c
S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, A chemical route to graphene for device applications. Nano. Lett. 7(11), 3394–3398 (2007). doi:10.1021/nl0717715
M. Hirata, T. Gotou, M. Ohba, Thin-film particles of graphene oxide 2: preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits. Carbon 43(3), 503–510 (2005). doi:10.1016/j.carbon.2004.10.009
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). doi:10.1016/j.carbon.2007.02.034
J.-A. Yan, M.Y. Chou, Oxidation functional groups on graphene: structural and electronic properties. Phys. Rev. B 82(9), 125403 (2010). doi:10.1103/PhysRevB.82.125403
J.-A. Yan, L. Xian, M.Y. Chou, Structural and electronics properties of oxidized graphene. Phys. Rev. Lett. 103(8), 086802.1–086802.4 (2009). doi:10.1103/PhysRevLett.103.086802
K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano. Lett. 8(1), 36–41 (2008). doi:10.1021/nl071822y
L.B. Casabianca, M.A. Shaibat, W.W. Cai, S. Park, R. Piner, R.S. Ruoff, Y. Ishii, NMR based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations. J. Am. Chem. Soc. 132(16), 5672–5676 (2010). doi:10.1021/ja9030243
Z. Xu, K. Xue, Engineering graphene by oxidation: a first principles study. Nanotechnology 21(8), 045704 (2010). doi:10.1088/0957-4484/21/4/045704
C.Q. Qu, C.Y. Wang, L. Qiao, S.S. Yu, H.B. Li, Transport properties of chemically functionalized graphene nanoribbon. Chem. Phys. Lett. 578(7), 97–101 (2013). doi:10.1016/j.cplett.2013.05.071
W. Sukkabot, Electronic structure and optical properties of colloidal InAs/InP core/shell nanocrystals: tight-binding calculations. Phys. E. Low. Dimens. Sys. Nanostruct. 63(9), 235–240 (2014). doi:10.1016/j.physe.2014.05.014
M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th Frauenheim, S. Suhai, G. Seifert, Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58(9), 7260.1–7260.5 (1998). doi:10.1103/PhysRevB.58.7260
J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation. J. Phys. Cond. Matter. 14(11), 2745–2779 (2002). doi:10.1088/0953-8984/14/11/302
S. Yamacli, M. Avci, Accurate SPICE compatible CNT interconnect and CNTFET models for circuit design and simulation. Math. Comp. Mod. 58(1), 368–378 (2013). doi:10.1016/j.mcm.2012.11.014
M. Oubal, S. Pichaud, M.T. Rayez, J.C. Rayez, Adsorption of atmospheric oxidants at divacancy sites of graphene: a DFT study. Comp. Theor. Chem. 1016(7), 22–27 (2013). doi:10.1016/j.comptc.2013.04.017
M.H. Hoang, D.H. Choi, S.J. Lee, Organic field-effect transistors based on semiconducting porphyrin single crystals. Synth. Metal. 162(5), 419–425 (2012). doi:10.1016/j.synthmet.2012.01.005
M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65(3), 16540 (2002). doi:10.1103/PhysRevB.65.165401
K. Stokbro, J. Taylor, M. Brandbyge, P. Ordejón, TranSIESTA: a spice for molecular electronics. Ann. N.Y. Acad. Sci. 1006(12), 212–226 (2003). doi:10.1196/annals.1292.014
G.B. Abadir, K. Walus, D.L. Pulfrey, Basis set choice for DFT/NEGF simulations of carbon nanotubes. J. Comp. Elec. 8(1), 1–9 (2009). doi:10.1007/s10825-009-0263-5
C. Cao, L. Chen, W. Huang, H. Xu, Electronic transport of zigzag graphene nanoribbons with edge hydrogenation and oxidation. Open. Chem. Phys. J. 4(1), 1–7 (2012). doi:10.2174/1874412501204010001
International Technology Roadmap for Semiconductors (ITRS) Roadmap (2013), http://www.itrs.net/. Accessed 27 May 2014
S. Datta, Quantum Transport: Atom to Transistor, 1st edn. (UK, Cambridge, 2005), pp. 11–30
M. Paulsson, M. Brandbyge, Transmission eigenchannels from nonequilibrium Green’s functions. Phys. Rev. B 76(9), 115–117 (2007). doi:10.1103/PhysRevB.76.115117