Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review
Corresponding Author: Ahmad Umar
Nano-Micro Letters,
Vol. 7 No. 2 (2015), Article Number: 97-120
Abstract
Because of the interesting and multifunctional properties, recently, ZnO nanostructures are considered as excellent material for fabrication of highly sensitive and selective gas sensors. Thus, ZnO nanomaterials are widely used to fabricate efficient gas sensors for the detection of various hazardous and toxic gases. The presented review article is focusing on the recent developments of NO2 gas sensors based on ZnO nanomaterials. The review presents the general introduction of some metal oxide nanomaterials for gas sensing application and finally focusing on the structure of ZnO and its gas sensing mechanisms. Basic gas sensing characteristics such as gas response, response time, recovery time, selectivity, detection limit, stability and recyclability, etc are also discussed in this article. Further, the utilization of various ZnO nanomaterials such as nanorods, nanowires, nano-micro flowers, quantum dots, thin films and nanosheets, etc for the fabrication of NO2 gas sensors are also presented. Moreover, various factors such as NO2 concentrations, annealing temperature, ZnO morphologies and particle sizes, relative humidity, operating temperatures which are affecting the NO2 gas sensing properties are discussed in this review. Finally, the review article is concluded and future directions are presented.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Qi, T. Zhang, S. Wang, X. Zheng, Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sens. Actuators B: Chem. 137(2), 649–655 (2009). doi:10.1016/j.snb.2009.01.042
- P. Ivanov, E. Llobet, X. Vilanova, J. Brezmes, J. Hubalek, X. Correig, Development of high gas response ethanol gas sensors based on Pt-doped SnO2 surfaces. Sens. Actuators B: Chem. 99(2–3), 201–206 (2004). doi:10.1016/j.snb.2003.11.012
- R.L. Vander Wal, G.W. Hunter, J.C. Xu, M.J. Kulis, G.M. Berger, T.M. Ticich, Metal oxide nanostructure and gas-sensing performance. Sens. Actuators B: Chem. 138(1), 113–119 (2009). doi:10.1016/j.snb.2009.02.020
- F. Rock, N. Barsan, U. Weimar, Electronic nose: current status and future trends. Chem. Rev. 108(2), 705–725 (2008). doi:10.1021/cr068121q
- X. Zhou, J. Zhang, T. Jiang, X. Wang, Z. Zhu, Humidity detection by nanostructured ZnO: a wireless quartz crystal microbalance investigation. Sens. Actuators A: Physical 135(1), 209–214 (2007). doi:10.1016/j.sna.2006.07.001
- C. Wagner, K. Hauffe, The stationary state of catalysts in homogeneous reactions. Ztschr. Elektrochem. 33, 172 (1938)
- T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin film. Anal. Chem. 34(11), 1502–1503 (1962). doi:10.1021/ac60191a001
- L. Liao, H.B. Lu, J.C. Li, H. He, D.F. Wang, D.J. Fu, C. Liu, Size dependence of gas response of ZnO nanorods. J. Phys. Chem. 111(5), 1900–1903 (2007). doi:10.1021/jp065963k
- J.-T. Hsueh, C.-L. Hsu, S.-J. Chang, I.-C. Chen, Laterally grown ZnO nanowire ethanol gas sensors. Sens. Actuators B: Chem. 126(2), 473–477 (2007). doi:10.1016/j.snb.2007.03.034
- P.-S. Cho, K.-W. Kim, J.-H. Lee, NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method. J. Electroceram. 17(2–4), 975–978 (2006). doi:10.1007/s10832-006-8146-7
- P. Feng, Q. Wan, T.H. Wang, Contact-controlled sensing properties of flowerlike ZnO nanostructure. Appl. Phys. Lett. 87, 213111 (2005). doi:10.1063/1.2135391
- Y.-J. Choi, I.-S. Hwang, J.-G. Park, K.-J. Choi, J.-H. Park, J.-H. Lee, Novel fabrication of a SnO2 nanowire gas sensor with high gas response. Nanotechnology 19, 095508 (2008). doi:10.1088/0957-4484/19/9/095508
- S. Shi, Y. Liu, Y. Chen, J. Zhang, Y. Wang, T. Wang, Ultrahigh ethanol response of SnO2 nanorods at low working temperature arising from La2O3 loading. Sens. Actuators B: Chem. 140(2), 426–431 (2009). doi:10.1016/j.snb.2009.04.058
- J.-K. Choi, I.-S. Hwang, S.-J. Kim, J.-S. Park, S.-S. Park, U. Jeong, Y.C. Kang, J.-H. Lee, Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sens. Actuators B: Chem. 150(1), 191–199 (2010). doi:10.1016/j.snb.2010.07.013
- C.S. Rout, G.U. Kulkarni, C.N.R. Rao, Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides. J. Phys. D-Appl. Phys. 40(9), 2777–2782 (2007). doi:10.1088/0022-3727/40/9/016
- H.G. Choi, Y.H. Jung, D.K. Kim, Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J. Am. Ceram. Soc. 88(6), 1684–1686 (2005). doi:10.1111/j.1551-2916.2005.00341.x
- N.V. Hieu, V.V. Quang, N.D. Ho, D. Kim, Preparing large-scale WO3 nanowire-like structure for high gas response NH3 gas sensor through a simple route. Curr. Appl. Phys. 11(3), 657–661 (2011). doi:10.1016/j.cap.2010.11.002
- X. Gou, G. Wang, J. Yang, J. Park, D. Wexler, Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons. J. Mater. Chem. 18, 965–969 (2008). doi:10.1039/b716745h
- H. Kim, C. Jin, S. Park, S. Kim, C. Lee, H2S gas sensing properties of bare and Pd-functionalized CuO nanorods. Sens. Actuators B: Chem. 161(1), 594–599 (2012). doi:10.1016/j.snb.2011.11.006
- F.-N. Meng, X.-P. Di, H.-W. Dong, Y. Zhang, C.-L. Zhu, C. Li, Y.-J. Chen, Ppb H2S gas sensing characteristics of Cu2O/CuO sub-microspheres at low-temperature. Sens. Actuators B: Chem. 182, 197–204 (2013). doi:10.1016/j.snb.2013.02.112
- Q. Hao, L. Li, X. Yin, S. Liu, Q. Li, T. Wang, Anomalous conductivity-type transition sensing behaviors of n-type porous α-Fe2O3 nanostructures toward H2S. Mater. Sci. Eng. B 176(7), 600–605 (2011). doi:10.1016/j.mseb.2011.02.002
- W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Y. Wang, Z. Wang, C. Wang, A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers. Sens. Actuators B: Chem. 142(1), 61–65 (2009). doi:10.1016/j.snb.2009.07.031
- W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Z. Wang, X. Xu, S. Li, C. Wang, Assembly of Pt nanoparticles on electrospun In2O3 nanofibers for H2S detection. J. Colloid Interface Sci. 338(2), 366–370 (2009). doi:10.1016/j.jcis.2009.06.041
- N. Singh, R.K. Gupta, P.S. Lee, Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. Appl. Mater. Interfaces 3(7), 2246–2252 (2011). doi:10.1021/am101259t
- J. Xu, Y. Chen, J. Shen, Ethanol sensor based on hexagonal indium oxide nanorods prepared by solvothermal methods. Mater. Lett. 62(8–9), 1363–1365 (2008). doi:10.1016/j.matlet.2007.08.054
- Z. Guo, M. Li, J. Liu, Highly porous CdO nanowires: preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties. Nanotechnology 19, 245611 (2008). doi:10.1088/0957-4484/19/24/245611
- Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, T. Kawabat, Room temperature gas sensing of p-type TeO2 nanowires. Appl. Phys. Lett. 90(17), 173119 (2007). doi:10.1063/1.2732818
- M.B. Rahmani, S. Keshmiri, J. Yu, A. Sadek, L. Al-Mashat, A. Moafi, K. Latham, Y. Li, W. Wlodarski, K. Kalantar-Zadeh, Gas sensing properties of thermally evaporated lamellar MoO3. Sens. Actuators B: Chem. 145(1), 13–19 (2010). doi:10.1016/j.snb.2009.11.007
- S. Öztürk, N. Kılınç, Z.Z. Öztürk, Fabrication of ZnO nanorods for NO2 sensor applications: effect of dimensions and electrode position. J. Alloys Compd. 581, 196–201 (2013). doi:10.1016/j.jallcom.2013.07.063
- Y. Sahin, S. Öztürk, N. Kılınc, A. Kösemen, M. Erkovane, Z.Z. Öztürk, Electrical conduction and NO2 gas sensing properties of ZnO nanorods. Appl. Surf. Sci. 303, 90–96 (2014). doi:10.1016/j.apsusc.2014.02.083
- E. Oh, H.-Y. Choi, S.-H. Jung, S. Cho, J.C. Kim, K.-H. Lee, S.-W. Kang, J. Kim, J.-Y. Yun, S.-H. Jeong, High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sens. Actuators B: Chem. 141(1), 239–243 (2009). doi:10.1016/j.snb.2009.06.031
- F.-T. Liu, S.-F. Gao, S.-K. Pei, S.-C. Tseng, C.-H.J. Liu, ZnO nanorod gas sensor for NO2 detection. J. Taiwan Inst. Chem. E. 40(5), 528–532 (2009). doi:10.1016/j.jtice.2009.03.008
- D. Yan, M. Hu, S. Li, J. Liang, Y. Wu, S. Ma, Electrochemical deposition of ZnO nanostructures onto porous silicon and their enhanced gas sensing to NO2 at room temperature. Electrochim. Acta 115, 297–305 (2014). doi:10.1016/j.electacta.2013.10.007
- J. Park, J.-Y. Oh, Highly-sensitive NO2 detection of ZnO nanorods grown by a sonochemical process. J. Korean Phys. Soc. 55(3), 1119–1122 (2009)
- L. Shi, A.J.T. Naik, J.B.M. Goodall, C. Tighe, R. Gruar, R. Binions, I. Parkin, J. Darr, Highly sensitive ZnO nanorod- and nanoprism-based NO2 gas sensors: size and shape control using a continuous hydrothermal pilot plant. Langmuir 29(33), 10603–10609 (2013). doi:10.1021/la402339m
- H.V. Han, N.D. Hoa, P.V. Tong, H. Nguyen, N.V. Hieu, Single-crystal zinc oxide nanorods with nanovoids as highly sensitive NO2 nanosensors. Mater. Lett. 94, 41–43 (2013). doi:10.1016/j.matlet.2012.12.006
- P. Rai, Y.-S. Kim, H.-M. Song, M.-K. Song, Y.-T. Yu, The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sens. Actuators B: Chem. 165(1), 133–142 (2012). doi:10.1016/j.snb.2012.02.030
- J. Xu, Y. Yu, X. He, J. Sun, F. Liu, G. Lu, Synthesis of hierarchical ZnO orientation-ordered film by chemical bath deposition and its gas sensing properties. Mater. Lett. 81, 145–147 (2012). doi:10.1016/j.matlet.2012.04.090
- C.-J. Chang, C.-Y. Lin, J.-K. Chen, M.-H. Hsu, Ce-doped ZnO nanorods based low operation temperature NO2 gas sensors. Ceram. Int. 40(7), 10867–10875 (2014). doi:10.1016/j.ceramint.2014.03.080
- S. Bai, L. Chen, S. Chen, R. Luo, D. Li, A. Chen, C.C. Liu, Reverse microemulsion in situ crystallizing growth of ZnO nanorods and application for NO2 sensor. Sens. Actuators B: Chem. 190, 760–767 (2014). doi:10.1016/j.snb.2013.09.032
- B. Shouli, L. Xin, L. Dianqing, C. Song, L. Ruixian, C. Aifan, Synthesis of ZnO nanorods and its application in NO2 sensors. Sens. Actuators B: Chem. 153(1), 110–116 (2011). doi:10.1016/j.snb.2010.10.010
- S. An, S. Park, H. Ko, C. Jin, W.I. Lee, C. Lee, Enhanced gas sensing properties of branched ZnO nanowires. Thin Solid Films 547, 241–245 (2013). doi:10.1016/j.tsf.2013.02.021
- M.-W. Ahn, K.-S. Park, J.-H. Heo, D.-W. Kim, K.J. Choi, J.-G. Park, On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens. Actuators B: Chem. 138(1), 168–173 (2009). doi:10.1016/j.snb.2009.02.008
- E.R. Waclawik, J. Chang, A. Ponzoni, I. Concina, D. Zappa, E. Comini, N. Motta, G. Faglia, G. Sberveglieri, Functionalised zinc oxide nanowire gas sensors: enhanced NO2 gas sensor response by chemical modification of nanowire surfaces. Beilstein J. Nanotechnol. 3, 368–377 (2012). doi:10.3762/bjnano.3.43
- H.-U. Lee, K. Ahn, S.-J. Lee, J.-P. Kim, H.-G. Kim, S.-Y. Jeong, C.-R. Cho, ZnO nanobarbed fibers: fabrication, sensing NO2 gas, and their sensing mechanism. Appl. Phys. Lett. 98(19), 193114 (2011). doi:10.1063/1.3590202
- S.-W. Fan, A.K. Srivastava, V.P. Dravid, Nanopatterned polycrystalline ZnO for room temperature gas sensing. Sens. Actuators B: Chem. 144(1), 159–163 (2010). doi:10.1016/j.snb.2009.10.054
- A.Z. Sadek, W. Wlodarski, K. Kalantar-zadeh, S. Choopun, ZnO nanobelt based conductometric H2 and NO2 gas sensors, in Proceedings of Sensors IEEE (2005), pp. 1326–1329. doi:10.1109/ICSENS.2005.1597952
- R.C. Pawar, J.-W. Lee, V.B. Patil, C.S. Lee, Synthesis of multi-dimensional ZnO nanostructures in aqueous medium for the application of gas sensor. Sens. Actuators B: Chem. 187, 323–330 (2013). doi:10.1016/j.snb.2012.11.100
- M. Hjiri, L.E. Mir, S.G. Leonardi, N. Donato, G. Neri, CO and NO2 selective monitoring by ZnO-based sensors. Nanomaterials 3(3), 357–369 (2013). doi:10.3390/nano3030357
- J.X. Wang, X.W. Sun, Y. Yang, C.M.L. Wu, N–P transition sensing behaviors of ZnO nanotubes exposed to NO2 gas. Nanotechnology 20(46), 465501 (2009). doi:10.1088/0957-4484/20/46/465501
- P. Rai, S. Raj, K.-J. Ko, K.-K. Park, Y.-T. Yu, Synthesis of flower-like ZnO microstructures for gas sensor applications. Sens. Actuators B: Chem. 178, 107–112 (2013). doi:10.1016/j.snb.2012.12.031
- S. Bai, T. Guo, D. Li, R. Luo, A. Chen, C.C. Liu, Intrinsic sensing properties of the flower-like ZnO nanostructures. Sens. Actuators B: Chem. 182, 747–754 (2013). doi:10.1016/j.snb.2013.03.077
- A. Forleo, L. Francioso, S. Capone, P. Siciliano, P. Lommens, Z. Hens, Synthesis and gas sensing properties of ZnO quantum dots. Sens. Actuators B: Chem. 146(1), 111–115 (2010). doi:10.1016/j.snb.2010.02.059
- B. Shouli, C. Liangyuan, H. Jingwei, L. Dianqing, L. Ruixian, C. Aifan, C.C. Liu, Synthesis of quantum size ZnO crystals and their gas sensing properties for NO2. Sens. Actuators B: Chem. 159(1), 97–102 (2011). doi:10.1016/j.snb.2011.06.056
- S. Bai, J. Hu, D. Li, R. Luo, A. Chen, C.C. Liu, Quantum-sized ZnO nanoparticles: synthesis, characterization and sensing properties for NO2. J. Mater. Chem. 21, 12288–12294 (2011). doi:10.1039/c1jm11302j
- D. Li, J. Hu, F. Fan, S. Bai, R. Luo, A. Chen, C.C. Liu, Quantum-sized ZnO nanoparticles synthesized in aqueous medium for toxic gases detection. J. Alloys Compd. 539, 205–209 (2012). doi:10.1016/j.jallcom.2012.05.106
- P. Rai, Y.-T. Yu, Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application. Sens. Actuators B: Chem. 173, 58–65 (2012). doi:10.1016/j.snb.2012.05.068
- F. Fan, Y. Feng, S. Bai, J. Feng, A. Chen, D. Li, Synthesis and gas sensing properties to NO2 of ZNO nanoparticles. Sens. Actuators B: Chem. 185, 377–382 (2013). doi:10.1016/j.snb.2013.05.020
- J.H. Jun, J. Yun, K. Cho, I.-S. Hwang, J.-H. Lee, S. Kim, Necked ZnO nanoparticle-based NO2 sensors with high and fast response. Sens. Actuators B: Chem. 140(2), 412–417 (2009). doi:10.1016/j.snb.2009.05.019
- T.V. Kolekar, S.S. Bandgar, S.S. Shirguppikar, V.S. Ganachari, Synthesis and characterization of ZnO nanoparticles for efficient gas sensors. Arch. Appl. Sci. Res. 5(6), 20–28 (2013)
- S. Bai, C. Sun, T. Guo, R. Luo, Y. Lin, A. Chen, L. Sun, J. Zhang, Low temperature electrochemical deposition of nanoporous ZnO thin films as novel NO2 sensors. Electrochim. Acta 90, 530–534 (2013). doi:10.1016/j.electacta.2012.12.060
- C. Zhang, M. Debliquy, H. Liao, Deposition and microstructure characterization of atmospheric plasma-sprayed ZnO coatings for NO2 detection. Appl. Surf. Sci. 256(20), 5905–5910 (2010). doi:10.1016/j.apsusc.2010.03.072
- M.A. Chougule, S. Sen, V.B. Patil, Fabrication of nanostructured ZnO thin film sensor for NO2 monitoring. Ceram. Int. 38(4), 2685–2692 (2012). doi:10.1016/j.ceramint.2011.11.036
- J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia, S. Zhang, W. Huang, X. Guo, S. Wu, ZnO hollow spheres: preparation, characterization, and gas sensing properties. Sens. Actuators B: Chem. 139(2), 411–417 (2009). doi:10.1016/j.snb.2009.03.014
- M.Z. Ahmad, J. Chang, M.S. Ahmad, E.R. Waclawik, W. Wlodarski, Non-aqueous synthesis of hexagonal ZnO nanopyramids: gas sensing properties. Sens. Actuators B: Chem. 177, 286–294 (2013). doi:10.1016/j.snb.2012.11.013
- D. Calestani, M. Zhaa, R. Mosca, A. Zappettini, M.C. Carotta, V. Di Natale, L. Zanotti, Growth of ZnO tetrapods for nanostructure-based gas sensors. Sens. Actuators B: Chem. 144(2), 472–478 (2010). doi:10.1016/j.snb.2009.11.009
- Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7), 2325–2331 (2011). doi:10.1128/AEM.02149-10
- S. Hackenberg, A. Scherzed, A. Technau, K. Froelich, R. Hagen, N. Kleinsasser, Functional responses of human adipose tissue-derived mesenchymal stem cells to metal oxide nanoparticles in vitro. J. Biomed. Nanotechnol. 9(1), 86–95 (2013). doi:10.1166/jbn.2013.1473
- N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B 5(1–4), 7–19 (1991). doi:10.1016/0925-4005(91)80213-4
- R. Kumar, G. Kumar, A. Umar, Zinc oxide nanomaterials for photocatalytic degradation of methyl orange: a review. Nanosci. Nanotechnol. Lett. 6(8), 631–650 (2014). doi:10.1166/nnl.2014.1879
- S.A. Chevtchenko, J.C. Moore, U. Özgür, X. Gu, A.A. Baski, H. Morkoc, B. Nemeth, J.E. Nause, Comparative study of the (0001) and (000) surfaces of ZnO. Appl. Phys. Lett. 89(18), 182111 (2006). doi:10.1063/1.2378589
- J. Lahiri, S. Senanayake, M. Batzill, Soft X-ray photoemission of clean and sulfur covered polar ZnO surfaces: a view of the stabilization of polar oxide surfaces. Phys. Rev. B 78, 155414 (2008). doi:10.1103/PhysRevB.78.155414
- O. Dulub, U. Diebold, G. Kresse, Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn. Phys. Rev. Lett. 90, 016102 (2003). doi:10.1103/PhysRevLett.90.016102
- P.S. Bagus, F. Illas, G. Pacchioni, F. Parmigiani, Mechanisms responsible for chemical shifts of core-level binding energies and their relationship to chemical bonding. J. Electron. Spectrosc. Relat. Phenom. 100(1–3), 215–236 (1999). doi:10.1016/S0368-2048(99)00048-1
- G. Kresse, O. Dulub, U. Diebold, Competing stabilization mechanism of the polar ZnO (0001)-Zn surface. Phys. Rev. B 68, 245409 (2003). doi:10.1103/PhysRevB.68.245409
- A. Önsten, D. Stoltz, P. Palmgren, S. Yu, M. Göthelid, U.O. Karlsson, Water adsorption on ZnO(0001): transition from triangular surface structure to a disordered hydroxyl terminated phase. J. Phys. Chem. C 114(25), 11157–11161 (2010). doi:10.1021/jp1004677
- M. Valtiner, X. Torrelles, A. Pareek, S. Borodin, H. Gies, G. Grundmeier, In situ study of the polar ZnO(0001)-Zn surface in alkaline electrolytes. J. Phys. Chem. C 114(36), 15440–15447 (2010). doi:10.1021/jp1047024
- M. Kunat, S.G. Girol, T. Becker, U. Burghaus, C. Wöll, Stability of the polar surfaces of ZnO: a reinvestigation using He-atom scattering. Phys. Rev. B 66, 081402 (2002). doi:10.1103/PhysRevB.66.081402
- B. Meyer, D. Marx, Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B 67, 035403 (2003). doi:10.1103/PhysRevB.67.035403
- N. Han, X. Wu, L. Chai, H. Liu, Y. Chen, Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors. Sens. Actuators B: Chem. 150(1), 230–238 (2010). doi:10.1016/j.snb.2010.07.009
- Y. Zhang, J. Xu, Q. Xiang, H. Li, Q.Y. Pan, P.C. Xu, Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J. Phys. Chem. C 113(9), 3430–3435 (2009). doi:10.1021/jp8092258
- C. Li, L. Li, Z. Du, H. Yu, Y. Xiang, Y. Li, Y. Cai, T. Wang, Rapid and ultrahigh ethanol sensing based on Au-coated ZnO nanorods. Nanotechnology 19(3), 035501 (2008). doi:10.1088/0957-4484/19/03/035501
- H. Ihokura, SnO2-based inflammable gas sensors. Doctoral Thesis, Kyushu University (1983), pp. 52–57
- H. Mitsudo, Ceramics for gas and humidity sensors (part I)—gas sensor. Ceramics 15, 339–345 (1980)
- S. Das, S. Ghosh, Fabrication of different morphologies of ZnO superstructures in presence of synthesized ethylammonium nitrate (EAN) ionic liquid: synthesis, characterization and analysis. Dalton Trans. 42, 1645–1656 (2013). doi:10.1039/c2dt31920a
- M. Yin, Y. Gu, I.L. Kuskovsky, T. Andelman, Y. Zhu, G.F. Neumark, Zinc oxide quantum rods. J. Am. Chem. Soc. 126(20), 6206–6207 (2004). doi:10.1021/ja031696+
- L.J. Bellamy, The Infrared Spectra of Complex Molecules, vol. 1 (Chapman and Hall, London, 1975), p. 378
- C.H. Hung, W.T. Whang, Effect of surface stabilization of nanoparticles on luminescent characteristics in ZnO/poly(hydroxyethyl methacrylate) nanohybrid films. J. Mater. Chem. 15, 267–274 (2005). doi:10.1039/b405497k
- R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Hazard. Mater. 156(1–3), 194–200 (2008). doi:10.1016/j.jhazmat.2007.12.033
- T. Yoshida, K. Terada, D. Schlettwein, T. Oekermann, T. Sugiura, H. Minoura, Electrochemical self-assembly of nanoporous ZnO/Eosin Y thin films and their sensitized photoelectrochemical performance. Adv. Mater. 12(16), 1214–1217 (2000). doi:10.1002/1521-4095(200008)12::16<1214:AID-ADMA1214>3.0.CO;2-Z
- T. Yoshida, J. Zhang, D. Komatsu, S. Sawatani, H. Minoura, Th. Pauporté, D. Lincot, T. Oekermann, L. Peter, D. Schlettwain, H. Tada, D. Wöhrle, K. Funabiki, M. Matsui, H. Miura, H. Yanagi, Electrodeposition of inorganic/organic hybrid thin films. Adv. Funct. Mater. 19(1), 17–43 (2009). doi:10.1002/adfm.200700188
- P. Liu, W.Y. Li, J.B. Zhang, Electrodeposition and photocatalytic selectivity of ZnO/methyl blue hybrid thin films. J. Phys. Chem. C 113(32), 14279–14282 (2009). doi:10.1021/jp903896j
- J.H. Yang, X.Y. Liu, L.L. Yang, Y.X. Wang, Y.J. Zhang, J.H. Lang, Effect of annealing temperature on the structure and optical properties of ZnO nanoparticles. J. Alloys Compd. 477(1–2), 632–635 (2009). doi:10.1016/j.jallcom.2008.10.135
- S.D. Shinde, G.E. Patil, D.D. Kajale, V.G. Wagh, V.B. Gaikwad, G.H. Jain, Effect of annealing on gas sensing performance of nanostructured ZnO thick film resistors. Int. J. Smart Sens. Intell. Syst. 5, 277–294 (2012)
- W.-J. Li, E.-W. Shi, W.-Z. Zhong, Z.-W. Yin, Growth mechanism and growth habit of oxide crystals. J. Cryst. Growth 203(1–2), 186–196 (1999). doi:10.1016/S0022-0248(99)00076-7
- G. Lu, J. Xu, J. Sun, Y. Yu, Y. Zhang, F. Liu, UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sens. Actuators B: Chem. 162(1), 82–88 (2012). doi:10.1016/j.snb.2011.12.039
- C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: gas response and influencing factors. Sensors 10(3), 2088–2106 (2010). doi:10.3390/s100302088
- Q. Qi, T. Zhang, X. Zheng, H. Fan, L. Liu, R. Wang, Y. Zeng, Electrical Response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference. Sens. Actuators B: Chem. 134(1), 36–42 (2008). doi:10.1016/j.snb.2008.04.011
- J. Gong, Q. Chen, M. Lian, N. Liu, R.G. Stevenson, F. Adamic, Micromachined nanocrystalline silver doped SnO2 H2S sensor. Sens. Actuators B: Chem. 114(1), 32–39 (2006). doi:10.1016/j.snb.2005.04.035
- E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens. Actuators B: Chem. 23(2–3), 135–156 (1995). doi:10.1016/0925-4005(94)01268-M
- Z. Bai, C. Xie, M. Hu, S. Zhang, D. Zeng, Effect of humidity on the gas sensing property of the tetrapod-shaped ZnO nanopowder sensor. Mater. Sci. Eng. B 149(1), 12–17 (2008). doi:10.1016/j.mseb.2007.11.020
- R.G. Pavelko, H. Daly, C. Hardacre, A.A. Vasiliev, E. Llobet, Interaction of water, hydrogen and their mixtures with SnO2 based materials: the role of surface hydroxyl groups in detection mechanisms. Phys. Chem. Chem. Phys. 12(11), 2639–2647 (2010). doi:10.1039/b921665k
- A. Stanoiu, C.E. Simion, S. Somacescu, NO2 sensing mechanism of ZnO–Eu2O3 binary oxide under humid air conditions. Sens. Actuators B: Chem. 186, 687–694 (2013). doi:10.1016/j.snb.2013.06.083
- F.-S. Tsai, S.-J. Wang, Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheets. Sens. Actuators B: Chem. 193, 280–287 (2014). doi:10.1016/j.snb.2013.11.069
References
Q. Qi, T. Zhang, S. Wang, X. Zheng, Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sens. Actuators B: Chem. 137(2), 649–655 (2009). doi:10.1016/j.snb.2009.01.042
P. Ivanov, E. Llobet, X. Vilanova, J. Brezmes, J. Hubalek, X. Correig, Development of high gas response ethanol gas sensors based on Pt-doped SnO2 surfaces. Sens. Actuators B: Chem. 99(2–3), 201–206 (2004). doi:10.1016/j.snb.2003.11.012
R.L. Vander Wal, G.W. Hunter, J.C. Xu, M.J. Kulis, G.M. Berger, T.M. Ticich, Metal oxide nanostructure and gas-sensing performance. Sens. Actuators B: Chem. 138(1), 113–119 (2009). doi:10.1016/j.snb.2009.02.020
F. Rock, N. Barsan, U. Weimar, Electronic nose: current status and future trends. Chem. Rev. 108(2), 705–725 (2008). doi:10.1021/cr068121q
X. Zhou, J. Zhang, T. Jiang, X. Wang, Z. Zhu, Humidity detection by nanostructured ZnO: a wireless quartz crystal microbalance investigation. Sens. Actuators A: Physical 135(1), 209–214 (2007). doi:10.1016/j.sna.2006.07.001
C. Wagner, K. Hauffe, The stationary state of catalysts in homogeneous reactions. Ztschr. Elektrochem. 33, 172 (1938)
T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin film. Anal. Chem. 34(11), 1502–1503 (1962). doi:10.1021/ac60191a001
L. Liao, H.B. Lu, J.C. Li, H. He, D.F. Wang, D.J. Fu, C. Liu, Size dependence of gas response of ZnO nanorods. J. Phys. Chem. 111(5), 1900–1903 (2007). doi:10.1021/jp065963k
J.-T. Hsueh, C.-L. Hsu, S.-J. Chang, I.-C. Chen, Laterally grown ZnO nanowire ethanol gas sensors. Sens. Actuators B: Chem. 126(2), 473–477 (2007). doi:10.1016/j.snb.2007.03.034
P.-S. Cho, K.-W. Kim, J.-H. Lee, NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method. J. Electroceram. 17(2–4), 975–978 (2006). doi:10.1007/s10832-006-8146-7
P. Feng, Q. Wan, T.H. Wang, Contact-controlled sensing properties of flowerlike ZnO nanostructure. Appl. Phys. Lett. 87, 213111 (2005). doi:10.1063/1.2135391
Y.-J. Choi, I.-S. Hwang, J.-G. Park, K.-J. Choi, J.-H. Park, J.-H. Lee, Novel fabrication of a SnO2 nanowire gas sensor with high gas response. Nanotechnology 19, 095508 (2008). doi:10.1088/0957-4484/19/9/095508
S. Shi, Y. Liu, Y. Chen, J. Zhang, Y. Wang, T. Wang, Ultrahigh ethanol response of SnO2 nanorods at low working temperature arising from La2O3 loading. Sens. Actuators B: Chem. 140(2), 426–431 (2009). doi:10.1016/j.snb.2009.04.058
J.-K. Choi, I.-S. Hwang, S.-J. Kim, J.-S. Park, S.-S. Park, U. Jeong, Y.C. Kang, J.-H. Lee, Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sens. Actuators B: Chem. 150(1), 191–199 (2010). doi:10.1016/j.snb.2010.07.013
C.S. Rout, G.U. Kulkarni, C.N.R. Rao, Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides. J. Phys. D-Appl. Phys. 40(9), 2777–2782 (2007). doi:10.1088/0022-3727/40/9/016
H.G. Choi, Y.H. Jung, D.K. Kim, Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J. Am. Ceram. Soc. 88(6), 1684–1686 (2005). doi:10.1111/j.1551-2916.2005.00341.x
N.V. Hieu, V.V. Quang, N.D. Ho, D. Kim, Preparing large-scale WO3 nanowire-like structure for high gas response NH3 gas sensor through a simple route. Curr. Appl. Phys. 11(3), 657–661 (2011). doi:10.1016/j.cap.2010.11.002
X. Gou, G. Wang, J. Yang, J. Park, D. Wexler, Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons. J. Mater. Chem. 18, 965–969 (2008). doi:10.1039/b716745h
H. Kim, C. Jin, S. Park, S. Kim, C. Lee, H2S gas sensing properties of bare and Pd-functionalized CuO nanorods. Sens. Actuators B: Chem. 161(1), 594–599 (2012). doi:10.1016/j.snb.2011.11.006
F.-N. Meng, X.-P. Di, H.-W. Dong, Y. Zhang, C.-L. Zhu, C. Li, Y.-J. Chen, Ppb H2S gas sensing characteristics of Cu2O/CuO sub-microspheres at low-temperature. Sens. Actuators B: Chem. 182, 197–204 (2013). doi:10.1016/j.snb.2013.02.112
Q. Hao, L. Li, X. Yin, S. Liu, Q. Li, T. Wang, Anomalous conductivity-type transition sensing behaviors of n-type porous α-Fe2O3 nanostructures toward H2S. Mater. Sci. Eng. B 176(7), 600–605 (2011). doi:10.1016/j.mseb.2011.02.002
W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Y. Wang, Z. Wang, C. Wang, A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers. Sens. Actuators B: Chem. 142(1), 61–65 (2009). doi:10.1016/j.snb.2009.07.031
W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Z. Wang, X. Xu, S. Li, C. Wang, Assembly of Pt nanoparticles on electrospun In2O3 nanofibers for H2S detection. J. Colloid Interface Sci. 338(2), 366–370 (2009). doi:10.1016/j.jcis.2009.06.041
N. Singh, R.K. Gupta, P.S. Lee, Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. Appl. Mater. Interfaces 3(7), 2246–2252 (2011). doi:10.1021/am101259t
J. Xu, Y. Chen, J. Shen, Ethanol sensor based on hexagonal indium oxide nanorods prepared by solvothermal methods. Mater. Lett. 62(8–9), 1363–1365 (2008). doi:10.1016/j.matlet.2007.08.054
Z. Guo, M. Li, J. Liu, Highly porous CdO nanowires: preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties. Nanotechnology 19, 245611 (2008). doi:10.1088/0957-4484/19/24/245611
Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, T. Kawabat, Room temperature gas sensing of p-type TeO2 nanowires. Appl. Phys. Lett. 90(17), 173119 (2007). doi:10.1063/1.2732818
M.B. Rahmani, S. Keshmiri, J. Yu, A. Sadek, L. Al-Mashat, A. Moafi, K. Latham, Y. Li, W. Wlodarski, K. Kalantar-Zadeh, Gas sensing properties of thermally evaporated lamellar MoO3. Sens. Actuators B: Chem. 145(1), 13–19 (2010). doi:10.1016/j.snb.2009.11.007
S. Öztürk, N. Kılınç, Z.Z. Öztürk, Fabrication of ZnO nanorods for NO2 sensor applications: effect of dimensions and electrode position. J. Alloys Compd. 581, 196–201 (2013). doi:10.1016/j.jallcom.2013.07.063
Y. Sahin, S. Öztürk, N. Kılınc, A. Kösemen, M. Erkovane, Z.Z. Öztürk, Electrical conduction and NO2 gas sensing properties of ZnO nanorods. Appl. Surf. Sci. 303, 90–96 (2014). doi:10.1016/j.apsusc.2014.02.083
E. Oh, H.-Y. Choi, S.-H. Jung, S. Cho, J.C. Kim, K.-H. Lee, S.-W. Kang, J. Kim, J.-Y. Yun, S.-H. Jeong, High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sens. Actuators B: Chem. 141(1), 239–243 (2009). doi:10.1016/j.snb.2009.06.031
F.-T. Liu, S.-F. Gao, S.-K. Pei, S.-C. Tseng, C.-H.J. Liu, ZnO nanorod gas sensor for NO2 detection. J. Taiwan Inst. Chem. E. 40(5), 528–532 (2009). doi:10.1016/j.jtice.2009.03.008
D. Yan, M. Hu, S. Li, J. Liang, Y. Wu, S. Ma, Electrochemical deposition of ZnO nanostructures onto porous silicon and their enhanced gas sensing to NO2 at room temperature. Electrochim. Acta 115, 297–305 (2014). doi:10.1016/j.electacta.2013.10.007
J. Park, J.-Y. Oh, Highly-sensitive NO2 detection of ZnO nanorods grown by a sonochemical process. J. Korean Phys. Soc. 55(3), 1119–1122 (2009)
L. Shi, A.J.T. Naik, J.B.M. Goodall, C. Tighe, R. Gruar, R. Binions, I. Parkin, J. Darr, Highly sensitive ZnO nanorod- and nanoprism-based NO2 gas sensors: size and shape control using a continuous hydrothermal pilot plant. Langmuir 29(33), 10603–10609 (2013). doi:10.1021/la402339m
H.V. Han, N.D. Hoa, P.V. Tong, H. Nguyen, N.V. Hieu, Single-crystal zinc oxide nanorods with nanovoids as highly sensitive NO2 nanosensors. Mater. Lett. 94, 41–43 (2013). doi:10.1016/j.matlet.2012.12.006
P. Rai, Y.-S. Kim, H.-M. Song, M.-K. Song, Y.-T. Yu, The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sens. Actuators B: Chem. 165(1), 133–142 (2012). doi:10.1016/j.snb.2012.02.030
J. Xu, Y. Yu, X. He, J. Sun, F. Liu, G. Lu, Synthesis of hierarchical ZnO orientation-ordered film by chemical bath deposition and its gas sensing properties. Mater. Lett. 81, 145–147 (2012). doi:10.1016/j.matlet.2012.04.090
C.-J. Chang, C.-Y. Lin, J.-K. Chen, M.-H. Hsu, Ce-doped ZnO nanorods based low operation temperature NO2 gas sensors. Ceram. Int. 40(7), 10867–10875 (2014). doi:10.1016/j.ceramint.2014.03.080
S. Bai, L. Chen, S. Chen, R. Luo, D. Li, A. Chen, C.C. Liu, Reverse microemulsion in situ crystallizing growth of ZnO nanorods and application for NO2 sensor. Sens. Actuators B: Chem. 190, 760–767 (2014). doi:10.1016/j.snb.2013.09.032
B. Shouli, L. Xin, L. Dianqing, C. Song, L. Ruixian, C. Aifan, Synthesis of ZnO nanorods and its application in NO2 sensors. Sens. Actuators B: Chem. 153(1), 110–116 (2011). doi:10.1016/j.snb.2010.10.010
S. An, S. Park, H. Ko, C. Jin, W.I. Lee, C. Lee, Enhanced gas sensing properties of branched ZnO nanowires. Thin Solid Films 547, 241–245 (2013). doi:10.1016/j.tsf.2013.02.021
M.-W. Ahn, K.-S. Park, J.-H. Heo, D.-W. Kim, K.J. Choi, J.-G. Park, On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens. Actuators B: Chem. 138(1), 168–173 (2009). doi:10.1016/j.snb.2009.02.008
E.R. Waclawik, J. Chang, A. Ponzoni, I. Concina, D. Zappa, E. Comini, N. Motta, G. Faglia, G. Sberveglieri, Functionalised zinc oxide nanowire gas sensors: enhanced NO2 gas sensor response by chemical modification of nanowire surfaces. Beilstein J. Nanotechnol. 3, 368–377 (2012). doi:10.3762/bjnano.3.43
H.-U. Lee, K. Ahn, S.-J. Lee, J.-P. Kim, H.-G. Kim, S.-Y. Jeong, C.-R. Cho, ZnO nanobarbed fibers: fabrication, sensing NO2 gas, and their sensing mechanism. Appl. Phys. Lett. 98(19), 193114 (2011). doi:10.1063/1.3590202
S.-W. Fan, A.K. Srivastava, V.P. Dravid, Nanopatterned polycrystalline ZnO for room temperature gas sensing. Sens. Actuators B: Chem. 144(1), 159–163 (2010). doi:10.1016/j.snb.2009.10.054
A.Z. Sadek, W. Wlodarski, K. Kalantar-zadeh, S. Choopun, ZnO nanobelt based conductometric H2 and NO2 gas sensors, in Proceedings of Sensors IEEE (2005), pp. 1326–1329. doi:10.1109/ICSENS.2005.1597952
R.C. Pawar, J.-W. Lee, V.B. Patil, C.S. Lee, Synthesis of multi-dimensional ZnO nanostructures in aqueous medium for the application of gas sensor. Sens. Actuators B: Chem. 187, 323–330 (2013). doi:10.1016/j.snb.2012.11.100
M. Hjiri, L.E. Mir, S.G. Leonardi, N. Donato, G. Neri, CO and NO2 selective monitoring by ZnO-based sensors. Nanomaterials 3(3), 357–369 (2013). doi:10.3390/nano3030357
J.X. Wang, X.W. Sun, Y. Yang, C.M.L. Wu, N–P transition sensing behaviors of ZnO nanotubes exposed to NO2 gas. Nanotechnology 20(46), 465501 (2009). doi:10.1088/0957-4484/20/46/465501
P. Rai, S. Raj, K.-J. Ko, K.-K. Park, Y.-T. Yu, Synthesis of flower-like ZnO microstructures for gas sensor applications. Sens. Actuators B: Chem. 178, 107–112 (2013). doi:10.1016/j.snb.2012.12.031
S. Bai, T. Guo, D. Li, R. Luo, A. Chen, C.C. Liu, Intrinsic sensing properties of the flower-like ZnO nanostructures. Sens. Actuators B: Chem. 182, 747–754 (2013). doi:10.1016/j.snb.2013.03.077
A. Forleo, L. Francioso, S. Capone, P. Siciliano, P. Lommens, Z. Hens, Synthesis and gas sensing properties of ZnO quantum dots. Sens. Actuators B: Chem. 146(1), 111–115 (2010). doi:10.1016/j.snb.2010.02.059
B. Shouli, C. Liangyuan, H. Jingwei, L. Dianqing, L. Ruixian, C. Aifan, C.C. Liu, Synthesis of quantum size ZnO crystals and their gas sensing properties for NO2. Sens. Actuators B: Chem. 159(1), 97–102 (2011). doi:10.1016/j.snb.2011.06.056
S. Bai, J. Hu, D. Li, R. Luo, A. Chen, C.C. Liu, Quantum-sized ZnO nanoparticles: synthesis, characterization and sensing properties for NO2. J. Mater. Chem. 21, 12288–12294 (2011). doi:10.1039/c1jm11302j
D. Li, J. Hu, F. Fan, S. Bai, R. Luo, A. Chen, C.C. Liu, Quantum-sized ZnO nanoparticles synthesized in aqueous medium for toxic gases detection. J. Alloys Compd. 539, 205–209 (2012). doi:10.1016/j.jallcom.2012.05.106
P. Rai, Y.-T. Yu, Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application. Sens. Actuators B: Chem. 173, 58–65 (2012). doi:10.1016/j.snb.2012.05.068
F. Fan, Y. Feng, S. Bai, J. Feng, A. Chen, D. Li, Synthesis and gas sensing properties to NO2 of ZNO nanoparticles. Sens. Actuators B: Chem. 185, 377–382 (2013). doi:10.1016/j.snb.2013.05.020
J.H. Jun, J. Yun, K. Cho, I.-S. Hwang, J.-H. Lee, S. Kim, Necked ZnO nanoparticle-based NO2 sensors with high and fast response. Sens. Actuators B: Chem. 140(2), 412–417 (2009). doi:10.1016/j.snb.2009.05.019
T.V. Kolekar, S.S. Bandgar, S.S. Shirguppikar, V.S. Ganachari, Synthesis and characterization of ZnO nanoparticles for efficient gas sensors. Arch. Appl. Sci. Res. 5(6), 20–28 (2013)
S. Bai, C. Sun, T. Guo, R. Luo, Y. Lin, A. Chen, L. Sun, J. Zhang, Low temperature electrochemical deposition of nanoporous ZnO thin films as novel NO2 sensors. Electrochim. Acta 90, 530–534 (2013). doi:10.1016/j.electacta.2012.12.060
C. Zhang, M. Debliquy, H. Liao, Deposition and microstructure characterization of atmospheric plasma-sprayed ZnO coatings for NO2 detection. Appl. Surf. Sci. 256(20), 5905–5910 (2010). doi:10.1016/j.apsusc.2010.03.072
M.A. Chougule, S. Sen, V.B. Patil, Fabrication of nanostructured ZnO thin film sensor for NO2 monitoring. Ceram. Int. 38(4), 2685–2692 (2012). doi:10.1016/j.ceramint.2011.11.036
J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia, S. Zhang, W. Huang, X. Guo, S. Wu, ZnO hollow spheres: preparation, characterization, and gas sensing properties. Sens. Actuators B: Chem. 139(2), 411–417 (2009). doi:10.1016/j.snb.2009.03.014
M.Z. Ahmad, J. Chang, M.S. Ahmad, E.R. Waclawik, W. Wlodarski, Non-aqueous synthesis of hexagonal ZnO nanopyramids: gas sensing properties. Sens. Actuators B: Chem. 177, 286–294 (2013). doi:10.1016/j.snb.2012.11.013
D. Calestani, M. Zhaa, R. Mosca, A. Zappettini, M.C. Carotta, V. Di Natale, L. Zanotti, Growth of ZnO tetrapods for nanostructure-based gas sensors. Sens. Actuators B: Chem. 144(2), 472–478 (2010). doi:10.1016/j.snb.2009.11.009
Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7), 2325–2331 (2011). doi:10.1128/AEM.02149-10
S. Hackenberg, A. Scherzed, A. Technau, K. Froelich, R. Hagen, N. Kleinsasser, Functional responses of human adipose tissue-derived mesenchymal stem cells to metal oxide nanoparticles in vitro. J. Biomed. Nanotechnol. 9(1), 86–95 (2013). doi:10.1166/jbn.2013.1473
N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B 5(1–4), 7–19 (1991). doi:10.1016/0925-4005(91)80213-4
R. Kumar, G. Kumar, A. Umar, Zinc oxide nanomaterials for photocatalytic degradation of methyl orange: a review. Nanosci. Nanotechnol. Lett. 6(8), 631–650 (2014). doi:10.1166/nnl.2014.1879
S.A. Chevtchenko, J.C. Moore, U. Özgür, X. Gu, A.A. Baski, H. Morkoc, B. Nemeth, J.E. Nause, Comparative study of the (0001) and (000) surfaces of ZnO. Appl. Phys. Lett. 89(18), 182111 (2006). doi:10.1063/1.2378589
J. Lahiri, S. Senanayake, M. Batzill, Soft X-ray photoemission of clean and sulfur covered polar ZnO surfaces: a view of the stabilization of polar oxide surfaces. Phys. Rev. B 78, 155414 (2008). doi:10.1103/PhysRevB.78.155414
O. Dulub, U. Diebold, G. Kresse, Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn. Phys. Rev. Lett. 90, 016102 (2003). doi:10.1103/PhysRevLett.90.016102
P.S. Bagus, F. Illas, G. Pacchioni, F. Parmigiani, Mechanisms responsible for chemical shifts of core-level binding energies and their relationship to chemical bonding. J. Electron. Spectrosc. Relat. Phenom. 100(1–3), 215–236 (1999). doi:10.1016/S0368-2048(99)00048-1
G. Kresse, O. Dulub, U. Diebold, Competing stabilization mechanism of the polar ZnO (0001)-Zn surface. Phys. Rev. B 68, 245409 (2003). doi:10.1103/PhysRevB.68.245409
A. Önsten, D. Stoltz, P. Palmgren, S. Yu, M. Göthelid, U.O. Karlsson, Water adsorption on ZnO(0001): transition from triangular surface structure to a disordered hydroxyl terminated phase. J. Phys. Chem. C 114(25), 11157–11161 (2010). doi:10.1021/jp1004677
M. Valtiner, X. Torrelles, A. Pareek, S. Borodin, H. Gies, G. Grundmeier, In situ study of the polar ZnO(0001)-Zn surface in alkaline electrolytes. J. Phys. Chem. C 114(36), 15440–15447 (2010). doi:10.1021/jp1047024
M. Kunat, S.G. Girol, T. Becker, U. Burghaus, C. Wöll, Stability of the polar surfaces of ZnO: a reinvestigation using He-atom scattering. Phys. Rev. B 66, 081402 (2002). doi:10.1103/PhysRevB.66.081402
B. Meyer, D. Marx, Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B 67, 035403 (2003). doi:10.1103/PhysRevB.67.035403
N. Han, X. Wu, L. Chai, H. Liu, Y. Chen, Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors. Sens. Actuators B: Chem. 150(1), 230–238 (2010). doi:10.1016/j.snb.2010.07.009
Y. Zhang, J. Xu, Q. Xiang, H. Li, Q.Y. Pan, P.C. Xu, Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J. Phys. Chem. C 113(9), 3430–3435 (2009). doi:10.1021/jp8092258
C. Li, L. Li, Z. Du, H. Yu, Y. Xiang, Y. Li, Y. Cai, T. Wang, Rapid and ultrahigh ethanol sensing based on Au-coated ZnO nanorods. Nanotechnology 19(3), 035501 (2008). doi:10.1088/0957-4484/19/03/035501
H. Ihokura, SnO2-based inflammable gas sensors. Doctoral Thesis, Kyushu University (1983), pp. 52–57
H. Mitsudo, Ceramics for gas and humidity sensors (part I)—gas sensor. Ceramics 15, 339–345 (1980)
S. Das, S. Ghosh, Fabrication of different morphologies of ZnO superstructures in presence of synthesized ethylammonium nitrate (EAN) ionic liquid: synthesis, characterization and analysis. Dalton Trans. 42, 1645–1656 (2013). doi:10.1039/c2dt31920a
M. Yin, Y. Gu, I.L. Kuskovsky, T. Andelman, Y. Zhu, G.F. Neumark, Zinc oxide quantum rods. J. Am. Chem. Soc. 126(20), 6206–6207 (2004). doi:10.1021/ja031696+
L.J. Bellamy, The Infrared Spectra of Complex Molecules, vol. 1 (Chapman and Hall, London, 1975), p. 378
C.H. Hung, W.T. Whang, Effect of surface stabilization of nanoparticles on luminescent characteristics in ZnO/poly(hydroxyethyl methacrylate) nanohybrid films. J. Mater. Chem. 15, 267–274 (2005). doi:10.1039/b405497k
R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Hazard. Mater. 156(1–3), 194–200 (2008). doi:10.1016/j.jhazmat.2007.12.033
T. Yoshida, K. Terada, D. Schlettwein, T. Oekermann, T. Sugiura, H. Minoura, Electrochemical self-assembly of nanoporous ZnO/Eosin Y thin films and their sensitized photoelectrochemical performance. Adv. Mater. 12(16), 1214–1217 (2000). doi:10.1002/1521-4095(200008)12::16<1214:AID-ADMA1214>3.0.CO;2-Z
T. Yoshida, J. Zhang, D. Komatsu, S. Sawatani, H. Minoura, Th. Pauporté, D. Lincot, T. Oekermann, L. Peter, D. Schlettwain, H. Tada, D. Wöhrle, K. Funabiki, M. Matsui, H. Miura, H. Yanagi, Electrodeposition of inorganic/organic hybrid thin films. Adv. Funct. Mater. 19(1), 17–43 (2009). doi:10.1002/adfm.200700188
P. Liu, W.Y. Li, J.B. Zhang, Electrodeposition and photocatalytic selectivity of ZnO/methyl blue hybrid thin films. J. Phys. Chem. C 113(32), 14279–14282 (2009). doi:10.1021/jp903896j
J.H. Yang, X.Y. Liu, L.L. Yang, Y.X. Wang, Y.J. Zhang, J.H. Lang, Effect of annealing temperature on the structure and optical properties of ZnO nanoparticles. J. Alloys Compd. 477(1–2), 632–635 (2009). doi:10.1016/j.jallcom.2008.10.135
S.D. Shinde, G.E. Patil, D.D. Kajale, V.G. Wagh, V.B. Gaikwad, G.H. Jain, Effect of annealing on gas sensing performance of nanostructured ZnO thick film resistors. Int. J. Smart Sens. Intell. Syst. 5, 277–294 (2012)
W.-J. Li, E.-W. Shi, W.-Z. Zhong, Z.-W. Yin, Growth mechanism and growth habit of oxide crystals. J. Cryst. Growth 203(1–2), 186–196 (1999). doi:10.1016/S0022-0248(99)00076-7
G. Lu, J. Xu, J. Sun, Y. Yu, Y. Zhang, F. Liu, UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sens. Actuators B: Chem. 162(1), 82–88 (2012). doi:10.1016/j.snb.2011.12.039
C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: gas response and influencing factors. Sensors 10(3), 2088–2106 (2010). doi:10.3390/s100302088
Q. Qi, T. Zhang, X. Zheng, H. Fan, L. Liu, R. Wang, Y. Zeng, Electrical Response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference. Sens. Actuators B: Chem. 134(1), 36–42 (2008). doi:10.1016/j.snb.2008.04.011
J. Gong, Q. Chen, M. Lian, N. Liu, R.G. Stevenson, F. Adamic, Micromachined nanocrystalline silver doped SnO2 H2S sensor. Sens. Actuators B: Chem. 114(1), 32–39 (2006). doi:10.1016/j.snb.2005.04.035
E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens. Actuators B: Chem. 23(2–3), 135–156 (1995). doi:10.1016/0925-4005(94)01268-M
Z. Bai, C. Xie, M. Hu, S. Zhang, D. Zeng, Effect of humidity on the gas sensing property of the tetrapod-shaped ZnO nanopowder sensor. Mater. Sci. Eng. B 149(1), 12–17 (2008). doi:10.1016/j.mseb.2007.11.020
R.G. Pavelko, H. Daly, C. Hardacre, A.A. Vasiliev, E. Llobet, Interaction of water, hydrogen and their mixtures with SnO2 based materials: the role of surface hydroxyl groups in detection mechanisms. Phys. Chem. Chem. Phys. 12(11), 2639–2647 (2010). doi:10.1039/b921665k
A. Stanoiu, C.E. Simion, S. Somacescu, NO2 sensing mechanism of ZnO–Eu2O3 binary oxide under humid air conditions. Sens. Actuators B: Chem. 186, 687–694 (2013). doi:10.1016/j.snb.2013.06.083
F.-S. Tsai, S.-J. Wang, Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheets. Sens. Actuators B: Chem. 193, 280–287 (2014). doi:10.1016/j.snb.2013.11.069