NiCo2O4 Nano-/Microstructures as High-Performance Biosensors: A Review
Corresponding Author: Rajesh Kumar
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 122
Abstract
Non-enzymatic biosensors based on mixed transition metal oxides are deemed as the most promising devices due to their high sensitivity, selectivity, wide concentration range, low detection limits, and excellent recyclability. Spinel NiCo2O4 mixed oxides have drawn considerable attention recently due to their outstanding advantages including large specific surface area, high permeability, short electron, and ion diffusion pathways. Because of the rapid development of non-enzyme biosensors, the current state of methods for synthesis of pure and composite/hybrid NiCo2O4 materials and their subsequent electrochemical biosensing applications are systematically and comprehensively reviewed herein. Comparative analysis reveals better electrochemical sensing of bioanalytes by one-dimensional and two-dimensional NiCo2O4 nano-/microstructures than other morphologies. Better biosensing efficiency of NiCo2O4 as compared to corresponding individual metal oxides, viz. NiO and Co3O4, is attributed to the close intrinsic-state redox couples of Ni3+/Ni2+ (0.58 V/0.49 V) and Co3+/Co2+ (0.53 V/0.51 V). Biosensing performance of NiCo2O4 is also significantly improved by making the composites of NiCo2O4 with conducting carbonaceous materials like graphene, reduced graphene oxide, carbon nanotubes (single and multi-walled), carbon nanofibers; conducting polymers like polypyrrole (PPy), polyaniline (PANI); metal oxides NiO, Co3O4, SnO2, MnO2; and metals like Au, Pd, etc. Various factors affecting the morphologies and biosensing parameters of the nano-/micro-structured NiCo2O4 are also highlighted. Finally, some drawbacks and future perspectives related to this promising field are outlined.
Highlights:
1 Various synthetic methods for the synthesis of NiCo2O4 nano-/microstructures in bare, doped, and composite/hybrid forms are reviewed.
2 Currents status and development prospects of NiCo2O4 nano-/microstructure-based electrochemical biosensors for bioanalytes such as glucose, urea, and H2O2, along with condition governing the electrochemical biosensor parameters, are summarized.
3 Also provide an insight into the key challenges and future perspectives about point-of-care monitoring of bioanalytes using NiCo2O4 nano-/microstructure-based biosensors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Shenghai, S. Liping, K. Fanhao, H. Lihua, Z. Hui, Carbon-coated MnCo2O4 nanowire as bifunctional oxygen catalysts for rechargeable Zn–air batteries. J. Power Sources 430, 25–31 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.029
- H. Hou, H. Shao, X. Zhang, G. Liu, S. Hussain, G. Qiao, RGO-loaded flower-like ZnCo2O4 nanohybrid as counter electrode for dye-sensitized solar cells. Mater. Lett. 225, 5–8 (2018). https://doi.org/10.1016/j.matlet.2018.04.103
- R. Shi, Y. Zhang, Z. Wang, Facile synthesis of a ZnCo2O4 electrocatalyst with three-dimensional architecture for methanol oxidation. J. Alloys Compd. 810, 151879 (2019). https://doi.org/10.1016/j.jallcom.2019.151879
- Z. Li, M. Ye, A. Han, H. Du, Preparation, characterization and microwave absorption properties of NiFe2O4 and its composites with conductive polymer. J. Mater. Sci. Mater. Electron. 27, 1031–1043 (2016). https://doi.org/10.1007/s10854-015-3848-8
- L. Li, G. Jiang, J. Ma, CuMn2O4/graphene nanosheets as excellent anode for lithium-ion battery. Mater. Res. Bull. 104, 53–59 (2018). https://doi.org/10.1016/j.materresbull.2018.03.051
- P. Li, W. Sun, Q. Yu, P. Yang, J. Qiao, Z. Wang, D. Rooney, K. Sun, An effective three-dimensional ordered mesoporous CuCo2O4 as electrocatalyst for Li–O2 batteries. Solid State Ion. 289, 17–22 (2016). https://doi.org/10.1016/j.ssi.2016.02.014
- Y. Jin, L. Wang, Q. Jiang, X. Du, C. Ji, X. He, Morphology controllable synthesis of CoMn2O4 structures by adjusting the urea concentration: from microflowers to microspheres. Mater. Lett. 168, 166–170 (2016). https://doi.org/10.1016/j.matlet.2016.01.077
- F. Du, X. Zuo, Q. Yang, B. Yang, G. Li et al., The stabilization of NiCo2O4 nanobelts used for catalyzing triiodides in dye-sensitized solar cells by the presence of RGO sheets. Sol. Energy Mater. Sol. Cells 149, 9–14 (2016). https://doi.org/10.1016/j.solmat.2015.11.025
- L. Manjakkal, D. Szwagierczak, R. Dahiya, Metal oxides based electrochemical pH sensors: current progress and future perspectives. Prog. Mater. Sci. 109, 100635 (2020). https://doi.org/10.1016/j.pmatsci.2019.100635
- X. Han, X. Gui, T.F. Yi, Y. Li, C. Yue, Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Curr. Opin. Solid State Mater. Sci. 22, 109–126 (2018). https://doi.org/10.1016/j.cossms.2018.05.005
- Y. Li, X. Han, T. Yi, Y. He, X. Li, Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. J. Energy Chem. 31, 54–78 (2019). https://doi.org/10.1016/j.jechem.2018.05.010
- Q. Wang, B. Liu, X. Wang, S. Ran, L. Wang, D. Chen, G. Shen, Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells. J. Mater. Chem. 22, 21647–21653 (2012). https://doi.org/10.1039/c2jm34705a
- R.R. Owings, G.J. Exarhos, C.F. Windisch, P.H. Holloway, J.G. Wen, Process enhanced polaron conductivity of infrared transparent nickel–cobalt oxide. Thin Solid Films 483, 175–184 (2005). https://doi.org/10.1016/j.tsf.2005.01.011
- X. Zhao, L. Mao, Q. Cheng, J. Li, F. Liao, G. Yang, L. Xie, C. Zhao, L. Chen, Two-dimensional spinel structured co-based materials for high performance supercapacitors: a critical review. Chem. Eng. J. 387, 124081 (2020). https://doi.org/10.1016/j.cej.2020.124081
- K. Choi, I.K. Moon, J. Oh, An efficient amplification strategy for N-doped NiCo2O4 with oxygen vacancies and partial Ni/Co-nitrides as a dual-function electrode for both supercapatteries and hydrogen electrocatalysis. J. Mater. Chem. A 7, 1468–1478 (2019). https://doi.org/10.1039/c8ta07210h
- Y. Ha, L. Shi, X. Yan, Z. Chen, Y. Li, W. Xu, R. Wu, Multifunctional electrocatalysis on a porous N-doped NiCo2O4@C nanonetwork. ACS Appl. Mater. Interfaces 11, 45546–45553 (2019). https://doi.org/10.1021/acsami.9b13580
- W. Chu, Z. Shi, Y. Hou, D. Ma, X. Bai, Y. Gao, N. Yang, Trifunctional of phosphorus-doped NiCo2O4 nanowire materials for asymmetric supercapacitor, oxygen evolution reaction, and hydrogen evolution reaction. ACS Appl. Mater. Interfaces 12, 2763–2772 (2020). https://doi.org/10.1021/acsami.9b13182
- X. Hu, M. Huang, X. Meng, X. Ju, Fabrication of uniform urchin-like N-doped NiCo2O4@C hollow nanostructures for high performance supercapacitors. RSC Adv. 9, 42110–42119 (2019). https://doi.org/10.1039/c9ra07678f
- J. Zhang, Y. Chen, R. Chu, H. Jiang, Y. Zeng, Y. Zhang, N.M. Huang, H. Guo, Pseudocapacitive P-doped NiCo2O4 microspheres as stable anode for lithium ion batteries. J. Alloys Compd. 787, 1051–1062 (2019). https://doi.org/10.1016/j.jallcom.2018.12.275
- J.H. Lin, Y.T. Yan, T.X. Xu, C.Q. Qu, J. Li, J. Cao, J.C. Feng, J.L. Qi, S doped NiCo2O4 nanosheet arrays by Ar plasma: an efficient and bifunctional electrode for overall water splitting. J. Colloid Interface Sci. 560, 34–39 (2020). https://doi.org/10.1016/j.jcis.2019.10.056
- M. Yang, Y. Li, Y. Yu, X. Liu, Z. Shi, Y. Xing, Self-assembly of three-dimensional zinc-doped NiCo2O4 as efficient electrocatalysts for oxygen evolution reaction. Chem. A Eur. J. 24, 13002–13008 (2018). https://doi.org/10.1002/chem.201802325
- K.L. Yan, X. Shang, Z. Li, B. Dong, X. Li et al., Ternary mixed metal Fe-doped NiCo2O4 nanowires as efficient electrocatalysts for oxygen evolution reaction. Appl. Surf. Sci. 416, 371–378 (2017). https://doi.org/10.1016/j.apsusc.2017.04.204
- L. Liu, H. Zhang, L. Fang, Y. Mu, Y. Wang, Facile preparation of novel dandelion-like Fe-doped NiCo2O4 microspheres@nanomeshes for excellent capacitive property in asymmetric supercapacitors. J. Power Sources 327, 135–144 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.054
- J. Ma, E. Guo, L. Yin, Porous hierarchical spinel Mn-doped NiCo2O4 nanosheet architectures as high-performance anodes for lithium-ion batteries and electrochemical reaction mechanism. J. Mater. Sci. Mater. Electron. 30, 8555–8567 (2019). https://doi.org/10.1007/s10854-019-01176-5
- W.Y. Xia, N. Li, Q.Y. Li, K.H. Ye, C.W. Xu, Au–NiCo2O4 supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction. Sci. Rep. 6, 23398 (2016). https://doi.org/10.1038/srep23398
- C. Wei, X. Zheng, R. Li, X. Wang, Z. Xaio, L. Wang, Mesoporous hybrid NiCo2O4/CeO2 hierarchical hollow spheres for enhanced supercapacitors. ChemistrySelect 4, 11149–11155 (2019). https://doi.org/10.1002/slct.201902778
- C. Wei, R. Zhang, X. Zheng, Q. Ru, Q. Chen, C. Cui, G. Li, D. Zhang, Hierarchical porous NiCo2O4/CeO2 hybrid materials for high performance supercapacitors. Inorg. Chem. Front. 5, 3126–3134 (2018). https://doi.org/10.1039/c8qi01010b
- S.K. Shinde, M.B. Jalak, G.S. Ghodake, N.C. Maile, H.M. Yadav et al., Flower-like NiCo2O4/NiCo2S4 electrodes on Ni mesh for higher supercapacitor applications. Ceram. Int. 45, 17192–17203 (2019). https://doi.org/10.1016/j.ceramint.2019.05.274
- B. Ge, K. Li, Z. Fu, L. Pu, X. Zhang, Z. Liu, K. Huang, The performance of nano urchin-like NiCo2O4 modified activated carbon as air cathode for microbial fuel cell. J. Power Sources 303, 325–332 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.003
- W. Wang, X. Song, C. Gu, D. Liu, J. Liu, J. Huang, A high-capacity NiCo2O4@reduced graphene oxide nanocomposite Li-ion battery anode. J. Alloys Compd. 741, 223–230 (2018). https://doi.org/10.1016/j.jallcom.2018.01.097
- Y.Q. Zhang, M. Li, B. Hua, Y. Wang, Y.F. Sun, J.L. Luo, A strongly cooperative spinel nanohybrid as an efficient bifunctional oxygen electrocatalyst for oxygen reduction reaction and oxygen evolution reaction. Appl. Catal. B Environ. 236, 413–419 (2018). https://doi.org/10.1016/j.apcatb.2018.05.047
- L. Hu, L. Wu, M. Liao, X. Fang, High-performance NiCo2O4 nanofilm photodetectors fabricated by an interfacial self-assembly strategy. Adv. Mater. 23, 1988–1992 (2011). https://doi.org/10.1002/adma.201004109
- M. Silambarasan, P.S. Ramesh, D. Geetha, Spinel NiCo2O4 nanostructures: synthesis, morphological, optical and electrochemical properties, in Recent Trends in Materials Science and Applications. Springer Proceedings in Physics, vol. 189, ed. by J. Ebenezar (Springer, Cham, 2017), pp. 219–231. https://doi.org/10.1007/978-3-319-44890-9_21
- A. Bashir, S. Shukla, R. Bashir, R. Patidar, A. Bruno, D. Gupta, M.S. Satti, Z. Akhter, Low temperature, solution processed spinel NiCo2O4 nanoparticles as efficient hole transporting material for mesoscopic n-i-p perovskite solar cells. Sol. Energy 196, 367–378 (2020). https://doi.org/10.1016/j.solener.2019.12.031
- H. Zhang, Y. Chen, RGO loaded porous NiCo2O4 nanoplates as alcohol gas sensors. Nanosci. Nanotechnol. Lett. 9, 374–379 (2017). https://doi.org/10.1166/nnl.2017.2341
- B. Zhang, F. Qu, X. Zhou, S. Zhang, T. Thomas, M. Yang, Porous coral-like NiCo2O4 nanospheres with promising xylene gas sensing properties. Sens. Actuators B Chem. 261, 203–209 (2018). https://doi.org/10.1016/j.snb.2018.01.125
- N. Joshi, L.F. Da Silva, H. Jadhav, J.C. M’Peko, B.B. Millan Torres, K. Aguir, V.R. Mastelaro, O.N. Oliveira, One-step approach for preparing ozone gas sensors based on hierarchical NiCo2O4 structures. RSC Adv. 6, 92655–92662 (2016). https://doi.org/10.1039/c6ra18384k
- Z. Lu, L. Wu, J. Zhang, W. Dai, G. Mo, J. Ye, Bifunctional and highly sensitive electrochemical non-enzymatic glucose and hydrogen peroxide biosensor based on NiCo2O4 nanoflowers decorated 3D nitrogen doped holey graphene hydrogel. Mater. Sci. Eng. C 102, 708–717 (2019). https://doi.org/10.1016/j.msec.2019.04.072
- L. Liu, Z. Wang, J. Yang, G. Liu, J. Li, L. Guo, S. Chen, Q. Guo, NiCo2O4 nanoneedle-decorated electrospun carbon nanofiber nanohybrids for sensitive non-enzymatic glucose sensors. Sens. Actuators. B Chem. 258, 920–928 (2018). https://doi.org/10.1016/j.snb.2017.11.118
- B. Li, J. Feng, Y. Qian, S. Xiong, Mesoporous quasi-single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties. J. Mater. Chem. A 3, 10336–10344 (2015). https://doi.org/10.1039/c5ta01229e
- Y. Zhu, X. Pu, W. Song, Z. Wu, Z. Zhou et al., High capacity NiCo2O4 nanorods as electrode materials for supercapacitor. J. Alloys Compd. 617, 988–993 (2014). https://doi.org/10.1016/j.jallcom.2014.08.064
- J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 5, 981–988 (2013). https://doi.org/10.1021/am3026294
- R. Batool, A. Rhouati, M.H. Nawaz, A. Hayat, J.L. Marty, A review of the construction of nano-hybrids for electrochemical biosensing of glucose. Biosensors 9(1), 46 (2019). https://doi.org/10.3390/bios9010046
- P. Mehrotra, Biosensors and their applications—a review. J. Oral Biol. Craniofac. Res. 6, 153–159 (2016). https://doi.org/10.1016/j.jobcr.2015.12.002
- H. Lu, S. Zhang, L. Guo, W. Li, Applications of graphene-based composite hydrogels: a review. RSC Adv. 7, 51008–51020 (2017). https://doi.org/10.1039/c7ra09634h
- R. Bhadoria, H.S. Chaudhary, Recent advances of biosensors in biomedical sciences. Int. J. Drug Deliv. 3, 571 (2011). https://doi.org/10.3389/fbioe.2016.00011
- J. Peña-Bahamonde, H.N. Nguyen, S.K. Fanourakis, D.F. Rodrigues, Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol. 16, 75 (2018). https://doi.org/10.1186/s12951-018-0400-z
- S. Yin, Z. Jin, T. Miyake, Wearable high-powered biofuel cells using enzyme/carbon nanotube composite fibers on textile cloth. Biosens. Bioelectron. 141, 111471 (2019). https://doi.org/10.1016/j.bios.2019.111471
- B.S. Dakshayini, K.R. Reddy, A. Mishra, N.P. Shetti, S.J. Malode, S. Basu, S. Naveen, A.V. Raghu, Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. Microchem. J. 147, 7–24 (2019). https://doi.org/10.1016/j.microc.2019.02.061
- N.P. Shetti, S.J. Malode, D. Ilager, K. Raghava Reddy, S.S. Shukla, T.M. Aminabhavi, A novel electrochemical sensor for detection of molinate using ZnO nanoparticles loaded carbon electrode. Electroanalysis 31, 1040–1049 (2019). https://doi.org/10.1002/elan.201800775
- G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng, X. Zhang, Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 180, 161–186 (2013). https://doi.org/10.1007/s00604-012-0923-1
- S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 556, 46–57 (2006). https://doi.org/10.1016/j.aca.2005.05.080
- X. Hui, X. Xuan, J. Kim, J.Y. Park, A highly flexible and selective dopamine sensor based on Pt–Au nanoparticle-modified laser-induced graphene. Electrochim. Acta 328, 135066 (2019). https://doi.org/10.1016/j.electacta.2019.135066
- R. Ahmad, N. Tripathy, M.S. Ahn, K.S. Bhat, T. Mahmoudi et al., Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode. Sci. Rep. 7, 5715 (2017). https://doi.org/10.1038/s41598-017-06064-8
- R.J. Chung, A.N. Wang, Q.L. Liao, K.Y. Chuang, Non-enzymatic glucose sensor composed of carbon-coated nano-zinc oxide. Nanomaterials 7(2), 36 (2017). https://doi.org/10.3390/nano7020036
- N.P. Shetti, S.J. Malode, D.S. Nayak, R.R. Naik, G.T. Kuchinad, K.R. Reddy, S.S. Shukla, T.M. Aminabhavi, Hetero nanostructured iron oxide and bentonite clay composite assembly for the determination of an antiviral drug acyclovir. Microchem. J. 155, 104727 (2020). https://doi.org/10.1016/j.microc.2020.104727
- C. Wang, E. Zhou, W. He, X. Deng, J. Huang et al., NiCo2O4-based supercapacitor nanomaterials. Nanomaterials 7(2), 41 (2017). https://doi.org/10.3390/nano7020041
- J.P. Cheng, W.D. Wang, X.C. Wang, F. Liu, Recent research of core–shell structured composites with NiCo2O4 as scaffolds for electrochemical capacitors. Chem. Eng. J. 393, 124747 (2020). https://doi.org/10.1016/j.cej.2020.124747
- H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho, G. Wu, Transition metal (Fe Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 11, 601–625 (2016). https://doi.org/10.1016/j.nantod.2016.09.001
- S.S. Tong, X.J. Wang, Q.C. Li, X.J. Han, Progress on electrocatalysts of hydrogen evolution reaction based on carbon fiber materials. Chin. J. Anal. Chem. 44, 1447–1457 (2016). https://doi.org/10.1016/S1872-2040(16)60958-1
- N.P. Shetti, D.S. Nayak, S.J. Malode, R.R. Kakarla, S.S. Shukla, T.M. Aminabhavi, Sensors based on ruthenium-doped TiO2 nanoparticles loaded into multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic acid. Anal. Chim. Acta 1051, 58–72 (2019). https://doi.org/10.1016/j.aca.2018.11.041
- S.D. Bukkitgar, N.P. Shetti, R.M. Kulkarni, K.R. Reddy, S.S. Shukla, V.S. Saji, T.M. Aminabhavi, Electro-catalytic behavior of Mg-doped ZnO nano-flakes for oxidation of anti-inflammatory drug. J. Electrochem. Soc. 166, B3072 (2019). https://doi.org/10.1149/2.0131909jes
- C. Sabu, T.K. Henna, V.R. Raphey, K.P. Nivitha, K. Pramod, Advanced biosensors for glucose and insulin. Biosens. Bioelectron. 141, 111201 (2019). https://doi.org/10.1016/j.bios.2019.03.034
- C.V. Reddy, I.N. Reddy, K.R. Reddy, S. Jaesool, K. Yoo, Template-free synthesis of tetragonal Co-doped ZrO2 nanoparticles for applications in electrochemical energy storage and water treatment. Electrochim. Acta 317, 416–426 (2019). https://doi.org/10.1016/j.electacta.2019.06.010
- P.S. Basavarajappa, S.B. Patil, N. Ganganagappa, K.R. Reddy, A.V. Raghu, C.V. Reddy, Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrogen Energy 45, 7764–7778 (2020). https://doi.org/10.1016/j.ijhydene.2019.07.241
- S.B. Patil, P.S. Basavarajappa, N. Ganganagappa, M.S. Jyothi, A.V. Raghu, K.R. Reddy, Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int. J. Hydrogen Energy 44, 13022–13039 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.164
- C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, Recent advances in electrochemical glucose biosensors: a review. RSC Adv. 3, 4473–4491 (2013). https://doi.org/10.1039/c2ra22351a
- D.W. Hwang, S. Lee, M. Seo, T.D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors—a review. Anal. Chim. Acta 1033, 1–34 (2018). https://doi.org/10.1016/j.aca.2018.05.051
- A. Jing, G. Liang, H. Shi, Y. Yuan, Q. Zhan, W. Feng, Three-dimensional holey-graphene architectures for highly sensitive enzymatic electrochemical determination of hydrogen peroxide. J. Nanosci. Nanotechnol. 19, 7404–7409 (2019). https://doi.org/10.1166/jnn.2019.16613
- J.C. Chou, C.Y. Wu, Y.H. Liao, C.H. Lai, S.J. Yan, Y.X. Wu, S.H. Lin, Enzymatic urea sensor based on graphene oxide/titanium dioxide films modified by urease-magnetic beads. IEEE Trans. Nanotechnol. 18, 336–344 (2019). https://doi.org/10.1109/TNANO.2019.2907225
- E. Zapp, D. Brondani, I.C. Vieira, J. Dupont, C.W. Scheeren, Bioelectroanalytical determination of rutin based on bi-enzymatic sensor containing iridium nanoparticles in ionic liquid phase supported in clay. Electroanalysis 23, 764–776 (2011). https://doi.org/10.1002/elan.201000619
- M. Kameya, H. Onaka, Y. Asano, Selective tryptophan determination using tryptophan oxidases involved in bis-indole antibiotic biosynthesis. Anal. Biochem. 438, 124–132 (2013). https://doi.org/10.1016/j.ab.2013.03.024
- K.R. Reddy, B.C. Sin, C.H. Yoo, W. Park, K.S. Ryu, J.S. Lee, D. Sohn, Y. Lee, A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scr. Mater. 58, 1010–1013 (2008). https://doi.org/10.1016/j.scriptamat.2008.01.047
- N.L. Reddy, V.N. Rao, M. Vijayakumar, R. Santhosh, S. Anandan et al., A review on frontiers in plasmonic nano-photocatalysts for hydrogen production. Int. J. Hydrogen Energy 44, 10453–10472 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.120
- C. Venkata Reddy, I.N. Reddy, B. Akkinepally, K.R. Reddy, J. Shim, Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe2O3 nanostructure photoanode. J. Alloys Compd. 814, 152349 (2020). https://doi.org/10.1016/j.jallcom.2019.152349
- N.P. Shetti, S.D. Bukkitgar, K.R. Reddy, C.V. Reddy, T.M. Aminabhavi, Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf. B: Biointerfaces 178, 385–394 (2019). https://doi.org/10.1016/j.colsurfb.2019.03.013
- S. Kumar, S.D. Bukkitgar, S. Singh, Pratibha, V. Singh et al., Electrochemical sensors and biosensors based on graphene functionalized with metal oxide nanostructures for healthcare applications. ChemistrySelect 4, 5322–5337 (2019). https://doi.org/10.1002/slct.201803871
- N.P. Shetti, D.S. Nayak, S.J. Malode, K.R. Reddy, S.S. Shukla, T.M. Aminabhavi, Electrochemical behavior of flufenamic acid at amberlite XAD-4 resin and silver-doped titanium dioxide/amberlite XAD-4 resin modified carbon electrodes. Colloids Surf. B: Biointerfaces 177, 407–415 (2019). https://doi.org/10.1016/j.colsurfb.2019.02.022
- K.R. Reddy, V.G. Gomes, M. Hassan, Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mater. Res. Express 1, 15012 (2014). https://doi.org/10.1088/2053-1591/1/1/015012
- D. Kishore Kumar, J. Loskot, J. Kříž, N. Bennett, H.M. Upadhyaya, V. Sadhu, C. Venkata Reddy, K.R. Reddy, Synthesis of SnSe quantum dots by successive ionic layer adsorption and reaction (SILAR) method for efficient solar cells applications. Sol. Energy 199, 570–574 (2020). https://doi.org/10.1016/j.solener.2020.02.050
- N.R. Reddy, U. Bhargav, M.M. Kumari, K.K. Cheralathan, M.V. Shankar, K.R. Reddy, T.A. Saleh, T.M. Aminabhavi, Highly efficient solar light-driven photocatalytic hydrogen production over Cu/FCNTs-titania quantum dots-based heterostructures. J. Environ. Manag. 254, 109747 (2020). https://doi.org/10.1016/j.jenvman.2019.109747
- C.V. Reddy, I.N. Reddy, V.V.N. Harish, K.R. Reddy, N.P. Shetti, J. Shim, T.M. Aminabhavi, Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles. Chemosphere 239, 124766 (2020). https://doi.org/10.1016/j.chemosphere.2019.124766
- V. Navakoteswara Rao, N. Lakshmana Reddy, M. Mamatha Kumari, P. Ravi, M. Sathish et al., Photocatalytic recovery of H2 from H2S containing wastewater: surface and interface control of photo-excitons in Cu2S@TiO2 core–shell nanostructure. Appl. Catal. B Environ. 254, 174–185 (2019). https://doi.org/10.1016/j.apcatb.2019.04.090
- P.S. Basavarajappa, B.N.H. Seethya, N. Ganganagappa, K.B. Eshwaraswamy, R.R. Kakarla, Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles. ChemistrySelect 3, 9025–9033 (2018). https://doi.org/10.1002/slct.201801198
- N.P. Shetti, S.J. Malode, D.S. Nayak, G.B. Bagihalli, S.S. Kalanur et al., Fabrication of ZnO nanoparticles modified sensor for electrochemical oxidation of methdilazine. Appl. Surf. Sci. 496, 143656 (2019). https://doi.org/10.1016/j.apsusc.2019.143656
- S. Feng, L. Guanghua, Hydrothermal and solvothermal syntheses, in Modern Inorganic Synthetic Chemistry, 2nd edn., ed. by R. Xu, Y. Xu (Elsevier, Amsterdam, 2011), pp. 73–104. https://doi.org/10.1016/B978-0-444-63591-4.00004-5
- G.W. Morey, Hydrothermal synthesis. J. Am. Ceram. Soc. 36, 279–285 (1953). https://doi.org/10.1111/j.1151-2916.1953.tb12883.x
- D. Ohare, Hydrothermal Synthesis. Encyclopedia of Materials: Science and Technology, 2nd edn. (Elsevier, Amsterdam, 2001), pp. 3989–3992. https://doi.org/10.1016/B0-08-043152-6/00701-4
- P. Nayak, M. Sahoo, S.K. Nayak, Urchin-like NiCo2O4 microsphere by hydrothermal route: structural, electrochemical, optical and magnetic properties. Ceram. Int. 46(3), 3818–3826 (2020). https://doi.org/10.1016/j.ceramint.2019.10.105
- S. Debata, S. Patra, S. Banerjee, R. Madhuri, P.K. Sharma, Controlled hydrothermal synthesis of graphene supported NiCo2O4 coral-like nanostructures: an efficient electrocatalyst for overall water splitting. Appl. Surf. Sci. 449, 203–212 (2018). https://doi.org/10.1016/j.apsusc.2018.01.302
- B. Cui, H. Lin, J.B. Li, X. Li, J. Yang, J. Tao, Core–ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 18, 1440–1447 (2008). https://doi.org/10.1002/adfm.200700982
- K. Xu, J. Yang, J. Hu, Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors. J. Colloid Interface Sci. 511, 456–462 (2018). https://doi.org/10.1016/j.jcis.2017.09.113
- X. Chang, W. Li, Y. Liu, M. He, X. Zheng, X. Lv, Z. Ren, Synthesis and characterization of NiCo2O4 nanospheres/nitrogen-doped graphene composites with enhanced electrochemical performance. J. Alloys Compd. 784, 293–300 (2019). https://doi.org/10.1016/j.jallcom.2019.01.036
- Z.Q. Liu, Q.Z. Xu, J.Y. Wang, N. Li, S.H. Guo et al., Facile hydrothermal synthesis of urchin-like NiCo2O4 spheres as efficient electrocatalysts for oxygen reduction reaction. Int. J. Hydrogen Energy 38, 6657–6662 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.092
- R. Ding, L. Qi, M. Jia, H. Wang, Simple hydrothermal synthesis of mesoporous spinel NiCo2O4 nanoparticles and their catalytic behavior in CH3OH electro-oxidation and H2O2 electro-reduction. Catal. Sci. Technol. 3, 3207–3215 (2013). https://doi.org/10.1039/c3cy00590a
- M. Yu, J. Chen, J. Liu, S. Li, Y. Ma, J. Zhang, J. An, Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation. Electrochim. Acta 151, 99–108 (2015). https://doi.org/10.1016/j.electacta.2014.10.156
- Y. Liu, X. Chi, Q. Han, Y. Du, J. Yang, Y. Liu, Vertically self-standing C@ NiCo2O4 nanoneedle arrays as effective binder-free cathodes for rechargeable Na–O2 batteries. J. Alloys Compd. 772, 693–702 (2019). https://doi.org/10.1016/j.jallcom.2018.09.121
- Y. Zhu, Z. Wu, M. Jing, W. Song, H. Hou, X. Yang, Q. Chen, X. Ji, 3D network-like mesoporous NiCo2O4 nanostructures as advanced electrode material for supercapacitors. Electrochim. Acta 149, 144–151 (2014). https://doi.org/10.1016/j.electacta.2014.10.064
- J. Wang, Y. Zhang, J. Ye, H. Wei, J. Hao, J. Mu, S. Zhao, S. Hussain, Facile synthesis of three-dimensional NiCo2O4 with different morphology for supercapacitors. RSC Adv. 6, 70077–70084 (2016). https://doi.org/10.1039/c6ra14242g
- Q. Zheng, X. Zhang, Y. Shen, Fabrication of free-standing NiCo2O4 nanoarrays via a facile modified hydrothermal synthesis method and their applications for lithium ion batteries and high-rate alkaline batteries. Mater. Res. Bull. 63, 211–215 (2015). https://doi.org/10.1016/j.materresbull.2014.12.024
- W. Jiang, F. Hu, S. Yao, Z. Sun, X. Wu, Hierarchical NiCo2O4 nanowalls composed of ultrathin nanosheets as electrode materials for supercapacitor and Li ion battery applications. Mater. Res. Bull. 93, 303–309 (2017). https://doi.org/10.1016/j.materresbull.2017.05.036
- X. Yang, X. Yu, Q. Yang, D. Zhao, K. Zhang et al., Controllable synthesis and magnetic properties of hydrothermally synthesized NiCo2O4 nano-spheres. Ceram. Int. 43, 8585–8589 (2017). https://doi.org/10.1016/j.ceramint.2017.03.121
- S. Sun, X. Jin, B. Cong, X. Zhou, W. Hong, G. Chen, Construction of porous nanoscale NiO/NiCo2O4 heterostructure for highly enhanced electrocatalytic oxygen evolution activity. J. Catal. 379, 1–9 (2019). https://doi.org/10.1016/j.jcat.2019.09.010
- E. Umeshbabu, G. Rajeshkhanna, G.R. Rao, Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application. Int. J. Hydrogen Energy 39, 15627–15638 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.168
- W. Zhang, W. Xin, T. Hu, Q. Gong, T. Gao, G. Zhou, One-step synthesis of NiCo2O4 nanorods and firework-shaped microspheres formed with necklace-like structure for supercapacitor materials. Ceram. Int. 45, 8406–8413 (2019). https://doi.org/10.1016/j.ceramint.2019.01.149
- J. Shen, X. Li, N. Li, M. Ye, Facile synthesis of NiCo2O4-reduced graphene oxide nanocomposites with improved electrochemical properties. Electrochim. Acta 141, 126–133 (2014). https://doi.org/10.1016/j.electacta.2014.07.063
- A.K. Mondal, D. Su, S. Chen, X. Xie, G. Wang, Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl. Mater. Interfaces. 6, 14827–14835 (2014). https://doi.org/10.1021/am5036913
- L. Shen, L. Yu, X.Y. Yu, X. Zhang, X.W.D. Lou, Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-Ion batteries and supercapacitors. Angew. Chem. Int. Ed. 54, 1868–1872 (2015). https://doi.org/10.1002/anie.201409776
- H. Xin, Z. Xu, Y. Liu, W. Li, Z. Hu, 3D flower-like NiCo2O4 electrode material prepared by a modified solvothermal method for supercapacitor. J. Alloys Compd. 711, 670–676 (2017). https://doi.org/10.1016/j.jallcom.2017.03.208
- J. Tang, A. Paul Alivisatos, Crystal splitting in the growth of Bi2S3. Nano Lett. 6, 2701–2706 (2006). https://doi.org/10.1021/nl0615930
- G.R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations. Angew. Chem. Int. Ed. 50, 826–859 (2011). https://doi.org/10.1002/anie.201000235
- S.K. Meher, P. Justin, G. Ranga-Rao, Nanoscale morphology dependent pseudocapacitance of NiO: influence of intercalating anions during synthesis. Nanoscale 3, 683–692 (2011). https://doi.org/10.1039/c0nr00555j
- Z.Q. Liu, K. Xiao, Q.Z. Xu, N. Li, Y.Z. Su, H.J. Wang, S. Chen, Fabrication of hierarchical flower-like super-structures consisting of porous NiCo2O4 nanosheets and their electrochemical and magnetic properties. RSC Adv. 3, 4372–4380 (2013). https://doi.org/10.1039/c3ra23084h
- A. Jain, B.J. Paul, S. Kim, V.K. Jain, J. Kim, A.K. Rai, Two-dimensional porous nanodisks of NiCo2O4 as anode material for high-performance rechargeable lithium-ion battery. J. Alloys Compd. 772, 72–79 (2019). https://doi.org/10.1016/j.jallcom.2018.09.051
- Q. Wang, X. Wang, J. Xu, X. Ouyang, X. Hou, D. Chen, R. Wang, G. Shen, Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8, 44–51 (2014). https://doi.org/10.1016/j.nanoen.2014.05.014
- Y. Chen, B. Qu, L. Hu, Z. Xu, Q. Li, T. Wang, High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes. Nanoscale 5, 9812–9820 (2013). https://doi.org/10.1039/c3nr02972g
- D. Cai, S. Xiao, D. Wang, B. Liu, L. Wang et al., Morphology controlled synthesis of NiCo2O4 nanosheet array nanostructures on nickel foam and their application for pseudocapacitors. Electrochim. Acta 142, 118–124 (2014). https://doi.org/10.1016/j.electacta.2014.06.119
- B. Cai, W. Mao, Z. Ye, J. Huang, Facile fabrication of all-solid-state SnO2/NiCo2O4 biosensor for self-powered glucose detection. Appl. Phys. A Mater. Sci. Process. 122, 806 (2016). https://doi.org/10.1007/s00339-016-0263-9
- J. Deng, H. Zhang, Y. Zhang, P. Luo, L. Liu, Y. Wang, Striking hierarchical urchin-like peapoded NiCo2O4@C as advanced bifunctional electrocatalyst for overall water splitting. J. Power Sources 372, 46–53 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.062
- J. Yang, C. Li, Z. Quan, D. Kong, X. Zhang, P. Yang, J. Lin, One-step aqueous solvothermal synthesis of In2O3 nanocrystals. Cryst. Growth Des. 8, 695–699 (2008). https://doi.org/10.1021/cg070340x
- S.M. Saleh, A.M. Soliman, M.A. Sharaf, V. Kale, B. Gadgil, Influence of solvent in the synthesis of nano-structured ZnO by hydrothermal method and their application in solar-still. J. Environ. Chem. Eng. B (2017). https://doi.org/10.1016/j.jece.2017.02.004
- F. Fu, J. Li, Y. Yao, X. Qin, Y. Dou, H. Wang, J. Tsui, K.Y. Chan, M. Shao, Hierarchical NiCo2O4 micro- and nanostructures with tunable morphologies as anode materials for lithium- and sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 16194–16201 (2017). https://doi.org/10.1021/acsami.7b02175
- X. Wang, Y. Fang, B. Shi, F. Huang, F. Rong, R. Que, Three-dimensional NiCo2O4@ NiCo2O4 core–shell nanocones arrays for high-performance supercapacitors. Chem. Eng. J. 344, 311–319 (2018). https://doi.org/10.1016/j.cej.2018.03.061
- Y. Liu, J. Goebl, Y. Yin, Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42, 2610–2653 (2013). https://doi.org/10.1039/c2cs35369e
- Q. Ren, G. Wu, W. Xing, J. Han, P. Li et al., Highly ordered mesoporous NiCo2O4 as a high performance anode material for Li-ion batteries. Front. Chem. 7, 521 (2019). https://doi.org/10.3389/fchem.2019.00521
- C. Yuan, J. Li, L. Hou, J. Lin, G. Pang, L. Zhang, L. Lian, X. Zhang, Template-engaged synthesis of uniform mesoporous hollow NiCo2O4 sub-microspheres towards high-performance electrochemical capacitors. RSC Adv. 3, 18573–18578 (2013). https://doi.org/10.1039/c3ra42828a
- W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
- V. Veeramani, R. Madhu, S.M. Chen, M. Sivakumar, Flower-like nickel–cobalt oxide decorated dopamine-derived carbon nanocomposite for high performance supercapacitor applications. ACS Sustain. Chem. Eng. 4, 5013–5020 (2016). https://doi.org/10.1021/acssuschemeng.6b01391
- W. Xiong, Y. Gao, X. Wu, X. Hu, D. Lan et al., Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo2O4 nanowires for high-performance supercapacitor. ACS Appl. Mater. Interfaces 6, 19416–19423 (2014). https://doi.org/10.1021/am5055228
- W. Li, F. Yang, Z. Hu, Y. Liu, Template synthesis of C@ NiCo2O4 hollow microsphere as electrode material for supercapacitor. J. Alloys Compd. 749, 305–312 (2018). https://doi.org/10.1016/j.jallcom.2018.03.046
- X. Qi, W. Zheng, G. He, T. Tian, N. Du, L. Wang, NiCo2O4 hollow microspheres with tunable numbers and thickness of shell for supercapacitors. Chem. Eng. J. 309, 426–434 (2017). https://doi.org/10.1016/j.cej.2016.10.060
- C. Li, X.Y. Gao, S.D. Li, Y. Zhao, K. Gao, Novel micron-sized NiCo2O4 pompon directed by a co-template method as capacitor electrode. Mater. Lett. 244, 74–77 (2019). https://doi.org/10.1016/j.matlet.2019.02.048
- Y. Zhu, J. Wang, Z. Wu, M. Jing, H. Hou, X. Jia, X. Ji, An electrochemical exploration of hollow NiCo2O4 submicrospheres and its capacitive performances. J. Power Sources 287, 307–315 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.053
- P. Xu, R. Yu, H. Ren, L. Zong, J. Chen, X. Xing, Hierarchical nanoscale multi-shell Au/CeO2 hollow spheres. Chem. Sci. 5, 4221–4226 (2014). https://doi.org/10.1039/c4sc01882f
- J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin et al., Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 52, 6417–6420 (2013). https://doi.org/10.1002/anie.201301622
- X. Zeng, J. Yang, L. Shi, L. Li, M. Gao, Synthesis of multi-shelled ZnO hollow microspheres and their improved photocatalytic activity. Nanoscale Res. Lett. 9, 468 (2014). https://doi.org/10.1186/1556-276X-9-468
- B. Wang, Y. Cao, Y. Chen, X. Lai, J. Peng, J. Tu, X. Li, Rapid synthesis of rGO conjugated hierarchical NiCo2O4 hollow mesoporous nanospheres with enhanced glucose sensitivity. Nanotechnology 28, 025501 (2017). https://doi.org/10.1088/0957-4484/28/2/025501
- X. Lv, Y. Zhu, H. Jiang, X. Yang, Y. Liu, Y. Su, J. Huang, Y. Yao, C. Li, Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalton Trans. 44, 4148–4154 (2015). https://doi.org/10.1039/c4dt03803g
- J. Nai, Y. Tian, X. Guan, L. Guo, Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 135, 16082–16091 (2013). https://doi.org/10.1021/ja402751r
- W. Huang, Y. Cao, Y. Chen, J. Peng, X. Lai, J. Tu, Fast synthesis of porous NiCo2O4 hollow nanospheres for a high-sensitivity non-enzymatic glucose sensor. Appl. Surf. Sci. 396, 804–811 (2017). https://doi.org/10.1016/j.apsusc.2016.11.034
- X. Hou, S. Xue, M. Liu, X. Shang, Y. Fu, D. He, Hollow irregular octahedra-like NiCo2O4 cages composed of mesoporous nanosheets as a superior anode material for lithium-ion batteries. Chem. Eng. J. 350, 29–36 (2018). https://doi.org/10.1016/j.cej.2018.05.164
- J. Yang, M. Cho, Y. Lee, Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation. Biosens. Bioelectron. 75, 15–22 (2016). https://doi.org/10.1016/j.bios.2015.08.008
- H. Behzad, F.E. Ghodsi, PVP-assisted enhancement in ion storage performance of sol–gel derived nano-structured NiCo2O4 thin films as battery-type electrode. Mater. Res. Bull. 99, 336–342 (2018). https://doi.org/10.1016/j.materresbull.2017.11.031
- M. El Baydi, S.K. Tiwari, R.N. Singh, J.L. Rehspringer, P. Chartier, J.F. Koenig, G. Poillerat, High specific surface area nickel mixed oxide powders LaNiO3 (Perovskite) and NiCo2O4 (Spinel) via sol–gel type routes for oxygen electrocatalysis in alkaline media. J. Solid State Chem. 116, 157–169 (1995). https://doi.org/10.1006/jssc.1995.1197
- B. Hua, W. Zhang, J. Wu, J. Pu, B. Chi, L. Jian, A promising NiCo2O4 protective coating for metallic interconnects of solid oxide fuel cells. J. Power Sources 195, 7375–7379 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.031
- L. Merabet, K. Rida, N. Boukmouche, Sol–gel synthesis, characterization, and supercapacitor applications of MCo2O4 (M = Ni, Mn, Cu, Zn) cobaltite spinels. Ceram. Int. 44, 11265–11273 (2018). https://doi.org/10.1016/j.ceramint.2018.03.171
- Y.Q. Wu, X.Y. Chen, P.T. Ji, Q.Q. Zhou, Sol–gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors. Electrochim. Acta 56, 7517–7522 (2011). https://doi.org/10.1016/j.electacta.2011.06.101
- T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, C.C. Hu, A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv. Mater. 22, 347–351 (2010). https://doi.org/10.1002/adma.200902175
- M.C. Liu, C. Lu, X.M. Li, L. Bin Kong, Y.C. Luo, L. Kang, X. Li, F.C. Walsh, A sol–gel process for the synthesis of NiCo2O4 having improved specific capacitance and cycle stability for electrochemical capacitors. J. Electrochem. Soc. 159, A1262 (2012). https://doi.org/10.1149/2.057208jes
- Y. Liu, N. Wang, C. Yang, W. Hu, Sol–gel synthesis of nanoporous NiCo2O4 thin films on ITO glass as high-performance supercapacitor electrodes. Ceram. Int. 42, 11411–11416 (2016). https://doi.org/10.1016/j.ceramint.2016.04.071
- J. Bhagwan, G. Nagaraju, B. Ramulu, S.C. Sekhar, J.S. Yu, Rapid synthesis of hexagonal NiCo2O4 nanostructures for high-performance asymmetric supercapacitors. Electrochim. Acta 299, 509–517 (2019). https://doi.org/10.1016/j.electacta.2018.12.174
- J. Liang, Z. Fan, S. Chen, S. Ding, G. Yang, Hierarchical NiCo2O4 nanosheets@halloysite nanotubes with ultrahigh capacitance and long cycle stability as electrochemical pseudocapacitor materials. Chem. Mater. 26, 4354–4360 (2014). https://doi.org/10.1021/cm500786a
- F. Chen, W. Zhang, F. Cheng, Z. Yang, X. Fan, M. Huang, Stepwise co-precipitation to the synthesis of urchin-like NiCo2O4 hollow nanospheres as high performance anode material. J. Appl. Electrochem. 48, 1095–1104 (2018). https://doi.org/10.1007/s10800-018-1213-3
- H.S. Jadhav, R.S. Kalubarme, C.N. Park, J. Kim, C.J. Park, Facile and cost effective synthesis of mesoporous spinel NiCo2O4 as an anode for high lithium storage capacity. Nanoscale 6, 10071–10076 (2014). https://doi.org/10.1039/c4nr02183e
- L. Yu, B. Guan, W. Xiao, X.W. Lou, Formation of yolk-shelled Ni–Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv. Energy Mater. 5, 1500981 (2015). https://doi.org/10.1002/aenm.201500981
- C. Wang, X. Zhang, D. Zhang, C. Yao, Y. Ma, Facile and low-cost fabrication of nanostructured NiCo2O4 spinel with high specific capacitance and excellent cycle stability. Electrochim. Acta 63, 220–227 (2012). https://doi.org/10.1016/j.electacta.2011.12.090
- H.S. Jadhav, R.S. Kalubarme, J.W. Roh, K.N. Jung, K.H. Shin, C.N. Park, C.J. Park, Facile and cost effective synthesized mesoporous spinel NiCo2O4 as catalyst for non-aqueous lithium-oxygen batteries. J. Electrochem. Soc. 161, A2188 (2014). https://doi.org/10.1149/2.0771414jes
- H. Fu, Y. Liu, L. Chen, Y. Shi, W. Kong et al., Designed formation of NiCo2O4 with different morphologies self-assembled from nanoparticles for asymmetric supercapacitors and electrocatalysts for oxygen evolution reaction. Electrochim. Acta 296, 719–729 (2019). https://doi.org/10.1016/j.electacta.2018.11.103
- Y. Wan, J. Chen, J. Zhan, Y. Ma, Facile synthesis of mesoporous NiCo2O4 fibers with enhanced photocatalytic performance for the degradation of methyl red under visible light irradiation. J. Environ. Chem. Eng. 6, 6079–6087 (2018). https://doi.org/10.1016/j.jece.2018.09.023
- K.T. Jeng, C.C. Chien, N.Y. Hsu, S.C. Yen, S. Du Chiou, S.H. Lin, W.M. Huang, Performance of direct methanol fuel cell using carbon nanotube-supported Pt–Ru anode catalyst with controlled composition. J. Power Sources 160, 97–104 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.057
- B. Zhang, J. Zhu, H. Liu, P. Shi, W. Wu, F. Wang, Y. Liu, Rapid synthesis of hexagonal mesoporous structured NiCo2O4 via rotary evaporation for high performance supercapacitors. Ceram. Int. 44, 8695–8699 (2018). https://doi.org/10.1016/j.ceramint.2018.01.204
- A. Karatutlu, A. Barhoum, A. Sapelkin, Liquid-phase synthesis of nanoparticles and nanostructured materials, in Emerging Applications of Nanoparticles and Architecture Nanostructures, ed. by A. Barhoum, A.S.H. Makhlouf (Elsevier, Amsterdam, 2018), pp. 1–28. https://doi.org/10.1016/B978-0-323-51254-1.00001-4
- M.T. Crespo, A review of electrodeposition methods for the preparation of alpha-radiation sources. Appl. Radiat. Isot. 70, 210–215 (2012). https://doi.org/10.1016/j.apradiso.2011.09.010
- M. Musiani, Electrodeposition of composites: an expanding subject in electrochemical materials science. Electrochim. Acta 45, 3397–3402 (2000). https://doi.org/10.1016/S0013-4686(00)00438-2
- L.K. Wu, J. Xia, H.Z. Cao, Y.P. Tang, G.Y. Hou, G.Q. Zheng, Highly active and durable cauliflower-like NiCo2O4 film for oxygen evolution with electrodeposited SiO2 as template. Int. J. Hydrogen Energy 42, 10813–10825 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.076
- N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu, S. Komarneni, Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. Chem. Eng. J. 345, 31–38 (2018). https://doi.org/10.1016/j.cej.2018.03.147
- N. Zhao, H. Fan, M. Zhang, J. Ma, W. Zhang et al., Investigating the large potential window of NiCo2O4 supercapacitors in neutral aqueous electrolyte. Electrochim. Acta 321, 134681 (2019). https://doi.org/10.1016/j.electacta.2019.134681
- C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X.W. Lou, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22, 4592–4597 (2012). https://doi.org/10.1002/adfm.201200994
- A. Ramadoss, K.N. Kang, H.J. Ahn, S.I. Kim, S.T. Ryu, J.H. Jang, Realization of high performance flexible wire supercapacitors based on 3-dimensional NiCo2O4/Ni fibers. J. Mater. Chem. A 4, 4718–4727 (2016). https://doi.org/10.1039/c5ta10781d
- J. Xiao, S. Yang, Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Adv. 1, 588–595 (2011). https://doi.org/10.1039/c1ra00342a
- B. Ash, R.K. Paramguru, B.K. Mishra, Electrode reactions during electrolytic preparation of nickel hydroxide. Electrochem. Commun. 12, 48–51 (2010). https://doi.org/10.1016/j.elecom.2009.10.033
- G. Zhang, T. Wang, X. Yu, H. Zhang, H. Duan, B. Lu, Nanoforest of hierarchical Co3O4@ NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy 2, 586–594 (2013). https://doi.org/10.1016/j.nanoen.2013.07.008
- M. Mirzaee, C. Dehghanian, Synthesis of flower-like NiCo2O4 via chronopotentiometric technique and its application as electrode materials for high-performance supercapacitors. Mater. Today Energy 10, 68–80 (2018). https://doi.org/10.1016/j.mtener.2018.08.011
- Y. An, Z. Hu, B. Guo, N. An, Y. Zhang, Z. Li, Y. Yang, H. Wu, Electrodeposition of honeycomb-shaped NiCo2O4 on carbon cloth as binder-free electrode for asymmetric electrochemical capacitor with high energy density. RSC Adv. 6, 37562–37573 (2016). https://doi.org/10.1039/c6ra04788b
- J. Wu, P. Guo, R. Mi, X. Liu, H. Zhang et al., Ultrathin NiCo2O4 nanosheets grown on three-dimensional interwoven nitrogen-doped carbon nanotubes as binder-free electrodes for high-performance supercapacitors. J. Mater. Chem. A 3, 15331–15338 (2015). https://doi.org/10.1039/c5ta02719e
- W.W. Liu, C.X. Lu, K. Liang, B.K. Tay, A high-performance anode material for Li-ion batteries based on a vertically aligned CNTs/NiCo2O4 core/shell structure. Part. Part. Syst. Charact. 31, 1151–1157 (2014). https://doi.org/10.1002/ppsc.201400030
- L. Huang, D. Chen, Y. Ding, Z.L. Wang, Z. Zeng, M. Liu, Hybrid composite Ni(OH)2@ NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors. ACS Appl. Mater. Interfaces 5, 11159–11162 (2013). https://doi.org/10.1021/am403367u
- Y. Zhang, B. Wang, F. Liu, J. Cheng, X.W. Zhang, L. Zhang, Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy 27, 627–637 (2016). https://doi.org/10.1016/j.nanoen.2016.08.013
- J. Wang, R. Zhan, Y. Fu, H.Y. Yu, C. Jiang et al., Design and synthesis of hierarchical, freestanding bowl-like NiCo2O4 as cathode for long-life Li–O2 batteries. Mater. Today Energy 5, 214–221 (2017). https://doi.org/10.1016/j.mtener.2017.07.002
- W. Wang, Z. Li, A. Meng, Q. Li, Network-like holey NiCo2O4 nanosheet arrays on Ni foam synthesized by electrodeposition for high-performance supercapacitors. J. Solid State Electrochem. 23, 635–644 (2019). https://doi.org/10.1007/s10008-018-4149-y
- J. Zhang, R. Chu, Y. Chen, H. Jiang, Y. Zhang, N.M. Huang, H. Guo, Electrodeposited binder-free NiCo2O4@carbon nanofiber as a high performance anode for lithium ion batteries. Nanotechnology 29, 125401 (2018). https://doi.org/10.1088/1361-6528/aaa94c
- P. Dinka, A. Mukasyan, Novel approaches to solution–combustion synthesis of nanomaterials. Int. J Self Propag. High Temp. Synth. 16, 23–35 (2007). https://doi.org/10.3103/S1061386207010049
- K.V. Manukyan, Combustion and materials synthesis. Int. J. Self Propag. High Temp. Synth. 26, 143–144 (2017). https://doi.org/10.3103/S1061386217030025
- J. Xu, Q. Chen, X. Liu, H. Baoquan, Q. Qian, The combustion synthesis of nanoscale ceria-doped calcia solid solution. Adv. Mater. Res. 610–613, 547–550 (2012). https://doi.org/10.4028/www.scientific.net/amr.610-613.547
- R. Alcántara, M. Jaraba, P. Lavela, J.L. Tirado, NiCo2O4 spinel: first report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 14, 2847–2848 (2002). https://doi.org/10.1021/cm025556v
- S.T. Aruna, A.S. Mukasyan, Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 12, 44–50 (2008). https://doi.org/10.1016/j.cossms.2008.12.002
- A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016). https://doi.org/10.1021/acs.chemrev.6b00279
- J.C. Toniolo, A.S. Takimi, C.P. Bergmann, Nanostructured cobalt oxides (Co3O4 and CoO) and metallic Co powders synthesized by the solution combustion method. Mater. Res. Bull. 45, 672–676 (2010). https://doi.org/10.1016/j.materresbull.2010.03.001
- I.T. Papadas, A. Ioakeimidis, G.S. Armatas, S.A. Choulis, Low-temperature combustion synthesis of a spinel NiCo2O4 hole transport layer for perovskite photovoltaics. Adv. Sci. 5, 1701029 (2018). https://doi.org/10.1002/advs.201701029
- T. Huang, B. Liu, P. Yang, Z. Qiu, Z. Hu, Facilely synthesized NiCo2O4 nanoparticles as electrode material for supercapacitors. Int. J. Electrochem. Sci. 13, 6144 (2018). https://doi.org/10.20964/2018.06.60
- A.N. Naveen, S. Selladurai, Novel synthesis of highly porous spinel cobaltite (NiCo2O4) electrode material for supercapacitor applications. AIP Conf. Proc. 1591, 246 (2014). https://doi.org/10.1063/1.4872560
- V. Shanmugavalli, K. Vishista, Low-cost synthesis of cubic spinel structured high efficient NiCo2O4/polyaniline nanocomposite for supercapacitor application. Mater. Res. Express 6, 45021 (2019). https://doi.org/10.1088/2053-1591/aae8ee
- L. Li, S. Peng, Y. Cheah, P. Teh, J. Wang, G. Wee, Y. Ko, C. Wong, M. Srinivasan, Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. Chem. A: Eur. J. 19, 5892–5898 (2013). https://doi.org/10.1002/chem.201204153
- H. Guan, C. Shao, Y. Liu, N. Yu, X. Yang, Fabrication of NiCo2O4 nanofibers by electrospinning. Solid State Commun. 131, 107–109 (2004). https://doi.org/10.1016/j.ssc.2004.04.035
- G. Sun, L. Sun, H. Xie, J. Liu, Electrospinning of nanofibers for energy applications. Nanomaterials 6(7), E129 (2016). https://doi.org/10.3390/nano6070129
- Q. Liu, J. Zhu, L. Zhang, Y. Qiu, Recent advances in energy materials by electrospinning. Renew. Sustain. Energy Rev. 81, 1825–1858 (2018). https://doi.org/10.1016/j.rser.2017.05.281
- Z. Dong, S.J. Kennedy, Y. Wu, Electrospinning materials for energy-related applications and devices. J. Power Sources 196, 4886–4904 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.090
- F. Lai, Y.E. Miao, Y. Huang, T.S. Chung, T. Liu, Flexible hybrid membranes of NiCo2O4-doped carbon nanofiber@MnO2 core–sheath nanostructures for high-performance supercapacitors. J. Phys. Chem. C 119, 13442–13450 (2015). https://doi.org/10.1021/acs.jpcc.5b02739
- C. Busacca, S.C. Zignani, A. Di Blasi, O. Di Blasi, M. Lo Faro, V. Antonucci, A.S. Aricò, Electrospun NiMn2O4 and NiCo2O4 spinel oxides supported on carbon nanofibers as electrocatalysts for the oxygen evolution reaction in an anion exchange membrane-based electrolysis cell. Int. J. Hydrogen Energy 44, 20987–20996 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.214
- K. Xu, S. Li, J. Yang, H. Xu, J. Hu, Hierarchical MnO2 nanosheets on electrospun NiCo2O4 nanotubes as electrode materials for high rate capability and excellent cycling stability supercapacitors. J. Alloys Compd. 678, 120–125 (2016). https://doi.org/10.1016/j.jallcom.2016.03.255
- J. Sun, W. Wang, D. Yu, NiCo2O4 nanosheet-decorated carbon nanofiber electrodes with high electrochemical performance for flexible supercapacitors. J. Electron. Mater. 48, 3833–3843 (2019). https://doi.org/10.1007/s11664-019-07135-4
- D. Lei, X.D. Li, M.K. Seo, M.S. Khil, H.Y. Kim, B.S. Kim, NiCo2O4 nanostructure-decorated PAN/lignin based carbon nanofiber electrodes with excellent cyclability for flexible hybrid supercapacitors. Polymer (Guildf) 132, 31–40 (2017). https://doi.org/10.1016/j.polymer.2017.10.051
- G.M. Tomboc, H. Kim, Derivation of both EDLC and pseudocapacitance characteristics based on synergistic mixture of NiCo2O4 and hollow carbon nanofiber: an efficient electrode towards high energy density supercapacitor. Electrochim. Acta 318, 392–404 (2019). https://doi.org/10.1016/j.electacta.2019.06.112
- A. Mirzaei, G. Neri, Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: a review. Sens. Actuators B: Chem. 237, 749–775 (2016). https://doi.org/10.1016/j.snb.2016.06.114
- L.Y. Meng, B. Wang, M.G. Ma, K.L. Lin, The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater. Today Chem. 1–2, 63–83 (2016). https://doi.org/10.1016/j.mtchem.2016.11.003
- X. Zhang, Y. Zhou, B. Luo, H. Zhu, W. Chu, K. Huang, Microwave-assisted synthesis of NiCo2O4 double-shelled hollow spheres for high-performance sodium ion batteries. Nano-Micro Lett. 10, 13 (2018). https://doi.org/10.1007/s40820-017-0164-2
- A. Shanmugavani, R.K. Selvan, Microwave assisted reflux synthesis of NiCo2O4/NiO composite: fabrication of high performance asymmetric supercapacitor with Fe2O3. Electrochim. Acta 189, 283–294 (2016). https://doi.org/10.1016/j.electacta.2015.12.043
- U.T. Nakate, S.N. Kale, Microwave assisted synthesis and characterizations of NiCo2O4 nanoplates and electrical, magnetic properties. Mater. Today: Proc. 3(6), 1992–1998 (2016). https://doi.org/10.1016/j.matpr.2016.04.101
- L. Gu, L. Qian, Y. Lei, Y. Wang, J. Li, H. Yuan, D. Xiao, Microwave-assisted synthesis of nanosphere-like NiCo2O4 consisting of porous nanosheets and its application in electro-catalytic oxidation of methanol. J. Power Sources 261, 317–323 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.098
- Y.Z. Su, Q.Z. Xu, Q.S. Zhong, S.T. Shi, C.J. Zhang, C.W. Xu, NiCo2O4/C prepared by one-step intermittent microwave heating method for oxygen evolution reaction in splitter. J. Alloys Compd. 617, 115–119 (2014). https://doi.org/10.1016/j.jallcom.2014.07.195
- Y. Tao, L. Ruiyi, L. Zaijun, F. Yinjun, A facile and scalable strategy for synthesis of size-tunable NiCo2O4 with nanocoral-like architecture for high-performance. Electrochim. Acta 134, 384–392 (2014). https://doi.org/10.1016/j.electacta.2014.03.168
- Y. Zhu, X. Ji, R. Yin, Z. Hu, X. Qiu, Z. Wu, Y. Liu, Nanorod-assembled NiCo2O4 hollow microspheres assisted by an ionic liquid as advanced electrode materials for supercapacitors. RSC Adv. 7, 11123–11128 (2017). https://doi.org/10.1039/c7ra00067g
- N.S. Chaubal, V.Y. Joshi, Nonionic polymeric surfactant template for mesoporous NiCo2O4 Formation. J. Porous Mater. 18, 177–183 (2011). https://doi.org/10.1007/s10934-010-9368-2
- T.V. Gavrilović, D.J. Jovanović, M.D. Dramićanin, Chapter 2—synthesis of multifunctional inorganic materials: from micrometer to nanometer dimensions. Nanomater. Green Energy 1, 55–81 (2018). https://doi.org/10.1016/B978-0-12-813731-4.00002-3
- M. Kundu, G. Karunakaran, E. Kolesnikov, V.E. Sergeevna, S. Kumari, M.V. Gorshenkov, D. Kuznetsov, Hollow NiCo2O4 nano-spheres obtained by ultrasonic spray pyrolysis method with superior electrochemical performance for lithium-ion batteries and supercapacitors. J. Ind. Eng. Chem. 59, 90–98 (2018). https://doi.org/10.1016/j.jiec.2017.10.010
- Y. Ma, Z. Yu, M. Liu, C. Song, X. Huang, M. Moliere, G. Song, H. Liao, Deposition of binder-free oxygen-vacancies NiCo2O4 based films with hollow microspheres via solution precursor thermal spray for supercapacitors. Ceram. Int. 45, 10722–10732 (2019). https://doi.org/10.1016/j.ceramint.2019.02.145
- T. Li, X. Li, Z. Wang, H. Guo, Y. Li, A novel NiCo2O4 anode morphology for lithium-ion batteries. J. Mater. Chem. A 3, 11970–11975 (2015). https://doi.org/10.1039/c5ta01928a
- J. Leng, Z. Wang, X. Li, H. Guo, T. Li, H. Liang, Self-templated formation of hierarchical NiCo2O4 yolk–shell microspheres with enhanced electrochemical properties. Electrochim. Acta 244, 154–161 (2017). https://doi.org/10.1016/j.electacta.2017.05.109
- D.P. Lapham, J.L. Lapham, The porosity of NiCo2O4 films and powders by three common preparation techniques. Microporous Mesoporous Mater. 223, 35–45 (2016). https://doi.org/10.1016/j.micromeso.2015.10.025
- R.J. Deokate, R.S. Kalubarme, C.J. Park, C.D. Lokhande, Simple synthesis of NiCo2O4 thin films using spray pyrolysis for electrochemical supercapacitor application: a novel approach. Electrochim. Acta 224, 378–385 (2017). https://doi.org/10.1016/j.electacta.2016.12.034
- G.D. Park, J.K. Lee, Y.C. Kang, Three-dimensional macroporous CNTs microspheres highly loaded with NiCo2O4 hollow nanospheres showing excellent lithium-ion storage performances. Carbon 128, 191–200 (2018). https://doi.org/10.1016/j.carbon.2017.11.088
- R.A. Soomro, Z.H. Ibupoto, Sirajuddin, M.I. Abro, M. Willander, Electrochemical sensing of glucose based on novel hedgehog-like NiO nanostructures. Sens. Actuators B: Chem. 209, 966–974 (2015). https://doi.org/10.1016/j.snb.2014.12.050
- E. Zhang, Y. Xie, S. Ci, J. Jia, Z. Wen, Porous Co3O4 hollow nanododecahedra for nonenzymatic glucose biosensor and biofuel cell. Biosens. Bioelectron. 81, 46–53 (2016). https://doi.org/10.1016/j.bios.2016.02.027
- K.K. Naik, S. Kumar, C.S. Rout, Electrodeposited spinel NiCo2O4 nanosheet arrays for glucose sensing application. RSC Adv. 5, 74585–74591 (2015). https://doi.org/10.1039/c5ra13833g
- M. Hussain, Z.H. Ibupoto, M.A. Abbasi, X. Liu, O. Nur, M. Willander, Synthesis of three dimensional nickel cobalt oxide nanoneedles on nickel foam, their characterization and glucose sensing application. Sensors 14, 5415–5425 (2014). https://doi.org/10.3390/s140305415
- R. Elakkiya, G. Maduraiveeran, A three-dimensional nickel–cobalt oxide nanomaterial as an enzyme-mimetic electrocatalyst for the glucose and lactic acid oxidation reaction. New J. Chem. 43, 14756–14762 (2019). https://doi.org/10.1039/c9nj01291e
- R. Ding, L. Qi, M. Jia, H. Wang, Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation. Nanoscale 6, 1369–1376 (2014). https://doi.org/10.1039/c3nr05359h
- Y. Feng, D. Xiang, Y. Qiu, L. Li, Y. Li, K. Wu, L. Zhu, MOF-derived spinel NiCo2O4 hollow nanocages for the construction of non-enzymatic electrochemical glucose sensor. Electroanalysis 32(3), 571–580 (2020). https://doi.org/10.1002/elan.201900558
- S. Wang, S. Zhang, M. Liu, H. Song, J. Gao, Y. Qian, MoS2 as connector inspired high electrocatalytic performance of NiCo2O4 nanoplates towards glucose. Sens. Actuators B: Chem. 254, 1101–1109 (2018). https://doi.org/10.1016/j.snb.2017.08.011
- H. Zhao, J. Xu, Q. Sheng, J. Zheng, W. Cao, T. Yue, NiCo2O4 nanorods decorated MoS2 nanosheets synthesized from deep eutectic solvents and their application for electrochemical sensing of glucose in red wine and honey. J. Electrochem. Soc. 166, H404 (2019). https://doi.org/10.1149/2.0141910jes
- A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 9, 70–71 (2003). https://doi.org/10.1039/b210714g
- M. Avalos, R. Babiano, P. Cintas, J.L. Jiménez, J.C. Palacios, Greener media in chemical synthesis and processing. Angew. Chem. Int. Ed. 45, 3904–3908 (2006). https://doi.org/10.1002/anie.200504285
- A.P. Abbott, K. El Ttaib, G. Frisch, K.J. McKenzie, K.S. Ryder, Electrodeposition of copper composites from deep eutectic solvents based on choline chloride. Phys. Chem. Chem. Phys. 11, 4269–4277 (2009). https://doi.org/10.1039/b817881j
- F.H. Aidoudi, P.J. Byrne, P.K. Allan, S.J. Teat, P. Lightfoot, R.E. Morris, Ionic liquids and deep eutectic mixtures as new solvents for the synthesis of vanadium fluorides and oxyfluorides. Dalton Trans. 40, 4324–4331 (2011). https://doi.org/10.1039/c0dt01765e
- L. Wei, Z.Y. Zhou, S.P. Chen, C.D. Xu, D. Su, M.E. Schuster, S.G. Sun, Electrochemically shape-controlled synthesis in deep eutectic solvents: triambic icosahedral platinum nanocrystals with high-index facets and their enhanced catalytic activity. Chem. Commun. 49, 11152–11154 (2013). https://doi.org/10.1039/c3cc46473c
- L. Wei, Y.J. Fan, N. Tian, Z.Y. Zhou, X.Q. Zhao, B.W. Mao, S.G. Sun, Electrochemically shape-controlled synthesis in deep eutectic solvents—a new route to prepare Pt nanocrystals enclosed by high-index facets with high catalytic activity. J. Phys. Chem. C 116, 2040–2044 (2012). https://doi.org/10.1021/jp209743h
- S. Cui, J. Zhang, Y. Ding, S. Gu, P. Hu, Z. Hu, Rectangular flake-like mesoporous NiCo2O4 as enzyme mimic for glucose biosensing and biofuel cell. Sci. China Mater. 60, 766–776 (2017). https://doi.org/10.1007/s40843-017-9072-9
- F.C. Sun, J.T. Zhang, H. Ren, S.T. Wang, Y. Zhou, J. Zhang, “Dry” NiCo2O4 nanorods for electrochemical non-enzymatic glucose sensing. Chin. J. Chem. Phys. 31, 799 (2018). https://doi.org/10.1063/1674-0068/31/cjcp1804061
- Q. Guo, W. Zeng, Y. Li, Highly sensitive non-enzymatic glucose sensor based on porous NiCo2O4 nanowires grown on nickel foam. Mater. Lett. 256, 126603 (2019). https://doi.org/10.1016/j.matlet.2019.126603
- P. Arul, S.A. John, Organic solvent free in situ growth of flower like Co-ZIF microstructures on nickel foam for glucose sensing and supercapacitor applications. Electrochim. Acta 306, 254–263 (2019). https://doi.org/10.1016/j.electacta.2019.03.117
- X. Luo, M. Huang, D. He, M. Wang, Y. Zhang, P. Jiang, Porous NiCo2O4 nanoarray-integrated binder-free 3D open electrode offers a highly efficient sensing platform for enzyme-free glucose detection. Analyst 143, 2546–2554 (2018). https://doi.org/10.1039/c8an00668g
- D. Zhang, J. Tong, B. Xia, Q. Xue, Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens. Actuators B: Chem. 203, 263–270 (2014). https://doi.org/10.1016/j.snb.2014.06.116
- D. Zhang, J. Tong, B. Xia, Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators B: Chem. 197, 66–72 (2014). https://doi.org/10.1016/j.snb.2014.02.078
- T.H. Ko, S. Radhakrishnan, M.K. Seo, M.S. Khil, H.Y. Kim, B.S. Kim, A green and scalable dry synthesis of NiCo2O4/graphene nanohybrids for high-performance supercapacitor and enzymeless glucose biosensor applications. J. Alloys Compd. 696, 193–200 (2017). https://doi.org/10.1016/j.jallcom.2016.11.234
- M. Wu, S. Meng, Q. Wang, W. Si, W. Huang, X. Dong, Nickel–cobalt oxide decorated three-dimensional graphene as an enzyme mimic for glucose and calcium detection. ACS Appl. Mater. Interfaces 7, 21089–21094 (2015). https://doi.org/10.1021/acsami.5b06299
- G. Ma, M. Yang, C. Li, H. Tan, L. Deng, S. Xie, F. Xu, L. Wang, Y. Song, Preparation of spinel nickel–cobalt oxide nanowrinkles/reduced graphene oxide hybrid for nonenzymatic glucose detection at physiological level. Electrochim. Acta 220, 545–553 (2016). https://doi.org/10.1016/j.electacta.2016.10.163
- Y. Ni, J. Xu, H. Liu, S. Shao, Fabrication of RGO-NiCo2O4 nanorods composite from deep eutectic solvents for nonenzymatic amperometric sensing of glucose. Talanta 185, 335–343 (2018). https://doi.org/10.1016/j.talanta.2018.03.097
- F. Meng, J. Li, S.K. Cushing, M. Zhi, N. Wu, Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 135, 10286–10289 (2013). https://doi.org/10.1021/ja404851s
- Y. Liu, K. Yan, O.K. Okoth, J. Zhang, A label-free photoelectrochemical aptasensor based on nitrogen-doped graphene quantum dots for chloramphenicol determination. Biosens. Bioelectron. 74, 1016–1021 (2015). https://doi.org/10.1016/j.bios.2015.07.067
- L. Feng, N. Xie, J. Zhong, Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7, 3919–3945 (2014). https://doi.org/10.3390/ma7053919
- W. Lu, T. He, B. Xu, X. He, H. Adidharma, M. Radosz, K. Gasem, M. Fan, Progress in catalytic synthesis of advanced carbon nanofibers. J. Mater. Chem. A 5, 13863–13881 (2017). https://doi.org/10.1039/c7ta02007d
- D.W. Kim, C.H. Kim, C.M. Yang, S. Ahn, Y.H. Kim et al., Deriving structural perfection in the structure of polyacrylonitrile based electrospun carbon nanofiber. Carbon 147, 612–615 (2019). https://doi.org/10.1016/j.carbon.2019.02.066
- M. Naebe, T. Lin, X. Wang, Carbon nanotubes reinforced electrospun polymer nanoibres, in Nanofibres, ed. by A. Kumar (Intech, Croatia, 2010), pp. 309–328. https://doi.org/10.5772/8160
- T. Fujita, Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality. Sci. Technol. Adv. Mater. 18, 724–740 (2017). https://doi.org/10.1080/14686996.2017.1377047
- T. Fujita, L.H. Qian, K. Inoke, J. Erlebacher, M.W. Chen, Three-dimensional morphology of nanoporous gold. Appl. Phys. Lett. 92, 251902 (2008). https://doi.org/10.1063/1.2948902
- X.Y. Lang, H.Y. Fu, C. Hou, G.F. Han, P. Yang, Y.B. Liu, Q. Jiang, Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat. Commun. 4, 2169 (2013). https://doi.org/10.1038/ncomms3169
- W. Li, H. Qi, B. Wang, Q. Wang, S. Wei, X. Zhang, Y. Wang, L. Zhang, X. Cui, Ultrathin NiCo2O4 nanowalls supported on a 3D nanoporous gold coated needle for non-enzymatic amperometric sensing of glucose. Microchim. Acta 185, 124 (2018). https://doi.org/10.1007/s00604-017-2663-8
- K.K. Naik, A. Gangan, B. Chakraborty, C.S. Rout, Superior non-enzymatic glucose sensing properties of Ag–/Au–NiCo2O4 nanosheets with insight from electronic structure simulations. Analyst 143, 571–579 (2018). https://doi.org/10.1039/c7an01354j
- K.K. Naik, A. Gangan, B. Chakraborty, S.K. Nayak, C.S. Rout, Enhanced nonenzymatic glucose-sensing properties of electrodeposited NiCo2O4–Pd nanosheets: experimental and DFT investigations. ACS Appl. Mater. Interfaces 9, 23894–23903 (2017). https://doi.org/10.1021/acsami.7b02217
- G. Cakmak, Z. Kü̧ükyavuz, S. Kü̧ükyavuz, Conductive copolymers of polyaniline, polypyrrole and poly(dimethylsiloxane). Synth. Met. 151, 10–18 (2005). https://doi.org/10.1016/j.synthmet.2005.02.019
- A.S. Hammad, H. Noby, M.F. Elkady, A.H. El-Shazly, In-situ polymerization of polyaniline/polypyrrole copolymer using different techniques, in IOP Conference Series: Materials Science and Engineering, vol. 290 (2018), p. 012001. https://doi.org/10.1088/1757-899X/290/1/012001
- J.M. Jeong, B.G. Choi, S.C. Lee, K.G. Lee, S.J. Chang et al., Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv. Mater. 25, 6250–6255 (2013). https://doi.org/10.1002/adma.201302710
- Z. Yu, H. Li, X. Zhang, N. Liu, W. Tan, X. Zhang, L. Zhang, Facile synthesis of NiCo2O4@Polyaniline core–shell nanocomposite for sensitive determination of glucose. Biosens. Bioelectron. 75, 161–165 (2016). https://doi.org/10.1016/j.bios.2015.08.024
- X. Duan, K. Liu, Y. Xu, M. Yuan, T. Gao, J. Wang, Nonenzymatic electrochemical glucose biosensor constructed by NiCo2O4@Ppy nanowires on nickel foam substrate. Sens. Actuators B: Chem. 292, 121–128 (2019). https://doi.org/10.1016/j.snb.2019.04.107
- A.B. Vennela, D. Mangalaraj, N. Muthukumarasamy, S. Agilan, K.V. Hemalatha, Structural and optical properties of Co3O4 nanoparticles prepared by sol–gel technique for photocatalytic application. Int. J. Electrochem. Sci. 14, 3535–3552 (2019). https://doi.org/10.20964/2019.04.40
- O. Mounkachi, E. Salmani, M. Lakhal, H. Ez-Zahraouy, M. Hamedoun, M. Benaissa, A. Kara, A. Ennaoui, A. Benyoussef, Band-gap engineering of SnO2. Sol. Energy Mater. Sol. Cells 148, 34–38 (2016). https://doi.org/10.1016/j.solmat.
References
C. Shenghai, S. Liping, K. Fanhao, H. Lihua, Z. Hui, Carbon-coated MnCo2O4 nanowire as bifunctional oxygen catalysts for rechargeable Zn–air batteries. J. Power Sources 430, 25–31 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.029
H. Hou, H. Shao, X. Zhang, G. Liu, S. Hussain, G. Qiao, RGO-loaded flower-like ZnCo2O4 nanohybrid as counter electrode for dye-sensitized solar cells. Mater. Lett. 225, 5–8 (2018). https://doi.org/10.1016/j.matlet.2018.04.103
R. Shi, Y. Zhang, Z. Wang, Facile synthesis of a ZnCo2O4 electrocatalyst with three-dimensional architecture for methanol oxidation. J. Alloys Compd. 810, 151879 (2019). https://doi.org/10.1016/j.jallcom.2019.151879
Z. Li, M. Ye, A. Han, H. Du, Preparation, characterization and microwave absorption properties of NiFe2O4 and its composites with conductive polymer. J. Mater. Sci. Mater. Electron. 27, 1031–1043 (2016). https://doi.org/10.1007/s10854-015-3848-8
L. Li, G. Jiang, J. Ma, CuMn2O4/graphene nanosheets as excellent anode for lithium-ion battery. Mater. Res. Bull. 104, 53–59 (2018). https://doi.org/10.1016/j.materresbull.2018.03.051
P. Li, W. Sun, Q. Yu, P. Yang, J. Qiao, Z. Wang, D. Rooney, K. Sun, An effective three-dimensional ordered mesoporous CuCo2O4 as electrocatalyst for Li–O2 batteries. Solid State Ion. 289, 17–22 (2016). https://doi.org/10.1016/j.ssi.2016.02.014
Y. Jin, L. Wang, Q. Jiang, X. Du, C. Ji, X. He, Morphology controllable synthesis of CoMn2O4 structures by adjusting the urea concentration: from microflowers to microspheres. Mater. Lett. 168, 166–170 (2016). https://doi.org/10.1016/j.matlet.2016.01.077
F. Du, X. Zuo, Q. Yang, B. Yang, G. Li et al., The stabilization of NiCo2O4 nanobelts used for catalyzing triiodides in dye-sensitized solar cells by the presence of RGO sheets. Sol. Energy Mater. Sol. Cells 149, 9–14 (2016). https://doi.org/10.1016/j.solmat.2015.11.025
L. Manjakkal, D. Szwagierczak, R. Dahiya, Metal oxides based electrochemical pH sensors: current progress and future perspectives. Prog. Mater. Sci. 109, 100635 (2020). https://doi.org/10.1016/j.pmatsci.2019.100635
X. Han, X. Gui, T.F. Yi, Y. Li, C. Yue, Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Curr. Opin. Solid State Mater. Sci. 22, 109–126 (2018). https://doi.org/10.1016/j.cossms.2018.05.005
Y. Li, X. Han, T. Yi, Y. He, X. Li, Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. J. Energy Chem. 31, 54–78 (2019). https://doi.org/10.1016/j.jechem.2018.05.010
Q. Wang, B. Liu, X. Wang, S. Ran, L. Wang, D. Chen, G. Shen, Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells. J. Mater. Chem. 22, 21647–21653 (2012). https://doi.org/10.1039/c2jm34705a
R.R. Owings, G.J. Exarhos, C.F. Windisch, P.H. Holloway, J.G. Wen, Process enhanced polaron conductivity of infrared transparent nickel–cobalt oxide. Thin Solid Films 483, 175–184 (2005). https://doi.org/10.1016/j.tsf.2005.01.011
X. Zhao, L. Mao, Q. Cheng, J. Li, F. Liao, G. Yang, L. Xie, C. Zhao, L. Chen, Two-dimensional spinel structured co-based materials for high performance supercapacitors: a critical review. Chem. Eng. J. 387, 124081 (2020). https://doi.org/10.1016/j.cej.2020.124081
K. Choi, I.K. Moon, J. Oh, An efficient amplification strategy for N-doped NiCo2O4 with oxygen vacancies and partial Ni/Co-nitrides as a dual-function electrode for both supercapatteries and hydrogen electrocatalysis. J. Mater. Chem. A 7, 1468–1478 (2019). https://doi.org/10.1039/c8ta07210h
Y. Ha, L. Shi, X. Yan, Z. Chen, Y. Li, W. Xu, R. Wu, Multifunctional electrocatalysis on a porous N-doped NiCo2O4@C nanonetwork. ACS Appl. Mater. Interfaces 11, 45546–45553 (2019). https://doi.org/10.1021/acsami.9b13580
W. Chu, Z. Shi, Y. Hou, D. Ma, X. Bai, Y. Gao, N. Yang, Trifunctional of phosphorus-doped NiCo2O4 nanowire materials for asymmetric supercapacitor, oxygen evolution reaction, and hydrogen evolution reaction. ACS Appl. Mater. Interfaces 12, 2763–2772 (2020). https://doi.org/10.1021/acsami.9b13182
X. Hu, M. Huang, X. Meng, X. Ju, Fabrication of uniform urchin-like N-doped NiCo2O4@C hollow nanostructures for high performance supercapacitors. RSC Adv. 9, 42110–42119 (2019). https://doi.org/10.1039/c9ra07678f
J. Zhang, Y. Chen, R. Chu, H. Jiang, Y. Zeng, Y. Zhang, N.M. Huang, H. Guo, Pseudocapacitive P-doped NiCo2O4 microspheres as stable anode for lithium ion batteries. J. Alloys Compd. 787, 1051–1062 (2019). https://doi.org/10.1016/j.jallcom.2018.12.275
J.H. Lin, Y.T. Yan, T.X. Xu, C.Q. Qu, J. Li, J. Cao, J.C. Feng, J.L. Qi, S doped NiCo2O4 nanosheet arrays by Ar plasma: an efficient and bifunctional electrode for overall water splitting. J. Colloid Interface Sci. 560, 34–39 (2020). https://doi.org/10.1016/j.jcis.2019.10.056
M. Yang, Y. Li, Y. Yu, X. Liu, Z. Shi, Y. Xing, Self-assembly of three-dimensional zinc-doped NiCo2O4 as efficient electrocatalysts for oxygen evolution reaction. Chem. A Eur. J. 24, 13002–13008 (2018). https://doi.org/10.1002/chem.201802325
K.L. Yan, X. Shang, Z. Li, B. Dong, X. Li et al., Ternary mixed metal Fe-doped NiCo2O4 nanowires as efficient electrocatalysts for oxygen evolution reaction. Appl. Surf. Sci. 416, 371–378 (2017). https://doi.org/10.1016/j.apsusc.2017.04.204
L. Liu, H. Zhang, L. Fang, Y. Mu, Y. Wang, Facile preparation of novel dandelion-like Fe-doped NiCo2O4 microspheres@nanomeshes for excellent capacitive property in asymmetric supercapacitors. J. Power Sources 327, 135–144 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.054
J. Ma, E. Guo, L. Yin, Porous hierarchical spinel Mn-doped NiCo2O4 nanosheet architectures as high-performance anodes for lithium-ion batteries and electrochemical reaction mechanism. J. Mater. Sci. Mater. Electron. 30, 8555–8567 (2019). https://doi.org/10.1007/s10854-019-01176-5
W.Y. Xia, N. Li, Q.Y. Li, K.H. Ye, C.W. Xu, Au–NiCo2O4 supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction. Sci. Rep. 6, 23398 (2016). https://doi.org/10.1038/srep23398
C. Wei, X. Zheng, R. Li, X. Wang, Z. Xaio, L. Wang, Mesoporous hybrid NiCo2O4/CeO2 hierarchical hollow spheres for enhanced supercapacitors. ChemistrySelect 4, 11149–11155 (2019). https://doi.org/10.1002/slct.201902778
C. Wei, R. Zhang, X. Zheng, Q. Ru, Q. Chen, C. Cui, G. Li, D. Zhang, Hierarchical porous NiCo2O4/CeO2 hybrid materials for high performance supercapacitors. Inorg. Chem. Front. 5, 3126–3134 (2018). https://doi.org/10.1039/c8qi01010b
S.K. Shinde, M.B. Jalak, G.S. Ghodake, N.C. Maile, H.M. Yadav et al., Flower-like NiCo2O4/NiCo2S4 electrodes on Ni mesh for higher supercapacitor applications. Ceram. Int. 45, 17192–17203 (2019). https://doi.org/10.1016/j.ceramint.2019.05.274
B. Ge, K. Li, Z. Fu, L. Pu, X. Zhang, Z. Liu, K. Huang, The performance of nano urchin-like NiCo2O4 modified activated carbon as air cathode for microbial fuel cell. J. Power Sources 303, 325–332 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.003
W. Wang, X. Song, C. Gu, D. Liu, J. Liu, J. Huang, A high-capacity NiCo2O4@reduced graphene oxide nanocomposite Li-ion battery anode. J. Alloys Compd. 741, 223–230 (2018). https://doi.org/10.1016/j.jallcom.2018.01.097
Y.Q. Zhang, M. Li, B. Hua, Y. Wang, Y.F. Sun, J.L. Luo, A strongly cooperative spinel nanohybrid as an efficient bifunctional oxygen electrocatalyst for oxygen reduction reaction and oxygen evolution reaction. Appl. Catal. B Environ. 236, 413–419 (2018). https://doi.org/10.1016/j.apcatb.2018.05.047
L. Hu, L. Wu, M. Liao, X. Fang, High-performance NiCo2O4 nanofilm photodetectors fabricated by an interfacial self-assembly strategy. Adv. Mater. 23, 1988–1992 (2011). https://doi.org/10.1002/adma.201004109
M. Silambarasan, P.S. Ramesh, D. Geetha, Spinel NiCo2O4 nanostructures: synthesis, morphological, optical and electrochemical properties, in Recent Trends in Materials Science and Applications. Springer Proceedings in Physics, vol. 189, ed. by J. Ebenezar (Springer, Cham, 2017), pp. 219–231. https://doi.org/10.1007/978-3-319-44890-9_21
A. Bashir, S. Shukla, R. Bashir, R. Patidar, A. Bruno, D. Gupta, M.S. Satti, Z. Akhter, Low temperature, solution processed spinel NiCo2O4 nanoparticles as efficient hole transporting material for mesoscopic n-i-p perovskite solar cells. Sol. Energy 196, 367–378 (2020). https://doi.org/10.1016/j.solener.2019.12.031
H. Zhang, Y. Chen, RGO loaded porous NiCo2O4 nanoplates as alcohol gas sensors. Nanosci. Nanotechnol. Lett. 9, 374–379 (2017). https://doi.org/10.1166/nnl.2017.2341
B. Zhang, F. Qu, X. Zhou, S. Zhang, T. Thomas, M. Yang, Porous coral-like NiCo2O4 nanospheres with promising xylene gas sensing properties. Sens. Actuators B Chem. 261, 203–209 (2018). https://doi.org/10.1016/j.snb.2018.01.125
N. Joshi, L.F. Da Silva, H. Jadhav, J.C. M’Peko, B.B. Millan Torres, K. Aguir, V.R. Mastelaro, O.N. Oliveira, One-step approach for preparing ozone gas sensors based on hierarchical NiCo2O4 structures. RSC Adv. 6, 92655–92662 (2016). https://doi.org/10.1039/c6ra18384k
Z. Lu, L. Wu, J. Zhang, W. Dai, G. Mo, J. Ye, Bifunctional and highly sensitive electrochemical non-enzymatic glucose and hydrogen peroxide biosensor based on NiCo2O4 nanoflowers decorated 3D nitrogen doped holey graphene hydrogel. Mater. Sci. Eng. C 102, 708–717 (2019). https://doi.org/10.1016/j.msec.2019.04.072
L. Liu, Z. Wang, J. Yang, G. Liu, J. Li, L. Guo, S. Chen, Q. Guo, NiCo2O4 nanoneedle-decorated electrospun carbon nanofiber nanohybrids for sensitive non-enzymatic glucose sensors. Sens. Actuators. B Chem. 258, 920–928 (2018). https://doi.org/10.1016/j.snb.2017.11.118
B. Li, J. Feng, Y. Qian, S. Xiong, Mesoporous quasi-single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties. J. Mater. Chem. A 3, 10336–10344 (2015). https://doi.org/10.1039/c5ta01229e
Y. Zhu, X. Pu, W. Song, Z. Wu, Z. Zhou et al., High capacity NiCo2O4 nanorods as electrode materials for supercapacitor. J. Alloys Compd. 617, 988–993 (2014). https://doi.org/10.1016/j.jallcom.2014.08.064
J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 5, 981–988 (2013). https://doi.org/10.1021/am3026294
R. Batool, A. Rhouati, M.H. Nawaz, A. Hayat, J.L. Marty, A review of the construction of nano-hybrids for electrochemical biosensing of glucose. Biosensors 9(1), 46 (2019). https://doi.org/10.3390/bios9010046
P. Mehrotra, Biosensors and their applications—a review. J. Oral Biol. Craniofac. Res. 6, 153–159 (2016). https://doi.org/10.1016/j.jobcr.2015.12.002
H. Lu, S. Zhang, L. Guo, W. Li, Applications of graphene-based composite hydrogels: a review. RSC Adv. 7, 51008–51020 (2017). https://doi.org/10.1039/c7ra09634h
R. Bhadoria, H.S. Chaudhary, Recent advances of biosensors in biomedical sciences. Int. J. Drug Deliv. 3, 571 (2011). https://doi.org/10.3389/fbioe.2016.00011
J. Peña-Bahamonde, H.N. Nguyen, S.K. Fanourakis, D.F. Rodrigues, Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol. 16, 75 (2018). https://doi.org/10.1186/s12951-018-0400-z
S. Yin, Z. Jin, T. Miyake, Wearable high-powered biofuel cells using enzyme/carbon nanotube composite fibers on textile cloth. Biosens. Bioelectron. 141, 111471 (2019). https://doi.org/10.1016/j.bios.2019.111471
B.S. Dakshayini, K.R. Reddy, A. Mishra, N.P. Shetti, S.J. Malode, S. Basu, S. Naveen, A.V. Raghu, Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. Microchem. J. 147, 7–24 (2019). https://doi.org/10.1016/j.microc.2019.02.061
N.P. Shetti, S.J. Malode, D. Ilager, K. Raghava Reddy, S.S. Shukla, T.M. Aminabhavi, A novel electrochemical sensor for detection of molinate using ZnO nanoparticles loaded carbon electrode. Electroanalysis 31, 1040–1049 (2019). https://doi.org/10.1002/elan.201800775
G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng, X. Zhang, Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 180, 161–186 (2013). https://doi.org/10.1007/s00604-012-0923-1
S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 556, 46–57 (2006). https://doi.org/10.1016/j.aca.2005.05.080
X. Hui, X. Xuan, J. Kim, J.Y. Park, A highly flexible and selective dopamine sensor based on Pt–Au nanoparticle-modified laser-induced graphene. Electrochim. Acta 328, 135066 (2019). https://doi.org/10.1016/j.electacta.2019.135066
R. Ahmad, N. Tripathy, M.S. Ahn, K.S. Bhat, T. Mahmoudi et al., Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode. Sci. Rep. 7, 5715 (2017). https://doi.org/10.1038/s41598-017-06064-8
R.J. Chung, A.N. Wang, Q.L. Liao, K.Y. Chuang, Non-enzymatic glucose sensor composed of carbon-coated nano-zinc oxide. Nanomaterials 7(2), 36 (2017). https://doi.org/10.3390/nano7020036
N.P. Shetti, S.J. Malode, D.S. Nayak, R.R. Naik, G.T. Kuchinad, K.R. Reddy, S.S. Shukla, T.M. Aminabhavi, Hetero nanostructured iron oxide and bentonite clay composite assembly for the determination of an antiviral drug acyclovir. Microchem. J. 155, 104727 (2020). https://doi.org/10.1016/j.microc.2020.104727
C. Wang, E. Zhou, W. He, X. Deng, J. Huang et al., NiCo2O4-based supercapacitor nanomaterials. Nanomaterials 7(2), 41 (2017). https://doi.org/10.3390/nano7020041
J.P. Cheng, W.D. Wang, X.C. Wang, F. Liu, Recent research of core–shell structured composites with NiCo2O4 as scaffolds for electrochemical capacitors. Chem. Eng. J. 393, 124747 (2020). https://doi.org/10.1016/j.cej.2020.124747
H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho, G. Wu, Transition metal (Fe Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 11, 601–625 (2016). https://doi.org/10.1016/j.nantod.2016.09.001
S.S. Tong, X.J. Wang, Q.C. Li, X.J. Han, Progress on electrocatalysts of hydrogen evolution reaction based on carbon fiber materials. Chin. J. Anal. Chem. 44, 1447–1457 (2016). https://doi.org/10.1016/S1872-2040(16)60958-1
N.P. Shetti, D.S. Nayak, S.J. Malode, R.R. Kakarla, S.S. Shukla, T.M. Aminabhavi, Sensors based on ruthenium-doped TiO2 nanoparticles loaded into multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic acid. Anal. Chim. Acta 1051, 58–72 (2019). https://doi.org/10.1016/j.aca.2018.11.041
S.D. Bukkitgar, N.P. Shetti, R.M. Kulkarni, K.R. Reddy, S.S. Shukla, V.S. Saji, T.M. Aminabhavi, Electro-catalytic behavior of Mg-doped ZnO nano-flakes for oxidation of anti-inflammatory drug. J. Electrochem. Soc. 166, B3072 (2019). https://doi.org/10.1149/2.0131909jes
C. Sabu, T.K. Henna, V.R. Raphey, K.P. Nivitha, K. Pramod, Advanced biosensors for glucose and insulin. Biosens. Bioelectron. 141, 111201 (2019). https://doi.org/10.1016/j.bios.2019.03.034
C.V. Reddy, I.N. Reddy, K.R. Reddy, S. Jaesool, K. Yoo, Template-free synthesis of tetragonal Co-doped ZrO2 nanoparticles for applications in electrochemical energy storage and water treatment. Electrochim. Acta 317, 416–426 (2019). https://doi.org/10.1016/j.electacta.2019.06.010
P.S. Basavarajappa, S.B. Patil, N. Ganganagappa, K.R. Reddy, A.V. Raghu, C.V. Reddy, Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrogen Energy 45, 7764–7778 (2020). https://doi.org/10.1016/j.ijhydene.2019.07.241
S.B. Patil, P.S. Basavarajappa, N. Ganganagappa, M.S. Jyothi, A.V. Raghu, K.R. Reddy, Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int. J. Hydrogen Energy 44, 13022–13039 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.164
C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, Recent advances in electrochemical glucose biosensors: a review. RSC Adv. 3, 4473–4491 (2013). https://doi.org/10.1039/c2ra22351a
D.W. Hwang, S. Lee, M. Seo, T.D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors—a review. Anal. Chim. Acta 1033, 1–34 (2018). https://doi.org/10.1016/j.aca.2018.05.051
A. Jing, G. Liang, H. Shi, Y. Yuan, Q. Zhan, W. Feng, Three-dimensional holey-graphene architectures for highly sensitive enzymatic electrochemical determination of hydrogen peroxide. J. Nanosci. Nanotechnol. 19, 7404–7409 (2019). https://doi.org/10.1166/jnn.2019.16613
J.C. Chou, C.Y. Wu, Y.H. Liao, C.H. Lai, S.J. Yan, Y.X. Wu, S.H. Lin, Enzymatic urea sensor based on graphene oxide/titanium dioxide films modified by urease-magnetic beads. IEEE Trans. Nanotechnol. 18, 336–344 (2019). https://doi.org/10.1109/TNANO.2019.2907225
E. Zapp, D. Brondani, I.C. Vieira, J. Dupont, C.W. Scheeren, Bioelectroanalytical determination of rutin based on bi-enzymatic sensor containing iridium nanoparticles in ionic liquid phase supported in clay. Electroanalysis 23, 764–776 (2011). https://doi.org/10.1002/elan.201000619
M. Kameya, H. Onaka, Y. Asano, Selective tryptophan determination using tryptophan oxidases involved in bis-indole antibiotic biosynthesis. Anal. Biochem. 438, 124–132 (2013). https://doi.org/10.1016/j.ab.2013.03.024
K.R. Reddy, B.C. Sin, C.H. Yoo, W. Park, K.S. Ryu, J.S. Lee, D. Sohn, Y. Lee, A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scr. Mater. 58, 1010–1013 (2008). https://doi.org/10.1016/j.scriptamat.2008.01.047
N.L. Reddy, V.N. Rao, M. Vijayakumar, R. Santhosh, S. Anandan et al., A review on frontiers in plasmonic nano-photocatalysts for hydrogen production. Int. J. Hydrogen Energy 44, 10453–10472 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.120
C. Venkata Reddy, I.N. Reddy, B. Akkinepally, K.R. Reddy, J. Shim, Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe2O3 nanostructure photoanode. J. Alloys Compd. 814, 152349 (2020). https://doi.org/10.1016/j.jallcom.2019.152349
N.P. Shetti, S.D. Bukkitgar, K.R. Reddy, C.V. Reddy, T.M. Aminabhavi, Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf. B: Biointerfaces 178, 385–394 (2019). https://doi.org/10.1016/j.colsurfb.2019.03.013
S. Kumar, S.D. Bukkitgar, S. Singh, Pratibha, V. Singh et al., Electrochemical sensors and biosensors based on graphene functionalized with metal oxide nanostructures for healthcare applications. ChemistrySelect 4, 5322–5337 (2019). https://doi.org/10.1002/slct.201803871
N.P. Shetti, D.S. Nayak, S.J. Malode, K.R. Reddy, S.S. Shukla, T.M. Aminabhavi, Electrochemical behavior of flufenamic acid at amberlite XAD-4 resin and silver-doped titanium dioxide/amberlite XAD-4 resin modified carbon electrodes. Colloids Surf. B: Biointerfaces 177, 407–415 (2019). https://doi.org/10.1016/j.colsurfb.2019.02.022
K.R. Reddy, V.G. Gomes, M. Hassan, Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mater. Res. Express 1, 15012 (2014). https://doi.org/10.1088/2053-1591/1/1/015012
D. Kishore Kumar, J. Loskot, J. Kříž, N. Bennett, H.M. Upadhyaya, V. Sadhu, C. Venkata Reddy, K.R. Reddy, Synthesis of SnSe quantum dots by successive ionic layer adsorption and reaction (SILAR) method for efficient solar cells applications. Sol. Energy 199, 570–574 (2020). https://doi.org/10.1016/j.solener.2020.02.050
N.R. Reddy, U. Bhargav, M.M. Kumari, K.K. Cheralathan, M.V. Shankar, K.R. Reddy, T.A. Saleh, T.M. Aminabhavi, Highly efficient solar light-driven photocatalytic hydrogen production over Cu/FCNTs-titania quantum dots-based heterostructures. J. Environ. Manag. 254, 109747 (2020). https://doi.org/10.1016/j.jenvman.2019.109747
C.V. Reddy, I.N. Reddy, V.V.N. Harish, K.R. Reddy, N.P. Shetti, J. Shim, T.M. Aminabhavi, Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles. Chemosphere 239, 124766 (2020). https://doi.org/10.1016/j.chemosphere.2019.124766
V. Navakoteswara Rao, N. Lakshmana Reddy, M. Mamatha Kumari, P. Ravi, M. Sathish et al., Photocatalytic recovery of H2 from H2S containing wastewater: surface and interface control of photo-excitons in Cu2S@TiO2 core–shell nanostructure. Appl. Catal. B Environ. 254, 174–185 (2019). https://doi.org/10.1016/j.apcatb.2019.04.090
P.S. Basavarajappa, B.N.H. Seethya, N. Ganganagappa, K.B. Eshwaraswamy, R.R. Kakarla, Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles. ChemistrySelect 3, 9025–9033 (2018). https://doi.org/10.1002/slct.201801198
N.P. Shetti, S.J. Malode, D.S. Nayak, G.B. Bagihalli, S.S. Kalanur et al., Fabrication of ZnO nanoparticles modified sensor for electrochemical oxidation of methdilazine. Appl. Surf. Sci. 496, 143656 (2019). https://doi.org/10.1016/j.apsusc.2019.143656
S. Feng, L. Guanghua, Hydrothermal and solvothermal syntheses, in Modern Inorganic Synthetic Chemistry, 2nd edn., ed. by R. Xu, Y. Xu (Elsevier, Amsterdam, 2011), pp. 73–104. https://doi.org/10.1016/B978-0-444-63591-4.00004-5
G.W. Morey, Hydrothermal synthesis. J. Am. Ceram. Soc. 36, 279–285 (1953). https://doi.org/10.1111/j.1151-2916.1953.tb12883.x
D. Ohare, Hydrothermal Synthesis. Encyclopedia of Materials: Science and Technology, 2nd edn. (Elsevier, Amsterdam, 2001), pp. 3989–3992. https://doi.org/10.1016/B0-08-043152-6/00701-4
P. Nayak, M. Sahoo, S.K. Nayak, Urchin-like NiCo2O4 microsphere by hydrothermal route: structural, electrochemical, optical and magnetic properties. Ceram. Int. 46(3), 3818–3826 (2020). https://doi.org/10.1016/j.ceramint.2019.10.105
S. Debata, S. Patra, S. Banerjee, R. Madhuri, P.K. Sharma, Controlled hydrothermal synthesis of graphene supported NiCo2O4 coral-like nanostructures: an efficient electrocatalyst for overall water splitting. Appl. Surf. Sci. 449, 203–212 (2018). https://doi.org/10.1016/j.apsusc.2018.01.302
B. Cui, H. Lin, J.B. Li, X. Li, J. Yang, J. Tao, Core–ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 18, 1440–1447 (2008). https://doi.org/10.1002/adfm.200700982
K. Xu, J. Yang, J. Hu, Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors. J. Colloid Interface Sci. 511, 456–462 (2018). https://doi.org/10.1016/j.jcis.2017.09.113
X. Chang, W. Li, Y. Liu, M. He, X. Zheng, X. Lv, Z. Ren, Synthesis and characterization of NiCo2O4 nanospheres/nitrogen-doped graphene composites with enhanced electrochemical performance. J. Alloys Compd. 784, 293–300 (2019). https://doi.org/10.1016/j.jallcom.2019.01.036
Z.Q. Liu, Q.Z. Xu, J.Y. Wang, N. Li, S.H. Guo et al., Facile hydrothermal synthesis of urchin-like NiCo2O4 spheres as efficient electrocatalysts for oxygen reduction reaction. Int. J. Hydrogen Energy 38, 6657–6662 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.092
R. Ding, L. Qi, M. Jia, H. Wang, Simple hydrothermal synthesis of mesoporous spinel NiCo2O4 nanoparticles and their catalytic behavior in CH3OH electro-oxidation and H2O2 electro-reduction. Catal. Sci. Technol. 3, 3207–3215 (2013). https://doi.org/10.1039/c3cy00590a
M. Yu, J. Chen, J. Liu, S. Li, Y. Ma, J. Zhang, J. An, Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation. Electrochim. Acta 151, 99–108 (2015). https://doi.org/10.1016/j.electacta.2014.10.156
Y. Liu, X. Chi, Q. Han, Y. Du, J. Yang, Y. Liu, Vertically self-standing C@ NiCo2O4 nanoneedle arrays as effective binder-free cathodes for rechargeable Na–O2 batteries. J. Alloys Compd. 772, 693–702 (2019). https://doi.org/10.1016/j.jallcom.2018.09.121
Y. Zhu, Z. Wu, M. Jing, W. Song, H. Hou, X. Yang, Q. Chen, X. Ji, 3D network-like mesoporous NiCo2O4 nanostructures as advanced electrode material for supercapacitors. Electrochim. Acta 149, 144–151 (2014). https://doi.org/10.1016/j.electacta.2014.10.064
J. Wang, Y. Zhang, J. Ye, H. Wei, J. Hao, J. Mu, S. Zhao, S. Hussain, Facile synthesis of three-dimensional NiCo2O4 with different morphology for supercapacitors. RSC Adv. 6, 70077–70084 (2016). https://doi.org/10.1039/c6ra14242g
Q. Zheng, X. Zhang, Y. Shen, Fabrication of free-standing NiCo2O4 nanoarrays via a facile modified hydrothermal synthesis method and their applications for lithium ion batteries and high-rate alkaline batteries. Mater. Res. Bull. 63, 211–215 (2015). https://doi.org/10.1016/j.materresbull.2014.12.024
W. Jiang, F. Hu, S. Yao, Z. Sun, X. Wu, Hierarchical NiCo2O4 nanowalls composed of ultrathin nanosheets as electrode materials for supercapacitor and Li ion battery applications. Mater. Res. Bull. 93, 303–309 (2017). https://doi.org/10.1016/j.materresbull.2017.05.036
X. Yang, X. Yu, Q. Yang, D. Zhao, K. Zhang et al., Controllable synthesis and magnetic properties of hydrothermally synthesized NiCo2O4 nano-spheres. Ceram. Int. 43, 8585–8589 (2017). https://doi.org/10.1016/j.ceramint.2017.03.121
S. Sun, X. Jin, B. Cong, X. Zhou, W. Hong, G. Chen, Construction of porous nanoscale NiO/NiCo2O4 heterostructure for highly enhanced electrocatalytic oxygen evolution activity. J. Catal. 379, 1–9 (2019). https://doi.org/10.1016/j.jcat.2019.09.010
E. Umeshbabu, G. Rajeshkhanna, G.R. Rao, Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application. Int. J. Hydrogen Energy 39, 15627–15638 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.168
W. Zhang, W. Xin, T. Hu, Q. Gong, T. Gao, G. Zhou, One-step synthesis of NiCo2O4 nanorods and firework-shaped microspheres formed with necklace-like structure for supercapacitor materials. Ceram. Int. 45, 8406–8413 (2019). https://doi.org/10.1016/j.ceramint.2019.01.149
J. Shen, X. Li, N. Li, M. Ye, Facile synthesis of NiCo2O4-reduced graphene oxide nanocomposites with improved electrochemical properties. Electrochim. Acta 141, 126–133 (2014). https://doi.org/10.1016/j.electacta.2014.07.063
A.K. Mondal, D. Su, S. Chen, X. Xie, G. Wang, Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl. Mater. Interfaces. 6, 14827–14835 (2014). https://doi.org/10.1021/am5036913
L. Shen, L. Yu, X.Y. Yu, X. Zhang, X.W.D. Lou, Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-Ion batteries and supercapacitors. Angew. Chem. Int. Ed. 54, 1868–1872 (2015). https://doi.org/10.1002/anie.201409776
H. Xin, Z. Xu, Y. Liu, W. Li, Z. Hu, 3D flower-like NiCo2O4 electrode material prepared by a modified solvothermal method for supercapacitor. J. Alloys Compd. 711, 670–676 (2017). https://doi.org/10.1016/j.jallcom.2017.03.208
J. Tang, A. Paul Alivisatos, Crystal splitting in the growth of Bi2S3. Nano Lett. 6, 2701–2706 (2006). https://doi.org/10.1021/nl0615930
G.R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations. Angew. Chem. Int. Ed. 50, 826–859 (2011). https://doi.org/10.1002/anie.201000235
S.K. Meher, P. Justin, G. Ranga-Rao, Nanoscale morphology dependent pseudocapacitance of NiO: influence of intercalating anions during synthesis. Nanoscale 3, 683–692 (2011). https://doi.org/10.1039/c0nr00555j
Z.Q. Liu, K. Xiao, Q.Z. Xu, N. Li, Y.Z. Su, H.J. Wang, S. Chen, Fabrication of hierarchical flower-like super-structures consisting of porous NiCo2O4 nanosheets and their electrochemical and magnetic properties. RSC Adv. 3, 4372–4380 (2013). https://doi.org/10.1039/c3ra23084h
A. Jain, B.J. Paul, S. Kim, V.K. Jain, J. Kim, A.K. Rai, Two-dimensional porous nanodisks of NiCo2O4 as anode material for high-performance rechargeable lithium-ion battery. J. Alloys Compd. 772, 72–79 (2019). https://doi.org/10.1016/j.jallcom.2018.09.051
Q. Wang, X. Wang, J. Xu, X. Ouyang, X. Hou, D. Chen, R. Wang, G. Shen, Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8, 44–51 (2014). https://doi.org/10.1016/j.nanoen.2014.05.014
Y. Chen, B. Qu, L. Hu, Z. Xu, Q. Li, T. Wang, High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes. Nanoscale 5, 9812–9820 (2013). https://doi.org/10.1039/c3nr02972g
D. Cai, S. Xiao, D. Wang, B. Liu, L. Wang et al., Morphology controlled synthesis of NiCo2O4 nanosheet array nanostructures on nickel foam and their application for pseudocapacitors. Electrochim. Acta 142, 118–124 (2014). https://doi.org/10.1016/j.electacta.2014.06.119
B. Cai, W. Mao, Z. Ye, J. Huang, Facile fabrication of all-solid-state SnO2/NiCo2O4 biosensor for self-powered glucose detection. Appl. Phys. A Mater. Sci. Process. 122, 806 (2016). https://doi.org/10.1007/s00339-016-0263-9
J. Deng, H. Zhang, Y. Zhang, P. Luo, L. Liu, Y. Wang, Striking hierarchical urchin-like peapoded NiCo2O4@C as advanced bifunctional electrocatalyst for overall water splitting. J. Power Sources 372, 46–53 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.062
J. Yang, C. Li, Z. Quan, D. Kong, X. Zhang, P. Yang, J. Lin, One-step aqueous solvothermal synthesis of In2O3 nanocrystals. Cryst. Growth Des. 8, 695–699 (2008). https://doi.org/10.1021/cg070340x
S.M. Saleh, A.M. Soliman, M.A. Sharaf, V. Kale, B. Gadgil, Influence of solvent in the synthesis of nano-structured ZnO by hydrothermal method and their application in solar-still. J. Environ. Chem. Eng. B (2017). https://doi.org/10.1016/j.jece.2017.02.004
F. Fu, J. Li, Y. Yao, X. Qin, Y. Dou, H. Wang, J. Tsui, K.Y. Chan, M. Shao, Hierarchical NiCo2O4 micro- and nanostructures with tunable morphologies as anode materials for lithium- and sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 16194–16201 (2017). https://doi.org/10.1021/acsami.7b02175
X. Wang, Y. Fang, B. Shi, F. Huang, F. Rong, R. Que, Three-dimensional NiCo2O4@ NiCo2O4 core–shell nanocones arrays for high-performance supercapacitors. Chem. Eng. J. 344, 311–319 (2018). https://doi.org/10.1016/j.cej.2018.03.061
Y. Liu, J. Goebl, Y. Yin, Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42, 2610–2653 (2013). https://doi.org/10.1039/c2cs35369e
Q. Ren, G. Wu, W. Xing, J. Han, P. Li et al., Highly ordered mesoporous NiCo2O4 as a high performance anode material for Li-ion batteries. Front. Chem. 7, 521 (2019). https://doi.org/10.3389/fchem.2019.00521
C. Yuan, J. Li, L. Hou, J. Lin, G. Pang, L. Zhang, L. Lian, X. Zhang, Template-engaged synthesis of uniform mesoporous hollow NiCo2O4 sub-microspheres towards high-performance electrochemical capacitors. RSC Adv. 3, 18573–18578 (2013). https://doi.org/10.1039/c3ra42828a
W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
V. Veeramani, R. Madhu, S.M. Chen, M. Sivakumar, Flower-like nickel–cobalt oxide decorated dopamine-derived carbon nanocomposite for high performance supercapacitor applications. ACS Sustain. Chem. Eng. 4, 5013–5020 (2016). https://doi.org/10.1021/acssuschemeng.6b01391
W. Xiong, Y. Gao, X. Wu, X. Hu, D. Lan et al., Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo2O4 nanowires for high-performance supercapacitor. ACS Appl. Mater. Interfaces 6, 19416–19423 (2014). https://doi.org/10.1021/am5055228
W. Li, F. Yang, Z. Hu, Y. Liu, Template synthesis of C@ NiCo2O4 hollow microsphere as electrode material for supercapacitor. J. Alloys Compd. 749, 305–312 (2018). https://doi.org/10.1016/j.jallcom.2018.03.046
X. Qi, W. Zheng, G. He, T. Tian, N. Du, L. Wang, NiCo2O4 hollow microspheres with tunable numbers and thickness of shell for supercapacitors. Chem. Eng. J. 309, 426–434 (2017). https://doi.org/10.1016/j.cej.2016.10.060
C. Li, X.Y. Gao, S.D. Li, Y. Zhao, K. Gao, Novel micron-sized NiCo2O4 pompon directed by a co-template method as capacitor electrode. Mater. Lett. 244, 74–77 (2019). https://doi.org/10.1016/j.matlet.2019.02.048
Y. Zhu, J. Wang, Z. Wu, M. Jing, H. Hou, X. Jia, X. Ji, An electrochemical exploration of hollow NiCo2O4 submicrospheres and its capacitive performances. J. Power Sources 287, 307–315 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.053
P. Xu, R. Yu, H. Ren, L. Zong, J. Chen, X. Xing, Hierarchical nanoscale multi-shell Au/CeO2 hollow spheres. Chem. Sci. 5, 4221–4226 (2014). https://doi.org/10.1039/c4sc01882f
J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin et al., Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 52, 6417–6420 (2013). https://doi.org/10.1002/anie.201301622
X. Zeng, J. Yang, L. Shi, L. Li, M. Gao, Synthesis of multi-shelled ZnO hollow microspheres and their improved photocatalytic activity. Nanoscale Res. Lett. 9, 468 (2014). https://doi.org/10.1186/1556-276X-9-468
B. Wang, Y. Cao, Y. Chen, X. Lai, J. Peng, J. Tu, X. Li, Rapid synthesis of rGO conjugated hierarchical NiCo2O4 hollow mesoporous nanospheres with enhanced glucose sensitivity. Nanotechnology 28, 025501 (2017). https://doi.org/10.1088/0957-4484/28/2/025501
X. Lv, Y. Zhu, H. Jiang, X. Yang, Y. Liu, Y. Su, J. Huang, Y. Yao, C. Li, Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalton Trans. 44, 4148–4154 (2015). https://doi.org/10.1039/c4dt03803g
J. Nai, Y. Tian, X. Guan, L. Guo, Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 135, 16082–16091 (2013). https://doi.org/10.1021/ja402751r
W. Huang, Y. Cao, Y. Chen, J. Peng, X. Lai, J. Tu, Fast synthesis of porous NiCo2O4 hollow nanospheres for a high-sensitivity non-enzymatic glucose sensor. Appl. Surf. Sci. 396, 804–811 (2017). https://doi.org/10.1016/j.apsusc.2016.11.034
X. Hou, S. Xue, M. Liu, X. Shang, Y. Fu, D. He, Hollow irregular octahedra-like NiCo2O4 cages composed of mesoporous nanosheets as a superior anode material for lithium-ion batteries. Chem. Eng. J. 350, 29–36 (2018). https://doi.org/10.1016/j.cej.2018.05.164
J. Yang, M. Cho, Y. Lee, Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation. Biosens. Bioelectron. 75, 15–22 (2016). https://doi.org/10.1016/j.bios.2015.08.008
H. Behzad, F.E. Ghodsi, PVP-assisted enhancement in ion storage performance of sol–gel derived nano-structured NiCo2O4 thin films as battery-type electrode. Mater. Res. Bull. 99, 336–342 (2018). https://doi.org/10.1016/j.materresbull.2017.11.031
M. El Baydi, S.K. Tiwari, R.N. Singh, J.L. Rehspringer, P. Chartier, J.F. Koenig, G. Poillerat, High specific surface area nickel mixed oxide powders LaNiO3 (Perovskite) and NiCo2O4 (Spinel) via sol–gel type routes for oxygen electrocatalysis in alkaline media. J. Solid State Chem. 116, 157–169 (1995). https://doi.org/10.1006/jssc.1995.1197
B. Hua, W. Zhang, J. Wu, J. Pu, B. Chi, L. Jian, A promising NiCo2O4 protective coating for metallic interconnects of solid oxide fuel cells. J. Power Sources 195, 7375–7379 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.031
L. Merabet, K. Rida, N. Boukmouche, Sol–gel synthesis, characterization, and supercapacitor applications of MCo2O4 (M = Ni, Mn, Cu, Zn) cobaltite spinels. Ceram. Int. 44, 11265–11273 (2018). https://doi.org/10.1016/j.ceramint.2018.03.171
Y.Q. Wu, X.Y. Chen, P.T. Ji, Q.Q. Zhou, Sol–gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors. Electrochim. Acta 56, 7517–7522 (2011). https://doi.org/10.1016/j.electacta.2011.06.101
T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, C.C. Hu, A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv. Mater. 22, 347–351 (2010). https://doi.org/10.1002/adma.200902175
M.C. Liu, C. Lu, X.M. Li, L. Bin Kong, Y.C. Luo, L. Kang, X. Li, F.C. Walsh, A sol–gel process for the synthesis of NiCo2O4 having improved specific capacitance and cycle stability for electrochemical capacitors. J. Electrochem. Soc. 159, A1262 (2012). https://doi.org/10.1149/2.057208jes
Y. Liu, N. Wang, C. Yang, W. Hu, Sol–gel synthesis of nanoporous NiCo2O4 thin films on ITO glass as high-performance supercapacitor electrodes. Ceram. Int. 42, 11411–11416 (2016). https://doi.org/10.1016/j.ceramint.2016.04.071
J. Bhagwan, G. Nagaraju, B. Ramulu, S.C. Sekhar, J.S. Yu, Rapid synthesis of hexagonal NiCo2O4 nanostructures for high-performance asymmetric supercapacitors. Electrochim. Acta 299, 509–517 (2019). https://doi.org/10.1016/j.electacta.2018.12.174
J. Liang, Z. Fan, S. Chen, S. Ding, G. Yang, Hierarchical NiCo2O4 nanosheets@halloysite nanotubes with ultrahigh capacitance and long cycle stability as electrochemical pseudocapacitor materials. Chem. Mater. 26, 4354–4360 (2014). https://doi.org/10.1021/cm500786a
F. Chen, W. Zhang, F. Cheng, Z. Yang, X. Fan, M. Huang, Stepwise co-precipitation to the synthesis of urchin-like NiCo2O4 hollow nanospheres as high performance anode material. J. Appl. Electrochem. 48, 1095–1104 (2018). https://doi.org/10.1007/s10800-018-1213-3
H.S. Jadhav, R.S. Kalubarme, C.N. Park, J. Kim, C.J. Park, Facile and cost effective synthesis of mesoporous spinel NiCo2O4 as an anode for high lithium storage capacity. Nanoscale 6, 10071–10076 (2014). https://doi.org/10.1039/c4nr02183e
L. Yu, B. Guan, W. Xiao, X.W. Lou, Formation of yolk-shelled Ni–Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv. Energy Mater. 5, 1500981 (2015). https://doi.org/10.1002/aenm.201500981
C. Wang, X. Zhang, D. Zhang, C. Yao, Y. Ma, Facile and low-cost fabrication of nanostructured NiCo2O4 spinel with high specific capacitance and excellent cycle stability. Electrochim. Acta 63, 220–227 (2012). https://doi.org/10.1016/j.electacta.2011.12.090
H.S. Jadhav, R.S. Kalubarme, J.W. Roh, K.N. Jung, K.H. Shin, C.N. Park, C.J. Park, Facile and cost effective synthesized mesoporous spinel NiCo2O4 as catalyst for non-aqueous lithium-oxygen batteries. J. Electrochem. Soc. 161, A2188 (2014). https://doi.org/10.1149/2.0771414jes
H. Fu, Y. Liu, L. Chen, Y. Shi, W. Kong et al., Designed formation of NiCo2O4 with different morphologies self-assembled from nanoparticles for asymmetric supercapacitors and electrocatalysts for oxygen evolution reaction. Electrochim. Acta 296, 719–729 (2019). https://doi.org/10.1016/j.electacta.2018.11.103
Y. Wan, J. Chen, J. Zhan, Y. Ma, Facile synthesis of mesoporous NiCo2O4 fibers with enhanced photocatalytic performance for the degradation of methyl red under visible light irradiation. J. Environ. Chem. Eng. 6, 6079–6087 (2018). https://doi.org/10.1016/j.jece.2018.09.023
K.T. Jeng, C.C. Chien, N.Y. Hsu, S.C. Yen, S. Du Chiou, S.H. Lin, W.M. Huang, Performance of direct methanol fuel cell using carbon nanotube-supported Pt–Ru anode catalyst with controlled composition. J. Power Sources 160, 97–104 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.057
B. Zhang, J. Zhu, H. Liu, P. Shi, W. Wu, F. Wang, Y. Liu, Rapid synthesis of hexagonal mesoporous structured NiCo2O4 via rotary evaporation for high performance supercapacitors. Ceram. Int. 44, 8695–8699 (2018). https://doi.org/10.1016/j.ceramint.2018.01.204
A. Karatutlu, A. Barhoum, A. Sapelkin, Liquid-phase synthesis of nanoparticles and nanostructured materials, in Emerging Applications of Nanoparticles and Architecture Nanostructures, ed. by A. Barhoum, A.S.H. Makhlouf (Elsevier, Amsterdam, 2018), pp. 1–28. https://doi.org/10.1016/B978-0-323-51254-1.00001-4
M.T. Crespo, A review of electrodeposition methods for the preparation of alpha-radiation sources. Appl. Radiat. Isot. 70, 210–215 (2012). https://doi.org/10.1016/j.apradiso.2011.09.010
M. Musiani, Electrodeposition of composites: an expanding subject in electrochemical materials science. Electrochim. Acta 45, 3397–3402 (2000). https://doi.org/10.1016/S0013-4686(00)00438-2
L.K. Wu, J. Xia, H.Z. Cao, Y.P. Tang, G.Y. Hou, G.Q. Zheng, Highly active and durable cauliflower-like NiCo2O4 film for oxygen evolution with electrodeposited SiO2 as template. Int. J. Hydrogen Energy 42, 10813–10825 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.076
N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu, S. Komarneni, Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. Chem. Eng. J. 345, 31–38 (2018). https://doi.org/10.1016/j.cej.2018.03.147
N. Zhao, H. Fan, M. Zhang, J. Ma, W. Zhang et al., Investigating the large potential window of NiCo2O4 supercapacitors in neutral aqueous electrolyte. Electrochim. Acta 321, 134681 (2019). https://doi.org/10.1016/j.electacta.2019.134681
C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X.W. Lou, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22, 4592–4597 (2012). https://doi.org/10.1002/adfm.201200994
A. Ramadoss, K.N. Kang, H.J. Ahn, S.I. Kim, S.T. Ryu, J.H. Jang, Realization of high performance flexible wire supercapacitors based on 3-dimensional NiCo2O4/Ni fibers. J. Mater. Chem. A 4, 4718–4727 (2016). https://doi.org/10.1039/c5ta10781d
J. Xiao, S. Yang, Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Adv. 1, 588–595 (2011). https://doi.org/10.1039/c1ra00342a
B. Ash, R.K. Paramguru, B.K. Mishra, Electrode reactions during electrolytic preparation of nickel hydroxide. Electrochem. Commun. 12, 48–51 (2010). https://doi.org/10.1016/j.elecom.2009.10.033
G. Zhang, T. Wang, X. Yu, H. Zhang, H. Duan, B. Lu, Nanoforest of hierarchical Co3O4@ NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy 2, 586–594 (2013). https://doi.org/10.1016/j.nanoen.2013.07.008
M. Mirzaee, C. Dehghanian, Synthesis of flower-like NiCo2O4 via chronopotentiometric technique and its application as electrode materials for high-performance supercapacitors. Mater. Today Energy 10, 68–80 (2018). https://doi.org/10.1016/j.mtener.2018.08.011
Y. An, Z. Hu, B. Guo, N. An, Y. Zhang, Z. Li, Y. Yang, H. Wu, Electrodeposition of honeycomb-shaped NiCo2O4 on carbon cloth as binder-free electrode for asymmetric electrochemical capacitor with high energy density. RSC Adv. 6, 37562–37573 (2016). https://doi.org/10.1039/c6ra04788b
J. Wu, P. Guo, R. Mi, X. Liu, H. Zhang et al., Ultrathin NiCo2O4 nanosheets grown on three-dimensional interwoven nitrogen-doped carbon nanotubes as binder-free electrodes for high-performance supercapacitors. J. Mater. Chem. A 3, 15331–15338 (2015). https://doi.org/10.1039/c5ta02719e
W.W. Liu, C.X. Lu, K. Liang, B.K. Tay, A high-performance anode material for Li-ion batteries based on a vertically aligned CNTs/NiCo2O4 core/shell structure. Part. Part. Syst. Charact. 31, 1151–1157 (2014). https://doi.org/10.1002/ppsc.201400030
L. Huang, D. Chen, Y. Ding, Z.L. Wang, Z. Zeng, M. Liu, Hybrid composite Ni(OH)2@ NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors. ACS Appl. Mater. Interfaces 5, 11159–11162 (2013). https://doi.org/10.1021/am403367u
Y. Zhang, B. Wang, F. Liu, J. Cheng, X.W. Zhang, L. Zhang, Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy 27, 627–637 (2016). https://doi.org/10.1016/j.nanoen.2016.08.013
J. Wang, R. Zhan, Y. Fu, H.Y. Yu, C. Jiang et al., Design and synthesis of hierarchical, freestanding bowl-like NiCo2O4 as cathode for long-life Li–O2 batteries. Mater. Today Energy 5, 214–221 (2017). https://doi.org/10.1016/j.mtener.2017.07.002
W. Wang, Z. Li, A. Meng, Q. Li, Network-like holey NiCo2O4 nanosheet arrays on Ni foam synthesized by electrodeposition for high-performance supercapacitors. J. Solid State Electrochem. 23, 635–644 (2019). https://doi.org/10.1007/s10008-018-4149-y
J. Zhang, R. Chu, Y. Chen, H. Jiang, Y. Zhang, N.M. Huang, H. Guo, Electrodeposited binder-free NiCo2O4@carbon nanofiber as a high performance anode for lithium ion batteries. Nanotechnology 29, 125401 (2018). https://doi.org/10.1088/1361-6528/aaa94c
P. Dinka, A. Mukasyan, Novel approaches to solution–combustion synthesis of nanomaterials. Int. J Self Propag. High Temp. Synth. 16, 23–35 (2007). https://doi.org/10.3103/S1061386207010049
K.V. Manukyan, Combustion and materials synthesis. Int. J. Self Propag. High Temp. Synth. 26, 143–144 (2017). https://doi.org/10.3103/S1061386217030025
J. Xu, Q. Chen, X. Liu, H. Baoquan, Q. Qian, The combustion synthesis of nanoscale ceria-doped calcia solid solution. Adv. Mater. Res. 610–613, 547–550 (2012). https://doi.org/10.4028/www.scientific.net/amr.610-613.547
R. Alcántara, M. Jaraba, P. Lavela, J.L. Tirado, NiCo2O4 spinel: first report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 14, 2847–2848 (2002). https://doi.org/10.1021/cm025556v
S.T. Aruna, A.S. Mukasyan, Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 12, 44–50 (2008). https://doi.org/10.1016/j.cossms.2008.12.002
A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016). https://doi.org/10.1021/acs.chemrev.6b00279
J.C. Toniolo, A.S. Takimi, C.P. Bergmann, Nanostructured cobalt oxides (Co3O4 and CoO) and metallic Co powders synthesized by the solution combustion method. Mater. Res. Bull. 45, 672–676 (2010). https://doi.org/10.1016/j.materresbull.2010.03.001
I.T. Papadas, A. Ioakeimidis, G.S. Armatas, S.A. Choulis, Low-temperature combustion synthesis of a spinel NiCo2O4 hole transport layer for perovskite photovoltaics. Adv. Sci. 5, 1701029 (2018). https://doi.org/10.1002/advs.201701029
T. Huang, B. Liu, P. Yang, Z. Qiu, Z. Hu, Facilely synthesized NiCo2O4 nanoparticles as electrode material for supercapacitors. Int. J. Electrochem. Sci. 13, 6144 (2018). https://doi.org/10.20964/2018.06.60
A.N. Naveen, S. Selladurai, Novel synthesis of highly porous spinel cobaltite (NiCo2O4) electrode material for supercapacitor applications. AIP Conf. Proc. 1591, 246 (2014). https://doi.org/10.1063/1.4872560
V. Shanmugavalli, K. Vishista, Low-cost synthesis of cubic spinel structured high efficient NiCo2O4/polyaniline nanocomposite for supercapacitor application. Mater. Res. Express 6, 45021 (2019). https://doi.org/10.1088/2053-1591/aae8ee
L. Li, S. Peng, Y. Cheah, P. Teh, J. Wang, G. Wee, Y. Ko, C. Wong, M. Srinivasan, Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. Chem. A: Eur. J. 19, 5892–5898 (2013). https://doi.org/10.1002/chem.201204153
H. Guan, C. Shao, Y. Liu, N. Yu, X. Yang, Fabrication of NiCo2O4 nanofibers by electrospinning. Solid State Commun. 131, 107–109 (2004). https://doi.org/10.1016/j.ssc.2004.04.035
G. Sun, L. Sun, H. Xie, J. Liu, Electrospinning of nanofibers for energy applications. Nanomaterials 6(7), E129 (2016). https://doi.org/10.3390/nano6070129
Q. Liu, J. Zhu, L. Zhang, Y. Qiu, Recent advances in energy materials by electrospinning. Renew. Sustain. Energy Rev. 81, 1825–1858 (2018). https://doi.org/10.1016/j.rser.2017.05.281
Z. Dong, S.J. Kennedy, Y. Wu, Electrospinning materials for energy-related applications and devices. J. Power Sources 196, 4886–4904 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.090
F. Lai, Y.E. Miao, Y. Huang, T.S. Chung, T. Liu, Flexible hybrid membranes of NiCo2O4-doped carbon nanofiber@MnO2 core–sheath nanostructures for high-performance supercapacitors. J. Phys. Chem. C 119, 13442–13450 (2015). https://doi.org/10.1021/acs.jpcc.5b02739
C. Busacca, S.C. Zignani, A. Di Blasi, O. Di Blasi, M. Lo Faro, V. Antonucci, A.S. Aricò, Electrospun NiMn2O4 and NiCo2O4 spinel oxides supported on carbon nanofibers as electrocatalysts for the oxygen evolution reaction in an anion exchange membrane-based electrolysis cell. Int. J. Hydrogen Energy 44, 20987–20996 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.214
K. Xu, S. Li, J. Yang, H. Xu, J. Hu, Hierarchical MnO2 nanosheets on electrospun NiCo2O4 nanotubes as electrode materials for high rate capability and excellent cycling stability supercapacitors. J. Alloys Compd. 678, 120–125 (2016). https://doi.org/10.1016/j.jallcom.2016.03.255
J. Sun, W. Wang, D. Yu, NiCo2O4 nanosheet-decorated carbon nanofiber electrodes with high electrochemical performance for flexible supercapacitors. J. Electron. Mater. 48, 3833–3843 (2019). https://doi.org/10.1007/s11664-019-07135-4
D. Lei, X.D. Li, M.K. Seo, M.S. Khil, H.Y. Kim, B.S. Kim, NiCo2O4 nanostructure-decorated PAN/lignin based carbon nanofiber electrodes with excellent cyclability for flexible hybrid supercapacitors. Polymer (Guildf) 132, 31–40 (2017). https://doi.org/10.1016/j.polymer.2017.10.051
G.M. Tomboc, H. Kim, Derivation of both EDLC and pseudocapacitance characteristics based on synergistic mixture of NiCo2O4 and hollow carbon nanofiber: an efficient electrode towards high energy density supercapacitor. Electrochim. Acta 318, 392–404 (2019). https://doi.org/10.1016/j.electacta.2019.06.112
A. Mirzaei, G. Neri, Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: a review. Sens. Actuators B: Chem. 237, 749–775 (2016). https://doi.org/10.1016/j.snb.2016.06.114
L.Y. Meng, B. Wang, M.G. Ma, K.L. Lin, The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater. Today Chem. 1–2, 63–83 (2016). https://doi.org/10.1016/j.mtchem.2016.11.003
X. Zhang, Y. Zhou, B. Luo, H. Zhu, W. Chu, K. Huang, Microwave-assisted synthesis of NiCo2O4 double-shelled hollow spheres for high-performance sodium ion batteries. Nano-Micro Lett. 10, 13 (2018). https://doi.org/10.1007/s40820-017-0164-2
A. Shanmugavani, R.K. Selvan, Microwave assisted reflux synthesis of NiCo2O4/NiO composite: fabrication of high performance asymmetric supercapacitor with Fe2O3. Electrochim. Acta 189, 283–294 (2016). https://doi.org/10.1016/j.electacta.2015.12.043
U.T. Nakate, S.N. Kale, Microwave assisted synthesis and characterizations of NiCo2O4 nanoplates and electrical, magnetic properties. Mater. Today: Proc. 3(6), 1992–1998 (2016). https://doi.org/10.1016/j.matpr.2016.04.101
L. Gu, L. Qian, Y. Lei, Y. Wang, J. Li, H. Yuan, D. Xiao, Microwave-assisted synthesis of nanosphere-like NiCo2O4 consisting of porous nanosheets and its application in electro-catalytic oxidation of methanol. J. Power Sources 261, 317–323 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.098
Y.Z. Su, Q.Z. Xu, Q.S. Zhong, S.T. Shi, C.J. Zhang, C.W. Xu, NiCo2O4/C prepared by one-step intermittent microwave heating method for oxygen evolution reaction in splitter. J. Alloys Compd. 617, 115–119 (2014). https://doi.org/10.1016/j.jallcom.2014.07.195
Y. Tao, L. Ruiyi, L. Zaijun, F. Yinjun, A facile and scalable strategy for synthesis of size-tunable NiCo2O4 with nanocoral-like architecture for high-performance. Electrochim. Acta 134, 384–392 (2014). https://doi.org/10.1016/j.electacta.2014.03.168
Y. Zhu, X. Ji, R. Yin, Z. Hu, X. Qiu, Z. Wu, Y. Liu, Nanorod-assembled NiCo2O4 hollow microspheres assisted by an ionic liquid as advanced electrode materials for supercapacitors. RSC Adv. 7, 11123–11128 (2017). https://doi.org/10.1039/c7ra00067g
N.S. Chaubal, V.Y. Joshi, Nonionic polymeric surfactant template for mesoporous NiCo2O4 Formation. J. Porous Mater. 18, 177–183 (2011). https://doi.org/10.1007/s10934-010-9368-2
T.V. Gavrilović, D.J. Jovanović, M.D. Dramićanin, Chapter 2—synthesis of multifunctional inorganic materials: from micrometer to nanometer dimensions. Nanomater. Green Energy 1, 55–81 (2018). https://doi.org/10.1016/B978-0-12-813731-4.00002-3
M. Kundu, G. Karunakaran, E. Kolesnikov, V.E. Sergeevna, S. Kumari, M.V. Gorshenkov, D. Kuznetsov, Hollow NiCo2O4 nano-spheres obtained by ultrasonic spray pyrolysis method with superior electrochemical performance for lithium-ion batteries and supercapacitors. J. Ind. Eng. Chem. 59, 90–98 (2018). https://doi.org/10.1016/j.jiec.2017.10.010
Y. Ma, Z. Yu, M. Liu, C. Song, X. Huang, M. Moliere, G. Song, H. Liao, Deposition of binder-free oxygen-vacancies NiCo2O4 based films with hollow microspheres via solution precursor thermal spray for supercapacitors. Ceram. Int. 45, 10722–10732 (2019). https://doi.org/10.1016/j.ceramint.2019.02.145
T. Li, X. Li, Z. Wang, H. Guo, Y. Li, A novel NiCo2O4 anode morphology for lithium-ion batteries. J. Mater. Chem. A 3, 11970–11975 (2015). https://doi.org/10.1039/c5ta01928a
J. Leng, Z. Wang, X. Li, H. Guo, T. Li, H. Liang, Self-templated formation of hierarchical NiCo2O4 yolk–shell microspheres with enhanced electrochemical properties. Electrochim. Acta 244, 154–161 (2017). https://doi.org/10.1016/j.electacta.2017.05.109
D.P. Lapham, J.L. Lapham, The porosity of NiCo2O4 films and powders by three common preparation techniques. Microporous Mesoporous Mater. 223, 35–45 (2016). https://doi.org/10.1016/j.micromeso.2015.10.025
R.J. Deokate, R.S. Kalubarme, C.J. Park, C.D. Lokhande, Simple synthesis of NiCo2O4 thin films using spray pyrolysis for electrochemical supercapacitor application: a novel approach. Electrochim. Acta 224, 378–385 (2017). https://doi.org/10.1016/j.electacta.2016.12.034
G.D. Park, J.K. Lee, Y.C. Kang, Three-dimensional macroporous CNTs microspheres highly loaded with NiCo2O4 hollow nanospheres showing excellent lithium-ion storage performances. Carbon 128, 191–200 (2018). https://doi.org/10.1016/j.carbon.2017.11.088
R.A. Soomro, Z.H. Ibupoto, Sirajuddin, M.I. Abro, M. Willander, Electrochemical sensing of glucose based on novel hedgehog-like NiO nanostructures. Sens. Actuators B: Chem. 209, 966–974 (2015). https://doi.org/10.1016/j.snb.2014.12.050
E. Zhang, Y. Xie, S. Ci, J. Jia, Z. Wen, Porous Co3O4 hollow nanododecahedra for nonenzymatic glucose biosensor and biofuel cell. Biosens. Bioelectron. 81, 46–53 (2016). https://doi.org/10.1016/j.bios.2016.02.027
K.K. Naik, S. Kumar, C.S. Rout, Electrodeposited spinel NiCo2O4 nanosheet arrays for glucose sensing application. RSC Adv. 5, 74585–74591 (2015). https://doi.org/10.1039/c5ra13833g
M. Hussain, Z.H. Ibupoto, M.A. Abbasi, X. Liu, O. Nur, M. Willander, Synthesis of three dimensional nickel cobalt oxide nanoneedles on nickel foam, their characterization and glucose sensing application. Sensors 14, 5415–5425 (2014). https://doi.org/10.3390/s140305415
R. Elakkiya, G. Maduraiveeran, A three-dimensional nickel–cobalt oxide nanomaterial as an enzyme-mimetic electrocatalyst for the glucose and lactic acid oxidation reaction. New J. Chem. 43, 14756–14762 (2019). https://doi.org/10.1039/c9nj01291e
R. Ding, L. Qi, M. Jia, H. Wang, Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation. Nanoscale 6, 1369–1376 (2014). https://doi.org/10.1039/c3nr05359h
Y. Feng, D. Xiang, Y. Qiu, L. Li, Y. Li, K. Wu, L. Zhu, MOF-derived spinel NiCo2O4 hollow nanocages for the construction of non-enzymatic electrochemical glucose sensor. Electroanalysis 32(3), 571–580 (2020). https://doi.org/10.1002/elan.201900558
S. Wang, S. Zhang, M. Liu, H. Song, J. Gao, Y. Qian, MoS2 as connector inspired high electrocatalytic performance of NiCo2O4 nanoplates towards glucose. Sens. Actuators B: Chem. 254, 1101–1109 (2018). https://doi.org/10.1016/j.snb.2017.08.011
H. Zhao, J. Xu, Q. Sheng, J. Zheng, W. Cao, T. Yue, NiCo2O4 nanorods decorated MoS2 nanosheets synthesized from deep eutectic solvents and their application for electrochemical sensing of glucose in red wine and honey. J. Electrochem. Soc. 166, H404 (2019). https://doi.org/10.1149/2.0141910jes
A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 9, 70–71 (2003). https://doi.org/10.1039/b210714g
M. Avalos, R. Babiano, P. Cintas, J.L. Jiménez, J.C. Palacios, Greener media in chemical synthesis and processing. Angew. Chem. Int. Ed. 45, 3904–3908 (2006). https://doi.org/10.1002/anie.200504285
A.P. Abbott, K. El Ttaib, G. Frisch, K.J. McKenzie, K.S. Ryder, Electrodeposition of copper composites from deep eutectic solvents based on choline chloride. Phys. Chem. Chem. Phys. 11, 4269–4277 (2009). https://doi.org/10.1039/b817881j
F.H. Aidoudi, P.J. Byrne, P.K. Allan, S.J. Teat, P. Lightfoot, R.E. Morris, Ionic liquids and deep eutectic mixtures as new solvents for the synthesis of vanadium fluorides and oxyfluorides. Dalton Trans. 40, 4324–4331 (2011). https://doi.org/10.1039/c0dt01765e
L. Wei, Z.Y. Zhou, S.P. Chen, C.D. Xu, D. Su, M.E. Schuster, S.G. Sun, Electrochemically shape-controlled synthesis in deep eutectic solvents: triambic icosahedral platinum nanocrystals with high-index facets and their enhanced catalytic activity. Chem. Commun. 49, 11152–11154 (2013). https://doi.org/10.1039/c3cc46473c
L. Wei, Y.J. Fan, N. Tian, Z.Y. Zhou, X.Q. Zhao, B.W. Mao, S.G. Sun, Electrochemically shape-controlled synthesis in deep eutectic solvents—a new route to prepare Pt nanocrystals enclosed by high-index facets with high catalytic activity. J. Phys. Chem. C 116, 2040–2044 (2012). https://doi.org/10.1021/jp209743h
S. Cui, J. Zhang, Y. Ding, S. Gu, P. Hu, Z. Hu, Rectangular flake-like mesoporous NiCo2O4 as enzyme mimic for glucose biosensing and biofuel cell. Sci. China Mater. 60, 766–776 (2017). https://doi.org/10.1007/s40843-017-9072-9
F.C. Sun, J.T. Zhang, H. Ren, S.T. Wang, Y. Zhou, J. Zhang, “Dry” NiCo2O4 nanorods for electrochemical non-enzymatic glucose sensing. Chin. J. Chem. Phys. 31, 799 (2018). https://doi.org/10.1063/1674-0068/31/cjcp1804061
Q. Guo, W. Zeng, Y. Li, Highly sensitive non-enzymatic glucose sensor based on porous NiCo2O4 nanowires grown on nickel foam. Mater. Lett. 256, 126603 (2019). https://doi.org/10.1016/j.matlet.2019.126603
P. Arul, S.A. John, Organic solvent free in situ growth of flower like Co-ZIF microstructures on nickel foam for glucose sensing and supercapacitor applications. Electrochim. Acta 306, 254–263 (2019). https://doi.org/10.1016/j.electacta.2019.03.117
X. Luo, M. Huang, D. He, M. Wang, Y. Zhang, P. Jiang, Porous NiCo2O4 nanoarray-integrated binder-free 3D open electrode offers a highly efficient sensing platform for enzyme-free glucose detection. Analyst 143, 2546–2554 (2018). https://doi.org/10.1039/c8an00668g
D. Zhang, J. Tong, B. Xia, Q. Xue, Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens. Actuators B: Chem. 203, 263–270 (2014). https://doi.org/10.1016/j.snb.2014.06.116
D. Zhang, J. Tong, B. Xia, Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators B: Chem. 197, 66–72 (2014). https://doi.org/10.1016/j.snb.2014.02.078
T.H. Ko, S. Radhakrishnan, M.K. Seo, M.S. Khil, H.Y. Kim, B.S. Kim, A green and scalable dry synthesis of NiCo2O4/graphene nanohybrids for high-performance supercapacitor and enzymeless glucose biosensor applications. J. Alloys Compd. 696, 193–200 (2017). https://doi.org/10.1016/j.jallcom.2016.11.234
M. Wu, S. Meng, Q. Wang, W. Si, W. Huang, X. Dong, Nickel–cobalt oxide decorated three-dimensional graphene as an enzyme mimic for glucose and calcium detection. ACS Appl. Mater. Interfaces 7, 21089–21094 (2015). https://doi.org/10.1021/acsami.5b06299
G. Ma, M. Yang, C. Li, H. Tan, L. Deng, S. Xie, F. Xu, L. Wang, Y. Song, Preparation of spinel nickel–cobalt oxide nanowrinkles/reduced graphene oxide hybrid for nonenzymatic glucose detection at physiological level. Electrochim. Acta 220, 545–553 (2016). https://doi.org/10.1016/j.electacta.2016.10.163
Y. Ni, J. Xu, H. Liu, S. Shao, Fabrication of RGO-NiCo2O4 nanorods composite from deep eutectic solvents for nonenzymatic amperometric sensing of glucose. Talanta 185, 335–343 (2018). https://doi.org/10.1016/j.talanta.2018.03.097
F. Meng, J. Li, S.K. Cushing, M. Zhi, N. Wu, Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 135, 10286–10289 (2013). https://doi.org/10.1021/ja404851s
Y. Liu, K. Yan, O.K. Okoth, J. Zhang, A label-free photoelectrochemical aptasensor based on nitrogen-doped graphene quantum dots for chloramphenicol determination. Biosens. Bioelectron. 74, 1016–1021 (2015). https://doi.org/10.1016/j.bios.2015.07.067
L. Feng, N. Xie, J. Zhong, Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7, 3919–3945 (2014). https://doi.org/10.3390/ma7053919
W. Lu, T. He, B. Xu, X. He, H. Adidharma, M. Radosz, K. Gasem, M. Fan, Progress in catalytic synthesis of advanced carbon nanofibers. J. Mater. Chem. A 5, 13863–13881 (2017). https://doi.org/10.1039/c7ta02007d
D.W. Kim, C.H. Kim, C.M. Yang, S. Ahn, Y.H. Kim et al., Deriving structural perfection in the structure of polyacrylonitrile based electrospun carbon nanofiber. Carbon 147, 612–615 (2019). https://doi.org/10.1016/j.carbon.2019.02.066
M. Naebe, T. Lin, X. Wang, Carbon nanotubes reinforced electrospun polymer nanoibres, in Nanofibres, ed. by A. Kumar (Intech, Croatia, 2010), pp. 309–328. https://doi.org/10.5772/8160
T. Fujita, Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality. Sci. Technol. Adv. Mater. 18, 724–740 (2017). https://doi.org/10.1080/14686996.2017.1377047
T. Fujita, L.H. Qian, K. Inoke, J. Erlebacher, M.W. Chen, Three-dimensional morphology of nanoporous gold. Appl. Phys. Lett. 92, 251902 (2008). https://doi.org/10.1063/1.2948902
X.Y. Lang, H.Y. Fu, C. Hou, G.F. Han, P. Yang, Y.B. Liu, Q. Jiang, Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat. Commun. 4, 2169 (2013). https://doi.org/10.1038/ncomms3169
W. Li, H. Qi, B. Wang, Q. Wang, S. Wei, X. Zhang, Y. Wang, L. Zhang, X. Cui, Ultrathin NiCo2O4 nanowalls supported on a 3D nanoporous gold coated needle for non-enzymatic amperometric sensing of glucose. Microchim. Acta 185, 124 (2018). https://doi.org/10.1007/s00604-017-2663-8
K.K. Naik, A. Gangan, B. Chakraborty, C.S. Rout, Superior non-enzymatic glucose sensing properties of Ag–/Au–NiCo2O4 nanosheets with insight from electronic structure simulations. Analyst 143, 571–579 (2018). https://doi.org/10.1039/c7an01354j
K.K. Naik, A. Gangan, B. Chakraborty, S.K. Nayak, C.S. Rout, Enhanced nonenzymatic glucose-sensing properties of electrodeposited NiCo2O4–Pd nanosheets: experimental and DFT investigations. ACS Appl. Mater. Interfaces 9, 23894–23903 (2017). https://doi.org/10.1021/acsami.7b02217
G. Cakmak, Z. Kü̧ükyavuz, S. Kü̧ükyavuz, Conductive copolymers of polyaniline, polypyrrole and poly(dimethylsiloxane). Synth. Met. 151, 10–18 (2005). https://doi.org/10.1016/j.synthmet.2005.02.019
A.S. Hammad, H. Noby, M.F. Elkady, A.H. El-Shazly, In-situ polymerization of polyaniline/polypyrrole copolymer using different techniques, in IOP Conference Series: Materials Science and Engineering, vol. 290 (2018), p. 012001. https://doi.org/10.1088/1757-899X/290/1/012001
J.M. Jeong, B.G. Choi, S.C. Lee, K.G. Lee, S.J. Chang et al., Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv. Mater. 25, 6250–6255 (2013). https://doi.org/10.1002/adma.201302710
Z. Yu, H. Li, X. Zhang, N. Liu, W. Tan, X. Zhang, L. Zhang, Facile synthesis of NiCo2O4@Polyaniline core–shell nanocomposite for sensitive determination of glucose. Biosens. Bioelectron. 75, 161–165 (2016). https://doi.org/10.1016/j.bios.2015.08.024
X. Duan, K. Liu, Y. Xu, M. Yuan, T. Gao, J. Wang, Nonenzymatic electrochemical glucose biosensor constructed by NiCo2O4@Ppy nanowires on nickel foam substrate. Sens. Actuators B: Chem. 292, 121–128 (2019). https://doi.org/10.1016/j.snb.2019.04.107
A.B. Vennela, D. Mangalaraj, N. Muthukumarasamy, S. Agilan, K.V. Hemalatha, Structural and optical properties of Co3O4 nanoparticles prepared by sol–gel technique for photocatalytic application. Int. J. Electrochem. Sci. 14, 3535–3552 (2019). https://doi.org/10.20964/2019.04.40
O. Mounkachi, E. Salmani, M. Lakhal, H. Ez-Zahraouy, M. Hamedoun, M. Benaissa, A. Kara, A. Ennaoui, A. Benyoussef, Band-gap engineering of SnO2. Sol. Energy Mater. Sol. Cells 148, 34–38 (2016). https://doi.org/10.1016/j.solmat.