Highly Thermo-Conductive Three-Dimensional Graphene Aqueous Medium
Corresponding Author: Huachao Yang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 138
Abstract
Highly thermo-conductive aqueous medium is a crucial premise to demonstrate high-performance thermal-related applications. Graphene has the diamond comparable thermal conductivity, while the intrinsic two-dimensional reality will result in strong anisotropic thermal conductivity and wrinkles or even crumples that significantly sacrifices its inherent properties in practical applications. One strategy to overcome this is to use three-dimensional (3D) architecture of graphene. Herein, 3D graphene structure with covalent-bonding nanofins (3D-GS-CBF) is proposed, which is then used as the filler to demonstrate effective aqueous medium. The thermal conductivity and thermal conductivity enhancement efficiency of 3D-GS-CBF (0.26 vol%) aqueous medium can be as high as 2.61 W m−1 K−1 and 1300%, respectively, around six times larger than highest value of the existed aqueous mediums. Meanwhile, 3D-GS-CBF can be stable in the solution even after 6 months, addressing the instability issues of conventional graphene networks. A multiscale modeling including non-equilibrium molecular dynamics simulations and heat conduction model is applied to interpret experimental results. 3D-GS-CBF aqueous medium can largely improve the solar vapor evaporation rate (by 1.5 times) that are even comparable to the interfacial heating system; meanwhile, its cooling performance is also superior to commercial coolant in thermal management applications.
Highlights:
1 3D graphene structure with covalent-bonding nanofins is proposed to demonstrate highly thermo-conductive aqueous medium.
2 An ultralow loading of 3D graphene enables aqueous medium with a record high thermal conductivity of 2.61 W m−1 K−1.
3 3D graphene aqueous medium can remarkably enhance the performance of solar thermal conversion and heat dissipation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064
- S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau, A.A. Balandin, Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9(7), 555–558 (2010). https://doi.org/10.1038/nmat2753
- W. Cai, A.L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, R.S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10(5), 1645–1651 (2010). https://doi.org/10.1021/nl9041966
- J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken et al., Two-dimensional phonon transport in supported graphene. Science 328(5975), 213 (2010). https://doi.org/10.1126/science.1184014
- S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A.A. Balandin, R.S. Ruoff, Thermal conductivity of isotopically modified graphene. Nat. Mater. 11(3), 203–207 (2012). https://doi.org/10.1038/nmat3207
- J.U. Lee, D. Yoon, H. Kim, S.W. Lee, H. Cheong, Thermal conductivity of suspended pristine graphene measured by raman spectroscopy. Phys. Rev. B 83(8), 081419 (2011). https://doi.org/10.1103/PhysRevB.83.081419
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
- H. Song, J. Liu, B. Liu, J. Wu, H.M. Cheng, F. Kang, Two-dimensional materials for thermal management applications. Joule 2(3), 442–463 (2018). https://doi.org/10.1016/j.joule.2018.01.006
- J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno et al., Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 25(29), 4664–4672 (2015). https://doi.org/10.1002/adfm.201501429
- S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika et al., Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92(15), 151911 (2008). https://doi.org/10.1063/1.2907977
- F. Perreault, A. Fonseca de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44(16), 5861–5896 (2015). https://doi.org/10.1039/C5CS00021A
- C. Wang, X. Chen, B. Wang, M. Huang, B. Wang, Y. Jiang, R.S. Ruoff, Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 12(6), 5816–5825 (2018). https://doi.org/10.1021/acsnano.8b01747
- C. Zhu, T.Y. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Highly compressible 3d periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015). https://doi.org/10.1038/ncomms7962
- Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7(5), 4042–4049 (2013). https://doi.org/10.1021/nn4000836
- Z. Xu, Y. Zhang, P. Li, C. Gao, Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 6(8), 7103–7113 (2012). https://doi.org/10.1021/nn3021772
- M. Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4(3), 668–674 (2011). https://doi.org/10.1039/c0ee00295j
- C. Li, G. Shi, Three-dimensional graphene architectures. Nanoscale 4(18), 5549–5563 (2012). https://doi.org/10.1039/C2NR31467C
- G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari, F. Mauri, Thermal conductivity of graphene and graphite: collective excitations and mean free paths. Nano Lett. 14(11), 6109–6114 (2014). https://doi.org/10.1021/nl502059f
- G. Lian, C.C. Tuan, L. Li, S. Jiao, Q. Wang, K.S. Moon, D. Cui, C.P. Wong, Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mat. 28(17), 6096–6104 (2016). https://doi.org/10.1021/acs.chemmater.6b01595
- M.T. Pettes, H. Ji, R.S. Ruoff, L. Shi, Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. Nano Lett. 12(6), 2959–2964 (2012). https://doi.org/10.1021/nl300662q
- G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S.V. Boriskina et al., Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 17, 290–301 (2015). https://doi.org/10.1016/j.nanoen.2015.08.021
- L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho, Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 5(3), 323–343 (2018). https://doi.org/10.1039/c7mh01064h
- M. Bahiraei, S. Heshmatian, Efficacy of a novel liquid block working with a nanofluid containing graphene nanoplatelets decorated with silver nanoparticles compared with conventional CPU coolers. Appl. Therm. Eng. 127, 1233–1245 (2017). https://doi.org/10.1016/j.applthermaleng.2017.08.136
- M.R. Rodriguez-Laguna, A. Castro-Alvarez, M. Sledzinska, J. Maire, F. Costanzo et al., Mechanisms behind the enhancement of thermal properties of graphene nanofluids. Nanoscale 10(32), 15402–15409 (2018). https://doi.org/10.1039/c8nr02762e
- X. Hou, M. Wang, L. Fu, Y. Chen, N. Jiang, C.T. Lin, Z. Wang, J. Yu, Boron nitride nanosheet nanofluids for enhanced thermal conductivity. Nanoscale 10(27), 13004–13010 (2018). https://doi.org/10.1039/c8nr00651b
- S. Bhanushali, N.N. Jason, P. Ghosh, A. Ganesh, G.P. Simon, W. Cheng, Enhanced thermal conductivity of copper nanofluids: the effect of filler geometry. ACS Appl. Mater. Interfaces 9(22), 18925–18935 (2017). https://doi.org/10.1021/acsami.7b03339
- R. Agarwal, K. Verma, N.K. Agrawal, R.K. Duchaniya, R. Singh, Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Appl. Therm. Eng. 102, 1024–1036 (2016). https://doi.org/10.1016/j.applthermaleng.2016.04.051
- Y. Wang, H.A.I. Al-Saaidi, M. Kong, J.L. Alvarado, Thermophysical performance of graphene based aqueous nanofluids. Int. J. Heat Mass Transf. 119, 408–417 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.019
- E. Sadeghinezhad, H. Togun, M. Mehrali, P. Sadeghi Nejad, S. Tahan Latibari, T. Abdulrazzaq, S.N. Kazi, H.S.C. Metselaar, An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions. Int. J. Heat Mass Transf. 81, 41–51 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.006
- H.R. Zhao, J.H. Ding, D. Ji, B.Y. Xu, H.B. Yu, Highly thermoconductive fluid with aqueous compatible graphene. Mater. Res. Express 6, 055014 (2019). https://doi.org/10.1088/2053-1591/ab019e
- J. Zeng, Y. Xuan, Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids. Appl. Energy 212, 809–819 (2018). https://doi.org/10.1016/j.apenergy.2017.12.083
- S. Lee, D. Broido, K. Esfarjani, G. Chen, Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 6, 6290 (2015). https://doi.org/10.1038/ncomms7290
- D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
- S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039
- Article
- MATH
- Google Scholar
- I.A. Tsekmes, R. Kochetov, P.H.F. Morshuis, J.J. Smit, Modeling the thermal conductivity of polymeric composites based on experimental observations. IEEE Trns. Dielectr. Electr. Insul. 21(2), 412–423 (2014). https://doi.org/10.1109/TDEI.2013.004142
- C. Zhi, Y. Xu, Y. Bando, D. Golberg, Highly thermo-conductive fluid with boron nitride nanofillers. ACS Nano 5(8), 6571–6577 (2011). https://doi.org/10.1021/nn201946x
- M.C.S. Reddy, V.V. Rao, Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2 nanofluids. Int. Commun. Heat Mass Transf. 46, 31–36 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.05.009
- M. Krishnam, S. Bose, C. Das, Boron nitride (BN) nanofluids as cooling agent in thermal management system (TMS). Appl. Therm. Eng. 106, 951–958 (2016). https://doi.org/10.1016/j.applthermaleng.2016.06.099
- M. Xing, J. Yu, R. Wang, Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids. Int. J. Therm. Sci. 104, 404–411 (2016). https://doi.org/10.1016/j.ijthermalsci.2016.01.024
- A.A.A. Arani, O.A. Akbari, M.R. Safaei, A. Marzban, A.A.A.A. Alrashed, G.R. Ahmadi, T.K. Nguyen, Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink. Int. J. Heat Mass Transf. 113, 780–795 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.089
- D. Alexeev, J. Chen, J.H. Walther, K.P. Giapis, P. Angelikopoulos, P. Koumoutsakos, Kapitza resistance between few-layer graphene and water: liquid layering effects. Nano Lett. 15(9), 5744–5749 (2015). https://doi.org/10.1021/acs.nanolett.5b03024
- B.Y. Cao, J.H. Zou, G.J. Hu, G.X. Cao, Enhanced thermal transport across multilayer graphene and water by interlayer functionalization. Appl. Phys. Lett. 112(4), 041603 (2018). https://doi.org/10.1063/1.5018749
- M. Chen, Y. He, J. Zhu, Preparation of Au–Ag bimetallic nanoparticles for enhanced solar photothermal conversion. Int. J. Heat Mass Transf. 114, 1098–1104 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.005
- L. Shi, Y. He, Y. Huang, B. Jiang, Recyclable Fe3O4@cnt nanoparticles for high-efficiency solar vapor generation. Energy Conv. Manag. 149, 401–408 (2017). https://doi.org/10.1016/j.enconman.2017.07.044
- X. Wang, Y. He, G. Cheng, L. Shi, X. Liu, J. Zhu, Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Conv. Manag. 130, 176–183 (2016). https://doi.org/10.1016/j.enconman.2016.10.049
- H. Li, Y. He, Z. Liu, Y. Huang, B. Jiang, Synchronous steam generation and heat collection in a broadband Ag@TiO2 core–shell nanoparticle-based receiver. Appl. Therm. Eng. 121, 617–627 (2017). https://doi.org/10.1016/j.applthermaleng.2017.04.102
- K.K. Mishra, S. Ghosh, T.R. Ravindran, S. Amirthapandian, M. Kamruddin, Thermal conductivity and pressure-dependent Raman studies of vertical graphene nanosheets. J. Phys. Chem. C 120(43), 25092–25100 (2016). https://doi.org/10.1021/acs.jpcc.6b08754
References
A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064
S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau, A.A. Balandin, Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9(7), 555–558 (2010). https://doi.org/10.1038/nmat2753
W. Cai, A.L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, R.S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10(5), 1645–1651 (2010). https://doi.org/10.1021/nl9041966
J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken et al., Two-dimensional phonon transport in supported graphene. Science 328(5975), 213 (2010). https://doi.org/10.1126/science.1184014
S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A.A. Balandin, R.S. Ruoff, Thermal conductivity of isotopically modified graphene. Nat. Mater. 11(3), 203–207 (2012). https://doi.org/10.1038/nmat3207
J.U. Lee, D. Yoon, H. Kim, S.W. Lee, H. Cheong, Thermal conductivity of suspended pristine graphene measured by raman spectroscopy. Phys. Rev. B 83(8), 081419 (2011). https://doi.org/10.1103/PhysRevB.83.081419
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
H. Song, J. Liu, B. Liu, J. Wu, H.M. Cheng, F. Kang, Two-dimensional materials for thermal management applications. Joule 2(3), 442–463 (2018). https://doi.org/10.1016/j.joule.2018.01.006
J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno et al., Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 25(29), 4664–4672 (2015). https://doi.org/10.1002/adfm.201501429
S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika et al., Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92(15), 151911 (2008). https://doi.org/10.1063/1.2907977
F. Perreault, A. Fonseca de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44(16), 5861–5896 (2015). https://doi.org/10.1039/C5CS00021A
C. Wang, X. Chen, B. Wang, M. Huang, B. Wang, Y. Jiang, R.S. Ruoff, Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 12(6), 5816–5825 (2018). https://doi.org/10.1021/acsnano.8b01747
C. Zhu, T.Y. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Highly compressible 3d periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015). https://doi.org/10.1038/ncomms7962
Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7(5), 4042–4049 (2013). https://doi.org/10.1021/nn4000836
Z. Xu, Y. Zhang, P. Li, C. Gao, Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 6(8), 7103–7113 (2012). https://doi.org/10.1021/nn3021772
M. Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4(3), 668–674 (2011). https://doi.org/10.1039/c0ee00295j
C. Li, G. Shi, Three-dimensional graphene architectures. Nanoscale 4(18), 5549–5563 (2012). https://doi.org/10.1039/C2NR31467C
G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari, F. Mauri, Thermal conductivity of graphene and graphite: collective excitations and mean free paths. Nano Lett. 14(11), 6109–6114 (2014). https://doi.org/10.1021/nl502059f
G. Lian, C.C. Tuan, L. Li, S. Jiao, Q. Wang, K.S. Moon, D. Cui, C.P. Wong, Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mat. 28(17), 6096–6104 (2016). https://doi.org/10.1021/acs.chemmater.6b01595
M.T. Pettes, H. Ji, R.S. Ruoff, L. Shi, Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. Nano Lett. 12(6), 2959–2964 (2012). https://doi.org/10.1021/nl300662q
G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S.V. Boriskina et al., Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 17, 290–301 (2015). https://doi.org/10.1016/j.nanoen.2015.08.021
L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho, Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 5(3), 323–343 (2018). https://doi.org/10.1039/c7mh01064h
M. Bahiraei, S. Heshmatian, Efficacy of a novel liquid block working with a nanofluid containing graphene nanoplatelets decorated with silver nanoparticles compared with conventional CPU coolers. Appl. Therm. Eng. 127, 1233–1245 (2017). https://doi.org/10.1016/j.applthermaleng.2017.08.136
M.R. Rodriguez-Laguna, A. Castro-Alvarez, M. Sledzinska, J. Maire, F. Costanzo et al., Mechanisms behind the enhancement of thermal properties of graphene nanofluids. Nanoscale 10(32), 15402–15409 (2018). https://doi.org/10.1039/c8nr02762e
X. Hou, M. Wang, L. Fu, Y. Chen, N. Jiang, C.T. Lin, Z. Wang, J. Yu, Boron nitride nanosheet nanofluids for enhanced thermal conductivity. Nanoscale 10(27), 13004–13010 (2018). https://doi.org/10.1039/c8nr00651b
S. Bhanushali, N.N. Jason, P. Ghosh, A. Ganesh, G.P. Simon, W. Cheng, Enhanced thermal conductivity of copper nanofluids: the effect of filler geometry. ACS Appl. Mater. Interfaces 9(22), 18925–18935 (2017). https://doi.org/10.1021/acsami.7b03339
R. Agarwal, K. Verma, N.K. Agrawal, R.K. Duchaniya, R. Singh, Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Appl. Therm. Eng. 102, 1024–1036 (2016). https://doi.org/10.1016/j.applthermaleng.2016.04.051
Y. Wang, H.A.I. Al-Saaidi, M. Kong, J.L. Alvarado, Thermophysical performance of graphene based aqueous nanofluids. Int. J. Heat Mass Transf. 119, 408–417 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.019
E. Sadeghinezhad, H. Togun, M. Mehrali, P. Sadeghi Nejad, S. Tahan Latibari, T. Abdulrazzaq, S.N. Kazi, H.S.C. Metselaar, An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions. Int. J. Heat Mass Transf. 81, 41–51 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.006
H.R. Zhao, J.H. Ding, D. Ji, B.Y. Xu, H.B. Yu, Highly thermoconductive fluid with aqueous compatible graphene. Mater. Res. Express 6, 055014 (2019). https://doi.org/10.1088/2053-1591/ab019e
J. Zeng, Y. Xuan, Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids. Appl. Energy 212, 809–819 (2018). https://doi.org/10.1016/j.apenergy.2017.12.083
S. Lee, D. Broido, K. Esfarjani, G. Chen, Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 6, 6290 (2015). https://doi.org/10.1038/ncomms7290
D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039
Article
MATH
Google Scholar
I.A. Tsekmes, R. Kochetov, P.H.F. Morshuis, J.J. Smit, Modeling the thermal conductivity of polymeric composites based on experimental observations. IEEE Trns. Dielectr. Electr. Insul. 21(2), 412–423 (2014). https://doi.org/10.1109/TDEI.2013.004142
C. Zhi, Y. Xu, Y. Bando, D. Golberg, Highly thermo-conductive fluid with boron nitride nanofillers. ACS Nano 5(8), 6571–6577 (2011). https://doi.org/10.1021/nn201946x
M.C.S. Reddy, V.V. Rao, Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2 nanofluids. Int. Commun. Heat Mass Transf. 46, 31–36 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.05.009
M. Krishnam, S. Bose, C. Das, Boron nitride (BN) nanofluids as cooling agent in thermal management system (TMS). Appl. Therm. Eng. 106, 951–958 (2016). https://doi.org/10.1016/j.applthermaleng.2016.06.099
M. Xing, J. Yu, R. Wang, Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids. Int. J. Therm. Sci. 104, 404–411 (2016). https://doi.org/10.1016/j.ijthermalsci.2016.01.024
A.A.A. Arani, O.A. Akbari, M.R. Safaei, A. Marzban, A.A.A.A. Alrashed, G.R. Ahmadi, T.K. Nguyen, Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink. Int. J. Heat Mass Transf. 113, 780–795 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.089
D. Alexeev, J. Chen, J.H. Walther, K.P. Giapis, P. Angelikopoulos, P. Koumoutsakos, Kapitza resistance between few-layer graphene and water: liquid layering effects. Nano Lett. 15(9), 5744–5749 (2015). https://doi.org/10.1021/acs.nanolett.5b03024
B.Y. Cao, J.H. Zou, G.J. Hu, G.X. Cao, Enhanced thermal transport across multilayer graphene and water by interlayer functionalization. Appl. Phys. Lett. 112(4), 041603 (2018). https://doi.org/10.1063/1.5018749
M. Chen, Y. He, J. Zhu, Preparation of Au–Ag bimetallic nanoparticles for enhanced solar photothermal conversion. Int. J. Heat Mass Transf. 114, 1098–1104 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.005
L. Shi, Y. He, Y. Huang, B. Jiang, Recyclable Fe3O4@cnt nanoparticles for high-efficiency solar vapor generation. Energy Conv. Manag. 149, 401–408 (2017). https://doi.org/10.1016/j.enconman.2017.07.044
X. Wang, Y. He, G. Cheng, L. Shi, X. Liu, J. Zhu, Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Conv. Manag. 130, 176–183 (2016). https://doi.org/10.1016/j.enconman.2016.10.049
H. Li, Y. He, Z. Liu, Y. Huang, B. Jiang, Synchronous steam generation and heat collection in a broadband Ag@TiO2 core–shell nanoparticle-based receiver. Appl. Therm. Eng. 121, 617–627 (2017). https://doi.org/10.1016/j.applthermaleng.2017.04.102
K.K. Mishra, S. Ghosh, T.R. Ravindran, S. Amirthapandian, M. Kamruddin, Thermal conductivity and pressure-dependent Raman studies of vertical graphene nanosheets. J. Phys. Chem. C 120(43), 25092–25100 (2016). https://doi.org/10.1021/acs.jpcc.6b08754