Graphene Array-Based Anti-fouling Solar Vapour Gap Membrane Distillation with High Energy Efficiency
Corresponding Author: Zheng Bo
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 51
Abstract
Photothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low energy efficiency (a typical solar-water efficiency of ~ 50%), while complex modifications are needed to reduce membrane fouling. Here, we demonstrate a new concept of solar vapour gap membrane distillation (SVGMD) synergistically combining self-guided water transport, localized heating, and separation of membrane from feed solution. A free-standing, multifunctional light absorber based on graphene array is custom-designed to locally heat the thin water layer transporting through graphene nanochannels. The as-generated vapour passes through a gap and condenses, while salt/contaminants are rejected before reaching the membrane. The high solar-water efficiency (73.4% at 1 sun), clean water collection ratio (82.3%), excellent anti-fouling performance, and stable permeate flux in continuous operation over 72 h are simultaneously achieved. Meanwhile, SVGMD inherits the advantage of MD in microorganism removal and water collection, enabling the solar-water efficiency 3.5 times higher compared to state-of-the-art solar vapour systems. A scaled system to treat oil/seawater mixtures under natural sunlight is developed with a purified water yield of 92.8 kg m−2 day−1. Our results can be applied for diverse mixed-phase feeds, leading to the next-generation solar-driven MD technology.
Highlights:
1 New concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and membrane separation from feed solution.
2 First-time introduction of the gap enables long-term stability and non-fouling membrane.
3 SVGMD exhibits a solar-water energy efficiency higher than state-of-the-art solar vapour systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.S. Lewis, Toward cost-effective solar energy use. Science 315, 798–801 (2007). https://doi.org/10.1126/science.1137014
- X. Gao, J. Liu, J. Zhang, J.Y. Yan, S.J. Ban, H. Xu, T. Qin, Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table. Appl. Energy 105, 182–193 (2013). https://doi.org/10.1016/j.apenergy.2012.11.074
- T. Yue, N. Lior, Exergo economic analysis of solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion. Appl. Energy 191, 204–222 (2017). https://doi.org/10.1016/j.apenergy.2017.01.055
- M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008). https://doi.org/10.1038/nature06599
- H. Ghasemi, G. Ni, A.M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Solar steam generation by heat localization. Nat. Commun. 5, 7 (2014). https://doi.org/10.1038/ncomms5449
- X.Q. Li, W.C. Xu, M.Y. Tang, L. Zhou, B. Zhu, S. Zhu, J. Zhu, Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. U.S.A. 113, 13953–13958 (2016). https://doi.org/10.1073/pnas.1613031113
- X. Wang, Y. He, X. Liu, J. Cheng, J. Zhu, Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Appl. Energy 195, 414–425 (2017). https://doi.org/10.1016/j.apenergy.2017.03.080
- L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Can, S. Zhu, J. Zhu, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 10, 393–398 (2016). https://doi.org/10.1038/nphoton.2016.75
- K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim, W.J. Padilla, Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015). https://doi.org/10.1038/ncomms10103
- G. Ni, S.H. Zandavi, S.M. Javid Svetlana, V. Boriskina, T.A. Coopera, G. Chen, A salt-rejecting floating solar still for low-cost desalination. Environ. Sci. Technol. 11, 1510–1519 (2018). https://doi.org/10.1039/c8ee00220g
- A. Politano, P. Argurio, G.D. Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H.A. Arafat, E. Curcio, Photothermal membrane distillation for seawater desalination. Adv. Mater. 29, 1603504 (2017). https://doi.org/10.1002/adma.201603504
- J. Wu, K.R. Zodrow, P.B. Szemraj, Q. Li, Photothermal nanocomposite membranes for direct solar membrane distillation. J. Mater. Chem. A 5, 23712–23719 (2017). https://doi.org/10.1039/c7ta04555g
- P.D. Dongare, A. Alabastri, S. Pedersen, K.R. Zodrow, N.J. Hogan et al., Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl. Acad. Sci. U.S.A. 114, 6936–6941 (2017). https://doi.org/10.1073/pnas.1701835114
- M. Fujiwara, Water desalination using visible light by disperse red 1 modified PTFE membrane. Desalination 404, 79–86 (2017). https://doi.org/10.1016/j.desal.2016.11.001
- L. Huang, J. Pei, H. Jiang, X. Hu, Water desalination under one sun using graphene-based material modified PTFE membrane. Desalination 442, 1–7 (2018). https://doi.org/10.1016/j.desal.2018.05.006
- M. Fujiwara, M. Kikuchi, Solar desalination of seawater using double-dye-modified PTFE membrane. Water Res. 127, 96–103 (2017). https://doi.org/10.1016/j.watres.2017.10.015
- X. Wu, Q. Jiang, D. Ghim, S. Singamaneni, Y.-S. Jun, A localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process. J. Mater. Chem. A 6, 18799–18807 (2018). https://doi.org/10.1039/c8ta05738a
- A. Deshmukh, C. Boo, V. Karanikola, S. Lin, A.P. Straub, T. Tong, D.M. Warsinger, M. Elimelech, Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. Environ. Sci. Technol. 11, 1177–1196 (2018). https://doi.org/10.1039/c8ee00291f
- D. González, J. Amigo, F. Suárez, Membrane distillation: perspectives for sustainable and improved desalination. Renew. Sust. Energy Rev. 80, 238–259 (2017). https://doi.org/10.1016/j.rser.2017.05.078
- Y.Z. Tan, H. Wang, L. Han, M.B. Tanis-Kanbur, M.V. Pranava, J.W. Chew, Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation. J. Membr. Sci. 565, 254–265 (2018). https://doi.org/10.1016/j.memsci.2018.08.032
- D.H. Seo, S. Pineda, Y.C. Woo, M. Xie, A.T. Murdock et al., Anti-fouling graphene-based membranes for effective water desalination. Nat. Commun. 9, 683 (2018). https://doi.org/10.1038/s41467-018-02871-3
- M. Rezaei, D.M. Warsinger, J.H. Lienhard, V.M. Samhabera, Wetting prevention in membrane distillation through superhydrophobicity and recharging an air layer on the membrane surface. J. Membr. Sci. 530, 42–52 (2017). https://doi.org/10.1016/j.memsci.2017.02.013
- D. Hou, Z. Wang, K. Wang, J. Wang, S. Lin, Composite membrane with electrospun multiscale-textured surface for robust oil-fouling resistance in membrane distillation. J. Membr. Sci. 546, 179–187 (2018). https://doi.org/10.1016/j.memsci.2017.10.017
- C. Boo, J. Lee, M. Elimelech, Engineering surface energy and nanostructure of microporous films for expanded membrane distillation applications. Environ. Sci. Technol. 50, 8112–8119 (2016). https://doi.org/10.1021/acs.est.6b02316
- C. Boo, J. Lee, M. Elimelech, Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation. Environ. Sci. Technol. 50, 12275–12282 (2016). https://doi.org/10.1021/acs.est.6b03882
- R. Sathish Kumar, G. Arthanareeswaran, D. Paul, K.J. Hyang, Modification methods of polyethersulfone membranes for minimizing fouling—review. Membr. Water Treat. 6, 323–337 (2015). https://doi.org/10.12989/mwt.2015.6.4.323
- L. Jiang, Z. Tang, K.J. Park-Lee, D.W. Hess, V. Breedveld, Fabrication of non-fluorinated hydrophilic-oleophobic stainless steel mesh for oil-water separation. Sep. Purif. Technol. 184, 394–403 (2017). https://doi.org/10.1016/j.seppur.2017.05.021
- Z. Bo, W. Zhu, W. Ma, Z. Wen, H. Shuai et al., Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors. Adv. Mater. 25, 5799 (2013). https://doi.org/10.1002/adma.201301794
- Z. Bo, S. Mao, Z.J. Han, K. Cen, J. Chen, K. Ostrikov, Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 44, 2108–2121 (2015). https://doi.org/10.1039/c4cs00352g
- M. Wang, G. Liu, H. Yu, S.H. Lee, L. Wang, J. Zheng, T. Wang, Y. Yun, J.K. Lee, ZnO nanorod array modified PVDF membrane with superhydrophobic surface for vacuum membrane distillation application. ACS Appl. Mater. Interfaces 10, 13452–13461 (2018). https://doi.org/10.1021/acsami.8b00271
- Z. Bo, M. Yuan, S. Mao, X. Chen, J. Yan, K. Cen, Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sens. Actuators B Chem. 256, 1011–1020 (2018). https://doi.org/10.1016/j.snb.2017.10.043
- T. Li, H. Liu, X. Zhao, G. Chen, J. Dai et al., Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport. Adv. Funct. Mater. 28, 1707134 (2018). https://doi.org/10.1002/adfm.201707134
- H. Ren, M. Tang, B. Guan, K. Wang, J. Yang et al., Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29, 1702590 (2017). https://doi.org/10.1002/adma.201702590
- World Health Organization, Safe Drinking-Water from Desalination. https://www.who.int/water_sanitation_health/publications/desalination_guidance/en/. Accessed 2011
- World Health Organization, Calcium and Magnesium in Drinking-Water: Public Health Significance. https://www.who.int/water_sanitation_health/publications/publication_9789241563550/en/. Accessed 2009
- S. Liang, Y. Kang, A. Tiraferri, E.P. Giannelis, X. Huang et al., Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. ACS Appl. Mater. Interfaces 5, 6694–6703 (2013). https://doi.org/10.1021/am401462e
- Z. Wang, S. Lin, Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability. Water Res. 112, 38–47 (2017). https://doi.org/10.1016/j.watres.2017.01.022
- C. Teng, X. Lu, G. Ren, Y. Zhu, M. Wan, L. Jiang, Underwater self-cleaning PEDOT-PSS hydrogel mesh for effective separation of corrosive and hot oil/water mixtures. Adv. Mater. Interfaces 1, 1400099 (2014). https://doi.org/10.1002/admi.201400099
- F. Zhang, W.B. Zhang, Z. Shi, D. Wang, J. Jin, L. Jiang, Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Adv. Mater. 25, 4192–4198 (2013). https://doi.org/10.1002/adma.201301480
- V. Kashyap, A. Al-Bayati, S.M. Sajadi, A flexible anti-clogging graphite film for scalable solar desalination by heat localization. J. Mater. Chem. A 5, 15227–15234 (2017). https://doi.org/10.1039/c7ta03977h
- J. Hou, G. Zhu, J. Xu, H. Liu, Anticorrosion performance of epoxy coatings containing small amount of inherently conducting PEDOT/PSS on hull steel in seawater. J. Mater. Sci. Technol. 29, 678–684 (2013). https://doi.org/10.1016/j.jmst.2013.03.023
- Z. Liu, H. Song, D. Ji, C. Li, A. Cheney et al., Extremely cost-effective and efficient solar vapour generation under nonconcentrated illumination using thermally isolated black paper. Global Challenges 1, 1600003 (2017). https://doi.org/10.1002/gch2.201600003
References
N.S. Lewis, Toward cost-effective solar energy use. Science 315, 798–801 (2007). https://doi.org/10.1126/science.1137014
X. Gao, J. Liu, J. Zhang, J.Y. Yan, S.J. Ban, H. Xu, T. Qin, Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table. Appl. Energy 105, 182–193 (2013). https://doi.org/10.1016/j.apenergy.2012.11.074
T. Yue, N. Lior, Exergo economic analysis of solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion. Appl. Energy 191, 204–222 (2017). https://doi.org/10.1016/j.apenergy.2017.01.055
M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008). https://doi.org/10.1038/nature06599
H. Ghasemi, G. Ni, A.M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Solar steam generation by heat localization. Nat. Commun. 5, 7 (2014). https://doi.org/10.1038/ncomms5449
X.Q. Li, W.C. Xu, M.Y. Tang, L. Zhou, B. Zhu, S. Zhu, J. Zhu, Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. U.S.A. 113, 13953–13958 (2016). https://doi.org/10.1073/pnas.1613031113
X. Wang, Y. He, X. Liu, J. Cheng, J. Zhu, Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Appl. Energy 195, 414–425 (2017). https://doi.org/10.1016/j.apenergy.2017.03.080
L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Can, S. Zhu, J. Zhu, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 10, 393–398 (2016). https://doi.org/10.1038/nphoton.2016.75
K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim, W.J. Padilla, Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015). https://doi.org/10.1038/ncomms10103
G. Ni, S.H. Zandavi, S.M. Javid Svetlana, V. Boriskina, T.A. Coopera, G. Chen, A salt-rejecting floating solar still for low-cost desalination. Environ. Sci. Technol. 11, 1510–1519 (2018). https://doi.org/10.1039/c8ee00220g
A. Politano, P. Argurio, G.D. Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H.A. Arafat, E. Curcio, Photothermal membrane distillation for seawater desalination. Adv. Mater. 29, 1603504 (2017). https://doi.org/10.1002/adma.201603504
J. Wu, K.R. Zodrow, P.B. Szemraj, Q. Li, Photothermal nanocomposite membranes for direct solar membrane distillation. J. Mater. Chem. A 5, 23712–23719 (2017). https://doi.org/10.1039/c7ta04555g
P.D. Dongare, A. Alabastri, S. Pedersen, K.R. Zodrow, N.J. Hogan et al., Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl. Acad. Sci. U.S.A. 114, 6936–6941 (2017). https://doi.org/10.1073/pnas.1701835114
M. Fujiwara, Water desalination using visible light by disperse red 1 modified PTFE membrane. Desalination 404, 79–86 (2017). https://doi.org/10.1016/j.desal.2016.11.001
L. Huang, J. Pei, H. Jiang, X. Hu, Water desalination under one sun using graphene-based material modified PTFE membrane. Desalination 442, 1–7 (2018). https://doi.org/10.1016/j.desal.2018.05.006
M. Fujiwara, M. Kikuchi, Solar desalination of seawater using double-dye-modified PTFE membrane. Water Res. 127, 96–103 (2017). https://doi.org/10.1016/j.watres.2017.10.015
X. Wu, Q. Jiang, D. Ghim, S. Singamaneni, Y.-S. Jun, A localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process. J. Mater. Chem. A 6, 18799–18807 (2018). https://doi.org/10.1039/c8ta05738a
A. Deshmukh, C. Boo, V. Karanikola, S. Lin, A.P. Straub, T. Tong, D.M. Warsinger, M. Elimelech, Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. Environ. Sci. Technol. 11, 1177–1196 (2018). https://doi.org/10.1039/c8ee00291f
D. González, J. Amigo, F. Suárez, Membrane distillation: perspectives for sustainable and improved desalination. Renew. Sust. Energy Rev. 80, 238–259 (2017). https://doi.org/10.1016/j.rser.2017.05.078
Y.Z. Tan, H. Wang, L. Han, M.B. Tanis-Kanbur, M.V. Pranava, J.W. Chew, Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation. J. Membr. Sci. 565, 254–265 (2018). https://doi.org/10.1016/j.memsci.2018.08.032
D.H. Seo, S. Pineda, Y.C. Woo, M. Xie, A.T. Murdock et al., Anti-fouling graphene-based membranes for effective water desalination. Nat. Commun. 9, 683 (2018). https://doi.org/10.1038/s41467-018-02871-3
M. Rezaei, D.M. Warsinger, J.H. Lienhard, V.M. Samhabera, Wetting prevention in membrane distillation through superhydrophobicity and recharging an air layer on the membrane surface. J. Membr. Sci. 530, 42–52 (2017). https://doi.org/10.1016/j.memsci.2017.02.013
D. Hou, Z. Wang, K. Wang, J. Wang, S. Lin, Composite membrane with electrospun multiscale-textured surface for robust oil-fouling resistance in membrane distillation. J. Membr. Sci. 546, 179–187 (2018). https://doi.org/10.1016/j.memsci.2017.10.017
C. Boo, J. Lee, M. Elimelech, Engineering surface energy and nanostructure of microporous films for expanded membrane distillation applications. Environ. Sci. Technol. 50, 8112–8119 (2016). https://doi.org/10.1021/acs.est.6b02316
C. Boo, J. Lee, M. Elimelech, Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation. Environ. Sci. Technol. 50, 12275–12282 (2016). https://doi.org/10.1021/acs.est.6b03882
R. Sathish Kumar, G. Arthanareeswaran, D. Paul, K.J. Hyang, Modification methods of polyethersulfone membranes for minimizing fouling—review. Membr. Water Treat. 6, 323–337 (2015). https://doi.org/10.12989/mwt.2015.6.4.323
L. Jiang, Z. Tang, K.J. Park-Lee, D.W. Hess, V. Breedveld, Fabrication of non-fluorinated hydrophilic-oleophobic stainless steel mesh for oil-water separation. Sep. Purif. Technol. 184, 394–403 (2017). https://doi.org/10.1016/j.seppur.2017.05.021
Z. Bo, W. Zhu, W. Ma, Z. Wen, H. Shuai et al., Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors. Adv. Mater. 25, 5799 (2013). https://doi.org/10.1002/adma.201301794
Z. Bo, S. Mao, Z.J. Han, K. Cen, J. Chen, K. Ostrikov, Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 44, 2108–2121 (2015). https://doi.org/10.1039/c4cs00352g
M. Wang, G. Liu, H. Yu, S.H. Lee, L. Wang, J. Zheng, T. Wang, Y. Yun, J.K. Lee, ZnO nanorod array modified PVDF membrane with superhydrophobic surface for vacuum membrane distillation application. ACS Appl. Mater. Interfaces 10, 13452–13461 (2018). https://doi.org/10.1021/acsami.8b00271
Z. Bo, M. Yuan, S. Mao, X. Chen, J. Yan, K. Cen, Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sens. Actuators B Chem. 256, 1011–1020 (2018). https://doi.org/10.1016/j.snb.2017.10.043
T. Li, H. Liu, X. Zhao, G. Chen, J. Dai et al., Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport. Adv. Funct. Mater. 28, 1707134 (2018). https://doi.org/10.1002/adfm.201707134
H. Ren, M. Tang, B. Guan, K. Wang, J. Yang et al., Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29, 1702590 (2017). https://doi.org/10.1002/adma.201702590
World Health Organization, Safe Drinking-Water from Desalination. https://www.who.int/water_sanitation_health/publications/desalination_guidance/en/. Accessed 2011
World Health Organization, Calcium and Magnesium in Drinking-Water: Public Health Significance. https://www.who.int/water_sanitation_health/publications/publication_9789241563550/en/. Accessed 2009
S. Liang, Y. Kang, A. Tiraferri, E.P. Giannelis, X. Huang et al., Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. ACS Appl. Mater. Interfaces 5, 6694–6703 (2013). https://doi.org/10.1021/am401462e
Z. Wang, S. Lin, Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability. Water Res. 112, 38–47 (2017). https://doi.org/10.1016/j.watres.2017.01.022
C. Teng, X. Lu, G. Ren, Y. Zhu, M. Wan, L. Jiang, Underwater self-cleaning PEDOT-PSS hydrogel mesh for effective separation of corrosive and hot oil/water mixtures. Adv. Mater. Interfaces 1, 1400099 (2014). https://doi.org/10.1002/admi.201400099
F. Zhang, W.B. Zhang, Z. Shi, D. Wang, J. Jin, L. Jiang, Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Adv. Mater. 25, 4192–4198 (2013). https://doi.org/10.1002/adma.201301480
V. Kashyap, A. Al-Bayati, S.M. Sajadi, A flexible anti-clogging graphite film for scalable solar desalination by heat localization. J. Mater. Chem. A 5, 15227–15234 (2017). https://doi.org/10.1039/c7ta03977h
J. Hou, G. Zhu, J. Xu, H. Liu, Anticorrosion performance of epoxy coatings containing small amount of inherently conducting PEDOT/PSS on hull steel in seawater. J. Mater. Sci. Technol. 29, 678–684 (2013). https://doi.org/10.1016/j.jmst.2013.03.023
Z. Liu, H. Song, D. Ji, C. Li, A. Cheney et al., Extremely cost-effective and efficient solar vapour generation under nonconcentrated illumination using thermally isolated black paper. Global Challenges 1, 1600003 (2017). https://doi.org/10.1002/gch2.201600003