A Review on Artificial Micro/Nanomotors for Cancer-Targeted Delivery, Diagnosis, and Therapy
Corresponding Author: Biye Ren
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 11
Abstract
Micro/nanomotors have been extensively explored for efficient cancer diagnosis and therapy, as evidenced by significant breakthroughs in the design of micro/nanomotors-based intelligent and comprehensive biomedical platforms. Here, we demonstrate the recent advances of micro/nanomotors in the field of cancer-targeted delivery, diagnosis, and imaging-guided therapy, as well as the challenges and problems faced by micro/nanomotors in clinical applications. The outlook for the future development of micro/nanomotors toward clinical applications is also discussed. We hope to highlight these new advances in micro/nanomotors in the field of cancer diagnosis and therapy, with the ultimate goal of stimulating the successful exploration of intelligent micro/nanomotors for future clinical applications.
Highlights:
1 Recent advances of micro/nanomotors in the field of cancer-targeted delivery, diagnosis, and imaging-guided therapy are summarized.
2 Challenges and outlook for the future development of micro/nanomotors toward clinical applications are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Allemani, T. Matsuda, V. Di Carlo, Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. The Lancet 391, 1023–1075 (2018). https://doi.org/10.1016/s0140-6736(17)33326-3
- H. Chen, Z. Gu, H. An, C. Chen, J. Chen et al., Precise nanomedicine for intelligent therapy of cancer. Sci. China Chem. 61, 1503–1552 (2018). https://doi.org/10.1007/s11426-018-9397-5
- A. Wicki, D. Witzigmann, V. Balasubramanian, J. Huwyler, Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control Release 200, 138–157 (2015). https://doi.org/10.1016/j.jconrel.2014.12.030
- K.K. Chan, S.H.K. Yap, K.T. Yong, Biogreen synthesis of carbon dots for biotechnology and nanomedicine applications. Nano-Micro Lett. 10, 72 (2018). https://doi.org/10.1007/s40820-018-0223-3
- Q. Zhao, H. Cui, Y. Wang, X. Du, Microfluidic platforms toward rational material fabrication for biomedical applications. Small 1903798 (2019). https://doi.org/10.1002/smll.201903798
- Y. Wang, H. Cui, Q. Zhao, X. Du, Chameleon-inspired structural-color actuators. Matter 1, 626–638 (2019). https://doi.org/10.1016/j.matt.2019.05.012
- Y. Hu, S. Mignani, J.P. Majoral, M. Shen, X. Shi, Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem. Soc. Rev. 47, 1874–1900 (2018). https://doi.org/10.1039/c7cs00657h
- K.D. Wegner, N. Hildebrandt, Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 44, 4792–4834 (2015). https://doi.org/10.1039/c4cs00532e
- T. Sun, F. Ai, G. Zhu, F. Wang, Upconversion in nanostructured materials: from optical tuning to biomedical applications. Chem. Asian J. 13, 373–385 (2018). https://doi.org/10.1002/asia.201701660
- X. Du, H. Cui, Q. Zhao, J. Wang, H. Chen, Y. Wang, Inside-out 3D reversible ion-triggered shape-morphing hydrogels. Research 6398296 (2019). https://doi.org/10.34133/2019/6398296
- Y. Xia, W. Li, C.M. Cobley, J. Chen, X. Xia et al., Gold nanocages: from synthesis to theranostic applications. Acc. Chem. Res. 44, 914 (2011). https://doi.org/10.1021/ar200061q
- J. Wang, Nanomachines: Fundamentals and Applications (Wiley, Weinheim, 2013)
- M. Safdar, S.U. Khan, J. Jänis, Progress toward catalytic micro- and nanomotors for biomedical and environmental applications. Adv. Mater. 1703660 (2018). https://doi.org/10.1002/adma.201703660
- T.E. Mallouk, A Sen (2009) Powering nanorobots. Sci. Am. 300, 72–77 (2009)
- T. Xu, L.P. Xu, X. Zhang, Ultrasound propulsion of micro-/nanomotors. Appl. Mater. Today 9, 493–503 (2017). https://doi.org/10.1016/j.apmt.2017.07.011
- K.E. Peyer, S. Tottori, F. Qiu, L. Zhang, B.J. Nelson, Magnetic helical micromachines. Chem. Eur. J. 19, 28–38 (2013). https://doi.org/10.1002/chem.201203364
- Z. Wu, Y. Wu, W. He, X. Lin, J. Sun, Q. He, Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew. Chem. Int. Ed. 52, 7000–7003 (2013). https://doi.org/10.1002/anie.201301643
- H. Chen, Q. Zhao, Y. Wang, S. Mu, H. Cui, J. Wang, T. Kong, X. Du, Near-infrared light-driven controllable motions of gold-hollow-microcone array. ACS Appl. Mater. Interfaces 11, 15927–15935 (2019). https://doi.org/10.1021/acsami.9b03576
- H. Chen, Q. Zhao, X. Du, Light-powered micro/nanomotors. Micromachines 9, 41 (2018). https://doi.org/10.3390/mi9020041
- X. Ma, A.C. Hortelão, T. Patiño, S. Sánchez, Enzyme catalysis to power micro/nanomachines. ACS Nano 10, 9111–9122 (2016). https://doi.org/10.1021/acsnano.6b04108
- Y. Yang, X. Song, X. Li, Z. Chen, C. Zhou, Q. Zhou, Y. Chen, Recent progress in biomimetic additive manufacturing technology: from materials to functional structures. Adv. Mater. 1706539 (2018). https://doi.org/10.1002/adma.201706539
- X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116, 10983–11060 (2016). https://doi.org/10.1021/acs.chemrev.5b00731
- X. Pang, C. Wan, M. Wang, Z. Lin, Strictly biphasic soft and hard Janus structures: synthesis, properties, and applications. Angew. Chem. Int. Ed. 53, 5524–5538 (2014). https://doi.org/10.1002/anie.201309352
- H. Ning, Y. Zhang, H. Zhu, A. Ingham, G. Huang, Y. Mei, A. Solovev, Geometry design, principles and assembly of micromotors. Micromachines 9, 75 (2018). https://doi.org/10.3390/mi9020075
- K. Kim, J. Guo, Z. Liang, D. Fan, Artificial micro/nanomachines for bioapplications: biochemical delivery and diagnostic sensing. Adv. Funct. Mater. 1705867 (2018). https://doi.org/10.1002/adfm.201705867
- J. Li, B. Esteban-Fernández de Ávila, W. Gao, L. Zhang, J. Wang, Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot 2, 6431 (2017). https://doi.org/10.1126/scirobotics.aam6431
- Z. Wu, X. Lin, T. Si, Q. He, Recent progress on bioinspired self-propelled micro/nanomotors via controlled molecular self-assembly. Small 12, 3080–3093 (2016). https://doi.org/10.1002/smll.201503969
- B. Esteban-Fernández de Ávila, W. Gao, E. Karshalev, L. Zhang, J. Wang, Cell-like micromotors. Acc. Chem. Res. 51, 1901–1910 (2018). https://doi.org/10.1021/acs.accounts.8b00202
- S. Pané, J. Puigmartí-Luis, C. Bergeles, X.Z. Chen, E. Pellicer et al., Imaging technologies for biomedical micro- and nanoswimmers. Adv. Mater. Technol. 4, 1800575 (2018). https://doi.org/10.1002/admt.201800575
- C. Gao, Z. Lin, X. Lin, Q. He, Cell membrane-camouflaged colloid motors for biomedical applications. Adv. Therap. 1, 1800056 (2018). https://doi.org/10.1002/adtp.201800056
- L. Xu, F. Mou, H. Gong, M. Luo, J. Guan, Light-driven micro/nanomotors: from fundamentals to applications. Chem. Soc. Rev. 46, 6905–6926 (2017). https://doi.org/10.1039/C7CS00516D
- R. Dong, Y. Cai, Y. Yang, W. Gao, B. Ren, Photocatalytic micro/nanomotors: from construction to applications. Acc. Chem. Res. 51, 1940–1947 (2018). https://doi.org/10.1021/acs.accounts.8b00249
- W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. Angelo et al., Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004). https://doi.org/10.1021/ja047697z
- J. Guo, J.J. Gallegos, A.R. Tom, D. Fan, Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices. ACS Nano 12, 1179–1187 (2018). https://doi.org/10.1021/acsnano.7b06824
- J. Wang, Z. Xiong, X. Zhan, B. Dai, J. Zheng, J. Liu, J. Tang, A silicon nanowire as a spectrally tunable light-driven nanomotor. Adv. Mater. 170145 (2017). https://doi.org/10.1002/adma.201701451
- B. Xu, B. Zhang, L. Wang, G. Huang, Y. Mei, Tubular micro/nanomachines: from the basics to recent advances. Adv. Funct. Mater. 1705872 (2018). https://doi.org/10.1002/adfm.201705872
- Z. Tian, L. Zhang, Y. Fang, B. Xu, S. Tang et al., Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture. Adv. Mater. 1604572 (2017). https://doi.org/10.1002/adma.201604572
- F. Zha, T. Wang, M. Luo, J. Guan, Tubular micro/nanomotors: propulsion mechanisms, fabrication techniques and applications. Micromachines 9, 78 (2018). https://doi.org/10.3390/mi9020078
- J. Jiao, D. Xu, Y. Liu, W. Zhao, J. Zhang, T. Zheng, H. Feng, X. Ma, Mini-emulsion fabricated magnetic and fluorescent hybrid Janus micro-motors. Micromachines 9, 83 (2018). https://doi.org/10.3390/mi9020083
- Y. Ji, X. Lin, H. Zhang, Y. Wu, J. Li, Q. He, Thermoresponsive polymer brush modulation on the direction of motion of phoretically driven janus micromotors Angew. Chem. Int. Ed. 58, 4184–4188 (2019). https://doi.org/10.1002/anie.201812860
- V. Sridhar, B.-W. Park, M. Sitti, Light-driven janus hollow mesoporous TiO2–Au microswimmers. Adv. Funct. Mater. 1704902 (2018). https://doi.org/10.1002/adfm.201704902
- F. Peng, Y. Tu, Y. Men, J.C.M. van Hest, D.A. Wilson, Supramolecular adaptive nanomotors with magnetotaxis behavior. Adv. Mater. 29, 1604996 (2016). https://doi.org/10.1002/adma.201604996
- J. Li, X. Yu, M. Xu, W. Liu, E. Sandraz, H. Lan, J. Wang, S.M. Cohen, Metal-organic frameworks as micromotors with tunable engines and brakes. J. Am. Chem. Soc. 139, 611–614 (2016). https://doi.org/10.1021/jacs.6b11899
- L. Wang, H. Zhu, Y. Shi, Y. Ge, X. Feng, R. Liu, Y. Li, Y. Ma, L.J.N. Wang, Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery. Nanoscale 10, 11384–11391 (2018). https://doi.org/10.1039/C8NR02493F
- H. Wang, M. Pumera, Fabrication of micro/nanoscale motors. Chem. Rev. 115, 8704–8735 (2015). https://doi.org/10.1021/acs.chemrev.5b00047
- D. Ahmed, T. Baasch, B. Jang, S. Pané, J. Dual, B.J. Nelson, Artificial swimmers propelled by acoustically activated flagella. Nano Lett. 16, 4968–4974 (2016). https://doi.org/10.1021/acs.nanolett.6b01601
- J. Katuri, W.E. Uspal, J. Simmchen, A. Miguel-López, S. Sánchez, Cross-stream migration of active particles. Sci. Adv. 4, 1755 (2018). https://doi.org/10.1126/sciadv.aao1755
- W. Gao, B.E.-F. de Ávila, L. Zhang, J. Wang, Targeting and isolation of cancer cells using micro/nanomotors. Adv. Drug Del. Rev. 125, 94–101 (2018). https://doi.org/10.1016/j.addr.2017.09.002
- M. Hansen-Bruhn, B.E.-F. de Ávila, M. Beltrán-Gastélum, J. Zhao, D.E. Ramírez-Herrera et al., Active intracellular delivery of a Cas9/sgRNA complex using ultrasound-propelled nanomotors. Angew. Chem. Int. Ed. 57, 2657–2661 (2018). https://doi.org/10.1002/anie.201713082
- W. Wang, Z. Wu, X. Lin, T. Si, Q. He, Gold-nanoshell-functionalized polymer nanoswimmer for photomechanical poration of single-cell membrane. J. Am. Chem. Soc. 141, 6601–6608 (2019). https://doi.org/10.1021/jacs.8b13882
- B. Jurado-Sanchez, M. Pacheco, J. Rojo, A. Escarpa, Magnetocatalytic graphene quantum dots janus micromotors for bacterial endotoxin detection. Angew. Chem. Int. Ed. 56, 6957–6961 (2017). https://doi.org/10.1002/anie.201701396
- A. Halder, Y. Sun, Biocompatible propulsion for biomedical micro/nano robotics. Biosens. Bioelectron. 139, 111334 (2019). https://doi.org/10.1016/j.bios.2019.111334
- S. Mitragotri, P.A. Burke, R. Langer, Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014). https://doi.org/10.1038/nrd4363
- M. Medina-Sanchez, L. Schwarz, A.K. Meyer, F. Hebenstreit, O.G. Schmidt, Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 16, 555–561 (2016). https://doi.org/10.1021/acs.nanolett.5b04221
- S.K. Srivastava, G. Clergeaud, T.L. Andresen, A. Boisen, Micromotors for drug delivery in vivo: the road ahead. Adv. Drug Deliv. Rev. 138, 41–55 (2019). https://doi.org/10.1016/j.addr.2018.09.005
- M. Medina-Sánchez, H. Xu, O.G. Schmidt, Micro-and nano-motors: the new generation of drug carriers. Therap. Deliv. 9, 303–316 (2018). https://doi.org/10.4155/tde-2017-0113
- W. Gao, J. Wang, Synthetic micro/nanomotors in drug delivery. Nanoscale 6, 10486–10494 (2014). https://doi.org/10.1039/C4NR03124E
- Y. Wu, X. Lin, Z. Wu, H. Möhwald, Q. He, Self-propelled polymer multilayer janus capsules for effective drug delivery and light-triggered release. ACS Appl. Mater. Interfaces. 6, 10476–10481 (2014). https://doi.org/10.1021/am502458h
- L. Ming, F. Youzeng, W. Tingwei, G. Jianguo, Micro‐/nanorobots at work in active drug delivery. Adv. Funct. Mater. 1706100 (2018). https://doi.org/10.1002/adfm.201706100
- T.P. Szatrowski, CFJCR Nathan, Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794–798 (1991). https://doi.org/10.1016/0304-3835(91)90094-x
- K. Villa, L. Krejčová, F. Novotný, Z. Heger, Z. Sofer, M. Pumera, Cooperative multifunctional self-propelled paramagnetic microrobots with chemical handles for cell manipulation and drug delivery. Adv. Funct. Mater. 1804343 (2018). https://doi.org/10.1002/adfm.201804343
- A.C. Hortelão, T. Patiño, A. Perez-Jiménez, À. Blanco, S. Sánchez, Enzyme-powered nanobots enhance anticancer drug delivery. Adv. Funct. Mater. 1705086 (2017). https://doi.org/10.1002/adfm.201705086
- B. Khezri, S.M. Beladi Mousavi, L. Krejčová, Z. Heger, Z. Sofer, M.J.A.F.M. Pumera, Ultrafast electrochemical trigger drug delivery mechanism for nanographene micromachines. Adv. Funct. Mater. 1806696 (2018). https://doi.org/10.1002/adfm.201806696
- S. Gao, J. Hou, J. Zeng, J.J. Richardson, Z. Gu et al., Superassembled biocatalytic porous framework micromotors with reversible and sensitive pH-speed regulation at ultralow physiological H2O2 concentration. Adv. Funct. Mater. 1808900 (2019). https://doi.org/10.1002/adfm.201808900
- H. Xu, M. Medina-Sánchez, V. Magdanz, L. Schwarz, F. Hebenstreit, O.G. Schmidt, Sperm-hybrid micromotor for targeted drug delivery. ACS Nano 12, 327–337 (2018). https://doi.org/10.1021/acsnano.7b06398
- B. Esteban-Fernández de Ávila, C. Angell, F. Soto, M.A. Lopez-Ramirez, D.F. Báez, S. Xie, J. Wang, Y. Chen, Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano 10, 4997–5005 (2016). https://doi.org/10.1021/acsnano.6b01415
- Z. Wu, L. Li, Y. Yang, P. Hu, Y. Li, S.Y. Yang, L. Wang, W. Gao, A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4, eaax0613 (2019). https://doi.org/10.1126/scirobotics.aax0613
- C.Y. Wen, H.Y. Xie, Z.L. Zhang, L.L. Wu, J. Hu, M. Tang, M. Wu, D.W. Pang, Fluorescent/magnetic micro/nano-spheres based on quantum dots and/or magnetic nanoparticles: preparation, properties, and their applications in cancer studies. Nanoscale 8, 12406–12429 (2016). https://doi.org/10.1039/c5nr08534a
- S.A. Soper, K. Brown, A. Ellington, B. Frazier, G. Garcia-Manero et al., Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens. Bioelectron. 21, 1932–1942 (2006). https://doi.org/10.1016/j.bios.2006.01.006
- N.L. Henry, D.F. Hayes, Cancer biomarkers. Mol. Oncol. 6, 140–146 (2012). https://doi.org/10.1016/j.molonc.2012.01.010
- W. Zhou, Q. Li, H. Liu, J. Yang, D. Liu, Building electromagnetic hot spots in living cells via target-triggered nanoparticle dimerization. ACS Nano 11, 3532–3541 (2017). https://doi.org/10.1021/acsnano.7b00531
- J.J. Fenton, M.S. Weyrich, S. Durbin, Y. Liu, H. Bang, J. Melnikow, Prostate-specific antigen-based screening for prostate cancer: evidence report and systematic review for the US preventive services task force. JAMA 319, 1914–1931 (2018). https://doi.org/10.1001/jama.2018.3712
- Y. Lu, M. Zhu, W. Li, B. Lin, X. Dong, Y. Chen, X. Xie, J. Guo, M. Li, Alpha fetoprotein plays a critical role in promoting metastasis of hepatocellular carcinoma cells. J. Cell Mol. Med. 20, 549–558 (2016). https://doi.org/10.1111/jcmm.12745
- H. Wang, M. Pumera, Micro/nanomachines and living biosystems: from simple interactions to microcyborgs. Adv. Funct. Mater. 1705421 (2018). https://doi.org/10.1002/adfm.201705421
- C.Y. Wen, L.L. Wu, Z.L. Zhang, Y.L. Liu, S.Z. Wei et al., Quick-response magnetic nanospheres for rapid, efficient capture and sensitive detection of circulating tumor cells. ACS Nano 8, 941–949 (2014). https://doi.org/10.1021/nn405744f
- S. Riethdorf, H. Fritsche, V. Muller, T. Rau, C. Schindlbeck et al., Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin. Cancer Res. 13, 920–928 (2007). https://doi.org/10.1158/1078-0432.CCR-06-1695
- N. Beije, A. Jager, S. Sleijfer, Circulating tumor cell enumeration by the Cell Search system: the clinician’s guide to breast cancer treatment? Cancer Treat. Rev. 41, 144–150 (2015). https://doi.org/10.1016/j.ctrv.2014.12.008
- E. Andreopoulou, L.Y. Yang, K.M. Rangel, J.M. Reuben, L. Hsu et al., Comparison of assay methods for detection of circulating tumor cells in metastatic breast cancer: adnaGen AdnaTest BreastCancer Select/DetectTM versus Veridex Cell SearchTM system. Int. J. Cancer 130, 1590–1597 (2012). https://doi.org/10.1002/ijc.26111
- D. Kagan, R. Laocharoensuk, M. Zimmerman, C. Clawson, S. Balasubramanian et al., Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small 6, 2741–2747 (2010). https://doi.org/10.1002/smll.201001257
- R.L.J. Burdick, P.M. Wheat, J.D. Posner, J. Wang, Synthetic nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo. J. Am. Chem. Soc. 130, 8164–8165 (2008). https://doi.org/10.1021/ja803529u
- S. Sundararajan, S. Sengupta, M.E. Ibele, A. Sen, Drop-off of colloidal cargo transported by catalytic Pt-Au nanomotors via photochemical stimuli. Small 6, 1479–1482 (2010). https://doi.org/10.1002/smll.201000227
- Y. Ding, F. Qiu, X. Casadevall i Solvas, F. Chiu, B. Nelson, A. de Mello, Microfluidic-based droplet and cell manipulations using artificial bacterial flagella. Micromachines 7(2), 25 (2016). https://doi.org/10.3390/mi7020025
- L. Zhang, K.E. Peyer, B.J. Nelson, Artificial bacterial flagella for micromanipulation. Lab Chip 10, 2203–2215 (2010). https://doi.org/10.1039/c004450b
- S. Balasubramanian, D. Kagan, C.M. Jack Hu, S. Campuzano, M.J. Lobo-Castañon et al., Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chem. Int. Ed. 50, 4161–4164 (2011). https://doi.org/10.1002/anie.201100115
- X. Zhang, C. Chen, J. Wu, H. Ju, Bubble-propelled jellyfish-like micromotors for DNA sensing. ACS Appl. Mater. Interfaces. 11, 13581–13588 (2019). https://doi.org/10.1021/acsami.9b00605
- Y.X. Chen, K.J. Huang, K.X. Niu, Recent advances in signal amplification strategy based on oligonucleotide and nanomaterials for microRNA detection-a review. Biosens. Bioelectron. 99, 612–624 (2018). https://doi.org/10.1016/j.bios.2017.08.036
- A.D. Castaneda, N.J. Brenes, A. Kondajji, R.M. Crooks, Detection of microRNA by electrocatalytic amplification: a general approach for single-particle biosensing. J. Am. Chem. Soc. 139, 7657–7664 (2017). https://doi.org/10.1021/jacs.7b03648
- W. Lu, Y. Chen, Z. Liu, W. Tang, Q. Feng, J. Sun, X. Jiang, Quantitative detection of microRNA in one step via next generation magnetic relaxation switch sensing. ACS Nano 10, 6685–6692 (2016). https://doi.org/10.1021/acsnano.6b01903
- X. Zhao, L. Xu, M. Sun, W. Ma, X. Wu, H. Kuang, L. Wang, C. Xu, Gold-quantum dot core-satellite assemblies for lighting up microRNA in vitro and in vivo. Small 12, 4662–4668 (2016). https://doi.org/10.1002/smll.201503629
- S. Li, L. Xu, W. Ma, X. Wu, M. Sun et al., Dual-mode ultrasensitive quantification of microRNA in living cells by chiroplasmonic nanopyramids self-assembled from gold and upconversion nanoparticles. J. Am. Chem. Soc. 138, 306–312 (2016). https://doi.org/10.1021/jacs.5b10309
- D.Á.B. Esteban-Fernández, A. Martín, F. Soto, M.A. Lopez-Ramirez, S. Campuzano et al., Single cell real-time miRNAs sensing based on nanomotors. ACS Nano 9, 6756–6764 (2015). https://doi.org/10.1021/acsnano.5b02807
- T.H. Shin, Y. Choi, S. Kim, JJCSR Cheon, Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem. Soc. Rev. 44, 4501–4516 (2015). https://doi.org/10.1039/c4cs00345d
- J.Y. Zhao, G. Chen, Y.P. Gu, R. Cui, Z.L. Zhang, Z.L. Yu, B. Tang, Y.F. Zhao, D.W. Pang, Ultrasmall magnetically engineered Ag2Se quantum dots for instant efficient labeling and whole-body high-resolution multimodal real-time tracking of cell-derived microvesicles. J. Am. Chem. Soc. 138, 1893–1903 (2016). https://doi.org/10.1021/jacs.5b10340
- L. Wu, A. Mendoza-Garcia, Q. Li, S. Sun, Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 116, 10473–10512 (2016). https://doi.org/10.1021/acs.chemrev.5b00687
- J. Xie, K. Chen, H.Y. Lee, C. Xu, A.R. Hsu et al., Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin alpha(v)beta3-rich tumor cells. J. Am. Chem. Soc. 130, 7542–7543 (2008). https://doi.org/10.1021/ja802003h
- X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu et al., Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2, 1155 (2017). https://doi.org/10.1126/scirobotics.aaq1155
- M. Wan, H. Chen, Q. Wang, Q. Niu, P. Xu, Y. Yu, T. Zhu, C. Mao, J. Shen, Bio-inspired nitric-oxide-driven nanomotor. Nat. Commun. 10, 966 (2019). https://doi.org/10.1038/s41467-019-08670-8
- H. Ceylan, I.C. Yasa, O. Yasa, A.F. Tabak, J. Giltinan, M. Sitti, 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 13, 3353–3362 (2019). https://doi.org/10.1021/acsnano.8b09233
- G.F. Luo, W.H. Chen, Q. Lei, W.X. Qiu, Y.X. Liu, Y.J. Cheng, X.Z. Zhang, A triple-collaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods. Adv. Funct. Mater. 26, 4339–4350 (2016). https://doi.org/10.1002/adfm.201505175
- W.H. Chen, G.F. Luo, W.X. Qiu, Q. Lei, L.H. Liu, S.B. Wang, X.Z.J.B. Zhang, Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy. Biomaterials 117, 54–65 (2016). https://doi.org/10.1016/j.biomaterials.2016.11.057
- Z. Zhang, J. Wang, C.J. Chen, Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mater. 25, 3869–3880 (2013). https://doi.org/10.1002/adma.201301890
- C. Li, Y. Zhang, Z. Li, E. Mei, J. Lin et al., Theranostics: light-responsive biodegradable nanorattles for cancer theranostics. Adv. Mater. 30, 1870049 (2018). https://doi.org/10.1002/adma.201870049
- P.P. Yang, Y.G. Zhai, G.B. Qi, Y.X. Lin, Q. Luo et al., NIR light propulsive janus-like nanohybrids for enhanced photothermal tumor therapy. Small 12, 5423–5430 (2016). https://doi.org/10.1002/smll.201601965
- H. Choi, G.H. Lee, K.S. Kim, S.K. Hahn, Light-guided nanomotor systems for autonomous photothermal cancer therapy. ACS Appl. Mater. Interfaces 10, 2338–2346 (2017). https://doi.org/10.1021/acsami.7b16595
References
C. Allemani, T. Matsuda, V. Di Carlo, Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. The Lancet 391, 1023–1075 (2018). https://doi.org/10.1016/s0140-6736(17)33326-3
H. Chen, Z. Gu, H. An, C. Chen, J. Chen et al., Precise nanomedicine for intelligent therapy of cancer. Sci. China Chem. 61, 1503–1552 (2018). https://doi.org/10.1007/s11426-018-9397-5
A. Wicki, D. Witzigmann, V. Balasubramanian, J. Huwyler, Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control Release 200, 138–157 (2015). https://doi.org/10.1016/j.jconrel.2014.12.030
K.K. Chan, S.H.K. Yap, K.T. Yong, Biogreen synthesis of carbon dots for biotechnology and nanomedicine applications. Nano-Micro Lett. 10, 72 (2018). https://doi.org/10.1007/s40820-018-0223-3
Q. Zhao, H. Cui, Y. Wang, X. Du, Microfluidic platforms toward rational material fabrication for biomedical applications. Small 1903798 (2019). https://doi.org/10.1002/smll.201903798
Y. Wang, H. Cui, Q. Zhao, X. Du, Chameleon-inspired structural-color actuators. Matter 1, 626–638 (2019). https://doi.org/10.1016/j.matt.2019.05.012
Y. Hu, S. Mignani, J.P. Majoral, M. Shen, X. Shi, Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem. Soc. Rev. 47, 1874–1900 (2018). https://doi.org/10.1039/c7cs00657h
K.D. Wegner, N. Hildebrandt, Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 44, 4792–4834 (2015). https://doi.org/10.1039/c4cs00532e
T. Sun, F. Ai, G. Zhu, F. Wang, Upconversion in nanostructured materials: from optical tuning to biomedical applications. Chem. Asian J. 13, 373–385 (2018). https://doi.org/10.1002/asia.201701660
X. Du, H. Cui, Q. Zhao, J. Wang, H. Chen, Y. Wang, Inside-out 3D reversible ion-triggered shape-morphing hydrogels. Research 6398296 (2019). https://doi.org/10.34133/2019/6398296
Y. Xia, W. Li, C.M. Cobley, J. Chen, X. Xia et al., Gold nanocages: from synthesis to theranostic applications. Acc. Chem. Res. 44, 914 (2011). https://doi.org/10.1021/ar200061q
J. Wang, Nanomachines: Fundamentals and Applications (Wiley, Weinheim, 2013)
M. Safdar, S.U. Khan, J. Jänis, Progress toward catalytic micro- and nanomotors for biomedical and environmental applications. Adv. Mater. 1703660 (2018). https://doi.org/10.1002/adma.201703660
T.E. Mallouk, A Sen (2009) Powering nanorobots. Sci. Am. 300, 72–77 (2009)
T. Xu, L.P. Xu, X. Zhang, Ultrasound propulsion of micro-/nanomotors. Appl. Mater. Today 9, 493–503 (2017). https://doi.org/10.1016/j.apmt.2017.07.011
K.E. Peyer, S. Tottori, F. Qiu, L. Zhang, B.J. Nelson, Magnetic helical micromachines. Chem. Eur. J. 19, 28–38 (2013). https://doi.org/10.1002/chem.201203364
Z. Wu, Y. Wu, W. He, X. Lin, J. Sun, Q. He, Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew. Chem. Int. Ed. 52, 7000–7003 (2013). https://doi.org/10.1002/anie.201301643
H. Chen, Q. Zhao, Y. Wang, S. Mu, H. Cui, J. Wang, T. Kong, X. Du, Near-infrared light-driven controllable motions of gold-hollow-microcone array. ACS Appl. Mater. Interfaces 11, 15927–15935 (2019). https://doi.org/10.1021/acsami.9b03576
H. Chen, Q. Zhao, X. Du, Light-powered micro/nanomotors. Micromachines 9, 41 (2018). https://doi.org/10.3390/mi9020041
X. Ma, A.C. Hortelão, T. Patiño, S. Sánchez, Enzyme catalysis to power micro/nanomachines. ACS Nano 10, 9111–9122 (2016). https://doi.org/10.1021/acsnano.6b04108
Y. Yang, X. Song, X. Li, Z. Chen, C. Zhou, Q. Zhou, Y. Chen, Recent progress in biomimetic additive manufacturing technology: from materials to functional structures. Adv. Mater. 1706539 (2018). https://doi.org/10.1002/adma.201706539
X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116, 10983–11060 (2016). https://doi.org/10.1021/acs.chemrev.5b00731
X. Pang, C. Wan, M. Wang, Z. Lin, Strictly biphasic soft and hard Janus structures: synthesis, properties, and applications. Angew. Chem. Int. Ed. 53, 5524–5538 (2014). https://doi.org/10.1002/anie.201309352
H. Ning, Y. Zhang, H. Zhu, A. Ingham, G. Huang, Y. Mei, A. Solovev, Geometry design, principles and assembly of micromotors. Micromachines 9, 75 (2018). https://doi.org/10.3390/mi9020075
K. Kim, J. Guo, Z. Liang, D. Fan, Artificial micro/nanomachines for bioapplications: biochemical delivery and diagnostic sensing. Adv. Funct. Mater. 1705867 (2018). https://doi.org/10.1002/adfm.201705867
J. Li, B. Esteban-Fernández de Ávila, W. Gao, L. Zhang, J. Wang, Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot 2, 6431 (2017). https://doi.org/10.1126/scirobotics.aam6431
Z. Wu, X. Lin, T. Si, Q. He, Recent progress on bioinspired self-propelled micro/nanomotors via controlled molecular self-assembly. Small 12, 3080–3093 (2016). https://doi.org/10.1002/smll.201503969
B. Esteban-Fernández de Ávila, W. Gao, E. Karshalev, L. Zhang, J. Wang, Cell-like micromotors. Acc. Chem. Res. 51, 1901–1910 (2018). https://doi.org/10.1021/acs.accounts.8b00202
S. Pané, J. Puigmartí-Luis, C. Bergeles, X.Z. Chen, E. Pellicer et al., Imaging technologies for biomedical micro- and nanoswimmers. Adv. Mater. Technol. 4, 1800575 (2018). https://doi.org/10.1002/admt.201800575
C. Gao, Z. Lin, X. Lin, Q. He, Cell membrane-camouflaged colloid motors for biomedical applications. Adv. Therap. 1, 1800056 (2018). https://doi.org/10.1002/adtp.201800056
L. Xu, F. Mou, H. Gong, M. Luo, J. Guan, Light-driven micro/nanomotors: from fundamentals to applications. Chem. Soc. Rev. 46, 6905–6926 (2017). https://doi.org/10.1039/C7CS00516D
R. Dong, Y. Cai, Y. Yang, W. Gao, B. Ren, Photocatalytic micro/nanomotors: from construction to applications. Acc. Chem. Res. 51, 1940–1947 (2018). https://doi.org/10.1021/acs.accounts.8b00249
W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. Angelo et al., Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004). https://doi.org/10.1021/ja047697z
J. Guo, J.J. Gallegos, A.R. Tom, D. Fan, Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices. ACS Nano 12, 1179–1187 (2018). https://doi.org/10.1021/acsnano.7b06824
J. Wang, Z. Xiong, X. Zhan, B. Dai, J. Zheng, J. Liu, J. Tang, A silicon nanowire as a spectrally tunable light-driven nanomotor. Adv. Mater. 170145 (2017). https://doi.org/10.1002/adma.201701451
B. Xu, B. Zhang, L. Wang, G. Huang, Y. Mei, Tubular micro/nanomachines: from the basics to recent advances. Adv. Funct. Mater. 1705872 (2018). https://doi.org/10.1002/adfm.201705872
Z. Tian, L. Zhang, Y. Fang, B. Xu, S. Tang et al., Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture. Adv. Mater. 1604572 (2017). https://doi.org/10.1002/adma.201604572
F. Zha, T. Wang, M. Luo, J. Guan, Tubular micro/nanomotors: propulsion mechanisms, fabrication techniques and applications. Micromachines 9, 78 (2018). https://doi.org/10.3390/mi9020078
J. Jiao, D. Xu, Y. Liu, W. Zhao, J. Zhang, T. Zheng, H. Feng, X. Ma, Mini-emulsion fabricated magnetic and fluorescent hybrid Janus micro-motors. Micromachines 9, 83 (2018). https://doi.org/10.3390/mi9020083
Y. Ji, X. Lin, H. Zhang, Y. Wu, J. Li, Q. He, Thermoresponsive polymer brush modulation on the direction of motion of phoretically driven janus micromotors Angew. Chem. Int. Ed. 58, 4184–4188 (2019). https://doi.org/10.1002/anie.201812860
V. Sridhar, B.-W. Park, M. Sitti, Light-driven janus hollow mesoporous TiO2–Au microswimmers. Adv. Funct. Mater. 1704902 (2018). https://doi.org/10.1002/adfm.201704902
F. Peng, Y. Tu, Y. Men, J.C.M. van Hest, D.A. Wilson, Supramolecular adaptive nanomotors with magnetotaxis behavior. Adv. Mater. 29, 1604996 (2016). https://doi.org/10.1002/adma.201604996
J. Li, X. Yu, M. Xu, W. Liu, E. Sandraz, H. Lan, J. Wang, S.M. Cohen, Metal-organic frameworks as micromotors with tunable engines and brakes. J. Am. Chem. Soc. 139, 611–614 (2016). https://doi.org/10.1021/jacs.6b11899
L. Wang, H. Zhu, Y. Shi, Y. Ge, X. Feng, R. Liu, Y. Li, Y. Ma, L.J.N. Wang, Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery. Nanoscale 10, 11384–11391 (2018). https://doi.org/10.1039/C8NR02493F
H. Wang, M. Pumera, Fabrication of micro/nanoscale motors. Chem. Rev. 115, 8704–8735 (2015). https://doi.org/10.1021/acs.chemrev.5b00047
D. Ahmed, T. Baasch, B. Jang, S. Pané, J. Dual, B.J. Nelson, Artificial swimmers propelled by acoustically activated flagella. Nano Lett. 16, 4968–4974 (2016). https://doi.org/10.1021/acs.nanolett.6b01601
J. Katuri, W.E. Uspal, J. Simmchen, A. Miguel-López, S. Sánchez, Cross-stream migration of active particles. Sci. Adv. 4, 1755 (2018). https://doi.org/10.1126/sciadv.aao1755
W. Gao, B.E.-F. de Ávila, L. Zhang, J. Wang, Targeting and isolation of cancer cells using micro/nanomotors. Adv. Drug Del. Rev. 125, 94–101 (2018). https://doi.org/10.1016/j.addr.2017.09.002
M. Hansen-Bruhn, B.E.-F. de Ávila, M. Beltrán-Gastélum, J. Zhao, D.E. Ramírez-Herrera et al., Active intracellular delivery of a Cas9/sgRNA complex using ultrasound-propelled nanomotors. Angew. Chem. Int. Ed. 57, 2657–2661 (2018). https://doi.org/10.1002/anie.201713082
W. Wang, Z. Wu, X. Lin, T. Si, Q. He, Gold-nanoshell-functionalized polymer nanoswimmer for photomechanical poration of single-cell membrane. J. Am. Chem. Soc. 141, 6601–6608 (2019). https://doi.org/10.1021/jacs.8b13882
B. Jurado-Sanchez, M. Pacheco, J. Rojo, A. Escarpa, Magnetocatalytic graphene quantum dots janus micromotors for bacterial endotoxin detection. Angew. Chem. Int. Ed. 56, 6957–6961 (2017). https://doi.org/10.1002/anie.201701396
A. Halder, Y. Sun, Biocompatible propulsion for biomedical micro/nano robotics. Biosens. Bioelectron. 139, 111334 (2019). https://doi.org/10.1016/j.bios.2019.111334
S. Mitragotri, P.A. Burke, R. Langer, Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014). https://doi.org/10.1038/nrd4363
M. Medina-Sanchez, L. Schwarz, A.K. Meyer, F. Hebenstreit, O.G. Schmidt, Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 16, 555–561 (2016). https://doi.org/10.1021/acs.nanolett.5b04221
S.K. Srivastava, G. Clergeaud, T.L. Andresen, A. Boisen, Micromotors for drug delivery in vivo: the road ahead. Adv. Drug Deliv. Rev. 138, 41–55 (2019). https://doi.org/10.1016/j.addr.2018.09.005
M. Medina-Sánchez, H. Xu, O.G. Schmidt, Micro-and nano-motors: the new generation of drug carriers. Therap. Deliv. 9, 303–316 (2018). https://doi.org/10.4155/tde-2017-0113
W. Gao, J. Wang, Synthetic micro/nanomotors in drug delivery. Nanoscale 6, 10486–10494 (2014). https://doi.org/10.1039/C4NR03124E
Y. Wu, X. Lin, Z. Wu, H. Möhwald, Q. He, Self-propelled polymer multilayer janus capsules for effective drug delivery and light-triggered release. ACS Appl. Mater. Interfaces. 6, 10476–10481 (2014). https://doi.org/10.1021/am502458h
L. Ming, F. Youzeng, W. Tingwei, G. Jianguo, Micro‐/nanorobots at work in active drug delivery. Adv. Funct. Mater. 1706100 (2018). https://doi.org/10.1002/adfm.201706100
T.P. Szatrowski, CFJCR Nathan, Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794–798 (1991). https://doi.org/10.1016/0304-3835(91)90094-x
K. Villa, L. Krejčová, F. Novotný, Z. Heger, Z. Sofer, M. Pumera, Cooperative multifunctional self-propelled paramagnetic microrobots with chemical handles for cell manipulation and drug delivery. Adv. Funct. Mater. 1804343 (2018). https://doi.org/10.1002/adfm.201804343
A.C. Hortelão, T. Patiño, A. Perez-Jiménez, À. Blanco, S. Sánchez, Enzyme-powered nanobots enhance anticancer drug delivery. Adv. Funct. Mater. 1705086 (2017). https://doi.org/10.1002/adfm.201705086
B. Khezri, S.M. Beladi Mousavi, L. Krejčová, Z. Heger, Z. Sofer, M.J.A.F.M. Pumera, Ultrafast electrochemical trigger drug delivery mechanism for nanographene micromachines. Adv. Funct. Mater. 1806696 (2018). https://doi.org/10.1002/adfm.201806696
S. Gao, J. Hou, J. Zeng, J.J. Richardson, Z. Gu et al., Superassembled biocatalytic porous framework micromotors with reversible and sensitive pH-speed regulation at ultralow physiological H2O2 concentration. Adv. Funct. Mater. 1808900 (2019). https://doi.org/10.1002/adfm.201808900
H. Xu, M. Medina-Sánchez, V. Magdanz, L. Schwarz, F. Hebenstreit, O.G. Schmidt, Sperm-hybrid micromotor for targeted drug delivery. ACS Nano 12, 327–337 (2018). https://doi.org/10.1021/acsnano.7b06398
B. Esteban-Fernández de Ávila, C. Angell, F. Soto, M.A. Lopez-Ramirez, D.F. Báez, S. Xie, J. Wang, Y. Chen, Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano 10, 4997–5005 (2016). https://doi.org/10.1021/acsnano.6b01415
Z. Wu, L. Li, Y. Yang, P. Hu, Y. Li, S.Y. Yang, L. Wang, W. Gao, A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4, eaax0613 (2019). https://doi.org/10.1126/scirobotics.aax0613
C.Y. Wen, H.Y. Xie, Z.L. Zhang, L.L. Wu, J. Hu, M. Tang, M. Wu, D.W. Pang, Fluorescent/magnetic micro/nano-spheres based on quantum dots and/or magnetic nanoparticles: preparation, properties, and their applications in cancer studies. Nanoscale 8, 12406–12429 (2016). https://doi.org/10.1039/c5nr08534a
S.A. Soper, K. Brown, A. Ellington, B. Frazier, G. Garcia-Manero et al., Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens. Bioelectron. 21, 1932–1942 (2006). https://doi.org/10.1016/j.bios.2006.01.006
N.L. Henry, D.F. Hayes, Cancer biomarkers. Mol. Oncol. 6, 140–146 (2012). https://doi.org/10.1016/j.molonc.2012.01.010
W. Zhou, Q. Li, H. Liu, J. Yang, D. Liu, Building electromagnetic hot spots in living cells via target-triggered nanoparticle dimerization. ACS Nano 11, 3532–3541 (2017). https://doi.org/10.1021/acsnano.7b00531
J.J. Fenton, M.S. Weyrich, S. Durbin, Y. Liu, H. Bang, J. Melnikow, Prostate-specific antigen-based screening for prostate cancer: evidence report and systematic review for the US preventive services task force. JAMA 319, 1914–1931 (2018). https://doi.org/10.1001/jama.2018.3712
Y. Lu, M. Zhu, W. Li, B. Lin, X. Dong, Y. Chen, X. Xie, J. Guo, M. Li, Alpha fetoprotein plays a critical role in promoting metastasis of hepatocellular carcinoma cells. J. Cell Mol. Med. 20, 549–558 (2016). https://doi.org/10.1111/jcmm.12745
H. Wang, M. Pumera, Micro/nanomachines and living biosystems: from simple interactions to microcyborgs. Adv. Funct. Mater. 1705421 (2018). https://doi.org/10.1002/adfm.201705421
C.Y. Wen, L.L. Wu, Z.L. Zhang, Y.L. Liu, S.Z. Wei et al., Quick-response magnetic nanospheres for rapid, efficient capture and sensitive detection of circulating tumor cells. ACS Nano 8, 941–949 (2014). https://doi.org/10.1021/nn405744f
S. Riethdorf, H. Fritsche, V. Muller, T. Rau, C. Schindlbeck et al., Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin. Cancer Res. 13, 920–928 (2007). https://doi.org/10.1158/1078-0432.CCR-06-1695
N. Beije, A. Jager, S. Sleijfer, Circulating tumor cell enumeration by the Cell Search system: the clinician’s guide to breast cancer treatment? Cancer Treat. Rev. 41, 144–150 (2015). https://doi.org/10.1016/j.ctrv.2014.12.008
E. Andreopoulou, L.Y. Yang, K.M. Rangel, J.M. Reuben, L. Hsu et al., Comparison of assay methods for detection of circulating tumor cells in metastatic breast cancer: adnaGen AdnaTest BreastCancer Select/DetectTM versus Veridex Cell SearchTM system. Int. J. Cancer 130, 1590–1597 (2012). https://doi.org/10.1002/ijc.26111
D. Kagan, R. Laocharoensuk, M. Zimmerman, C. Clawson, S. Balasubramanian et al., Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small 6, 2741–2747 (2010). https://doi.org/10.1002/smll.201001257
R.L.J. Burdick, P.M. Wheat, J.D. Posner, J. Wang, Synthetic nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo. J. Am. Chem. Soc. 130, 8164–8165 (2008). https://doi.org/10.1021/ja803529u
S. Sundararajan, S. Sengupta, M.E. Ibele, A. Sen, Drop-off of colloidal cargo transported by catalytic Pt-Au nanomotors via photochemical stimuli. Small 6, 1479–1482 (2010). https://doi.org/10.1002/smll.201000227
Y. Ding, F. Qiu, X. Casadevall i Solvas, F. Chiu, B. Nelson, A. de Mello, Microfluidic-based droplet and cell manipulations using artificial bacterial flagella. Micromachines 7(2), 25 (2016). https://doi.org/10.3390/mi7020025
L. Zhang, K.E. Peyer, B.J. Nelson, Artificial bacterial flagella for micromanipulation. Lab Chip 10, 2203–2215 (2010). https://doi.org/10.1039/c004450b
S. Balasubramanian, D. Kagan, C.M. Jack Hu, S. Campuzano, M.J. Lobo-Castañon et al., Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chem. Int. Ed. 50, 4161–4164 (2011). https://doi.org/10.1002/anie.201100115
X. Zhang, C. Chen, J. Wu, H. Ju, Bubble-propelled jellyfish-like micromotors for DNA sensing. ACS Appl. Mater. Interfaces. 11, 13581–13588 (2019). https://doi.org/10.1021/acsami.9b00605
Y.X. Chen, K.J. Huang, K.X. Niu, Recent advances in signal amplification strategy based on oligonucleotide and nanomaterials for microRNA detection-a review. Biosens. Bioelectron. 99, 612–624 (2018). https://doi.org/10.1016/j.bios.2017.08.036
A.D. Castaneda, N.J. Brenes, A. Kondajji, R.M. Crooks, Detection of microRNA by electrocatalytic amplification: a general approach for single-particle biosensing. J. Am. Chem. Soc. 139, 7657–7664 (2017). https://doi.org/10.1021/jacs.7b03648
W. Lu, Y. Chen, Z. Liu, W. Tang, Q. Feng, J. Sun, X. Jiang, Quantitative detection of microRNA in one step via next generation magnetic relaxation switch sensing. ACS Nano 10, 6685–6692 (2016). https://doi.org/10.1021/acsnano.6b01903
X. Zhao, L. Xu, M. Sun, W. Ma, X. Wu, H. Kuang, L. Wang, C. Xu, Gold-quantum dot core-satellite assemblies for lighting up microRNA in vitro and in vivo. Small 12, 4662–4668 (2016). https://doi.org/10.1002/smll.201503629
S. Li, L. Xu, W. Ma, X. Wu, M. Sun et al., Dual-mode ultrasensitive quantification of microRNA in living cells by chiroplasmonic nanopyramids self-assembled from gold and upconversion nanoparticles. J. Am. Chem. Soc. 138, 306–312 (2016). https://doi.org/10.1021/jacs.5b10309
D.Á.B. Esteban-Fernández, A. Martín, F. Soto, M.A. Lopez-Ramirez, S. Campuzano et al., Single cell real-time miRNAs sensing based on nanomotors. ACS Nano 9, 6756–6764 (2015). https://doi.org/10.1021/acsnano.5b02807
T.H. Shin, Y. Choi, S. Kim, JJCSR Cheon, Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem. Soc. Rev. 44, 4501–4516 (2015). https://doi.org/10.1039/c4cs00345d
J.Y. Zhao, G. Chen, Y.P. Gu, R. Cui, Z.L. Zhang, Z.L. Yu, B. Tang, Y.F. Zhao, D.W. Pang, Ultrasmall magnetically engineered Ag2Se quantum dots for instant efficient labeling and whole-body high-resolution multimodal real-time tracking of cell-derived microvesicles. J. Am. Chem. Soc. 138, 1893–1903 (2016). https://doi.org/10.1021/jacs.5b10340
L. Wu, A. Mendoza-Garcia, Q. Li, S. Sun, Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 116, 10473–10512 (2016). https://doi.org/10.1021/acs.chemrev.5b00687
J. Xie, K. Chen, H.Y. Lee, C. Xu, A.R. Hsu et al., Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin alpha(v)beta3-rich tumor cells. J. Am. Chem. Soc. 130, 7542–7543 (2008). https://doi.org/10.1021/ja802003h
X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu et al., Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2, 1155 (2017). https://doi.org/10.1126/scirobotics.aaq1155
M. Wan, H. Chen, Q. Wang, Q. Niu, P. Xu, Y. Yu, T. Zhu, C. Mao, J. Shen, Bio-inspired nitric-oxide-driven nanomotor. Nat. Commun. 10, 966 (2019). https://doi.org/10.1038/s41467-019-08670-8
H. Ceylan, I.C. Yasa, O. Yasa, A.F. Tabak, J. Giltinan, M. Sitti, 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 13, 3353–3362 (2019). https://doi.org/10.1021/acsnano.8b09233
G.F. Luo, W.H. Chen, Q. Lei, W.X. Qiu, Y.X. Liu, Y.J. Cheng, X.Z. Zhang, A triple-collaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods. Adv. Funct. Mater. 26, 4339–4350 (2016). https://doi.org/10.1002/adfm.201505175
W.H. Chen, G.F. Luo, W.X. Qiu, Q. Lei, L.H. Liu, S.B. Wang, X.Z.J.B. Zhang, Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy. Biomaterials 117, 54–65 (2016). https://doi.org/10.1016/j.biomaterials.2016.11.057
Z. Zhang, J. Wang, C.J. Chen, Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mater. 25, 3869–3880 (2013). https://doi.org/10.1002/adma.201301890
C. Li, Y. Zhang, Z. Li, E. Mei, J. Lin et al., Theranostics: light-responsive biodegradable nanorattles for cancer theranostics. Adv. Mater. 30, 1870049 (2018). https://doi.org/10.1002/adma.201870049
P.P. Yang, Y.G. Zhai, G.B. Qi, Y.X. Lin, Q. Luo et al., NIR light propulsive janus-like nanohybrids for enhanced photothermal tumor therapy. Small 12, 5423–5430 (2016). https://doi.org/10.1002/smll.201601965
H. Choi, G.H. Lee, K.S. Kim, S.K. Hahn, Light-guided nanomotor systems for autonomous photothermal cancer therapy. ACS Appl. Mater. Interfaces 10, 2338–2346 (2017). https://doi.org/10.1021/acsami.7b16595