Dye-Enhanced Self-Electrophoretic Propulsion of Light-Driven TiO2–Au Janus Micromotors
Corresponding Author: Biye Ren
Nano-Micro Letters,
Vol. 9 No. 3 (2017), Article Number: 30
Abstract
Light-driven synthetic micro-/nanomotors have attracted considerable attention in recent years due to their unique performances and potential applications. We herein demonstrate the dye-enhanced self-electrophoretic propulsion of light-driven TiO2–Au Janus micromotors in aqueous dye solutions. Compared to the velocities of these micromotors in pure water, 1.7, 1.5, and 1.4 times accelerated motions were observed for them in aqueous solutions of methyl blue (10−5 g L−1), cresol red (10−4 g L−1), and methyl orange (10−4 g L−1), respectively. We determined that the micromotor speed changes depending on the type of dyes, due to variations in their photodegradation rates. In addition, following the deposition of a paramagnetic Ni layer between the Au and TiO2 layers, the micromotor can be precisely navigated under an external magnetic field. Such magnetic micromotors not only facilitate the recycling of micromotors, but also allow reusability in the context of dye detection and degradation. In general, such photocatalytic micro-/nanomotors provide considerable potential for the rapid detection and “on-the-fly” degradation of dye pollutants in aqueous environments.
Highlights:
1 TiO2–Au Janus micromotors can obtain energy from photocatalytic degradation of dyes in aqueous solution and exhibit light-induced dye-enhanced motion through self-electrophoretic effects without additional reagents.
2 Micromotors are faster in aqueous dye solutions than in pure water under the same UV light intensity.
3 The prepared micromotors are easily synthesized and exhibit excellent reusability in the degradation and detection of dye pollutants.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Gao, J. Wang, The environmental impact of micro/nanomachines: a review. ACS Nano 8(4), 3170–3180 (2014). doi:10.1021/nn500077a
- J. Wang, W. Gao, Nano/microscale motors: biomedical opportunities and challenges. ACS Nano 6(7), 5745–5751 (2012). doi:10.1021/nn3028997
- W. Gao, J. Wang, Synthetic micro/nanomotors in drug delivery. Nanoscale 6(18), 10486–10494 (2014). doi:10.1039/C4NR03124E
- W. Gao, S. Sattayasamitsathit, J. Wang, Catalytically propelled micro-/nanomotors: how fast can they move? Chem. Rec. 12(1), 224–231 (2012). doi:10.1002/tcr.201100031
- J. Li, I. Rozen, J. Wang, Rocket science at the nanoscale. ACS Nano 10(6), 5619–5634 (2016). doi:10.1021/acsnano.6b02518
- S. Sánchez, L. Soler, J. Katuri, Chemically powered micro- and nanomotors. Angew. Chem. Int. Ed. 54(5), 1414–1444 (2015). doi:10.1002/anie.201406096
- L. Soler, S. Sanchez, Catalytic nanomotors for environmental monitoring and water remediation. Nanoscale 6(13), 7175–7182 (2014). doi:10.1039/C4NR01321B
- Z. Wu, X. Lin, T. Si, Q. He, Recent progress on bioinspired self-propelled micro/nanomotors via controlled molecular self-assembly. Small 12(23), 3080–3093 (2016). doi:10.1002/smll.201503969
- Y. Mei, A.A. Solovev, S. Sanchez, O.G. Schmidt, Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 40(5), 2109–2119 (2011). doi:10.1039/C0CS00078G
- J.G.S. Moo, M. Pumera, Chemical energy powered nano/micro/macromotors and the environment. Chem. Eur. J. 21(1), 58–72 (2015). doi:10.1002/chem.201405011
- G.A. Ozin, I. Manners, S. Fournier-Bidoz, A. Arsenault, Dream nanomachines. Adv. Mater. 17(24), 3011–3018 (2005). doi:10.1002/adma.200501767
- D. Patra, S. Sengupta, W. Duan, H. Zhang, R. Pavlick, A. Sen, Intelligent, self-powered, drug delivery systems. Nanoscale 5(4), 1273–1283 (2013). doi:10.1039/C2NR32600K
- B. Dong, T. Zhou, H. Zhang, C.Y. Li, Directed self-Assembly of nanoparticles for nanomotors. ACS Nano 7(6), 5192–5198 (2013). doi:10.1021/nn400925q
- Y. Ge, M. Liu, L. Liu, Y. Sun, H. Zhang, B. Dong, Dual-fuel-driven bactericidal micromotor. Nano-Micro Lett. 8(2), 157–164 (2016). doi:10.1007/s40820-015-0071-3
- W. Gao, R. Dong, S. Thamphiwatana, J. Li, W. Gao, L. Zhang, J. Wang, Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9(1), 117–123 (2015). doi:10.1021/nn507097k
- W. Gao, X. Feng, A. Pei, C.R. Kane, R. Tam, C. Hennessy, J. Wang, Bioinspired helical microswimmers based on vascular plants. Nano Lett. 14(1), 305–310 (2014). doi:10.1021/nl404044d
- L. Baraban, D. Makarov, R. Streubel, I. Mönch, D. Grimm, S. Sanchez, O.G. Schmidt, Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. ACS Nano 6(4), 3383–3389 (2012). doi:10.1021/nn300413p
- R. Mhanna, F. Qiu, L. Zhang, Y. Ding, K. Sugihara, M. Zenobi-Wong, B.J. Nelson, Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. Small 10(10), 1953–1957 (2014). doi:10.1002/smll.201303538
- W. Gao, D. Kagan, O.S. Pak, C. Clawson, S. Campuzano et al., Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 8(3), 460–467 (2012). doi:10.1002/smll.201101909
- S. Hiyama, T. Inoue, T. Shima, Y. Moritani, T. Suda, K. Sutoh, Autonomous loading, transport, and unloading of specified cargoes by using DNA hybridization and biological motor-based motility. Small 4(4), 410–415 (2008). doi:10.1002/smll.200700528
- J. Palacci, S. Sacanna, A. Vatchinsky, P.M. Chaikin, D.J. Pine, Photoactivated colloidal dockers for cargo transportation. J. Am. Chem. Soc. 135(43), 15978–15981 (2013). doi:10.1021/ja406090s
- T. Xu, F. Soto, W. Gao, V. Garcia-Gradilla, J. Li, X. Zhang, J. Wang, Ultrasound-modulated bubble propulsion of chemically powered microengines. J. Am. Chem. Soc. 136(24), 8552–8555 (2014). doi:10.1021/ja504150e
- D. Kagan, P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K.M. Manesh, G.-U. Flechsig, J. Wang, Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131(34), 12082–12083 (2009). doi:10.1021/ja905142q
- L. Soler, V. Magdanz, V.M. Fomin, S. Sanchez, O.G. Schmidt, Self-propelled micromotors for cleaning polluted water. ACS Nano 7(11), 9611–9620 (2013). doi:10.1021/nn405075d
- W. Gao, X. Feng, A. Pei, Y. Gu, J. Li, J. Wang, Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale 5(11), 4696–4700 (2013). doi:10.1039/C3NR01458D
- M. Guix, J. Orozco, M. García, W. Gao, S. Sattayasamitsathit, A. Merkoçi, A. Escarpa, J. Wang, Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano 6(5), 4445–4451 (2012). doi:10.1021/nn301175b
- J. Orozco, G. Cheng, D. Vilela, S. Sattayasamitsathit, R. Vazquez-Duhalt et al., Micromotor-based high-yielding fast oxidative detoxification of chemical threats. Angew. Chem. Int. Ed. 52(50), 13276–13279 (2013). doi:10.1002/anie.201308072
- F. Mou, D. Pan, C. Chen, Y. Gao, L. Xu, J. Guan, Magnetically modulated pot-like MnFe2O4 micromotors: nanoparticle assembly fabrication and their capability for direct oil removal. Adv. Funct. Mater. 25(39), 6173–6181 (2015). doi:10.1002/adfm.201502835
- J. Li, V.V. Singh, S. Sattayasamitsathit, J. Orozco, K. Kaufmann et al., Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 8(11), 11118–11125 (2014). doi:10.1021/nn505029k
- M. Xuan, Z. Wu, J. Shao, L. Dai, T. Si, Q. He, Near infrared light-powered Janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 138(20), 6492–6497 (2016). doi:10.1021/jacs.6b00902
- Q. Zhang, R. Dong, X. Chang, B. Ren, Z. Tong, Spiropyran-decorated SiO2–Pt Janus micromotor: preparation and light-Induced dynamic self-assembly and disassembly. ACS Appl. Mater. Interfaces 7(44), 24585–24591 (2015). doi:10.1021/acsami.5b06448
- R. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, Highly efficient light-driven TiO2–Au Janus micromotors. ACS Nano 10(1), 839–844 (2016). doi:10.1021/acsnano.5b05940
- F. Mou, Y. Li, C. Chen, W. Li, Y. Yin, H. Ma, J. Guan, Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles. Small 11(21), 2564–2570 (2015). doi:10.1002/smll.201403372
- M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995). doi:10.1021/cr00033a004
- A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995). doi:10.1021/cr00035a013
- M. Dahl, Y. Liu, Y. Yin, Composite titanium dioxide nanomaterials. Chem. Rev. 114(19), 9853–9889 (2014). doi:10.1021/cr400634p
- K. Kim, O.G. Tsay, D.A. Atwood, D.G. Churchill, Destruction and detection of chemical warfare agents. Chem. Rev. 111(9), 5345–5403 (2011). doi:10.1021/cr100193y
- W. Li, Y. Tian, C. Zhao, Q. Zhang, W. Geng, Synthesis of magnetically separable Fe3O4@PANI/TiO2 photocatalyst with fast charge migration for photodegradation of EDTA under visible-light irradiation. Chem. Eng. J. 303, 282–291 (2016). doi:10.1016/j.cej.2016.06.022
- H. Xie, B. Liu, X. Zhao, Facile process to greatly improve the photocatalytic activity of the TiO2 thin film on window glass for the photodegradation of acetone and benzene. Chem. Eng. J. 284, 1156–1164 (2016). doi:10.1016/j.cej.2015.09.049
- F. Mou, L. Kong, C. Chen, Z. Chen, L. Xu, J. Guan, Light-controlled propulsion, aggregation and separation of water-fuelled TiO2/Pt Janus submicromotors and their “on-the-fly” photocatalytic activities. Nanoscale 8(9), 4976–4983 (2016). doi:10.1039/C5NR06774J
- J. Orozco, L.A. Mercante, R. Pol, A. Merkoci, Graphene-based Janus micromotors for the dynamic removal of pollutants. J. Mater. Chem. A 4(9), 3371–3378 (2016). doi:10.1039/C5TA09850E
- D. Vilela, J. Parmar, Y. Zeng, Y. Zhao, S. Sánchez, Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 16(4), 2860–2866 (2016). doi:10.1021/acs.nanolett.6b00768
- S. Freitas, H.P. Merkle, B. Gander, Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Controll. Release 102(2), 313–332 (2005). doi:10.1016/j.jconrel.2004.10.015
- K. Kogure, U. Simidu, N. Taga, A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25(3), 415–420 (1979). doi:10.1139/m79-063
- W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. St. Angelo et al., Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126(41), 13424–13431 (2004). doi:10.1021/ja047697z
- Y. Wang, R.M. Hernandez, D.J. Bartlett, J.M. Bingham, T.R. Kline, A. Sen, T.E. Mallouk, Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22(25), 10451–10456 (2006). doi:10.1021/la0615950
- X.H. Wang, J.G. Li, H. Kamiyama, Y. Moriyoshi, T. Ishigaki, Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over Iron(III)-doped TiO2 nanopowders under UV and visible light irradiation. J. Phys. Chem. B 110(13), 6804–6809 (2006). doi:10.1021/jp060082z
- Q. Zhao, M. Li, J. Chu, T. Jiang, H. Yin, Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange. Appl. Surf. Sci. 255(6), 3773–3778 (2009). doi:10.1016/j.apsusc.2008.10.044
- I.M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S.G. Neophytides, P. Falaras, Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J. Catal. 220(1), 127–135 (2003). doi:10.1016/S0021-9517(03)00241-0
- W. Li, D. Li, Y. Lin, P. Wang, W. Chen, X. Fu, Y. Shao, Evidence for the active species involved in the photodegradation process of methyl orange on TiO2. J. Phys. Chem. C 116(5), 3552–3560 (2012). doi:10.1021/jp209661d
- A. Bianco Prevot, A. Basso, C. Baiocchi, M. Pazzi, G. Marcí, V. Augugliaro, L. Palmisano, E. Pramauro, Analytical control of photocatalytic treatments: degradation of a sulfonated azo dye. Anal. Bioanal. Chem. 378(1), 214–220 (2004). doi:10.1007/s00216-003-2286-2
- T. Ioannides, X.E. Verykios, Charge transfer in metal catalysts supported on doped TiO2: a theoretical approach based on metal–semiconductor contact theory. J. Catal. 161(2), 560–569 (1996). doi:10.1006/jcat.1996.0218
- F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl. Catal. A Gen. 359(1–2), 25–40 (2009). doi:10.1016/j.apcata.2009.02.043
- W. Wang, W. Duan, S. Ahmed, T.E. Mallouk, A. Sen, Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8(5), 531–554 (2013). doi:10.1016/j.nantod.2013.08.009
- W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk, A. Sen, Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128(46), 14881–14888 (2006). doi:10.1021/ja0643164
References
W. Gao, J. Wang, The environmental impact of micro/nanomachines: a review. ACS Nano 8(4), 3170–3180 (2014). doi:10.1021/nn500077a
J. Wang, W. Gao, Nano/microscale motors: biomedical opportunities and challenges. ACS Nano 6(7), 5745–5751 (2012). doi:10.1021/nn3028997
W. Gao, J. Wang, Synthetic micro/nanomotors in drug delivery. Nanoscale 6(18), 10486–10494 (2014). doi:10.1039/C4NR03124E
W. Gao, S. Sattayasamitsathit, J. Wang, Catalytically propelled micro-/nanomotors: how fast can they move? Chem. Rec. 12(1), 224–231 (2012). doi:10.1002/tcr.201100031
J. Li, I. Rozen, J. Wang, Rocket science at the nanoscale. ACS Nano 10(6), 5619–5634 (2016). doi:10.1021/acsnano.6b02518
S. Sánchez, L. Soler, J. Katuri, Chemically powered micro- and nanomotors. Angew. Chem. Int. Ed. 54(5), 1414–1444 (2015). doi:10.1002/anie.201406096
L. Soler, S. Sanchez, Catalytic nanomotors for environmental monitoring and water remediation. Nanoscale 6(13), 7175–7182 (2014). doi:10.1039/C4NR01321B
Z. Wu, X. Lin, T. Si, Q. He, Recent progress on bioinspired self-propelled micro/nanomotors via controlled molecular self-assembly. Small 12(23), 3080–3093 (2016). doi:10.1002/smll.201503969
Y. Mei, A.A. Solovev, S. Sanchez, O.G. Schmidt, Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 40(5), 2109–2119 (2011). doi:10.1039/C0CS00078G
J.G.S. Moo, M. Pumera, Chemical energy powered nano/micro/macromotors and the environment. Chem. Eur. J. 21(1), 58–72 (2015). doi:10.1002/chem.201405011
G.A. Ozin, I. Manners, S. Fournier-Bidoz, A. Arsenault, Dream nanomachines. Adv. Mater. 17(24), 3011–3018 (2005). doi:10.1002/adma.200501767
D. Patra, S. Sengupta, W. Duan, H. Zhang, R. Pavlick, A. Sen, Intelligent, self-powered, drug delivery systems. Nanoscale 5(4), 1273–1283 (2013). doi:10.1039/C2NR32600K
B. Dong, T. Zhou, H. Zhang, C.Y. Li, Directed self-Assembly of nanoparticles for nanomotors. ACS Nano 7(6), 5192–5198 (2013). doi:10.1021/nn400925q
Y. Ge, M. Liu, L. Liu, Y. Sun, H. Zhang, B. Dong, Dual-fuel-driven bactericidal micromotor. Nano-Micro Lett. 8(2), 157–164 (2016). doi:10.1007/s40820-015-0071-3
W. Gao, R. Dong, S. Thamphiwatana, J. Li, W. Gao, L. Zhang, J. Wang, Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9(1), 117–123 (2015). doi:10.1021/nn507097k
W. Gao, X. Feng, A. Pei, C.R. Kane, R. Tam, C. Hennessy, J. Wang, Bioinspired helical microswimmers based on vascular plants. Nano Lett. 14(1), 305–310 (2014). doi:10.1021/nl404044d
L. Baraban, D. Makarov, R. Streubel, I. Mönch, D. Grimm, S. Sanchez, O.G. Schmidt, Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. ACS Nano 6(4), 3383–3389 (2012). doi:10.1021/nn300413p
R. Mhanna, F. Qiu, L. Zhang, Y. Ding, K. Sugihara, M. Zenobi-Wong, B.J. Nelson, Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. Small 10(10), 1953–1957 (2014). doi:10.1002/smll.201303538
W. Gao, D. Kagan, O.S. Pak, C. Clawson, S. Campuzano et al., Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 8(3), 460–467 (2012). doi:10.1002/smll.201101909
S. Hiyama, T. Inoue, T. Shima, Y. Moritani, T. Suda, K. Sutoh, Autonomous loading, transport, and unloading of specified cargoes by using DNA hybridization and biological motor-based motility. Small 4(4), 410–415 (2008). doi:10.1002/smll.200700528
J. Palacci, S. Sacanna, A. Vatchinsky, P.M. Chaikin, D.J. Pine, Photoactivated colloidal dockers for cargo transportation. J. Am. Chem. Soc. 135(43), 15978–15981 (2013). doi:10.1021/ja406090s
T. Xu, F. Soto, W. Gao, V. Garcia-Gradilla, J. Li, X. Zhang, J. Wang, Ultrasound-modulated bubble propulsion of chemically powered microengines. J. Am. Chem. Soc. 136(24), 8552–8555 (2014). doi:10.1021/ja504150e
D. Kagan, P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K.M. Manesh, G.-U. Flechsig, J. Wang, Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131(34), 12082–12083 (2009). doi:10.1021/ja905142q
L. Soler, V. Magdanz, V.M. Fomin, S. Sanchez, O.G. Schmidt, Self-propelled micromotors for cleaning polluted water. ACS Nano 7(11), 9611–9620 (2013). doi:10.1021/nn405075d
W. Gao, X. Feng, A. Pei, Y. Gu, J. Li, J. Wang, Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale 5(11), 4696–4700 (2013). doi:10.1039/C3NR01458D
M. Guix, J. Orozco, M. García, W. Gao, S. Sattayasamitsathit, A. Merkoçi, A. Escarpa, J. Wang, Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano 6(5), 4445–4451 (2012). doi:10.1021/nn301175b
J. Orozco, G. Cheng, D. Vilela, S. Sattayasamitsathit, R. Vazquez-Duhalt et al., Micromotor-based high-yielding fast oxidative detoxification of chemical threats. Angew. Chem. Int. Ed. 52(50), 13276–13279 (2013). doi:10.1002/anie.201308072
F. Mou, D. Pan, C. Chen, Y. Gao, L. Xu, J. Guan, Magnetically modulated pot-like MnFe2O4 micromotors: nanoparticle assembly fabrication and their capability for direct oil removal. Adv. Funct. Mater. 25(39), 6173–6181 (2015). doi:10.1002/adfm.201502835
J. Li, V.V. Singh, S. Sattayasamitsathit, J. Orozco, K. Kaufmann et al., Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 8(11), 11118–11125 (2014). doi:10.1021/nn505029k
M. Xuan, Z. Wu, J. Shao, L. Dai, T. Si, Q. He, Near infrared light-powered Janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 138(20), 6492–6497 (2016). doi:10.1021/jacs.6b00902
Q. Zhang, R. Dong, X. Chang, B. Ren, Z. Tong, Spiropyran-decorated SiO2–Pt Janus micromotor: preparation and light-Induced dynamic self-assembly and disassembly. ACS Appl. Mater. Interfaces 7(44), 24585–24591 (2015). doi:10.1021/acsami.5b06448
R. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, Highly efficient light-driven TiO2–Au Janus micromotors. ACS Nano 10(1), 839–844 (2016). doi:10.1021/acsnano.5b05940
F. Mou, Y. Li, C. Chen, W. Li, Y. Yin, H. Ma, J. Guan, Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles. Small 11(21), 2564–2570 (2015). doi:10.1002/smll.201403372
M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995). doi:10.1021/cr00033a004
A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995). doi:10.1021/cr00035a013
M. Dahl, Y. Liu, Y. Yin, Composite titanium dioxide nanomaterials. Chem. Rev. 114(19), 9853–9889 (2014). doi:10.1021/cr400634p
K. Kim, O.G. Tsay, D.A. Atwood, D.G. Churchill, Destruction and detection of chemical warfare agents. Chem. Rev. 111(9), 5345–5403 (2011). doi:10.1021/cr100193y
W. Li, Y. Tian, C. Zhao, Q. Zhang, W. Geng, Synthesis of magnetically separable Fe3O4@PANI/TiO2 photocatalyst with fast charge migration for photodegradation of EDTA under visible-light irradiation. Chem. Eng. J. 303, 282–291 (2016). doi:10.1016/j.cej.2016.06.022
H. Xie, B. Liu, X. Zhao, Facile process to greatly improve the photocatalytic activity of the TiO2 thin film on window glass for the photodegradation of acetone and benzene. Chem. Eng. J. 284, 1156–1164 (2016). doi:10.1016/j.cej.2015.09.049
F. Mou, L. Kong, C. Chen, Z. Chen, L. Xu, J. Guan, Light-controlled propulsion, aggregation and separation of water-fuelled TiO2/Pt Janus submicromotors and their “on-the-fly” photocatalytic activities. Nanoscale 8(9), 4976–4983 (2016). doi:10.1039/C5NR06774J
J. Orozco, L.A. Mercante, R. Pol, A. Merkoci, Graphene-based Janus micromotors for the dynamic removal of pollutants. J. Mater. Chem. A 4(9), 3371–3378 (2016). doi:10.1039/C5TA09850E
D. Vilela, J. Parmar, Y. Zeng, Y. Zhao, S. Sánchez, Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 16(4), 2860–2866 (2016). doi:10.1021/acs.nanolett.6b00768
S. Freitas, H.P. Merkle, B. Gander, Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Controll. Release 102(2), 313–332 (2005). doi:10.1016/j.jconrel.2004.10.015
K. Kogure, U. Simidu, N. Taga, A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25(3), 415–420 (1979). doi:10.1139/m79-063
W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. St. Angelo et al., Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126(41), 13424–13431 (2004). doi:10.1021/ja047697z
Y. Wang, R.M. Hernandez, D.J. Bartlett, J.M. Bingham, T.R. Kline, A. Sen, T.E. Mallouk, Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22(25), 10451–10456 (2006). doi:10.1021/la0615950
X.H. Wang, J.G. Li, H. Kamiyama, Y. Moriyoshi, T. Ishigaki, Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over Iron(III)-doped TiO2 nanopowders under UV and visible light irradiation. J. Phys. Chem. B 110(13), 6804–6809 (2006). doi:10.1021/jp060082z
Q. Zhao, M. Li, J. Chu, T. Jiang, H. Yin, Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange. Appl. Surf. Sci. 255(6), 3773–3778 (2009). doi:10.1016/j.apsusc.2008.10.044
I.M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S.G. Neophytides, P. Falaras, Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J. Catal. 220(1), 127–135 (2003). doi:10.1016/S0021-9517(03)00241-0
W. Li, D. Li, Y. Lin, P. Wang, W. Chen, X. Fu, Y. Shao, Evidence for the active species involved in the photodegradation process of methyl orange on TiO2. J. Phys. Chem. C 116(5), 3552–3560 (2012). doi:10.1021/jp209661d
A. Bianco Prevot, A. Basso, C. Baiocchi, M. Pazzi, G. Marcí, V. Augugliaro, L. Palmisano, E. Pramauro, Analytical control of photocatalytic treatments: degradation of a sulfonated azo dye. Anal. Bioanal. Chem. 378(1), 214–220 (2004). doi:10.1007/s00216-003-2286-2
T. Ioannides, X.E. Verykios, Charge transfer in metal catalysts supported on doped TiO2: a theoretical approach based on metal–semiconductor contact theory. J. Catal. 161(2), 560–569 (1996). doi:10.1006/jcat.1996.0218
F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl. Catal. A Gen. 359(1–2), 25–40 (2009). doi:10.1016/j.apcata.2009.02.043
W. Wang, W. Duan, S. Ahmed, T.E. Mallouk, A. Sen, Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8(5), 531–554 (2013). doi:10.1016/j.nantod.2013.08.009
W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk, A. Sen, Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128(46), 14881–14888 (2006). doi:10.1021/ja0643164