Encapsulation of MnS Nanocrystals into N, S-Co-doped Carbon as Anode Material for Full Cell Sodium-Ion Capacitors
Corresponding Author: Pooi See Lee
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 34
Abstract
Sodium-ion capacitors (SICs) have received increasing interest for grid stationary energy storage application due to their affordability, high power, and energy densities. The major challenge for SICs is to overcome the kinetics imbalance between faradaic anode and non-faradaic cathode. To boost the Na+ reaction kinetics, the present work demonstrated a high-rate MnS-based anode by embedding the MnS nanocrystals into the N, S-co-doped carbon matrix (MnS@NSC). Benefiting from the fast pseudocapacitive Na+ storage behavior, the resulting composite exhibits extraordinary rate capability (205.6 mAh g−1 at 10 A g−1) and outstanding cycling stability without notable degradation after 2000 cycles. A prototype SIC was demonstrated using MnS@NSC anode and N-doped porous carbon (NC) cathode; the obtained hybrid SIC device can display a high energy density of 139.8 Wh kg−1 and high power density of 11,500 W kg−1, as well as excellent cyclability with 84.5% capacitance retention after 3000 cycles. The superior electrochemical performance is contributed to downsizing of MnS and encapsulation of conductive N, S-co-doped carbon matrix, which not only promote the Na+ and electrons transport, but also buffer the volume variations and maintain the structure integrity during Na+ insertion/extraction, enabling its comparable fast reaction kinetics and cyclability with NC cathode.
Highlights:
1 Downsizing of MnS and encapsulating by conductive N, S-co-doped carbon matrix (MnS@NSC) provide excellent reversible capacity, rate capability, and cycling stability in sodium-based electrolyte.
2 The charge storage mechanism of MnS@NSC was analyzed, showing pseudocapacitive control behavior.
3 The as-fabricated sodium-ion capacitor delivers excellent electrochemical performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. Yamada, Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2017). https://doi.org/10.1038/s41560-017-0033-8
- J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017). https://doi.org/10.1039/C6CS00776G
- J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118, 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
- X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, A. Yamada, Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 6, 6544 (2015). https://doi.org/10.1038/ncomms7544
- H. Park, H.B. Wu, T. Song, X.W. David Lou, U. Paik, Porosity-controlled TiNb2O7 microspheres with partial nitridation as a practical negative electrode for high-power lithium-ion batteries. Adv. Energy Mater. 5, 1401945 (2015). https://doi.org/10.1002/aenm.201401945
- S. Li, J. Chen, X. Gong, J. Wang, P.S. Lee, Holey graphene-wrapped porous TiNb24O62 microparticles as high-performance intercalation pseudocapacitive anode materials for lithium-ion capacitors. NPG Asia Mater. 10, 406–416 (2018). https://doi.org/10.1038/s41427-018-0042-5
- H.-E. Wang, X. Zhao, X. Li, Z. Wang, C. Liu, Z. Lu, W. Zhang, G. Cao, rGO/SnS2/TiO2 heterostructured composite with dual-confinement for enhanced lithium-ion storage. J. Mater. Chem. A 5, 25056–25063 (2017). https://doi.org/10.1039/C7TA08616D
- J. Chen, S. Li, V. Kumar, P.S. Lee, Carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode. Adv. Energy Mater. 7, 1700180 (2017). https://doi.org/10.1002/aenm.201700180
- J. Chen, S. Li, K. Qian, P.S. Lee, NiMn layered double hydroxides derived multiphase Mn-doped Ni sulfides with reduced graphene oxide composites as anode materials with superior cycling stability for sodium ion batteries. Mater. Today Energy 9, 74–82 (2018). https://doi.org/10.1016/j.mtener.2018.02.008
- J. Chen, L. Mohrhusen, G. Ali, S. Li, K.Y. Chung, K. Al-Shamery, P.S. Lee, Electrochemical mechanism investigation of Cu2MoS4 hollow nanospheres for fast and stable sodium ion storage. Adv. Funct. Mater. 29, 1807753 (2019). https://doi.org/10.1002/adfm.201807753
- W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, L. Hu, Na-ion battery anodes: materials and electrochemistry. Acc. Chem. Res. 49, 231 (2016). https://doi.org/10.1021/acs.accounts.5b00482
- M. Ding, G. Chen, W. Xu, C. Jia, H. Luo, Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion. Nano Mater. Sci. 10, 10 (2019). https://doi.org/10.1016/j.nanoms.2019.09.011
- K. Liao, H. Wang, L. Wang, D. Xu, M. Wu et al., A high-energy sodium-ion capacitor enabled by a nitrogen/sulfur co-doped hollow carbon nanofiber anode and an activated carbon cathode. Nanoscale Adv. 1, 746–756 (2019). https://doi.org/10.1039/C8NA00219C
- S. Wu, W. Wang, M. Li, L. Cao, F. Lyu et al., Highly durable organic electrode for sodium-ion batteries via stabilizedα-C radical intermediate. Nat. Commun. 7, 13318 (2016). https://doi.org/10.1038/ncomms13318
- C. Zhao, Y. Cai, K. Yin, H. Li, D. Shen et al., Carbon-bonded, oxygen-deficient TiO2 nanotubes with hybridized phases for superior Na-ion storage. Chem. Eng. J. 350, 201–208 (2018). https://doi.org/10.1016/j.cej.2018.05.194
- S. Li, J. Chen, X. Gong, J. Wang, P.S. Lee, A nonpresodiate sodium-ion capacitor with high performance. Small 14, e1804035 (2018). https://doi.org/10.1002/smll.201804035
- Z. Le, F. Liu, P. Nie, X. Li, X. Liu et al., Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11, 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332
- B. Yang, J. Chen, S. Lei, R. Guo, H. Li, S. Shi, X. Yan, Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv. Energy Mater. 8, 1702409 (2018). https://doi.org/10.1002/aenm.201702409
- C. Wang, F. Wang, Z. Liu, Y. Zhao, Y. Liu et al., N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors. Nano Energy 41, 674–680 (2017). https://doi.org/10.1016/j.nanoen.2017.10.025
- J. Niu, J. Liang, R. Shao, M. Liu, M. Dou, Z. Li, Y. Huang, F. Wang, Tremella-like N, O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors. Nano Energy 41, 285–292 (2017). https://doi.org/10.1016/j.nanoen.2017.09.041
- P. Zhang, X. Zhao, Z. Liu, F. Wang, Y. Huang et al., Exposed high-energy facets in ultradispersed sub-10 nm SnO2 nanocrystals anchored on graphene for pseudocapacitive sodium storage and high-performance quasi-solid-state sodium-ion capacitors. NPG Asia Mater. 10, 429–440 (2018). https://doi.org/10.1038/s41427-018-0049-y
- Y.-E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu, J. Wei, Z. Zhou, Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7, 1701222 (2017). https://doi.org/10.1002/aenm.201701222
- L.-F. Que, F.-D. Yu, K.-W. He, Z.-B. Wang, D.-M. Gu, Robust and conductive Na2Ti2O5−x nanowire arrays for high-performance flexible sodium-ion capacitor. Chem. Mater. 29, 9133–9141 (2017). https://doi.org/10.1021/acs.chemmater.7b02864
- L. Gao, S. Chen, L. Zhang, X. Yang, High areal capacity Na0.67CoO2 bundle array cathode tailored for high-performance sodium-ion batteries. ChemElectroChem 6, 947–952 (2019). https://doi.org/10.1002/celc.201900031
- Q. Wei, Y. Jiang, X. Qian, L. Zhang, Q. Li et al., Sodium ion capacitor using pseudocapacitive layered ferric vanadate nanosheets cathode. iScience 6, 212–221 (2018). https://doi.org/10.1016/j.isci.2018.07.020
- Y. Liu, C. Yang, Q. Zhang, M. Liu, Recent progress in the design of metal sulfides as anode materials for sodium ion batteries. Energy Storage Mater. 22, 66–95 (2019). https://doi.org/10.1016/j.ensm.2019.01.001
- H. Park, J. Kwon, H. Choi, D. Shin, T. Song, X.W.D. Lou, Unusual Na+ ion intercalation/deintercalation in metal-rich Cu1.8S for Na-ion batteries. ACS Nano 12, 2827–2837 (2018). https://doi.org/10.1021/acsnano.8b00118
- J. Chen, D.H.C. Chua, P.S. Lee, The advances of metal sulfides and in situ characterization methods beyond Li ion batteries: sodium, potassium, and aluminum ion batteries. Small Methods 5, 1900648 (2019). https://doi.org/10.1002/smtd.201900648
- X. Zhao, W. Cai, Y. Yang, X. Song, Z. Neale, H.-E. Wang, J. Sui, G. Cao, MoSe2 nanosheets perpendicularly grown on graphene with Mo-C bonding for sodium-ion capacitors. Nano Energy 47, 224–234 (2018). https://doi.org/10.1016/j.nanoen.2018.03.002
- Z. Hu, Q. Liu, S.L. Chou, S.X. Dou, Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 29, 1700606 (2017). https://doi.org/10.1002/adma.201700606
- D. Sun, X. Zhu, B. Luo, Y. Zhang, Y. Tang, H. Wang, L. Wang, New binder-free metal phosphide-carbon felt composite anodes for sodium-ion battery. Adv. Energy Mater. 8, 1801197 (2018). https://doi.org/10.1002/aenm.201801197
- W.J. Li, S.L. Chou, J.Z. Wang, H.K. Liu, S.X. Dou, A new, cheap, and productive FeP anode material for sodium-ion batteries. Chem. Commun. 51, 3682–3685 (2015). https://doi.org/10.1039/C4CC09604E
- Y. Yuan, C. Wang, K. Lei, H. Li, F. Li, J. Chen, Sodium-ion hybrid capacitor of high power and energy density. ACS Cent. Sci. 4, 1261–1265 (2018). https://doi.org/10.1021/acscentsci.8b00437
- S. Gu, S. Wu, L. Cao, M. Li, N. Qin et al., Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performances sodium ion batteries. J. Am. Chem. Soc. 141, 9623–9628 (2019). https://doi.org/10.1021/jacs.9b03467
- D.H. Liu, W.H. Li, Y.P. Zheng, Z. Cui, X. Yan et al., In situ encapsulating α-MnS into N, S-codoped nanotube-like carbon as advanced anode material: α → β phase transition promoted cycling stability and superior Li/Na-storage performance in half/full cells. Adv. Mater. 30, 1706317 (2018). https://doi.org/10.1002/adma.201706317
- X. Hu, Y. Liu, J. Chen, J. Jia, H. Zhan, Z. Wen, FeS quantum dots embedded in 3D ordered macroporous carbon nanocomposite for high-performance sodium-ion hybrid capacitors. J. Mater. Chem. A 7, 1138–1148 (2019). https://doi.org/10.1039/C8TA10468A
- Y. Xiao, S.H. Lee, Y.-K. Sun, The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 7, 1601329 (2017). https://doi.org/10.1002/aenm.201601329
- S. Gao, G. Chen, Y. Dall’Agnese, Y. Wei, Z. Gao, Y. Gao, Flexible MnS-carbon fiber hybrids for lithium-ion and sodium-ion energy storage. Chem. Eur. J. 24, 13535–13539 (2018). https://doi.org/10.1002/chem.201801979
- J. Ning, D. Zhang, H. Song, X. Chen, J. Zhou, Branched carbon-encapsulated MnS core/shell nanochains prepared via oriented attachment for lithium-ion storage. J. Mater. Chem. A 4, 12098–12105 (2016). https://doi.org/10.1039/C6TA04441G
- D.T. Pham, B. Sambandam, S. Kim, J. Jo, S. Kim et al., Dandelion-shaped manganese sulfide in ether-based electrolyte for enhanced performance sodium-ion batteries. Commun. Chem. 1, 83 (2018). https://doi.org/10.1038/s42004-018-0084-1
- X. Gao, X. Zhang, J. Jiang, J. Chen, Rod-like carbon-coated MnS derived from metal-organic frameworks as high-performance anode material for sodium-ion batteries. Mater. Lett. 228, 42–45 (2018). https://doi.org/10.1016/j.matlet.2018.05.077
- X. Xu, S. Ji, M. Gu, J. Liu, In situ synthesis of MnS hollow microspheres on reduced graphene oxide sheets as high-capacity and long-life anodes for Li- and Na-ion batteries. ACS Appl. Mater. Interfaces 7, 20957–20964 (2015). https://doi.org/10.1021/acsami.5b06590
- S. Li, J. Chen, M. Cui, G. Cai, J. Wang, P. Cui, X. Gong, P.S. Lee, A high-performance lithium-ion capacitor based on 2D nanosheet materials. Small 13, 1602893 (2017). https://doi.org/10.1002/smll.201602893
- X. Gao, B. Wang, Y. Zhang, H. Liu, H. Liu, H. Wu, S. Dou, Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater. 16, 46–55 (2019). https://doi.org/10.1016/j.ensm.2018.04.027
- Y. Liu, L. Li, J. Zhu, T. Meng, L. Ma et al., One-dimensional integrated MnS@carbon nanoreactors hybrid: an alternative anode for full-cell Li-ion and Na-ion batteries. ACS Appl. Mater. Interfaces 10, 27911–27919 (2018). https://doi.org/10.1021/acsami.8b05688
- S. Li, D. Huang, B. Zhang, X. Xu, M. Wang, G. Yang, Y. Shen, Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv. Energy Mater. 4, 1301655 (2014). https://doi.org/10.1002/aenm.201301655
- B. Yin, X. Cao, A. Pan, Z. Luo, S. Dinesh et al., Encapsulation of CoSx nanocrystals into N/S Co-doped honeycomb-like 3D porous carbon for high-performance lithium storage. Adv. Sci. 5, 1800829 (2018). https://doi.org/10.1002/advs.201800829
- X. Li, Q. Sun, Q. Li, N. Kawazoe, G. Chen, Functional hydrogels with tunable structures and properties for tissue engineering applications. Front. Chem. 6, 499 (2018). https://doi.org/10.3389/fchem.2018.00499
- J. Ding, H. Zhang, H. Zhou, J. Feng, X. Zheng et al., Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 31, 1900429 (2019). https://doi.org/10.1002/adma.201900429
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li + intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601
- K. Zhang, M. Park, L. Zhou, G.-H. Lee, W. Li, Y.-M. Kang, J. Chen, Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 26, 6728–6735 (2016). https://doi.org/10.1002/adfm.201602608
- Q. Wei, Q. Wang, Q. Li, Q. An, Y. Zhao et al., Pseudocapacitive layered iron vanadate nanosheets cathode for ultrahigh-rate lithium ion storage. Nano Energy 47, 294–300 (2018). https://doi.org/10.1016/j.nanoen.2018.02.028
- C. Choi, D.S. Ashby, D.M. Butts, R.H. Deblock, Q. Wei, J. Lau, B. Dunn, Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. (2019). https://doi.org/10.1038/s41578-019-0142-z
- E. Lim, C. Jo, M.S. Kim, M.-H. Kim, J. Chun et al., High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core-shell nanoparticles and reduced graphene oxide nanocomposites. Adv. Funct. Mater. 26, 3711–3719 (2016). https://doi.org/10.1002/adfm.201505548
- Q. Zhao, D. Yang, A.K. Whittaker, X.S. Zhao, A hybrid sodium-ion capacitor with polyimide as anode and polyimide-derived carbon as cathode. J. Power Sources 396, 12–18 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.010
References
J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. Yamada, Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2017). https://doi.org/10.1038/s41560-017-0033-8
J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017). https://doi.org/10.1039/C6CS00776G
J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118, 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, A. Yamada, Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 6, 6544 (2015). https://doi.org/10.1038/ncomms7544
H. Park, H.B. Wu, T. Song, X.W. David Lou, U. Paik, Porosity-controlled TiNb2O7 microspheres with partial nitridation as a practical negative electrode for high-power lithium-ion batteries. Adv. Energy Mater. 5, 1401945 (2015). https://doi.org/10.1002/aenm.201401945
S. Li, J. Chen, X. Gong, J. Wang, P.S. Lee, Holey graphene-wrapped porous TiNb24O62 microparticles as high-performance intercalation pseudocapacitive anode materials for lithium-ion capacitors. NPG Asia Mater. 10, 406–416 (2018). https://doi.org/10.1038/s41427-018-0042-5
H.-E. Wang, X. Zhao, X. Li, Z. Wang, C. Liu, Z. Lu, W. Zhang, G. Cao, rGO/SnS2/TiO2 heterostructured composite with dual-confinement for enhanced lithium-ion storage. J. Mater. Chem. A 5, 25056–25063 (2017). https://doi.org/10.1039/C7TA08616D
J. Chen, S. Li, V. Kumar, P.S. Lee, Carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode. Adv. Energy Mater. 7, 1700180 (2017). https://doi.org/10.1002/aenm.201700180
J. Chen, S. Li, K. Qian, P.S. Lee, NiMn layered double hydroxides derived multiphase Mn-doped Ni sulfides with reduced graphene oxide composites as anode materials with superior cycling stability for sodium ion batteries. Mater. Today Energy 9, 74–82 (2018). https://doi.org/10.1016/j.mtener.2018.02.008
J. Chen, L. Mohrhusen, G. Ali, S. Li, K.Y. Chung, K. Al-Shamery, P.S. Lee, Electrochemical mechanism investigation of Cu2MoS4 hollow nanospheres for fast and stable sodium ion storage. Adv. Funct. Mater. 29, 1807753 (2019). https://doi.org/10.1002/adfm.201807753
W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, L. Hu, Na-ion battery anodes: materials and electrochemistry. Acc. Chem. Res. 49, 231 (2016). https://doi.org/10.1021/acs.accounts.5b00482
M. Ding, G. Chen, W. Xu, C. Jia, H. Luo, Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion. Nano Mater. Sci. 10, 10 (2019). https://doi.org/10.1016/j.nanoms.2019.09.011
K. Liao, H. Wang, L. Wang, D. Xu, M. Wu et al., A high-energy sodium-ion capacitor enabled by a nitrogen/sulfur co-doped hollow carbon nanofiber anode and an activated carbon cathode. Nanoscale Adv. 1, 746–756 (2019). https://doi.org/10.1039/C8NA00219C
S. Wu, W. Wang, M. Li, L. Cao, F. Lyu et al., Highly durable organic electrode for sodium-ion batteries via stabilizedα-C radical intermediate. Nat. Commun. 7, 13318 (2016). https://doi.org/10.1038/ncomms13318
C. Zhao, Y. Cai, K. Yin, H. Li, D. Shen et al., Carbon-bonded, oxygen-deficient TiO2 nanotubes with hybridized phases for superior Na-ion storage. Chem. Eng. J. 350, 201–208 (2018). https://doi.org/10.1016/j.cej.2018.05.194
S. Li, J. Chen, X. Gong, J. Wang, P.S. Lee, A nonpresodiate sodium-ion capacitor with high performance. Small 14, e1804035 (2018). https://doi.org/10.1002/smll.201804035
Z. Le, F. Liu, P. Nie, X. Li, X. Liu et al., Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11, 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332
B. Yang, J. Chen, S. Lei, R. Guo, H. Li, S. Shi, X. Yan, Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv. Energy Mater. 8, 1702409 (2018). https://doi.org/10.1002/aenm.201702409
C. Wang, F. Wang, Z. Liu, Y. Zhao, Y. Liu et al., N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors. Nano Energy 41, 674–680 (2017). https://doi.org/10.1016/j.nanoen.2017.10.025
J. Niu, J. Liang, R. Shao, M. Liu, M. Dou, Z. Li, Y. Huang, F. Wang, Tremella-like N, O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors. Nano Energy 41, 285–292 (2017). https://doi.org/10.1016/j.nanoen.2017.09.041
P. Zhang, X. Zhao, Z. Liu, F. Wang, Y. Huang et al., Exposed high-energy facets in ultradispersed sub-10 nm SnO2 nanocrystals anchored on graphene for pseudocapacitive sodium storage and high-performance quasi-solid-state sodium-ion capacitors. NPG Asia Mater. 10, 429–440 (2018). https://doi.org/10.1038/s41427-018-0049-y
Y.-E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu, J. Wei, Z. Zhou, Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7, 1701222 (2017). https://doi.org/10.1002/aenm.201701222
L.-F. Que, F.-D. Yu, K.-W. He, Z.-B. Wang, D.-M. Gu, Robust and conductive Na2Ti2O5−x nanowire arrays for high-performance flexible sodium-ion capacitor. Chem. Mater. 29, 9133–9141 (2017). https://doi.org/10.1021/acs.chemmater.7b02864
L. Gao, S. Chen, L. Zhang, X. Yang, High areal capacity Na0.67CoO2 bundle array cathode tailored for high-performance sodium-ion batteries. ChemElectroChem 6, 947–952 (2019). https://doi.org/10.1002/celc.201900031
Q. Wei, Y. Jiang, X. Qian, L. Zhang, Q. Li et al., Sodium ion capacitor using pseudocapacitive layered ferric vanadate nanosheets cathode. iScience 6, 212–221 (2018). https://doi.org/10.1016/j.isci.2018.07.020
Y. Liu, C. Yang, Q. Zhang, M. Liu, Recent progress in the design of metal sulfides as anode materials for sodium ion batteries. Energy Storage Mater. 22, 66–95 (2019). https://doi.org/10.1016/j.ensm.2019.01.001
H. Park, J. Kwon, H. Choi, D. Shin, T. Song, X.W.D. Lou, Unusual Na+ ion intercalation/deintercalation in metal-rich Cu1.8S for Na-ion batteries. ACS Nano 12, 2827–2837 (2018). https://doi.org/10.1021/acsnano.8b00118
J. Chen, D.H.C. Chua, P.S. Lee, The advances of metal sulfides and in situ characterization methods beyond Li ion batteries: sodium, potassium, and aluminum ion batteries. Small Methods 5, 1900648 (2019). https://doi.org/10.1002/smtd.201900648
X. Zhao, W. Cai, Y. Yang, X. Song, Z. Neale, H.-E. Wang, J. Sui, G. Cao, MoSe2 nanosheets perpendicularly grown on graphene with Mo-C bonding for sodium-ion capacitors. Nano Energy 47, 224–234 (2018). https://doi.org/10.1016/j.nanoen.2018.03.002
Z. Hu, Q. Liu, S.L. Chou, S.X. Dou, Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 29, 1700606 (2017). https://doi.org/10.1002/adma.201700606
D. Sun, X. Zhu, B. Luo, Y. Zhang, Y. Tang, H. Wang, L. Wang, New binder-free metal phosphide-carbon felt composite anodes for sodium-ion battery. Adv. Energy Mater. 8, 1801197 (2018). https://doi.org/10.1002/aenm.201801197
W.J. Li, S.L. Chou, J.Z. Wang, H.K. Liu, S.X. Dou, A new, cheap, and productive FeP anode material for sodium-ion batteries. Chem. Commun. 51, 3682–3685 (2015). https://doi.org/10.1039/C4CC09604E
Y. Yuan, C. Wang, K. Lei, H. Li, F. Li, J. Chen, Sodium-ion hybrid capacitor of high power and energy density. ACS Cent. Sci. 4, 1261–1265 (2018). https://doi.org/10.1021/acscentsci.8b00437
S. Gu, S. Wu, L. Cao, M. Li, N. Qin et al., Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performances sodium ion batteries. J. Am. Chem. Soc. 141, 9623–9628 (2019). https://doi.org/10.1021/jacs.9b03467
D.H. Liu, W.H. Li, Y.P. Zheng, Z. Cui, X. Yan et al., In situ encapsulating α-MnS into N, S-codoped nanotube-like carbon as advanced anode material: α → β phase transition promoted cycling stability and superior Li/Na-storage performance in half/full cells. Adv. Mater. 30, 1706317 (2018). https://doi.org/10.1002/adma.201706317
X. Hu, Y. Liu, J. Chen, J. Jia, H. Zhan, Z. Wen, FeS quantum dots embedded in 3D ordered macroporous carbon nanocomposite for high-performance sodium-ion hybrid capacitors. J. Mater. Chem. A 7, 1138–1148 (2019). https://doi.org/10.1039/C8TA10468A
Y. Xiao, S.H. Lee, Y.-K. Sun, The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 7, 1601329 (2017). https://doi.org/10.1002/aenm.201601329
S. Gao, G. Chen, Y. Dall’Agnese, Y. Wei, Z. Gao, Y. Gao, Flexible MnS-carbon fiber hybrids for lithium-ion and sodium-ion energy storage. Chem. Eur. J. 24, 13535–13539 (2018). https://doi.org/10.1002/chem.201801979
J. Ning, D. Zhang, H. Song, X. Chen, J. Zhou, Branched carbon-encapsulated MnS core/shell nanochains prepared via oriented attachment for lithium-ion storage. J. Mater. Chem. A 4, 12098–12105 (2016). https://doi.org/10.1039/C6TA04441G
D.T. Pham, B. Sambandam, S. Kim, J. Jo, S. Kim et al., Dandelion-shaped manganese sulfide in ether-based electrolyte for enhanced performance sodium-ion batteries. Commun. Chem. 1, 83 (2018). https://doi.org/10.1038/s42004-018-0084-1
X. Gao, X. Zhang, J. Jiang, J. Chen, Rod-like carbon-coated MnS derived from metal-organic frameworks as high-performance anode material for sodium-ion batteries. Mater. Lett. 228, 42–45 (2018). https://doi.org/10.1016/j.matlet.2018.05.077
X. Xu, S. Ji, M. Gu, J. Liu, In situ synthesis of MnS hollow microspheres on reduced graphene oxide sheets as high-capacity and long-life anodes for Li- and Na-ion batteries. ACS Appl. Mater. Interfaces 7, 20957–20964 (2015). https://doi.org/10.1021/acsami.5b06590
S. Li, J. Chen, M. Cui, G. Cai, J. Wang, P. Cui, X. Gong, P.S. Lee, A high-performance lithium-ion capacitor based on 2D nanosheet materials. Small 13, 1602893 (2017). https://doi.org/10.1002/smll.201602893
X. Gao, B. Wang, Y. Zhang, H. Liu, H. Liu, H. Wu, S. Dou, Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater. 16, 46–55 (2019). https://doi.org/10.1016/j.ensm.2018.04.027
Y. Liu, L. Li, J. Zhu, T. Meng, L. Ma et al., One-dimensional integrated MnS@carbon nanoreactors hybrid: an alternative anode for full-cell Li-ion and Na-ion batteries. ACS Appl. Mater. Interfaces 10, 27911–27919 (2018). https://doi.org/10.1021/acsami.8b05688
S. Li, D. Huang, B. Zhang, X. Xu, M. Wang, G. Yang, Y. Shen, Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv. Energy Mater. 4, 1301655 (2014). https://doi.org/10.1002/aenm.201301655
B. Yin, X. Cao, A. Pan, Z. Luo, S. Dinesh et al., Encapsulation of CoSx nanocrystals into N/S Co-doped honeycomb-like 3D porous carbon for high-performance lithium storage. Adv. Sci. 5, 1800829 (2018). https://doi.org/10.1002/advs.201800829
X. Li, Q. Sun, Q. Li, N. Kawazoe, G. Chen, Functional hydrogels with tunable structures and properties for tissue engineering applications. Front. Chem. 6, 499 (2018). https://doi.org/10.3389/fchem.2018.00499
J. Ding, H. Zhang, H. Zhou, J. Feng, X. Zheng et al., Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 31, 1900429 (2019). https://doi.org/10.1002/adma.201900429
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li + intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601
K. Zhang, M. Park, L. Zhou, G.-H. Lee, W. Li, Y.-M. Kang, J. Chen, Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 26, 6728–6735 (2016). https://doi.org/10.1002/adfm.201602608
Q. Wei, Q. Wang, Q. Li, Q. An, Y. Zhao et al., Pseudocapacitive layered iron vanadate nanosheets cathode for ultrahigh-rate lithium ion storage. Nano Energy 47, 294–300 (2018). https://doi.org/10.1016/j.nanoen.2018.02.028
C. Choi, D.S. Ashby, D.M. Butts, R.H. Deblock, Q. Wei, J. Lau, B. Dunn, Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. (2019). https://doi.org/10.1038/s41578-019-0142-z
E. Lim, C. Jo, M.S. Kim, M.-H. Kim, J. Chun et al., High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core-shell nanoparticles and reduced graphene oxide nanocomposites. Adv. Funct. Mater. 26, 3711–3719 (2016). https://doi.org/10.1002/adfm.201505548
Q. Zhao, D. Yang, A.K. Whittaker, X.S. Zhao, A hybrid sodium-ion capacitor with polyimide as anode and polyimide-derived carbon as cathode. J. Power Sources 396, 12–18 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.010