Al2O3/HfO2 Nanolaminate Dielectric Boosting IGZO-Based Flexible Thin-Film Transistors
Corresponding Author: Pooi See Lee
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 195
Abstract
Flexible thin-film transistors (TFTs) have attracted wide interest in the development of flexible and wearable displays or sensors. However, the conventional high processing temperatures hinder the preparation of stable and reliable dielectric materials on flexible substrates. Here, we develop a stable laminated Al2O3/HfO2 insulator by atomic layer deposition at a relatively lower temperature of 150 °C. A sputtered amorphous indium-gallium-zinc oxide (IGZO) with the stoichiometry of In0.37Ga0.20Zn0.18O0.25 is used as the active channel material. The flexible TFTs with bottom-gate top-contacted configuration are further fabricated on a flexible polyimide substrate with the Al2O3/HfO2 nanolaminates. Benefited from the unique structural and compositional configuration in the nanolaminates consisting of amorphous Al2O3, crystallized HfO2, and the aluminate Al–Hf–O phase, the as-prepared TFTs present the carrier mobilities of 9.7 cm2 V−1 s−1, ON/OFF ratio of ~ 1.3 × 106, subthreshold voltage of 0.1 V, saturated current up to 0.83 mA, and subthreshold swing of 0.256 V dec−1, signifying a high-performance flexible TFT, which simultaneously able to withstand the bending radius of 40 mm. The TFTs with nanolaminate insulator possess satisfactory humidity stability and hysteresis behavior in a relative humidity of 60–70%, a temperature of 25–30 °C environment. The yield of IGZO-based TFTs with the nanolaminate insulator reaches 95%.
Highlights:
1 A stable laminated Al2O3/HfO2 insulator is developed by atomic layer deposition at a relatively lower temperature of 150 °C.
2 The flexible thin-film transistors (TFTs) with bottom-gate top-contacted configuration are fabricated on a flexible substrate with the Al2O3/HfO2 insulator.
3 The flexible TFTs present the carrier mobilities of 9.7 cm2 V−1 s−1, ON/OFF ratio of ~ 1.3 × 106, subthreshold voltage of 0.1 V, saturated current up to 0.83 mA, and subthreshold swing of 0.256 V dec−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Moreira, E. Carlos, C. Dias, J. Deuermeier, M. Pereira et al., Tailoring IGZO composition for enhanced fully solution-based thin film transistors. Nanomaterials 9(9), 1273 (2019). https://doi.org/10.3390/nano9091273
- A. Olziersky, P. Barquinha, A. Vilà, C. Magaña, E. Fortunato et al., Role of Ga2O3–In2O3–ZnO channel composition on the electrical performance of thin-film transistors. Mater. Chem. Phys. 131, 512–518 (2011). https://doi.org/10.1016/j.matchemphys.2011.10.013
- K. Myny, The development of flexible integrated circuits based on thin-film transistors. Nat. Electron. 1, 30–39 (2018). https://doi.org/10.1038/s41928-017-0008-6
- P. Yang, J. Zha, G. Gao, L. Zheng, H. Huang et al., Growth of tellurium nanobelts on h-BN for P-type transistors with ultrahigh hole mobility. Nano-Micro Lett. 14, 109 (2022). https://doi.org/10.1007/s40820-022-00852-2
- S. Wang, J. Xu, W. Wang, G.N. Wang, R. Rastak et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018). https://doi.org/10.1038/nature25494
- S. Jeon, S.E. Ahn, I. Song, C.J. Kim, U.I. Chung et al., Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nat. Mater. 11, 301–305 (2012). https://doi.org/10.1038/nmat3256
- L. Wang, W. Liao, S.L. Wong, Z.G. Yu, S. Li et al., Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv. Funct. Mater. 29(25), 1901106 (2019). https://doi.org/10.1002/adfm.201901106
- N. Cui, H. Ren, Q. Tang, X. Zhao, Y. Tong et al., Fully transparent conformal organic thin-film transistor array and its application as LED front driving. Nanoscale 10, 3613–3620 (2018). https://doi.org/10.1039/c7nr09134f
- H. Xu, D. Luo, M. Li, M. Xu, J. Zou et al., A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. J. Mater. Chem. C 2, 1255–1259 (2014). https://doi.org/10.1039/c3tc31710b
- P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, D. Kuščer et al., Performance and stability of low temperature transparent thin-film transistors using amorphous multicomponent dielectrics. J. Electrochem. Soc. 156, H824 (2009). https://doi.org/10.1149/1.3216049
- L. Li, Y. Liu, C. Song, S. Sheng, L. Yang et al., Wearable alignment-free microfiber-based sensor chip for precise vital signs monitoring and cardiovascular assessment. Adv. Fiber Mater. 4, 475–486 (2022). https://doi.org/10.1007/s42765-021-00121-8
- Z. Zhang, Y. Kang, N. Yao, J. Pan, W. Yu et al., A multifunctional airflow sensor enabled by optical micro/nanofiber. Adv. Fiber Mater. 3, 359–367 (2021). https://doi.org/10.1007/s42765-021-00097-5
- S. Lee, A. Nathan, Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain. Science 354(6310), 302–304 (2016). https://doi.org/10.1126/science.aah5035
- Z.W.K. Low, Z. Li, C. Owh, P.L. Chee, E. Ye et al., Using artificial skin devices as skin replacements: insights into superficial treatment. Small 15(9), 1805453 (2019). https://doi.org/10.1002/smll.201805453
- H. Shim, K. Sim, F. Ershad, P. Yang, A. Thukral et al., Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci. Adv. 5, eaax4961 (2019). https://doi.org/10.1126/sciadv.aax4961
- I. Cunha, R. Barras, P. Grey, D. Gaspar, E. Fortunato et al., Reusable cellulose-based hydrogel sticker film applied as gate dielectric in paper electrolyte-gated transistors. Adv. Funct. Mater. 27(16), 1606755 (2017). https://doi.org/10.1002/adfm.201606755
- E. Carlos, R. Branquinho, R. Martins, E. Fortunato, New challenges of printed high-к oxide dielectrics. Solid State Electron. 183, 108044 (2021). https://doi.org/10.1016/j.sse.2021.108044
- T. Lei, L.L. Shao, Y.Q. Zheng, G. Pitner, G. Fang et al., Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 10, 2161 (2019). https://doi.org/10.1038/s41467-019-10145-9
- L.M. Peng, Z. Zhang, C. Qiu, Carbon nanotube digital electronics. Nat. Electron. 2, 499–505 (2019). https://doi.org/10.1038/s41928-019-0330-2
- F. Xu, M.Y. Wu, N.S. Safron, S.S. Roy, R.M. Jacobberger et al., Highly stretchable carbon nanotube transistors with ion gel gate dielectrics. Nano Lett. 14, 682–686 (2014). https://doi.org/10.1021/nl403941a
- D.M. Sun, C. Liu, W.C. Ren, H.M. Cheng, A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 9(8), 1188–1205 (2013). https://doi.org/10.1002/smll.201203154
- S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa et al., Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2, 378–384 (2007). https://doi.org/10.1038/nnano.2007.151
- R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss et al., Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014). https://doi.org/10.1038/ncomms6143
- S.K. Lee, H.Y. Jang, S. Jang, E. Choi, B.H. Hong et al., All graphene-based thin film transistors on flexible plastic substrates. Nano Lett. 12, 3472–3476 (2012). https://doi.org/10.1021/nl300948c
- H. Matsui, Y. Takeda, S. Tokito, Flexible and printed organic transistors: from materials to integrated circuits. Org. Electron. 75, 105432 (2019). https://doi.org/10.1016/j.orgel.2019.105432
- J. Kwon, Y. Takeda, R. Shiwaku, S. Tokito, K. Cho et al., Three-dimensional monolithic integration in flexible printed organic transistors. Nat. Commun. 10, 54 (2019). https://doi.org/10.1038/s41467-018-07904-5
- H. Ren, N. Cui, Q. Tang, Y. Tong, X. Zhao et al., High-performance, ultrathin, ultraflexible organic thin-film transistor array via solution process. Small 14(33), 1801020 (2018). https://doi.org/10.1002/smll.201801020
- H. Chen, W. Zhang, M. Li, G. He, X. Guo, Interface engineering in organic field-effect transistors: principles, applications, and perspectives. Chem. Rev. 120, 2879–2949 (2020). https://doi.org/10.1021/acs.chemrev.9b00532
- X. Chen, G. Zhang, J. Wan, T. Guo, L. Li et al., Transparent and flexible thin-film transistors with high performance prepared at ultralow temperatures by atomic layer deposition. Adv. Electron. Mater. 5(2), 1800583 (2019). https://doi.org/10.1002/aelm.201800583
- S. Bolat, P. Fuchs, S. Knobelspies, O. Temel, G.T. Sevilla et al., Inkjet-printed and deep-UV-annealed YAlOx dielectrics for high-performance IGZO thin-film transistors on flexible substrates. Adv. Electron. Mater. 5(6), 1800843 (2019). https://doi.org/10.1002/aelm.201800843
- J.H. Kwon, J. Park, M.K. Lee, J.W. Park, Y. Jeon et al., Low-temperature fabrication of robust, transparent, and flexible thin-film transistors with a nanolaminated insulator. ACS Appl. Mater. Interfaces 10(18), 15829–15840 (2018). https://doi.org/10.1021/acsami.8b01438
- C. Qiu, Z. Zhang, M. Xiao, Y. Yang, D. Zhong et al., Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355(6322), 271–276 (2017). https://doi.org/10.1126/science.aaj1628
- D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014). https://doi.org/10.1038/ncomms6678
- E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24(22), 2945–2986 (2012). https://doi.org/10.1002/adma.201103228
- P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, E. Fortunato, Toward high-performance amorphous GIZO TFTs. J. Electrochem. Soc. 156, H161 (2009). https://doi.org/10.1149/1.3049819
- M. Kim, J.H. Jeong, H.J. Lee, T.K. Ahn, H.S. Shin et al., High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper. Appl. Phys. Lett. 90, 212114 (2007). https://doi.org/10.1063/1.2742790
- A. Gumyusenge, X. Luo, Z. Ke, D.T. Tran, J. Mei, Polyimide-based high-temperature plastic electronics. ACS Mater. Lett. 1, 154–157 (2019). https://doi.org/10.1021/acsmaterialslett.9b00120
- L.H. Kim, K. Kim, S. Park, Y.J. Jeong, H. Kim et al., Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition. ACS Appl. Mater. Interfaces 6(9), 6731–6738 (2014). https://doi.org/10.1021/am500458d
- J. Meyer, H. Schmidt, W. Kowalsky, T. Riedl, A. Kahn, The origin of low water vapor transmission rates through Al2O3/ZrO2 nanolaminate gas-diffusion barriers grown by atomic layer deposition. Appl. Phys. Lett. 96, 243308 (2010). https://doi.org/10.1063/1.3455324
- J. Yang, X. Yang, Y. Zhang, B. Che, X. Ding et al., Improved gate bias stressing stability of IGZO thin film transistors using high-k compounded ZrO2/HfO2 nanolaminate as gate dielectric. Mol. Cryst. Liq. Cryst. 676, 65–71 (2019). https://doi.org/10.1080/15421406.2019.1595757
- Z. Liu, Z. Yin, J. Wang, Q. Zheng, Polyelectrolyte dielectrics for flexible low-voltage organic thin-film transistors in highly sensitive pressure sensing. Adv. Funct. Mater. 29(1), 1806092 (2019). https://doi.org/10.1002/adfm.201806092
- D.K. Schroder, Semiconductor Material and Device Characterization. pp. 489–502 (A JOHN WILEY & SONS, 2005). https://doi.org/10.1002/0471749095
- J. Zhang, X. Ding, J. Li, H. Zhang, X. Jiang et al., Performance enhancement in InZnO thin-film transistors with compounded ZrO2–Al2O3 nanolaminate as gate insulators. Ceram. Int. 42, 8115–8119 (2016). https://doi.org/10.1016/j.ceramint.2016.02.014
- S.P. Chang, D. Shan, Doping nitrogen in InGaZnO thin film transistor with double layer channel structure. J. Nanosci. Nanotechnol. 18, 2493–2497 (2018). https://doi.org/10.1166/jnn.2018.14344
- J. Koo, H. Jeon, Characteristics of an Al2O3/HfO2 bilayer deposited by atomic layer deposition for gate dielectric applications. J. Korean Phys. Soc. 46(4), 945–950 (2005)
- L. Zhou, Y. Liu, Q. Liu, B. Qi, Y. Chen et al., Effect of single Hf4+ ion substitution on microstructure and magnetic properties of hexagonal M-type Ba(Hf)xFe12−xO19 ferrites. J. Mater. Sci. Mater. Electron. 31, 4106–4112 (2020). https://doi.org/10.1007/s10854-020-02957-z
- W. Yang, R. Jiang, Bipolar plasticity of the synapse transistors based on IGZO channel with HfOxNy/HfO2/HfOxNy sandwich gate dielectrics. Appl. Phys. Lett. (2019). https://doi.org/10.1063/1.5100128
- P. Xiao, J. Huang, T. Dong, J. Yuan, D. Yan et al., X-ray photoelectron spectroscopy analysis of the effect of photoresist passivation on InGaZnO thin-film transistors. Appl. Surf. Sci. 471, 403–407 (2019). https://doi.org/10.1016/j.apsusc.2018.11.211
- Y. Liu, X. Wang, W. Chen, L. Zhao, W. Zhang et al., IGZO/Al2O3 based depressed synaptic transistor. Superlat. Microstruct. 128, 177–180 (2019). https://doi.org/10.1016/j.spmi.2019.01.026
- Y. Zhang, Y. Lin, G. He, B. Ge, W. Liu, Balanced performance improvement of a-InGaZnO thin-film transistors using ALD-derived Al2O3-passivated high-k HfGdOx dielectrics. ACS Appl. Electron. Mater. 2(11), 3728–3740 (2020). https://doi.org/10.1021/acsaelm.0c00763
- E. Lee, T.H. Kim, S.W. Lee, J.H. Kim, J. Kim et al., Improved electrical performance of a sol-gel IGZO transistor with high-k Al2O3 gate dielectric achieved by post annealing. Nano Converg. 6, 24 (2019). https://doi.org/10.1186/s40580-019-0194-1
- H. Jung, W.H. Kim, B.E. Park, W.J. Woo, I.K. Oh et al., Enhanced light stability of InGaZnO thin-film transistors by atomic-layer-deposited Y2O3 with ozone. ACS Appl. Mater. Interfaces 10(2), 2143–2150 (2018). https://doi.org/10.1021/acsami.7b14260
- F. Huang, S.Y. Kim, Z. Rao, S.J. Lee, J. Yoon et al., Protein biophotosensitizer-based IGZO photo-thin film transistors for monitoring harmful ultraviolet light. ACS Appl. Bio Mater. 2(7), 3030–3037 (2019). https://doi.org/10.1021/acsabm.9b00341
- C. Dong, G. Liu, Y. Zhang, G. Feng, Y. Zhou, Double-stacked gate insulators SiOx/TaOx for flexible amorphous InGaZnO thin film transistors. Mat. Sci. Semicon. Proc. 96, 99–103 (2019). https://doi.org/10.1016/j.mssp.2019.02.030
- J. He, G. Li, Y. Lv, C. Wang, C. Liu et al., Defect self-compensation for high-mobility bilayer InGaZnO/In2O3 thin-film transistor. Adv. Electron. Mater. 5(6), 1900125 (2019). https://doi.org/10.1002/aelm.201900125
References
M. Moreira, E. Carlos, C. Dias, J. Deuermeier, M. Pereira et al., Tailoring IGZO composition for enhanced fully solution-based thin film transistors. Nanomaterials 9(9), 1273 (2019). https://doi.org/10.3390/nano9091273
A. Olziersky, P. Barquinha, A. Vilà, C. Magaña, E. Fortunato et al., Role of Ga2O3–In2O3–ZnO channel composition on the electrical performance of thin-film transistors. Mater. Chem. Phys. 131, 512–518 (2011). https://doi.org/10.1016/j.matchemphys.2011.10.013
K. Myny, The development of flexible integrated circuits based on thin-film transistors. Nat. Electron. 1, 30–39 (2018). https://doi.org/10.1038/s41928-017-0008-6
P. Yang, J. Zha, G. Gao, L. Zheng, H. Huang et al., Growth of tellurium nanobelts on h-BN for P-type transistors with ultrahigh hole mobility. Nano-Micro Lett. 14, 109 (2022). https://doi.org/10.1007/s40820-022-00852-2
S. Wang, J. Xu, W. Wang, G.N. Wang, R. Rastak et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018). https://doi.org/10.1038/nature25494
S. Jeon, S.E. Ahn, I. Song, C.J. Kim, U.I. Chung et al., Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nat. Mater. 11, 301–305 (2012). https://doi.org/10.1038/nmat3256
L. Wang, W. Liao, S.L. Wong, Z.G. Yu, S. Li et al., Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv. Funct. Mater. 29(25), 1901106 (2019). https://doi.org/10.1002/adfm.201901106
N. Cui, H. Ren, Q. Tang, X. Zhao, Y. Tong et al., Fully transparent conformal organic thin-film transistor array and its application as LED front driving. Nanoscale 10, 3613–3620 (2018). https://doi.org/10.1039/c7nr09134f
H. Xu, D. Luo, M. Li, M. Xu, J. Zou et al., A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. J. Mater. Chem. C 2, 1255–1259 (2014). https://doi.org/10.1039/c3tc31710b
P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, D. Kuščer et al., Performance and stability of low temperature transparent thin-film transistors using amorphous multicomponent dielectrics. J. Electrochem. Soc. 156, H824 (2009). https://doi.org/10.1149/1.3216049
L. Li, Y. Liu, C. Song, S. Sheng, L. Yang et al., Wearable alignment-free microfiber-based sensor chip for precise vital signs monitoring and cardiovascular assessment. Adv. Fiber Mater. 4, 475–486 (2022). https://doi.org/10.1007/s42765-021-00121-8
Z. Zhang, Y. Kang, N. Yao, J. Pan, W. Yu et al., A multifunctional airflow sensor enabled by optical micro/nanofiber. Adv. Fiber Mater. 3, 359–367 (2021). https://doi.org/10.1007/s42765-021-00097-5
S. Lee, A. Nathan, Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain. Science 354(6310), 302–304 (2016). https://doi.org/10.1126/science.aah5035
Z.W.K. Low, Z. Li, C. Owh, P.L. Chee, E. Ye et al., Using artificial skin devices as skin replacements: insights into superficial treatment. Small 15(9), 1805453 (2019). https://doi.org/10.1002/smll.201805453
H. Shim, K. Sim, F. Ershad, P. Yang, A. Thukral et al., Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci. Adv. 5, eaax4961 (2019). https://doi.org/10.1126/sciadv.aax4961
I. Cunha, R. Barras, P. Grey, D. Gaspar, E. Fortunato et al., Reusable cellulose-based hydrogel sticker film applied as gate dielectric in paper electrolyte-gated transistors. Adv. Funct. Mater. 27(16), 1606755 (2017). https://doi.org/10.1002/adfm.201606755
E. Carlos, R. Branquinho, R. Martins, E. Fortunato, New challenges of printed high-к oxide dielectrics. Solid State Electron. 183, 108044 (2021). https://doi.org/10.1016/j.sse.2021.108044
T. Lei, L.L. Shao, Y.Q. Zheng, G. Pitner, G. Fang et al., Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 10, 2161 (2019). https://doi.org/10.1038/s41467-019-10145-9
L.M. Peng, Z. Zhang, C. Qiu, Carbon nanotube digital electronics. Nat. Electron. 2, 499–505 (2019). https://doi.org/10.1038/s41928-019-0330-2
F. Xu, M.Y. Wu, N.S. Safron, S.S. Roy, R.M. Jacobberger et al., Highly stretchable carbon nanotube transistors with ion gel gate dielectrics. Nano Lett. 14, 682–686 (2014). https://doi.org/10.1021/nl403941a
D.M. Sun, C. Liu, W.C. Ren, H.M. Cheng, A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 9(8), 1188–1205 (2013). https://doi.org/10.1002/smll.201203154
S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa et al., Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2, 378–384 (2007). https://doi.org/10.1038/nnano.2007.151
R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss et al., Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014). https://doi.org/10.1038/ncomms6143
S.K. Lee, H.Y. Jang, S. Jang, E. Choi, B.H. Hong et al., All graphene-based thin film transistors on flexible plastic substrates. Nano Lett. 12, 3472–3476 (2012). https://doi.org/10.1021/nl300948c
H. Matsui, Y. Takeda, S. Tokito, Flexible and printed organic transistors: from materials to integrated circuits. Org. Electron. 75, 105432 (2019). https://doi.org/10.1016/j.orgel.2019.105432
J. Kwon, Y. Takeda, R. Shiwaku, S. Tokito, K. Cho et al., Three-dimensional monolithic integration in flexible printed organic transistors. Nat. Commun. 10, 54 (2019). https://doi.org/10.1038/s41467-018-07904-5
H. Ren, N. Cui, Q. Tang, Y. Tong, X. Zhao et al., High-performance, ultrathin, ultraflexible organic thin-film transistor array via solution process. Small 14(33), 1801020 (2018). https://doi.org/10.1002/smll.201801020
H. Chen, W. Zhang, M. Li, G. He, X. Guo, Interface engineering in organic field-effect transistors: principles, applications, and perspectives. Chem. Rev. 120, 2879–2949 (2020). https://doi.org/10.1021/acs.chemrev.9b00532
X. Chen, G. Zhang, J. Wan, T. Guo, L. Li et al., Transparent and flexible thin-film transistors with high performance prepared at ultralow temperatures by atomic layer deposition. Adv. Electron. Mater. 5(2), 1800583 (2019). https://doi.org/10.1002/aelm.201800583
S. Bolat, P. Fuchs, S. Knobelspies, O. Temel, G.T. Sevilla et al., Inkjet-printed and deep-UV-annealed YAlOx dielectrics for high-performance IGZO thin-film transistors on flexible substrates. Adv. Electron. Mater. 5(6), 1800843 (2019). https://doi.org/10.1002/aelm.201800843
J.H. Kwon, J. Park, M.K. Lee, J.W. Park, Y. Jeon et al., Low-temperature fabrication of robust, transparent, and flexible thin-film transistors with a nanolaminated insulator. ACS Appl. Mater. Interfaces 10(18), 15829–15840 (2018). https://doi.org/10.1021/acsami.8b01438
C. Qiu, Z. Zhang, M. Xiao, Y. Yang, D. Zhong et al., Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355(6322), 271–276 (2017). https://doi.org/10.1126/science.aaj1628
D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014). https://doi.org/10.1038/ncomms6678
E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24(22), 2945–2986 (2012). https://doi.org/10.1002/adma.201103228
P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, E. Fortunato, Toward high-performance amorphous GIZO TFTs. J. Electrochem. Soc. 156, H161 (2009). https://doi.org/10.1149/1.3049819
M. Kim, J.H. Jeong, H.J. Lee, T.K. Ahn, H.S. Shin et al., High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper. Appl. Phys. Lett. 90, 212114 (2007). https://doi.org/10.1063/1.2742790
A. Gumyusenge, X. Luo, Z. Ke, D.T. Tran, J. Mei, Polyimide-based high-temperature plastic electronics. ACS Mater. Lett. 1, 154–157 (2019). https://doi.org/10.1021/acsmaterialslett.9b00120
L.H. Kim, K. Kim, S. Park, Y.J. Jeong, H. Kim et al., Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition. ACS Appl. Mater. Interfaces 6(9), 6731–6738 (2014). https://doi.org/10.1021/am500458d
J. Meyer, H. Schmidt, W. Kowalsky, T. Riedl, A. Kahn, The origin of low water vapor transmission rates through Al2O3/ZrO2 nanolaminate gas-diffusion barriers grown by atomic layer deposition. Appl. Phys. Lett. 96, 243308 (2010). https://doi.org/10.1063/1.3455324
J. Yang, X. Yang, Y. Zhang, B. Che, X. Ding et al., Improved gate bias stressing stability of IGZO thin film transistors using high-k compounded ZrO2/HfO2 nanolaminate as gate dielectric. Mol. Cryst. Liq. Cryst. 676, 65–71 (2019). https://doi.org/10.1080/15421406.2019.1595757
Z. Liu, Z. Yin, J. Wang, Q. Zheng, Polyelectrolyte dielectrics for flexible low-voltage organic thin-film transistors in highly sensitive pressure sensing. Adv. Funct. Mater. 29(1), 1806092 (2019). https://doi.org/10.1002/adfm.201806092
D.K. Schroder, Semiconductor Material and Device Characterization. pp. 489–502 (A JOHN WILEY & SONS, 2005). https://doi.org/10.1002/0471749095
J. Zhang, X. Ding, J. Li, H. Zhang, X. Jiang et al., Performance enhancement in InZnO thin-film transistors with compounded ZrO2–Al2O3 nanolaminate as gate insulators. Ceram. Int. 42, 8115–8119 (2016). https://doi.org/10.1016/j.ceramint.2016.02.014
S.P. Chang, D. Shan, Doping nitrogen in InGaZnO thin film transistor with double layer channel structure. J. Nanosci. Nanotechnol. 18, 2493–2497 (2018). https://doi.org/10.1166/jnn.2018.14344
J. Koo, H. Jeon, Characteristics of an Al2O3/HfO2 bilayer deposited by atomic layer deposition for gate dielectric applications. J. Korean Phys. Soc. 46(4), 945–950 (2005)
L. Zhou, Y. Liu, Q. Liu, B. Qi, Y. Chen et al., Effect of single Hf4+ ion substitution on microstructure and magnetic properties of hexagonal M-type Ba(Hf)xFe12−xO19 ferrites. J. Mater. Sci. Mater. Electron. 31, 4106–4112 (2020). https://doi.org/10.1007/s10854-020-02957-z
W. Yang, R. Jiang, Bipolar plasticity of the synapse transistors based on IGZO channel with HfOxNy/HfO2/HfOxNy sandwich gate dielectrics. Appl. Phys. Lett. (2019). https://doi.org/10.1063/1.5100128
P. Xiao, J. Huang, T. Dong, J. Yuan, D. Yan et al., X-ray photoelectron spectroscopy analysis of the effect of photoresist passivation on InGaZnO thin-film transistors. Appl. Surf. Sci. 471, 403–407 (2019). https://doi.org/10.1016/j.apsusc.2018.11.211
Y. Liu, X. Wang, W. Chen, L. Zhao, W. Zhang et al., IGZO/Al2O3 based depressed synaptic transistor. Superlat. Microstruct. 128, 177–180 (2019). https://doi.org/10.1016/j.spmi.2019.01.026
Y. Zhang, Y. Lin, G. He, B. Ge, W. Liu, Balanced performance improvement of a-InGaZnO thin-film transistors using ALD-derived Al2O3-passivated high-k HfGdOx dielectrics. ACS Appl. Electron. Mater. 2(11), 3728–3740 (2020). https://doi.org/10.1021/acsaelm.0c00763
E. Lee, T.H. Kim, S.W. Lee, J.H. Kim, J. Kim et al., Improved electrical performance of a sol-gel IGZO transistor with high-k Al2O3 gate dielectric achieved by post annealing. Nano Converg. 6, 24 (2019). https://doi.org/10.1186/s40580-019-0194-1
H. Jung, W.H. Kim, B.E. Park, W.J. Woo, I.K. Oh et al., Enhanced light stability of InGaZnO thin-film transistors by atomic-layer-deposited Y2O3 with ozone. ACS Appl. Mater. Interfaces 10(2), 2143–2150 (2018). https://doi.org/10.1021/acsami.7b14260
F. Huang, S.Y. Kim, Z. Rao, S.J. Lee, J. Yoon et al., Protein biophotosensitizer-based IGZO photo-thin film transistors for monitoring harmful ultraviolet light. ACS Appl. Bio Mater. 2(7), 3030–3037 (2019). https://doi.org/10.1021/acsabm.9b00341
C. Dong, G. Liu, Y. Zhang, G. Feng, Y. Zhou, Double-stacked gate insulators SiOx/TaOx for flexible amorphous InGaZnO thin film transistors. Mat. Sci. Semicon. Proc. 96, 99–103 (2019). https://doi.org/10.1016/j.mssp.2019.02.030
J. He, G. Li, Y. Lv, C. Wang, C. Liu et al., Defect self-compensation for high-mobility bilayer InGaZnO/In2O3 thin-film transistor. Adv. Electron. Mater. 5(6), 1900125 (2019). https://doi.org/10.1002/aelm.201900125