Ultrathin 2D Metal–Organic Framework Nanosheets In situ Interpenetrated by Functional CNTs for Hybrid Energy Storage Device
Corresponding Author: Lu Shao
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 46
Abstract
The controllable construction of two-dimensional (2D) metal–organic framework (MOF) nanosheets with favorable electrochemical performances is greatly challenging for energy storage. Here, we design an in situ induced growth strategy to construct the ultrathin carboxylated carbon nanotubes (C-CNTs) interpenetrated nickel MOF (Ni-MOF/C-CNTs) nanosheets. The deliberate thickness and specific surface area of novel 2D hybrid nanosheets can be effectively tuned via finely controlling C-CNTs involvement. Due to the unique microstructure, the integrated 2D hybrid nanosheets are endowed with plentiful electroactive sites to promote the electrochemical performances greatly. The prepared Ni-MOF/C-CNTs nanosheets exhibit superior specific capacity of 680 C g−1 at 1 A g−1 and good capacity retention. The assembled hybrid device demonstrated the maximum energy density of 44.4 Wh kg−1 at a power density of 440 W kg−1. Our novel strategy to construct ultrathin 2D MOF with unique properties can be extended to synthesize various MOF-based functional materials for diverse applications.
Highlights:
1 The ultrathin nickel metal–organic framework (MOF) nanosheets in situ interpenetrated by functional carboxylated carbon nanotubes (C-CNTs) were successfully constructed. The incorporated C-CNTs effectively adjust the layer thickness of Ni-MOF nanosheets.
2 The integrated hybrid MOF nanosheets delivered the boosted electrochemical performances and exhibited superior specific capacity of 680 C g−1 at 1 A g−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Asymmetric supercapacitor electrodes and devices. Adv. Mater. 29, 1605336 (2017). https://doi.org/10.1002/adma.201605336
- X. Jiang, S. Li, L. Shao, Pushing CO2-philic membrane performance to the limit by designing semi-interpenetrating networks (SIPN) for sustainable CO2 separations. Energy Environ. Sci. 10, 1339–1344 (2017). https://doi.org/10.1039/c6ee03566c
- B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 29, 1605051 (2017). https://doi.org/10.1002/adma.201605051
- Y. Bu, H. Jang, O. Gwon, S.H. Kim, S.H. Joo et al., Synergistic interaction of perovskite oxides and N-doped graphene in versatile electrocatalyst. J. Mater. Chem. A 7, 2048–2054 (2019). https://doi.org/10.1039/c8ta09919g
- E. Mourad, L. Coustan, P. Lannelongue, D. Zigah, A. Mehdi et al., Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat. Mater. 16, 446–453 (2017). https://doi.org/10.1038/nmat4808
- M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016). https://doi.org/10.1038/nenergy.2016.70
- Y. Bu, O. Gwon, G. Nam, H. Jang, S. Kim, Q. Zhong, J. Cho, G. Kim, A highly efficient and robust cation ordered perovskite oxide as a bifunctional catalyst for rechargeable zinc-air batteries. ACS Nano 11, 11594–11601 (2017). https://doi.org/10.1021/acsnano.7b06595
- P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- L.F. Chen, Y. Lu, L. Yu, X.W. Lou, Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ. Sci. 10, 1777–1783 (2017). https://doi.org/10.1039/c7ee00488e
- F. Ran, X. Yang, L. Shao, Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Adv. Compos. Hybrid Mater. 1, 32–55 (2018). https://doi.org/10.1007/s42114-017-0021-2
- A.H.A. Shah, M.O. Khan, S. Bilal, G. Rahman, H.V. Hoang, Electrochemical co-deposition and characterization of polyaniline and manganese oxide nanofibrous composites for energy storage properties. Adv. Polym. Tech. 37, 2230–2237 (2018). https://doi.org/10.1002/adv.21881
- Y. Da, J. Liu, L. Zhou, X. Zhu, X. Chen, L. Fu, Engineering 2D architectures toward high-performance micro-supercapacitors. Adv. Mater. 31, 1802793 (2018). https://doi.org/10.1002/adma.201802793
- S. Zhai, C. Wang, H.E. Karahan, Y. Wang, X. Chen et al., Nano-RuO2-decorated holey graphene composite fibers for micro-supercapacitors with ultrahigh energy density. Small 14, 1800582 (2018). https://doi.org/10.1002/smll.201800582
- W. Tan, R. Fu, H. Ji, D. Wu, Y. Xu, Y. Kong, Comparison of supercapacitive behaviors of polyaniline doped with two low-molecular-weight organic acids: D-tartaric acid and citric acid. Adv. Polym. Tech. 37, 3038–3044 (2018). https://doi.org/10.1002/adv.21974
- W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim et al., Recent advancements in supercapacitor technology. Nano Energy 52, 441–473 (2018). https://doi.org/10.1016/j.nanoen.2018.08.013
- T. Nguyen, M.F. Montemor, Metal oxide and hydroxide-based aqueous supercapacitors: from charge storage mechanisms and functional electrode engineering to need-tailored devices. Adv. Sci. 6, 1801797 (2019). https://doi.org/10.1002/advs.201801797
- N. Zhang, X. Xiao, H. Pang, Transition metal (Fe Co, Ni) fluoride-based materials for electrochemical energy storage. Nanoscale Horiz. 4, 99–116 (2019). https://doi.org/10.1039/c8nh00144h
- Y. Yuan, Y. Lu, B.-E. Jia, H. Tang, L. Chen et al., Integrated system of solar cells with hierarchical NiCo2O4 battery-supercapacitor hybrid devices for self-driving light-emitting diodes. Nano-Micro Lett. 11, 42 (2019). https://doi.org/10.1007/s40820-019-0274-0
- F. Ran, X. Yang, X. Xu, Y. Bai, L. Shao, Boosting the charge storage of layered double hydroxides derived from carbon nanotube-tailored metal organic frameworks. Electrochim. Acta 301, 117–125 (2019). https://doi.org/10.1016/j.electacta.2019.01.142
- Z. Liang, C. Qu, W. Guo, R. Zou, Q. Xu, Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv. Mater. 30, 1702891 (2018). https://doi.org/10.1002/adma.201702891
- H.V. Doan, H. Amer Hamzah, P. Karikkethu Prabhakaran, C. Petrillo, V.P. Ting, Hierarchical metal-organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett. 11, 54 (2019). https://doi.org/10.1007/s40820-019-0286-9
- X. Han, L. Sun, F. Wang, D. Sun, MOF-derived honeycomb-like N-doped carbon structures assembled from mesoporous nanosheets with superior performance in lithium-ion batteries. J. Mater. Chem. A 6, 18891–18897 (2018). https://doi.org/10.1039/c8ta07682k
- T. Deng, Y. Lu, W. Zhang, M. Sui, X. Shi, D. Wang, W. Zheng, Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv. Energy Mater. 8, 1702294 (2018). https://doi.org/10.1002/aenm.201702294
- C. Ye, Q. Qin, J. Liu, W. Mao, J. Yan, Y. Wang, J. Cui, Q. Zhang, L. Yang, Y. Wu, Coordination derived stable Ni-Co MOFs for foldable all-solid-state supercapacitors with high specific energy. J. Mater. Chem. A 7, 4998–5008 (2019). https://doi.org/10.1039/c8ta11948a
- W. Zhan, L. Sun, X. Han, Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks. Nano-Micro Lett. 11, 1 (2019). https://doi.org/10.1007/s40820-018-0235-z
- R. Bendi, V. Kumar, V. Bhavanasi, K. Parida, P.S. Lee, Metal organic framework-derived metal phosphates as electrode materials for supercapacitors. Adv. Energy Mater. 6, 1501833 (2016). https://doi.org/10.1002/aenm.201501833
- D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dinca, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017). https://doi.org/10.1038/nmat4766
- C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou, K.S. Walton, M. Liu, Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 26, 66–73 (2016). https://doi.org/10.1016/j.nanoen.2016.04.003
- H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9, 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
- Y. Yan, P. Gu, S. Zheng, M. Zheng, H. Pang, H. Xue, Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J. Mater. Chem. A 4, 19078–19085 (2016). https://doi.org/10.1039/c6ta08331e
- Y. Zhou, Z. Mao, W. Wang, Z. Yang, X. Liu, In-situ fabrication of graphene oxide hybrid Ni-based metal-organic framework (Ni-MOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials. ACS Appl. Mater. Interfaces. 8, 28904–28916 (2016). https://doi.org/10.1021/acsami.6b10640
- W.H. Li, K. Ding, H.R. Tian, M.S. Yao, B. Nath, W.H. Deng, Y. Wang, G. Xu, Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv. Funct. Mater. 27, 1702067 (2017). https://doi.org/10.1002/adfm.201702067
- Y. Zhao, L. Jiang, L. Shangguan, L. Mi, A. Liu, S. Liu, Synthesis of porphyrin-based two-dimensional metal-organic framework nanodisk with small size and few layers. J. Mater. Chem. A 6, 2828–2833 (2018). https://doi.org/10.1039/c7ta07911g
- X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng, T. Lv, L. Shao, Y. Liu, Cactus-inspired bimetallic metal-organic framework-derived 1D-2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces 11, 13564–13573 (2019). https://doi.org/10.1021/acsami.9b00356
- S. Zhao, Y. Wang, J. Dong, C.T. He, H. Yin et al., Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1, 16184 (2016). https://doi.org/10.1038/nenergy.2016.184
- Y. Bu, S. Kim, O. Kwon, Q. Zhong, G. Kim, A composite catalyst based on perovskites for overall water splitting in alkaline conditions. ChemElectroChem 6, 1520–1524 (2019). https://doi.org/10.1002/celc.201801775
- J. Duan, S. Chen, C. Zhao, Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 8, 15341 (2017). https://doi.org/10.1038/ncomms15341
- J. Yang, C. Yu, C. Hu, M. Wang, S. Li et al., surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors. Adv. Funct. Mater. 28, 1803272 (2018). https://doi.org/10.1002/adfm.201803272
- W. Zhan, Y. Yuan, L. Sun, Y. Yuan, X. Han, Y. Zhao, Hierarchical NiO@N-doped carbon microspheres with ultrathin nanosheet subunits as excellent photocatalysts for hydrogen evolution. Small 15, 1901024 (2019). https://doi.org/10.1002/smll.201901024
- Y. Bu, G. Nam, S. Kim, K. Choi, Q. Zhong, J. Lee, Y. Qin, J. Cho, G. Kim, A tailored bifunctional electrocatalyst: boosting oxygen reduction/evolution catalysis via electron transfer between n-doped graphene and perovskite oxides. Small 14, 1802767 (2018). https://doi.org/10.1002/smll.201802767
- R. Dai, W. Sun, L.P. Lv, M. Wu, H. Liu, G. Wang, Y. Wang, Bimetal-organic-framework derivation of ball-cactus-like Ni-Sn-P@C-CNT as long-cycle anode for lithium ion battery. Small 13, 1700521 (2017). https://doi.org/10.1002/smll.201700521
- P. Du, Y. Dong, C. Liu, W. Wei, D. Liu, P. Liu, Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. J. Colloid Interface Sci. 518, 57–68 (2018). https://doi.org/10.1016/j.jcis.2018.02.010
- P. Wen, P. Gong, J. Sun, J. Wang, S. Yang, Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J. Mater. Chem. A 3, 13874–13883 (2015). https://doi.org/10.1039/c5ta02461g
- M. Demir, Z. Kahveci, B. Aksoy, N.K.R. Palapati, A. Subramanian, H.T. Cullinan, H.M. El-Kaderi, C.T. Harris, R.B. Gupta, Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin. Ind. Eng. Chem. Res. 54, 10731–10739 (2015). https://doi.org/10.1021/acs.iecr.5b02614
- M. Sevilla, A.B. Fuertes, Catalytic graphitization of templated mesoporous carbons. Carbon 44, 468–474 (2006). https://doi.org/10.1016/j.carbon.2005.08.019
- Y. Zhang, H. Sun, H. Sadam, Y. Liu, L. Shao, Supramolecular chemistry assisted construction of ultra-stable solvent-resistant membranes for angstrom-sized molecular separation. Chem. Eng. J. 371, 535–543 (2019). https://doi.org/10.1016/j.cej.2019.04.096
- T. Yang, Y. Liu, D. Yang, B. Deng, Z. Huang et al., Bimetallic metal-organic frameworks derived Ni-Co-Se@C hierarchical bundle-like nanostructures with high-rate pseudocapacitive lithium ion storage. Energy Storage Mater. 17, 374–384 (2019). https://doi.org/10.1016/j.ensm.2018.05.024
- Y. Li, Y. Xu, Y. Liu, H. Pang, Exposing 001 crystal plane on hexagonal Ni-MOF with surface-grown cross-linked mesh-structures for electrochemical energy storage. Small 15, 1902463 (2019). https://doi.org/10.1002/smll.201902463
- Q. Liu, L. Xie, X. Shi, G. Du, A.M. Asiri, Y. Luo, X. Sun, High-performance water oxidation electrocatalysis enabled by a Ni-MOF nanosheet array. Inor. Chem. Front. 5, 1570–1574 (2018). https://doi.org/10.1039/c7qi00808b
- Q. Chen, S. Lei, P. Deng, X. Ou, L. Chen, W. Wang, Y. Xiao, B. Cheng, Direct growth of nickel terephthalate on Ni foam with large mass-loading for high-performance supercapacitors. J. Mater. Chem. A 5, 19323–19332 (2017). https://doi.org/10.1039/c7ta05373h
- Y. Yuan, L. Sun, S. Zeng, W. Zhan, X. Wang, X. Han, Modulating the charge transfer step of p-n heterojunction with nitrogen-doped carbon: a promising strategy to improve photocatalytic performances. Eur. J. Chem. (2019). https://doi.org/10.1002/chem.201904467
- X. Jiang, S. Li, S. He, Y. Bai, L. Shao, Interface manipulation of CO2-philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO2 capture. J. Mater. Chem. A 6, 15064–15073 (2018). https://doi.org/10.1039/c8ta03872d
- C. Yang, M. Zhou, C. He, Y. Gao, S. Li et al., Augmenting intrinsic fenton-like activities of MOF-derived catalysts via n-molecule-assisted self-catalyzed carbonization. Nano-Micro Lett. 11, 87 (2019). https://doi.org/10.1007/s40820-019-0319-4
- Z. Xiao, Y. Mei, S. Yuan, H. Mei, B. Xu et al., Controlled hydrolysis of metal-organic frameworks: hierarchical Ni/Co-layered double hydroxide microspheres for high-performance supercapacitors. ACS Nano 13, 7024–7030 (2019). https://doi.org/10.1021/acsnano.9b02106
- J. Yang, P. Xiong, C. Zheng, H. Qiu, M. Wei, Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. J. Mater. Chem. A 2, 16640–16644 (2014). https://doi.org/10.1039/c4ta04140b
- Y. Jiao, J. Pei, D. Chen, C. Yan, Y. Hu, Q. Zhang, G. Chen, Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J. Mater. Chem. A 5, 1094–1102 (2017). https://doi.org/10.1039/c6ta09805c
- Q. Zhang, Z. Liu, B. Zhao, Y. Cheng, L. Zhang et al., Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors. Energy Storage Mater. 16, 632–645 (2018). https://doi.org/10.1016/j.ensm.2018.06.026
- B.Y. Guan, A. Kushima, L. Yu, S. Li, J. Li, X.W. Lou, Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors. Adv. Mater. 29, 1605902 (2017). https://doi.org/10.1002/adma.201605902
- S. Liu, K.V. Sankar, A. Kundu, M. Ma, J.Y. Kwon, S.C. Jun, Honeycomb-like interconnected network of nickel phosphide heteronanoparticles with superior electrochemical performance for supercapacitors. ACS Appl. Mater. Interfaces. 9, 21829–21838 (2017). https://doi.org/10.1021/acsami.7b05384
- R. Ding, L. Qi, M. Jia, H. Wang, Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performance aqueous hybrid AC-NiCo2O4 electrochemical capacitors. Electrochim. Acta 107, 494–502 (2013). https://doi.org/10.1016/j.electacta.2013.05.114
- Y. Zhang, Y. Zhang, Y. Zhang, H. Si, L. Sun, Bimetallic NiCo2S4 nanoneedles anchored on mesocarbon microbeads as advanced electrodes for asymmetric supercapacitors. Nano-Micro Lett. 11, 35 (2019). https://doi.org/10.1007/s40820-019-0265-1
- Y. Ouyang, H. Ye, X. Xia, X. Jiao, G. Li et al., Hierarchical electrodes of NiCo2S4 nanosheets-anchored sulfur-doped Co3O4 nanoneedles with advanced performance for battery-supercapacitor hybrid devices. J. Mater. Chem. A 7, 3228–3237 (2019). https://doi.org/10.1039/c8ta11426a
- H.C. Chen, Y. Qin, H. Cao, X. Song, C. Huang, H. Feng, X.S. Zhao, Synthesis of amorphous nickel-cobalt-manganese hydroxides for supercapacitor-battery hybrid energy storage system. Energy Storage Mater. 17, 194–203 (2018). https://doi.org/10.1016/j.ensm.2018.07.018
- S. Li, W. Huang, Y. Yang, J. Ulstrup, L. Ci, J. Zhang, J. Lou, P. Si, Hierarchical layer-by-layer porous FeCo2S4@Ni(OH)2 arrays for all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 6, 20480–20490 (2018). https://doi.org/10.1039/c8ta07598k
References
N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Asymmetric supercapacitor electrodes and devices. Adv. Mater. 29, 1605336 (2017). https://doi.org/10.1002/adma.201605336
X. Jiang, S. Li, L. Shao, Pushing CO2-philic membrane performance to the limit by designing semi-interpenetrating networks (SIPN) for sustainable CO2 separations. Energy Environ. Sci. 10, 1339–1344 (2017). https://doi.org/10.1039/c6ee03566c
B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 29, 1605051 (2017). https://doi.org/10.1002/adma.201605051
Y. Bu, H. Jang, O. Gwon, S.H. Kim, S.H. Joo et al., Synergistic interaction of perovskite oxides and N-doped graphene in versatile electrocatalyst. J. Mater. Chem. A 7, 2048–2054 (2019). https://doi.org/10.1039/c8ta09919g
E. Mourad, L. Coustan, P. Lannelongue, D. Zigah, A. Mehdi et al., Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat. Mater. 16, 446–453 (2017). https://doi.org/10.1038/nmat4808
M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016). https://doi.org/10.1038/nenergy.2016.70
Y. Bu, O. Gwon, G. Nam, H. Jang, S. Kim, Q. Zhong, J. Cho, G. Kim, A highly efficient and robust cation ordered perovskite oxide as a bifunctional catalyst for rechargeable zinc-air batteries. ACS Nano 11, 11594–11601 (2017). https://doi.org/10.1021/acsnano.7b06595
P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625
L.F. Chen, Y. Lu, L. Yu, X.W. Lou, Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ. Sci. 10, 1777–1783 (2017). https://doi.org/10.1039/c7ee00488e
F. Ran, X. Yang, L. Shao, Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Adv. Compos. Hybrid Mater. 1, 32–55 (2018). https://doi.org/10.1007/s42114-017-0021-2
A.H.A. Shah, M.O. Khan, S. Bilal, G. Rahman, H.V. Hoang, Electrochemical co-deposition and characterization of polyaniline and manganese oxide nanofibrous composites for energy storage properties. Adv. Polym. Tech. 37, 2230–2237 (2018). https://doi.org/10.1002/adv.21881
Y. Da, J. Liu, L. Zhou, X. Zhu, X. Chen, L. Fu, Engineering 2D architectures toward high-performance micro-supercapacitors. Adv. Mater. 31, 1802793 (2018). https://doi.org/10.1002/adma.201802793
S. Zhai, C. Wang, H.E. Karahan, Y. Wang, X. Chen et al., Nano-RuO2-decorated holey graphene composite fibers for micro-supercapacitors with ultrahigh energy density. Small 14, 1800582 (2018). https://doi.org/10.1002/smll.201800582
W. Tan, R. Fu, H. Ji, D. Wu, Y. Xu, Y. Kong, Comparison of supercapacitive behaviors of polyaniline doped with two low-molecular-weight organic acids: D-tartaric acid and citric acid. Adv. Polym. Tech. 37, 3038–3044 (2018). https://doi.org/10.1002/adv.21974
W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim et al., Recent advancements in supercapacitor technology. Nano Energy 52, 441–473 (2018). https://doi.org/10.1016/j.nanoen.2018.08.013
T. Nguyen, M.F. Montemor, Metal oxide and hydroxide-based aqueous supercapacitors: from charge storage mechanisms and functional electrode engineering to need-tailored devices. Adv. Sci. 6, 1801797 (2019). https://doi.org/10.1002/advs.201801797
N. Zhang, X. Xiao, H. Pang, Transition metal (Fe Co, Ni) fluoride-based materials for electrochemical energy storage. Nanoscale Horiz. 4, 99–116 (2019). https://doi.org/10.1039/c8nh00144h
Y. Yuan, Y. Lu, B.-E. Jia, H. Tang, L. Chen et al., Integrated system of solar cells with hierarchical NiCo2O4 battery-supercapacitor hybrid devices for self-driving light-emitting diodes. Nano-Micro Lett. 11, 42 (2019). https://doi.org/10.1007/s40820-019-0274-0
F. Ran, X. Yang, X. Xu, Y. Bai, L. Shao, Boosting the charge storage of layered double hydroxides derived from carbon nanotube-tailored metal organic frameworks. Electrochim. Acta 301, 117–125 (2019). https://doi.org/10.1016/j.electacta.2019.01.142
Z. Liang, C. Qu, W. Guo, R. Zou, Q. Xu, Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv. Mater. 30, 1702891 (2018). https://doi.org/10.1002/adma.201702891
H.V. Doan, H. Amer Hamzah, P. Karikkethu Prabhakaran, C. Petrillo, V.P. Ting, Hierarchical metal-organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett. 11, 54 (2019). https://doi.org/10.1007/s40820-019-0286-9
X. Han, L. Sun, F. Wang, D. Sun, MOF-derived honeycomb-like N-doped carbon structures assembled from mesoporous nanosheets with superior performance in lithium-ion batteries. J. Mater. Chem. A 6, 18891–18897 (2018). https://doi.org/10.1039/c8ta07682k
T. Deng, Y. Lu, W. Zhang, M. Sui, X. Shi, D. Wang, W. Zheng, Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv. Energy Mater. 8, 1702294 (2018). https://doi.org/10.1002/aenm.201702294
C. Ye, Q. Qin, J. Liu, W. Mao, J. Yan, Y. Wang, J. Cui, Q. Zhang, L. Yang, Y. Wu, Coordination derived stable Ni-Co MOFs for foldable all-solid-state supercapacitors with high specific energy. J. Mater. Chem. A 7, 4998–5008 (2019). https://doi.org/10.1039/c8ta11948a
W. Zhan, L. Sun, X. Han, Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks. Nano-Micro Lett. 11, 1 (2019). https://doi.org/10.1007/s40820-018-0235-z
R. Bendi, V. Kumar, V. Bhavanasi, K. Parida, P.S. Lee, Metal organic framework-derived metal phosphates as electrode materials for supercapacitors. Adv. Energy Mater. 6, 1501833 (2016). https://doi.org/10.1002/aenm.201501833
D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dinca, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017). https://doi.org/10.1038/nmat4766
C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou, K.S. Walton, M. Liu, Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 26, 66–73 (2016). https://doi.org/10.1016/j.nanoen.2016.04.003
H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9, 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
Y. Yan, P. Gu, S. Zheng, M. Zheng, H. Pang, H. Xue, Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J. Mater. Chem. A 4, 19078–19085 (2016). https://doi.org/10.1039/c6ta08331e
Y. Zhou, Z. Mao, W. Wang, Z. Yang, X. Liu, In-situ fabrication of graphene oxide hybrid Ni-based metal-organic framework (Ni-MOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials. ACS Appl. Mater. Interfaces. 8, 28904–28916 (2016). https://doi.org/10.1021/acsami.6b10640
W.H. Li, K. Ding, H.R. Tian, M.S. Yao, B. Nath, W.H. Deng, Y. Wang, G. Xu, Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv. Funct. Mater. 27, 1702067 (2017). https://doi.org/10.1002/adfm.201702067
Y. Zhao, L. Jiang, L. Shangguan, L. Mi, A. Liu, S. Liu, Synthesis of porphyrin-based two-dimensional metal-organic framework nanodisk with small size and few layers. J. Mater. Chem. A 6, 2828–2833 (2018). https://doi.org/10.1039/c7ta07911g
X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng, T. Lv, L. Shao, Y. Liu, Cactus-inspired bimetallic metal-organic framework-derived 1D-2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces 11, 13564–13573 (2019). https://doi.org/10.1021/acsami.9b00356
S. Zhao, Y. Wang, J. Dong, C.T. He, H. Yin et al., Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1, 16184 (2016). https://doi.org/10.1038/nenergy.2016.184
Y. Bu, S. Kim, O. Kwon, Q. Zhong, G. Kim, A composite catalyst based on perovskites for overall water splitting in alkaline conditions. ChemElectroChem 6, 1520–1524 (2019). https://doi.org/10.1002/celc.201801775
J. Duan, S. Chen, C. Zhao, Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 8, 15341 (2017). https://doi.org/10.1038/ncomms15341
J. Yang, C. Yu, C. Hu, M. Wang, S. Li et al., surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors. Adv. Funct. Mater. 28, 1803272 (2018). https://doi.org/10.1002/adfm.201803272
W. Zhan, Y. Yuan, L. Sun, Y. Yuan, X. Han, Y. Zhao, Hierarchical NiO@N-doped carbon microspheres with ultrathin nanosheet subunits as excellent photocatalysts for hydrogen evolution. Small 15, 1901024 (2019). https://doi.org/10.1002/smll.201901024
Y. Bu, G. Nam, S. Kim, K. Choi, Q. Zhong, J. Lee, Y. Qin, J. Cho, G. Kim, A tailored bifunctional electrocatalyst: boosting oxygen reduction/evolution catalysis via electron transfer between n-doped graphene and perovskite oxides. Small 14, 1802767 (2018). https://doi.org/10.1002/smll.201802767
R. Dai, W. Sun, L.P. Lv, M. Wu, H. Liu, G. Wang, Y. Wang, Bimetal-organic-framework derivation of ball-cactus-like Ni-Sn-P@C-CNT as long-cycle anode for lithium ion battery. Small 13, 1700521 (2017). https://doi.org/10.1002/smll.201700521
P. Du, Y. Dong, C. Liu, W. Wei, D. Liu, P. Liu, Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. J. Colloid Interface Sci. 518, 57–68 (2018). https://doi.org/10.1016/j.jcis.2018.02.010
P. Wen, P. Gong, J. Sun, J. Wang, S. Yang, Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J. Mater. Chem. A 3, 13874–13883 (2015). https://doi.org/10.1039/c5ta02461g
M. Demir, Z. Kahveci, B. Aksoy, N.K.R. Palapati, A. Subramanian, H.T. Cullinan, H.M. El-Kaderi, C.T. Harris, R.B. Gupta, Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin. Ind. Eng. Chem. Res. 54, 10731–10739 (2015). https://doi.org/10.1021/acs.iecr.5b02614
M. Sevilla, A.B. Fuertes, Catalytic graphitization of templated mesoporous carbons. Carbon 44, 468–474 (2006). https://doi.org/10.1016/j.carbon.2005.08.019
Y. Zhang, H. Sun, H. Sadam, Y. Liu, L. Shao, Supramolecular chemistry assisted construction of ultra-stable solvent-resistant membranes for angstrom-sized molecular separation. Chem. Eng. J. 371, 535–543 (2019). https://doi.org/10.1016/j.cej.2019.04.096
T. Yang, Y. Liu, D. Yang, B. Deng, Z. Huang et al., Bimetallic metal-organic frameworks derived Ni-Co-Se@C hierarchical bundle-like nanostructures with high-rate pseudocapacitive lithium ion storage. Energy Storage Mater. 17, 374–384 (2019). https://doi.org/10.1016/j.ensm.2018.05.024
Y. Li, Y. Xu, Y. Liu, H. Pang, Exposing 001 crystal plane on hexagonal Ni-MOF with surface-grown cross-linked mesh-structures for electrochemical energy storage. Small 15, 1902463 (2019). https://doi.org/10.1002/smll.201902463
Q. Liu, L. Xie, X. Shi, G. Du, A.M. Asiri, Y. Luo, X. Sun, High-performance water oxidation electrocatalysis enabled by a Ni-MOF nanosheet array. Inor. Chem. Front. 5, 1570–1574 (2018). https://doi.org/10.1039/c7qi00808b
Q. Chen, S. Lei, P. Deng, X. Ou, L. Chen, W. Wang, Y. Xiao, B. Cheng, Direct growth of nickel terephthalate on Ni foam with large mass-loading for high-performance supercapacitors. J. Mater. Chem. A 5, 19323–19332 (2017). https://doi.org/10.1039/c7ta05373h
Y. Yuan, L. Sun, S. Zeng, W. Zhan, X. Wang, X. Han, Modulating the charge transfer step of p-n heterojunction with nitrogen-doped carbon: a promising strategy to improve photocatalytic performances. Eur. J. Chem. (2019). https://doi.org/10.1002/chem.201904467
X. Jiang, S. Li, S. He, Y. Bai, L. Shao, Interface manipulation of CO2-philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO2 capture. J. Mater. Chem. A 6, 15064–15073 (2018). https://doi.org/10.1039/c8ta03872d
C. Yang, M. Zhou, C. He, Y. Gao, S. Li et al., Augmenting intrinsic fenton-like activities of MOF-derived catalysts via n-molecule-assisted self-catalyzed carbonization. Nano-Micro Lett. 11, 87 (2019). https://doi.org/10.1007/s40820-019-0319-4
Z. Xiao, Y. Mei, S. Yuan, H. Mei, B. Xu et al., Controlled hydrolysis of metal-organic frameworks: hierarchical Ni/Co-layered double hydroxide microspheres for high-performance supercapacitors. ACS Nano 13, 7024–7030 (2019). https://doi.org/10.1021/acsnano.9b02106
J. Yang, P. Xiong, C. Zheng, H. Qiu, M. Wei, Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. J. Mater. Chem. A 2, 16640–16644 (2014). https://doi.org/10.1039/c4ta04140b
Y. Jiao, J. Pei, D. Chen, C. Yan, Y. Hu, Q. Zhang, G. Chen, Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J. Mater. Chem. A 5, 1094–1102 (2017). https://doi.org/10.1039/c6ta09805c
Q. Zhang, Z. Liu, B. Zhao, Y. Cheng, L. Zhang et al., Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors. Energy Storage Mater. 16, 632–645 (2018). https://doi.org/10.1016/j.ensm.2018.06.026
B.Y. Guan, A. Kushima, L. Yu, S. Li, J. Li, X.W. Lou, Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors. Adv. Mater. 29, 1605902 (2017). https://doi.org/10.1002/adma.201605902
S. Liu, K.V. Sankar, A. Kundu, M. Ma, J.Y. Kwon, S.C. Jun, Honeycomb-like interconnected network of nickel phosphide heteronanoparticles with superior electrochemical performance for supercapacitors. ACS Appl. Mater. Interfaces. 9, 21829–21838 (2017). https://doi.org/10.1021/acsami.7b05384
R. Ding, L. Qi, M. Jia, H. Wang, Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performance aqueous hybrid AC-NiCo2O4 electrochemical capacitors. Electrochim. Acta 107, 494–502 (2013). https://doi.org/10.1016/j.electacta.2013.05.114
Y. Zhang, Y. Zhang, Y. Zhang, H. Si, L. Sun, Bimetallic NiCo2S4 nanoneedles anchored on mesocarbon microbeads as advanced electrodes for asymmetric supercapacitors. Nano-Micro Lett. 11, 35 (2019). https://doi.org/10.1007/s40820-019-0265-1
Y. Ouyang, H. Ye, X. Xia, X. Jiao, G. Li et al., Hierarchical electrodes of NiCo2S4 nanosheets-anchored sulfur-doped Co3O4 nanoneedles with advanced performance for battery-supercapacitor hybrid devices. J. Mater. Chem. A 7, 3228–3237 (2019). https://doi.org/10.1039/c8ta11426a
H.C. Chen, Y. Qin, H. Cao, X. Song, C. Huang, H. Feng, X.S. Zhao, Synthesis of amorphous nickel-cobalt-manganese hydroxides for supercapacitor-battery hybrid energy storage system. Energy Storage Mater. 17, 194–203 (2018). https://doi.org/10.1016/j.ensm.2018.07.018
S. Li, W. Huang, Y. Yang, J. Ulstrup, L. Ci, J. Zhang, J. Lou, P. Si, Hierarchical layer-by-layer porous FeCo2S4@Ni(OH)2 arrays for all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 6, 20480–20490 (2018). https://doi.org/10.1039/c8ta07598k