Effect of Al2O3 Buffer Layers on the Properties of Sputtered VO2 Thin Films
Corresponding Author: Tianlong Wen
Nano-Micro Letters,
Vol. 9 No. 3 (2017), Article Number: 29
Abstract
VO2 thin films were grown on silicon substrates using Al2O3 thin films as the buffer layers. Compared with direct deposition on silicon, VO2 thin films deposited on Al2O3 buffer layers experience a significant improvement in their microstructures and physical properties. By optimizing the growth conditions, the resistance of VO2 thin films can change by four orders of magnitude with a reduced thermal hysteresis of 4 °C at the phase transition temperature. The electrically driven phase transformation was measured in Pt/Si/Al2O3/VO2/Au heterostructures. The introduction of a buffer layer reduces the leakage current and Joule heating during electrically driven phase transitions. The C–V measurement result indicates that the phase transformation of VO2 thin films can be induced by an electrical field.
Highlights:
1 High-quality VO2 thin films were obtained on silicon substrates by introducing an Al2O3 buffer layer prepared by atomic layer deposition (ALD) under different growth conditions.
2 The fast, electrically driven phase transition of VO2 thin films was studied, and a possible mechanism was proposed according to the C–V measurement at a high frequency.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.J. Morin, Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 3(1), 34–36 (1959). doi:10.1103/PhysRevLett.3.34
- Y. Muraoka, Z. Hiroi, Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates. Appl. Phys. Lett. 80(4), 583–585 (2002). doi:10.1063/1.1446215
- H.T. Zhang, L. Zhang, D. Mukherjee, Y.X. Zheng, R.C. Haislmaier, N. Alem, R. Engel-Herbert, Wafer-scale growth of VO2 thin films using a combinatorial approach. Nat. Commun. 6, 8475 (2015). doi:10.1038/ncomms9475
- M. Eslamian, Inorganic and organic solution-processed thin film devices. Nano-Micro Lett. 9, 3 (2017). doi:10.1007/s40820-016-0105-5
- Y. Xiong, Q.Y. Wen, Z. Chen, W. Tian, T.L. Wen, Y.L. Jing, Q.H. Yang, H.W. Zhang, Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers. J. Phys. D-Appl. Phys. 47(45), 455304 (2014). doi:10.1088/0022-3727/47/45/455304
- S. Saitzek, F. Guinneton, G. Guirleo, L. Sauques, K. Aguir, J.R. Gavarri, VO2 thin films deposited on silicon substrates from V2O5 target: limits in optical switching properties and modeling. Thin Solid Films 516(6), 891–897 (2008). doi:10.1016/j.tsf.2007.04.129
- Q.Y. Wen, H.W. Zhang, Q.H. Yang, Y.S. Xie, K. Chen, Y.L. Liu, Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl. Phys. Lett. 97(2), 021111 (2010). doi:10.1063/1.3463466
- M. Seo, J. Kyoung, H. Park, S. Koo, H.S. Kim et al., Active terahertz nanoantennas based on VO2 phase transition. Nano Lett. 10(6), 2064–2068 (2010). doi:10.1021/nl1002153
- R.M. Briggs, I.M. Pryce, H.A. Atwater, Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. Opt. Express 18(11), 11192–11201 (2010). doi:10.1364/oe.18.011192
- M.R. Hashemi, S.H. Yang, M. Jarrahi, T.Y. Wang, N. Sepulveda, IEEE, 2015 IEEE International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting (IEEE, New York, 2015), pp. 77–78
- W. Roach, Holographic storage in VO2. Appl. Phys. Lett. 19(11), 453 (1971). doi:10.1063/1.1653769
- M.M. Qazilbash, M. Brehm, B.G. Chae, P.C. Ho, G.O. Andreev et al., Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318(5857), 1750–1753 (2007). doi:10.1126/science.1150124
- S.K. Earl, T.D. James, T.J. Davis, J.C. McCallum, R.E. Marvel, R.F. Haglund, A. Roberts, Tunable optical antennas enabled by the phase transition in vanadium dioxide. Opt. Express 21(22), 27503–27508 (2013). doi:10.1364/oe.21.027503
- Q. Mao, Q.Y. Wen, W. Tian, T.L. Wen, Z. Chen, Q.H. Yang, H.W. Zhang, High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors. Opt. Lett. 39(19), 5649–5652 (2014). doi:10.1364/OL.39.005649
- B. Sensale-Rodriguez, R.S. Yan, M.M. Kelly, T. Fang, K. Tahy et al., Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 3, 780 (2012). doi:10.1038/ncomms1787
- D.N. Zhang, D.D. Sun, Q.Y. Wen, T.L. Wen, J. Kolodzey, H.W. Zhang, Tuning the optical modulation of wideband terahertz waves by the gate voltage of graphene field effect transistors. Compos. B 89, 54–59 (2016). doi:10.1016/j.compositesb.2015.10.049
- Q. Wen, Y. Liu, J. Liu, T. Wen, Q. Yang, Z. Chen, Y. Jing, H. Zhang, Large-area graphene FET based broaband terahertz modulator, in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2016). doi:10.1109/IRMMW-THz.2016.7758633
- T. Vogel, G. Dodel, E. Holzhauer, H. Salzmann, A. Theurer, High-speed switching of far-infrared radiation by photoionization in a semiconductor. Appl. Opt. 31(3), 329–337 (1992). doi:10.1364/AO.31.000329
- T. Wen, D. Zhang, Q. Wen, Y. Liao, C. Zhang et al., Enhanced optical modulation depth of terahertz wave by self-assembled monolayer of plasmonic gold nanoparticles. Adv. Opt. Mater. 4(12), 1974–1980 (2016). doi:10.1002/adom.201600248
- T. Wen, C. Zhang, Q. Wen, Y. L. Jing, H. Zhang, J. Li, W. Tian, Y. Li, Improve optical modulation depth of terahertz wave by monolayers of plasmonic nanoparticles, in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2016). doi:10.1109/IRMMW-THz.2016.7758773
- A. Gupta, R. Aggarwal, P. Gupta, T. Dutta, R.J. Narayan, J. Narayan, Semiconductor to metal transition characteristics of VO2 thin films grown epitaxially on Si (001). Appl. Phys. Lett. 95, 111915 (2009). doi:10.1063/1.3232241
- D.H. Qiu, Q.Y. Wen, Q.H. Yang, Z. Chen, Y.L. Jing, H.W. Zhang, Electrically-driven metal-insulator transition of vanadium dioxide thin films in a metal-oxide-insulator-metal device structure. Mater. Sci. Semicond. Process. 27, 140–144 (2014). doi:10.1016/j.mssp.2014.06.030
- F. Beteille, L. Mazerolles, J. Livage, Microstructure and metal-insulating transition of VO2 thin films. Mater. Res. Bull. 34(14–15), 2177–2184 (1999). doi:10.1016/s0025-5408(99)00232-9
- K. Kimoto, Y. Matsui, T. Nabatame, T. Yasuda, T. Mizoguchi, I. Tanaka, A. Toriumi, Coordination and interface analysis of atomic-layer-deposition Al2O3 on Si(001) using energy-loss near-edge structures. Appl. Phys. Lett. 83(21), 4306–4308 (2003). doi:10.1063/1.1629397
- B. Hoex, S.B.S. Heil, E. Langereis, M.C.M. van de Sanden, W.M.M. Kessels, Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl. Phys. Lett. 89(4), 042112 (2006). doi:10.1063/1.2240736
- T.D. Manning, I.P. Parkin, Atmospheric pressure chemical vapour deposition of tungsten doped vanadium (IV) oxide from VOCl (3), water and WCl (6). J. Mater. Chem. 14(16), 2554–2559 (2004). doi:10.1039/b403576n
- Z. Yang, C. Ko, S. Ramanathan, Metal-insulator transition characteristics of VO2 thin films grown on Ge (100) single crystals. J. Appl. Phys. 108(7), 073708 (2010). doi:10.1063/1.3492716
- B. Fisher, A. Ron, The thermoelectric power in the conductive phase of V6O13. Solid State Commun. 40, 737–739 (1981). doi:10.1016/0038-1098(81)90818-8
- H.F. Hess, K. Deconde, T.F. Rosenbaum, G.A. Thomas, Giant dielectric constants at the approach to the insulator-metal transition. Phys. Rev. B 25(8), 5578–5580 (1982). doi:10.1103/PhysRevB.25.5578
- K. Appavoo, B. Wang, N.F. Brady, M. Seo, J. Nag, R.P. Prasankumar, D.J. Hilton, S.T. Pantelides, R.F. Haglund, Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. Nano Lett. 14(3), 1127–1133 (2014). doi:10.1021/nl4044828
- J. Sakai, High-efficiency voltage oscillation in VO(2) planer-type junctions with infinite negative differential resistance. J. Appl. Phys. 103(10), 103708 (2008). doi:10.1063/1.2930959
- H.T. Kim, B.J. Kim, S. Choi, B.G. Chae, Y.W. Lee, T. Driscoll, M.M. Qazilbash, D.N. Basov, Electrical oscillations induced by the metal-insulator transition in VO2. J. Appl. Phys. 107(2), 023702 (2010). doi:10.1063/1.3275575
References
F.J. Morin, Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 3(1), 34–36 (1959). doi:10.1103/PhysRevLett.3.34
Y. Muraoka, Z. Hiroi, Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates. Appl. Phys. Lett. 80(4), 583–585 (2002). doi:10.1063/1.1446215
H.T. Zhang, L. Zhang, D. Mukherjee, Y.X. Zheng, R.C. Haislmaier, N. Alem, R. Engel-Herbert, Wafer-scale growth of VO2 thin films using a combinatorial approach. Nat. Commun. 6, 8475 (2015). doi:10.1038/ncomms9475
M. Eslamian, Inorganic and organic solution-processed thin film devices. Nano-Micro Lett. 9, 3 (2017). doi:10.1007/s40820-016-0105-5
Y. Xiong, Q.Y. Wen, Z. Chen, W. Tian, T.L. Wen, Y.L. Jing, Q.H. Yang, H.W. Zhang, Tuning the phase transitions of VO2 thin films on silicon substrates using ultrathin Al2O3 as buffer layers. J. Phys. D-Appl. Phys. 47(45), 455304 (2014). doi:10.1088/0022-3727/47/45/455304
S. Saitzek, F. Guinneton, G. Guirleo, L. Sauques, K. Aguir, J.R. Gavarri, VO2 thin films deposited on silicon substrates from V2O5 target: limits in optical switching properties and modeling. Thin Solid Films 516(6), 891–897 (2008). doi:10.1016/j.tsf.2007.04.129
Q.Y. Wen, H.W. Zhang, Q.H. Yang, Y.S. Xie, K. Chen, Y.L. Liu, Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl. Phys. Lett. 97(2), 021111 (2010). doi:10.1063/1.3463466
M. Seo, J. Kyoung, H. Park, S. Koo, H.S. Kim et al., Active terahertz nanoantennas based on VO2 phase transition. Nano Lett. 10(6), 2064–2068 (2010). doi:10.1021/nl1002153
R.M. Briggs, I.M. Pryce, H.A. Atwater, Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. Opt. Express 18(11), 11192–11201 (2010). doi:10.1364/oe.18.011192
M.R. Hashemi, S.H. Yang, M. Jarrahi, T.Y. Wang, N. Sepulveda, IEEE, 2015 IEEE International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting (IEEE, New York, 2015), pp. 77–78
W. Roach, Holographic storage in VO2. Appl. Phys. Lett. 19(11), 453 (1971). doi:10.1063/1.1653769
M.M. Qazilbash, M. Brehm, B.G. Chae, P.C. Ho, G.O. Andreev et al., Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318(5857), 1750–1753 (2007). doi:10.1126/science.1150124
S.K. Earl, T.D. James, T.J. Davis, J.C. McCallum, R.E. Marvel, R.F. Haglund, A. Roberts, Tunable optical antennas enabled by the phase transition in vanadium dioxide. Opt. Express 21(22), 27503–27508 (2013). doi:10.1364/oe.21.027503
Q. Mao, Q.Y. Wen, W. Tian, T.L. Wen, Z. Chen, Q.H. Yang, H.W. Zhang, High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors. Opt. Lett. 39(19), 5649–5652 (2014). doi:10.1364/OL.39.005649
B. Sensale-Rodriguez, R.S. Yan, M.M. Kelly, T. Fang, K. Tahy et al., Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 3, 780 (2012). doi:10.1038/ncomms1787
D.N. Zhang, D.D. Sun, Q.Y. Wen, T.L. Wen, J. Kolodzey, H.W. Zhang, Tuning the optical modulation of wideband terahertz waves by the gate voltage of graphene field effect transistors. Compos. B 89, 54–59 (2016). doi:10.1016/j.compositesb.2015.10.049
Q. Wen, Y. Liu, J. Liu, T. Wen, Q. Yang, Z. Chen, Y. Jing, H. Zhang, Large-area graphene FET based broaband terahertz modulator, in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2016). doi:10.1109/IRMMW-THz.2016.7758633
T. Vogel, G. Dodel, E. Holzhauer, H. Salzmann, A. Theurer, High-speed switching of far-infrared radiation by photoionization in a semiconductor. Appl. Opt. 31(3), 329–337 (1992). doi:10.1364/AO.31.000329
T. Wen, D. Zhang, Q. Wen, Y. Liao, C. Zhang et al., Enhanced optical modulation depth of terahertz wave by self-assembled monolayer of plasmonic gold nanoparticles. Adv. Opt. Mater. 4(12), 1974–1980 (2016). doi:10.1002/adom.201600248
T. Wen, C. Zhang, Q. Wen, Y. L. Jing, H. Zhang, J. Li, W. Tian, Y. Li, Improve optical modulation depth of terahertz wave by monolayers of plasmonic nanoparticles, in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2016). doi:10.1109/IRMMW-THz.2016.7758773
A. Gupta, R. Aggarwal, P. Gupta, T. Dutta, R.J. Narayan, J. Narayan, Semiconductor to metal transition characteristics of VO2 thin films grown epitaxially on Si (001). Appl. Phys. Lett. 95, 111915 (2009). doi:10.1063/1.3232241
D.H. Qiu, Q.Y. Wen, Q.H. Yang, Z. Chen, Y.L. Jing, H.W. Zhang, Electrically-driven metal-insulator transition of vanadium dioxide thin films in a metal-oxide-insulator-metal device structure. Mater. Sci. Semicond. Process. 27, 140–144 (2014). doi:10.1016/j.mssp.2014.06.030
F. Beteille, L. Mazerolles, J. Livage, Microstructure and metal-insulating transition of VO2 thin films. Mater. Res. Bull. 34(14–15), 2177–2184 (1999). doi:10.1016/s0025-5408(99)00232-9
K. Kimoto, Y. Matsui, T. Nabatame, T. Yasuda, T. Mizoguchi, I. Tanaka, A. Toriumi, Coordination and interface analysis of atomic-layer-deposition Al2O3 on Si(001) using energy-loss near-edge structures. Appl. Phys. Lett. 83(21), 4306–4308 (2003). doi:10.1063/1.1629397
B. Hoex, S.B.S. Heil, E. Langereis, M.C.M. van de Sanden, W.M.M. Kessels, Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl. Phys. Lett. 89(4), 042112 (2006). doi:10.1063/1.2240736
T.D. Manning, I.P. Parkin, Atmospheric pressure chemical vapour deposition of tungsten doped vanadium (IV) oxide from VOCl (3), water and WCl (6). J. Mater. Chem. 14(16), 2554–2559 (2004). doi:10.1039/b403576n
Z. Yang, C. Ko, S. Ramanathan, Metal-insulator transition characteristics of VO2 thin films grown on Ge (100) single crystals. J. Appl. Phys. 108(7), 073708 (2010). doi:10.1063/1.3492716
B. Fisher, A. Ron, The thermoelectric power in the conductive phase of V6O13. Solid State Commun. 40, 737–739 (1981). doi:10.1016/0038-1098(81)90818-8
H.F. Hess, K. Deconde, T.F. Rosenbaum, G.A. Thomas, Giant dielectric constants at the approach to the insulator-metal transition. Phys. Rev. B 25(8), 5578–5580 (1982). doi:10.1103/PhysRevB.25.5578
K. Appavoo, B. Wang, N.F. Brady, M. Seo, J. Nag, R.P. Prasankumar, D.J. Hilton, S.T. Pantelides, R.F. Haglund, Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. Nano Lett. 14(3), 1127–1133 (2014). doi:10.1021/nl4044828
J. Sakai, High-efficiency voltage oscillation in VO(2) planer-type junctions with infinite negative differential resistance. J. Appl. Phys. 103(10), 103708 (2008). doi:10.1063/1.2930959
H.T. Kim, B.J. Kim, S. Choi, B.G. Chae, Y.W. Lee, T. Driscoll, M.M. Qazilbash, D.N. Basov, Electrical oscillations induced by the metal-insulator transition in VO2. J. Appl. Phys. 107(2), 023702 (2010). doi:10.1063/1.3275575