Review of Water-Assisted Crystallization for TiO2 Nanotubes
Corresponding Author: Yulong Liao
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 77
Abstract
TiO2 nanotubes (TNTs) have drawn tremendous attention owing to their unique architectural and physical properties. Anodizing of titanium foil has proven to be the most efficient method to fabricate well-aligned TNTs, which, however, usually produces amorphous TNTs and needs further thermal annealing. Recently, a water-assisted crystallization strategy has been proposed and investigated by both science and engineering communities. This method is very efficient and energy saving, and it circumvents the drawbacks of thermal sintering approach. In this paper, we review the recent research progress in this kind of low-temperature crystallization approach. Here, various synthetic methods are summarized, and the mechanisms of the amorphous–crystalline transformation are analyzed. The fundamental properties and applications of the low-temperature products are also discussed. Furthermore, it is proved that the water-assisted crystallization approach is not only applicable to TNTs but also to crystallizing other metal oxides.
Highlights:
1 This paper reviews the water-assisted crystallization for TiO2 nanotubes (TNTs) for the first time.
2 The review summarizes various aspects of TNTs prepared by water-assisted crystallization method.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 13(3), 169–189 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.06.001
- S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115(46), 13211–13241 (2011). https://doi.org/10.1021/jp204364a
- W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 130(4), 1124–1125 (2008). https://doi.org/10.1021/ja0777741
- K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Lett. 7(12), 3739–3746 (2007). https://doi.org/10.1021/nl072145a
- B.L. He, B. Dong, H.L. Li, Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium-ion battery. Electrochem. Commun. 9(3), 425–430 (2007). https://doi.org/10.1016/j.elecom.2006.10.008
- H. Liu, W. Li, D. Shen, D. Zhao, G. Wang, Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 137(40), 13161–13166 (2015). https://doi.org/10.1021/jacs.5b08743
- X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12(3), 1690–1696 (2012). https://doi.org/10.1021/nl300173j
- H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, L. Lu, High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 116, 129–136 (2014). https://doi.org/10.1016/j.electacta.2013.10.092
- X. Wang, D. Zhang, J. Li, Z. Zhong, L. Jia, T. Wen, H. Zhang, Y. Liao, A novel sol-gel method for preparing favorable TiO2 thin film. Mater. Res. Express 3(1), 016401 (2016). https://doi.org/10.1088/2053-1591/3/1/016401
- H. Yu, S. Zhang, H. Zhao, G. Will, P. Liu, An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells. Electrochim. Acta 54(4), 1319–1324 (2009). https://doi.org/10.1016/j.electacta.2008.09.025
- G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90(14), 2011–2075 (2006). https://doi.org/10.1016/j.solmat.2006.04.007
- B. Karunagaran, P. Uthirakumar, S.J. Chung, S. Velumani, E.K. Suh, TiO2 thin film gas sensor for monitoring ammonia. Mater. Charact. 58(8), 680–684 (2007). https://doi.org/10.1016/j.matchar.2006.11.007
- J. Moon, J.A. Park, S.J. Lee, T. Zyung, I.D. Kim, Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens. Actuator B-Chem. 149(1), 301–305 (2010). https://doi.org/10.1016/j.snb.2010.06.033
- M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401–425 (2007). https://doi.org/10.1016/j.rser.2005.01.009
- B.X. Lei, J.Y. Liao, R. Zhang, J. Wang, C.Y. Su, D.B. Kuang, Ordered crystalline TiO2 nanotube arrays on transparent FTO glass for efficient dye-sensitized solar cells. J. Phys. Chem. C 114(35), 15228–15233 (2010). https://doi.org/10.1021/jp105780v
- H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, T. Rajh, Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2(20), 2560–2565 (2011). https://doi.org/10.1021/jz2012066
- Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang, P. Wang, Plasmonic Gold nanocrystals coupled with photonic crystal seamlessly on tio2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 13(1), 14–20 (2013). https://doi.org/10.1021/nl3029202
- J. Wang, Z. Lin, Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem. Mater. 20(4), 1257–1261 (2008). https://doi.org/10.1021/cm7028917
- J. Qiu, Z. Jin, Z. Liu, X. Liu, G. Liu, W. Wu, X. Zhang, X. Gao, Fabrication of TiO2 nanotube film by well-aligned ZnO nanorod array film and sol-gel process. Thin Solid Films 515(5), 2897–2902 (2007). https://doi.org/10.1016/j.tsf.2006.08.023
- S. Xu, J. Ng, X. Zhang, H. Bai, D.D. Sun, Adsorption and photocatalytic degradation of Acid Orange 7 over hydrothermally synthesized mesoporous TiO2 nanotube. Colloid Surf. A-Physicochem. Eng. 379(1), 169–175 (2011). https://doi.org/10.1016/j.colsurfa.2010.11.032
- M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.A. Grimes, Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J. Phys. Chem. B 110(33), 16179–16184 (2006). https://doi.org/10.1021/jp064020k
- N. Liu, X. Chen, J. Zhang, J.W. Schwank, A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications. Catal. Today 225, 34–51 (2014). https://doi.org/10.1016/j.cattod.2013.10.090
- D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M. Zakeeruddin, M. Grätzel, Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2(6), 1113–1116 (2008). https://doi.org/10.1021/nn800174y
- Z. Liu, M. Misra, Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. ACS Nano 4(4), 2196–2200 (2010). https://doi.org/10.1021/nn9015696
- M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai, C.A. Grimes, TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion. J. Phys. Chem. C 111(41), 14992–14997 (2007). https://doi.org/10.1021/jp075258r
- D. Regonini, C.R. Bowen, A. Jaroenworaluck, R. Stevens, A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng. R 74(12), 377–406 (2013). https://doi.org/10.1016/j.mser.2013.10.001
- C.C. Chen, H.W. Chung, C.H. Chen, H.P. Lu, C.M. Lan, S.F. Chen, L. Luo, C.S. Hung, E.W.G. Diau, Fabrication and characterization of anodic titanium oxide nanotube arrays of controlled length for highly efficient dye-sensitized solar cells. J. Phys. Chem. C 112(48), 19151–19157 (2008). https://doi.org/10.1021/jp806281r
- K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7(1), 69–74 (2007). https://doi.org/10.1021/nl062000o
- D. Wang, B. Yu, C. Wang, F. Zhou, W. Liu, A novel protocol toward perfect alignment of anodized TiO2 nanotubes. Adv. Mater. 21(19), 1964–1967 (2009). https://doi.org/10.1002/adma.200801996
- J. Yu, B. Wang, Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl. Catal. B-Environ. 94(3), 295–302 (2010). https://doi.org/10.1016/j.apcatb.2009.12.003
- MathSciNet
- S. Sreekantan, R. Hazan, Z. Lockman, Photoactivity of anatase-rutile TiO2 nanotubes formed by anodization method. Thin Solid Films 518(1), 16–21 (2009). https://doi.org/10.1016/j.tsf.2009.06.002
- J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3(2), 300–304 (2007). https://doi.org/10.1002/smll.200600426
- N.K. Allam, K. Shankar, C.A. Grimes, A general method for the anodic formation of crystalline metal oxide nanotube arrays without the use of thermal annealing. Adv. Mater. 20(20), 3942–3946 (2008). https://doi.org/10.1002/adma.200800815
- J.H. Yang, Y.S. Han, J.H. Choy, TiO2 thin-films on polymer substrates and their photocatalytic activity. Thin Solid Films 495(1), 266–271 (2006). https://doi.org/10.1016/j.tsf.2005.08.195
- K. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114(19), 9385–9454 (2014). https://doi.org/10.1021/cr500061m
- P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50(13), 2904–2939 (2011). https://doi.org/10.1002/anie.201001374
- Z. Su, L. Zhang, F. Jiang, M. Hong, Formation of crystalline TiO2 by anodic oxidation of titanium. Prog. Nat. Sci. 23(3), 294–301 (2013). https://doi.org/10.1016/j.pnsc.2013.04.004
- S. Ali, S.P. Hannula, Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes. J. Solid State Chem. 249, 189–198 (2017). https://doi.org/10.1016/j.jssc.2017.03.007
- Y. Liao, W. Que, P. Zhong, J. Zhang, Y. He, A facile method to crystallize amorphous anodized TiO2 nanotubes at low temperature. ACS Appl. Mater. Interfaces 3(7), 2800–2804 (2011). https://doi.org/10.1021/am200685s
- D. Wang, L. Liu, F. Zhang, K. Tao, E. Pippel, K. Domen, Spontaneous phase and morphology transformations of anodized titania nanotubes induced by water at room temperature. Nano Lett. 11(9), 3649–3655 (2011). https://doi.org/10.1021/nl2015262
- N. Liu, S.P. Albu, K. Lee, S. So, P. Schmuki, Water annealing and other low temperature treatments of anodic TiO2 nanotubes: a comparison of properties and efficiencies in dye sensitized solar cells and for water splitting. Electrochim. Acta 82, 98–102 (2012). https://doi.org/10.1016/j.electacta.2012.06.006
- B.M. Rao, S.C. Roy, Water assisted crystallization, gas sensing and photo-electrochemical properties of electrochemically synthesized TiO2 nanotube arrays. RSC Adv. 4(90), 49108–49114 (2014). https://doi.org/10.1039/C4RA06842D
- H. Kaifu, W. Hairong, Z. Xuming, C. Yue, P.K. Chu, Heterostructured TiO2 nanoparticles/nanotube arrays: in situ formation from amorphous TiO2 nanotube arrays in water and enhanced photocatalytic activity. ChemPlusChem 77(4), 323–329 (2012). https://doi.org/10.1002/cplu.201200024
- T. Zeng, H. Ni, X. Su, Y. Chen, Y. Jiang, Highly crystalline Titania nanotube arrays realized by hydrothermal vapor route and used as front-illuminated photoanode in dye sensitized solar cells. J. Power Sources 283, 443–451 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.150
- S. Kurian, P. Sudhagar, J. Lee, D. Song, W. Cho, S. Lee, Y.S. Kang, H. Jeon, Formation of a crystalline nanotube-nanoparticle hybrid by post water-treatment of a thin amorphous TiO2 layer on a TiO2 nanotube array as an efficient photoanode in dye-sensitized solar cells. J. Mater. Chem. A 1(13), 4370–4375 (2013). https://doi.org/10.1039/c3ta01339a
- K. Assaker, C. Carteret, B. Lebeau, C. Marichal, L. Vidal, M.-J. Stébé, J.-L. Blin, Water-catalyzed low-temperature transformation from amorphous to semi-crystalline phase of ordered mesoporous titania framework. ACS Sustain. Chem. Eng. 2(2), 120–125 (2014). https://doi.org/10.1021/sc400323w
- J. Lin, X. Liu, M. Guo, W. Lu, G. Zhang, L. Zhou, X. Chen, H. Huang, A facile route to fabricate an anodic TiO2 nanotube-nanoparticle hybrid structure for high efficiency dye-sensitized solar cells. Nanoscale 4(16), 5148–5153 (2012). https://doi.org/10.1039/c2nr31268a
- W. Krengvirat, S. Sreekantan, A.F. Mohd Noor, N. Negishi, G. Kawamura, H. Muto, A. Matsuda, Low-temperature crystallization of TiO2 nanotube arrays via hot water treatment and their photocatalytic properties under visible-light irradiation. Mater. Chem. Phys. 137(3), 991–998 (2013). https://doi.org/10.1016/j.matchemphys.2012.11.013
- X. Keyu, G. Min, L. Wei, H. Haitao, Aligned TiO2 nanotube/nanoparticle heterostructures with enhanced electrochemical performance as three-dimensional anode for lithium-ion microbatteries. Nanotechnology 25(45), 455401 (2014). https://doi.org/10.1088/0957-4484/25/45/455401
- T.C. Hufnagel, Finding order in disorder. Nat. Mater. 3, 666 (2004). https://doi.org/10.1038/nmat1227
- M.P. Finnegan, H. Zhang, J.F. Banfield, Phase stability and transformation in titania nanoparticles in aqueous solutions dominated by surface energy. J. Phys. Chem. C 111(5), 1962–1968 (2007). https://doi.org/10.1021/jp063822c
- Y. Liao, X. Wang, Y. Ma, J. Li, T. Wen, L. Jia, Z. Zhong, L. Wang, D. Zhang, New mechanistic insight of low temperature crystallization of anodic TiO2 nanotube array in water. Cryst. Growth Des. 16(4), 1786–1791 (2016). https://doi.org/10.1021/acs.cgd.5b01234
- H. Fan, H. Zhang, X. Luo, M. Liao, X. Zhu, J. Ma, Y. Song, Hydrothermal solid-gas route to TiO2 nanoparticles/nanotube arrays for high-performance supercapacitors. J. Power Sources 357, 230–240 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.009
- J. Liu, Z. Liu, T. Zhang, J. Zhai, L. Jiang, Low-temperature crystallization of anodized TiO2 nanotubes at the solid-gas interface and their photoelectrochemical properties. Nanoscale 5(13), 6139–6144 (2013). https://doi.org/10.1039/c3nr01286g
- A. Lamberti, A. Chiodoni, N. Shahzad, S. Bianco, M. Quaglio, C.F. Pirri, Ultrafast room-temperature crystallization of TiO2 nanotubes exploiting water-vapor treatment. Sci. Rep. 5, 7808 (2015). https://doi.org/10.1038/srep07808
- J. Su, X. Zou, G.D. Li, Y.M. Jiang, Y. Cao, J. Zhao, J.S. Chen, Room-temperature spontaneous crystallization of porous amorphous titania into a high-surface-area anatase photocatalyst. Chem. Commun. 49(74), 8217–8219 (2013). https://doi.org/10.1039/c3cc43772h
- C. Zhao, D. Zhu, S. Cao, Amorphous TiO2 nanotube-derived synthesis of highly ordered anatase TiO2 nanorod arrays. Superlattices Microstruct. 90, 257–264 (2016). https://doi.org/10.1016/j.spmi.2015.12.037
- Y. Cai, Y. Ye, S. Wu, J. Liu, C. Liang, Simultaneous Cu doping and growth of TiO2 nanocrystalline array film as a glucose biosensor. RSC Adv. 6(81), 78219–78224 (2016). https://doi.org/10.1039/C6RA15014D
- Y. Liao, J. Brame, W. Que, Z. Xiu, H. Xie, Q. Li, M. Fabian, P.J. Alvarez, Photocatalytic generation of multiple ROS types using low-temperature crystallized anodic TiO2 nanotube arrays. J. Hazard. Mater. 260, 434–441 (2013). https://doi.org/10.1016/j.jhazmat.2013.05.047
- Z. Li, Y. Chen, J. Shen, X. Cui, Facile synthesis of a heterogeneous Li2TiO3/TiO2 nanocomposite with enhanced photoelectrochemical water splitting. New J. Chem. 41(14), 6305–6314 (2017). https://doi.org/10.1039/C7NJ00198C
- K. Huo, X. Zhang, H. Wang, L. Zhao, X. Liu, P.K. Chu, Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials 34(13), 3467–3478 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.071
- Y. Xin, J. Jiang, K. Huo, T. Hu, P.K. Chu, Bioactive SrTiO3 nanotube arrays: strontium delivery platform on ti-based osteoporotic bone implants. ACS Nano 3(10), 3228–3234 (2009). https://doi.org/10.1021/nn9007675
- H.J. Lin, T.S. Yang, M.C. Wang, C.S. Hsi, Structural and photodegradation behaviors of Fe3+-doping TiO2 thin films prepared by a sol-gel spin coating. J. Alloys Compd. 610, 478–485 (2014). https://doi.org/10.1016/j.jallcom.2014.05.053
- X. Li, X. Zou, Z. Qu, Q. Zhao, L. Wang, Photocatalytic degradation of gaseous toluene over Ag-doping TiO2 nanotube powder prepared by anodization coupled with impregnation method. Chemosphere 83(5), 674–679 (2011). https://doi.org/10.1016/j.chemosphere.2011.02.043
- Y.F. Tu, S.Y. Huang, J.P. Sang, X.W. Zou, Preparation of Fe-doped TiO2 nanotube arrays and their photocatalytic activities under visible light. Mater. Res. Bull. 45(2), 224–229 (2010). https://doi.org/10.1016/j.materresbull.2009.08.020
- H.A. Hamedani, N.K. Allam, H. Garmestani, M.A. El-Sayed, Electrochemical fabrication of strontium-doped TiO2 nanotube array electrodes and investigation of their photoelectrochemical properties. J. Phys. Chem. C 115(27), 13480–13486 (2011). https://doi.org/10.1021/jp201194b
- X. Zhang, B. Gao, L. Hu, L. Li, W. Jin, K. Huo, P.K. Chu, Hydrothermal synthesis of perovskite-type MTiO3 (M = Zn Co, Ni)/TiO2 nanotube arrays from an amorphous TiO2 template. CrystEngComm 16(44), 10280–10285 (2014). https://doi.org/10.1039/C4CE00992D
- A.L. Castro, M.R. Nunes, A.P. Carvalho, F.M. Costa, M.H. Florêncio, Synthesis of anatase TiO2 nanoparticles with high temperature stability and photocatalytic activity. Solid State Sci. 10(5), 602–606 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.10.012
- Z. Wei, S. Fanfei, P. Kai, T. Guohui, J. Baojiang, R. Zhiyu, T. Chungui, F. Honggang, Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance. Adv. Funct. Mater. 21(10), 1922–1930 (2011). https://doi.org/10.1002/adfm.201002535
- J. Ye, W. Liu, J. Cai, S. Chen, X. Zhao, H. Zhou, L. Qi, Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J. Am. Chem. Soc. 133(4), 933–940 (2011). https://doi.org/10.1021/ja108205q
- C. Zhao, D.C. Zhu, X.Y. Cheng, S.X. Cao, Highly ordered Ag-TiO2 nanocomposited arrays with high visible-light photocatalytic activity. Front. Mater. Sci. 11(3), 241–249 (2017). https://doi.org/10.1007/s11706-017-0386-8
- Y.K. Lai, J.Y. Huang, H.F. Zhang, V.P. Subramaniam, Y.X. Tang et al., Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources. J. Hazard. Mater. 184(1), 855–863 (2010). https://doi.org/10.1016/j.jhazmat.2010.08.121
- M. Sathish, B. Viswanathan, R.P. Viswanath, C.S. Gopinath, Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem. Mater. 17(25), 6349–6353 (2005). https://doi.org/10.1021/cm052047v
- H. Tokudome, M. Miyauchi, N-doped TiO2 nanotube with visible light activity. Chem. Lett. 33(9), 1108–1109 (2004). https://doi.org/10.1246/cl.2004.1108
- X. Hou, C.W. Wang, W.D. Zhu, X.Q. Wang, Y. Li et al., Preparation of nitrogen-doped anatase TiO2 nanoworm/nanotube hierarchical structures and its photocatalytic effect. Solid State Sci. 29, 27–33 (2014). https://doi.org/10.1016/j.solidstatesciences.2014.01.007
- S. Hoang, S.P. Berglund, N.T. Hahn, A.J. Bard, C.B. Mullins, Enhancing visible light photo-oxidation of water with tio2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. J. Am. Chem. Soc. 134(8), 3659–3662 (2012). https://doi.org/10.1021/ja211369s
- R.P. Antony, T. Mathews, K. Panda, B. Sundaravel, S. Dash, A.K. Tyagi, Enhanced field emission properties of electrochemically synthesized self-aligned nitrogen-doped TiO2 nanotube array thin films. J. Phys. Chem. C 116(31), 16740–16746 (2012). https://doi.org/10.1021/jp302578b
- C.W. Wang, W.D. Zhu, J.B. Chen, X. Hou, X.Q. Zhang, Y. Li, J. Wang, F. Zhou, Low-temperature ammonia annealed TiO2 nanotube arrays: synergy of morphology improvement and nitrogen doping for enhanced field emission. Thin Solid Films 556, 440–446 (2014). https://doi.org/10.1016/j.tsf.2014.01.066
- W. Chenglin, W. Mengye, X. Kunpeng, W. Qi, S. Lan, L. Zhiqun, L. Changjian, Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization. Nanotechnology 22(30), 305607 (2011). https://doi.org/10.1088/0957-4484/22/30/305607
- S. Karthik, T. Kong Chhay, K.M. Gopal, A.G. Craig, An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties. J. Phys. D-Appl. Phys. 39(11), 2361 (2006). https://doi.org/10.1088/0022-3727/39/11/008
- H. Cui, Y. Chen, S. Lu, S. Zhang, X. Zhu, Y. Song, TiO2 nanotube arrays treated with (NH4)2TiF6 dilute solution for better supercapacitive performances. Electrochim. Acta 253, 455–462 (2017). https://doi.org/10.1016/j.electacta.2017.09.080
- John K. Aijo, Manju Thankamoniamma, Joaquim Puigdollers, R. Anuroop, B. Pradeep, Thoudinja Shripathie, Rachel Reena Philip, Rapid room temperature crystallization of TiO2 nanotubes. CrystEngComm 19(12), 1585–1589 (2017). https://doi.org/10.1039/C6CE02526A
- C. Cao, J. Yan, Y. Zhang, L. Zhao, Stability of titania nanotube arrays in aqueous environment and the related factors. Sci. Rep. 6, 23065 (2016). https://doi.org/10.1038/srep23065
- X. Wang, L. Sun, S. Zhang, X. Wang, K. Huo, J. Fu, H. Wang, D. Zhao, A composite electrode of TiO2 nanotubes and nanoparticles synthesised by hydrothermal treatment for use in dye-sensitized solar cells. RSC Adv. 3(27), 11001–11006 (2013). https://doi.org/10.1039/c3ra23482g
- H. Imai, Y. Takei, K. Shimizu, M. Matsuda, H. Hirashima, Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J. Mater. Chem. 9(12), 2971–2972 (1999). https://doi.org/10.1039/a906005g
- I.D. Tevis, S.I. Stupp, Patterning of periodic high-aspect-ratio nanopores in anatase titanium dioxide from titanium fluoride hydrolysis. Nanoscale 3(5), 2162–2165 (2011). https://doi.org/10.1039/c0nr01010c
- I. Paramasivam, J.M. Macak, P. Schmuki, Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles. Electrochem. Commun. 10(1), 71–75 (2008). https://doi.org/10.1016/j.elecom.2007.11.001
- Q. Kang, S. Liu, L. Yang, Q. Cai, C.A. Grimes, Fabrication of PbS nanoparticle-sensitized TiO2 nanotube arrays and their photoelectrochemical properties. ACS Appl. Mater. Interfaces 3(3), 746–749 (2011). https://doi.org/10.1021/am101086t
- Y.Y. Song, Z.D. Gao, P. Schmuki, Highly uniform Pt nanoparticle decoration on TiO2 nanotube arrays: a refreshable platform for methanol electrooxidation. Electrochem. Commun. 13(3), 290–293 (2011). https://doi.org/10.1016/j.elecom.2011.01.006
- Y. Zhang, Y. Yang, P. Xiao, X. Zhang, L. Lu, L. Li, Preparation of Ni nanoparticle-TiO2 nanotube composite by pulse electrodeposition. Mater. Lett. 63(28), 2429–2431 (2009). https://doi.org/10.1016/j.matlet.2009.08.019
- X.Q. Gong, A. Selloni, Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J. Phys. Chem. B 109(42), 19560–19562 (2005). https://doi.org/10.1021/jp055311g
- D.J. Yang, H. Park, S.J. Cho, H.G. Kim, W.-Y. Choi, TiO2-nanotube-based dye-sensitized solar cells fabricated by an efficient anodic oxidation for high surface area. J. Phys. Chem. Solids 69(5), 1272–1275 (2008). https://doi.org/10.1016/j.jpcs.2007.10.107
- P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2(1), 45–59 (2010). https://doi.org/10.1039/B9NR00131J
- D. Kowalski, D. Kim, P. Schmuki, TiO2 nanotubes, nanochannels and mesosponge: self-organized formation and applications. Nano Today 8(3), 235–264 (2013). https://doi.org/10.1016/j.nantod.2013.04.010
- J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki, A.B. Walker, Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. J. Am. Chem. Soc. 130(40), 13364–13372 (2008). https://doi.org/10.1021/ja804852z
- X. Luan, D. Guan, Y. Wang, Facile synthesis and morphology control of bamboo-type TiO2 nanotube arrays for high-efficiency dye-sensitized solar cells. J. Phys. Chem. C 116(27), 14257–14263 (2012). https://doi.org/10.1021/jp305280q
- P. Albu Sergiu, D. Kim, P. Schmuki, Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. Angew. Chem. Int. Ed. 120(10), 1942–1945 (2008). https://doi.org/10.1002/ange.200704144
- D. Kim, A. Ghicov, S.P. Albu, P. Schmuki, Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells. J. Am. Chem. Soc. 130(49), 16454–16455 (2008). https://doi.org/10.1021/ja805201v
- D.A.H. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation. J. Mater. Sci. 46(4), 855–874 (2011). https://doi.org/10.1007/s10853-010-5113-0
- K. Yang, Y. Dai, B. Huang, Study of the nitrogen concentration influence on n-doped TiO2 anatase from first-principles calculations. J. Phys. Chem. C 111(32), 12086–12090 (2007). https://doi.org/10.1021/jp067491f
- J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16(38), 20382–20386 (2014). https://doi.org/10.1039/C4CP02201G
- W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal. B-Environ. 69(3), 138–144 (2007). https://doi.org/10.1016/j.apcatb.2006.06.015
- C. Song, X. Wang, J. Zhang, X. Chen, C. Li, Enhanced performance of direct Z-scheme CuS-WO3 system towards photocatalytic decomposition of organic pollutants under visible light. Appl. Surf. Sci. 425, 788–795 (2017). https://doi.org/10.1016/j.apsusc.2017.07.082
- M.A. Mahadik, G.W. An, S. David, S.H. Choi, M. Cho, J.S. Jang, Fabrication of A/R-TiO2 composite for enhanced photoelectrochemical performance: solar hydrogen generation and dye degradation. Appl. Surf. Sci. 426, 833–843 (2017). https://doi.org/10.1016/j.apsusc.2017.07.179
- X. Li, W. Zhao, J. Zhao, Visible light-sensitized semiconductor photocatalytic degradation of 2,4-dichlorophenol. Sci. China Ser. B-Chem. 45(4), 421–425 (2002). https://doi.org/10.1360/02yb9054
- MathSciNet
- Z. Zhang, G. Yuan, Y. Shi, L. Fang, H. Liang, L.Jin Ding, Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation. Environ. Sci. Policy 41(17), 6259–6263 (2007). https://doi.org/10.1021/es070212x
- H.C. Liang, X.Z. Li, Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution. J. Hazard. Mater. 162(2), 1415–1422 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.033
- Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D.A. Tryk, T. Murakami, A. Fujishima, Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J. Phys. Chem. C 112(1), 253–259 (2008). https://doi.org/10.1021/jp0772732
- L. Cheng, Q. Xiang, Y. Liao, H. Zhang, CdS-Based photocatalysts. Energy Environ. Sci. (2018). https://doi.org/10.1039/C7EE03640J
- J. Fu, B. Chang, Y. Tian, F. Xi, X. Dong, Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism. J. Mater. Chem. A 1(9), 3083–3090 (2013). https://doi.org/10.1039/c2ta00672c
- B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991). https://doi.org/10.1038/353737a0
- J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai, H. Yang, TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv. Mater. 21(36), 3663–3667 (2009). https://doi.org/10.1002/adma.200900525
- B.E. Hardin, H.J. Snaith, M.D. McGehee, The renaissance of dye-sensitized solar cells. Nat. Photonics 6(6), 162–169 (2012). https://doi.org/10.1038/nphoton.2012.22
- W.Y. Cheng, J.R. Deka, Y.C. Chiang, A. Rogeau, S.Y. Lu, One-step, surfactant-free hydrothermal method for syntheses of mesoporous TiO2 nanoparticle aggregates and their applications in high efficiency dye-sensitized solar cells. Chem. Mater. 24(16), 3255–3262 (2012). https://doi.org/10.1021/cm3017616
- S.H. Kang, S.H. Choi, M.S. Kang, J.Y. Kim, H.S. Kim, T. Hyeon, Y.E. Sung, Nanorod-based dye-sensitized solar cells with improved charge collection efficiency. Adv. Mater. 20(1), 54–58 (2007). https://doi.org/10.1002/adma.200701819
- C.T. Yip, M. Guo, H. Huang, L. Zhou, Y. Wang, C. Huang, Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells. Nanoscale 4(2), 448–450 (2012). https://doi.org/10.1039/C2NR11317A
- M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, F. Wang, Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the oriented attachment mechanism. J. Am. Chem. Soc. 126(45), 14943–14949 (2004). https://doi.org/10.1021/ja048068s
- Q. Chen, D. Xu, Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. J. Phys. Chem. C 113(15), 6310–6314 (2009). https://doi.org/10.1021/jp900336e
- S. Yoriya, C.A. Grimes, Self-assembled TiO2 nanotube arrays by anodization of titanium in diethylene glycol: approach to extended pore widening. Langmuir 26(1), 417–420 (2010). https://doi.org/10.1021/la9020146
- T. Stergiopoulos, A. Ghicov, V. Likodimos, D.S. Tsoukleris, J. Kunze, P. Schmuki, P. Falaras, Dye-sensitized solar cells based on thick highly ordered TiO2 nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media. Nanotechnology 19(23), 235602 (2008). https://doi.org/10.1088/0957-4484/19/23/235602
- L. Sun, S. Zhang, X. Sun, X. He, Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells. J. Nanosci. Nanotechnol. 10(7), 4551–4561 (2010). https://doi.org/10.1166/jnn.2010.1695
- M. Macak Jan, S. Aldabergerova, A. Ghicov, P. Schmuki, Smooth anodic TiO2 nanotubes: annealing and structure. Phys. Status Solidi A 203(10), R67–R69 (2006). https://doi.org/10.1002/pssa.200622214
- D. Kim, P. Roy, K. Lee, P. Schmuki, Dye-sensitized solar cells using anodic TiO2 mesosponge: improved efficiency by TiCl4 treatment. Electrochem. Commun. 12(4), 574–578 (2010). https://doi.org/10.1016/j.elecom.2010.02.003
- P. Roy, D. Kim, I. Paramasivam, P. Schmuki, Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles. Electrochem. Commun. 11(5), 1001–1004 (2009). https://doi.org/10.1016/j.elecom.2009.02.049
- J. Wang, Z. Lin, Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering. Chem. Mater. 22(2), 579–584 (2010). https://doi.org/10.1021/cm903164k
- J.E. Boercker, E. Enache-Pommer, E.S. Aydil, Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells. Nanotechnology 19(9), 095604 (2008). https://doi.org/10.1088/0957-4484/19/9/095604
- K.E. Lee, M.A. Gomez, S. Elouatik, G.P. Demopoulos, Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal raman imaging. Langmuir 26(12), 9575–9583 (2010). https://doi.org/10.1021/la100137u
- H. Zhou, Y. Zhang, Electrochemically self-doped TiO2 nanotube arrays for supercapacitors. J. Phys. Chem. C 118(11), 5626–5636 (2014). https://doi.org/10.1021/jp4082883
- W. Hui, X. Chen, X. Jing, L. Linfeng, F. Zhiyong, C. Xiaoyuan, S. Ye, L. Dongdong, Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment. Nanotechnology 24(45), 455401 (2013). https://doi.org/10.1088/0957-4484/24/45/455401
- D. Yu, X. Zhu, Z. Xu, X. Zhong, Q. Gui, Y. Song, S. Zhang, X. Chen, D. Li, Facile method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate. ACS Appl. Mater. Interfaces 6(11), 8001–8005 (2014). https://doi.org/10.1021/am5015716
- Z. Shao, H. Li, M. Li, C. Li, C. Qu, B. Yang, Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors. Energy 87, 578–585 (2015). https://doi.org/10.1016/j.energy.2015.05.025
- Y.Y. Song, F. Schmidt-Stein, S. Bauer, P. Schmuki, Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J. Am. Chem. Soc. 131(12), 4230–4232 (2009). https://doi.org/10.1021/ja810130h
- S. Lin, D. Li, J. Wu, X. Li, S.A. Akbar, A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays. Sens. Actuator B 156(2), 505–509 (2011). https://doi.org/10.1016/j.snb.2011.02.046
- Y. Lai, L. Lin, F. Pan, J. Huang, R. Song, Y. Huang, C. Lin, H. Fuchs, L. Chi, Bioinspired patterning with extreme wettability contrast on TiO2 nanotube array surface: a versatile platform for biomedical applications. Small 9(17), 2945–2953 (2013). https://doi.org/10.1002/smll.201300187
- C. Moseke, F. Hage, E. Vorndran, U. Gbureck, TiO2 nanotube arrays deposited on Ti substrate by anodic oxidation and their potential as a long-term drug delivery system for antimicrobial agents. Appl. Surf. Sci. 258(14), 5399–5404 (2012). https://doi.org/10.1016/j.apsusc.2012.02.022
- K. Huo, X. Li, B. Gao, L. Wang, Q. Li, X. Peng, X. Zhang, J. Fu, P.K. Chu, Self-supporting and binder-free anode film composed of beaded stream-like Li4Ti5O12 nanoparticles for high-performance lithium-ion batteries. ChemElectroChem 3(9), 1301–1305 (2016). https://doi.org/10.1002/celc.201600215
- K. Huo, Y. Li, R. Chen, B. Gao, C. Peng, W. Zhang, L. Hu, X. Zhang, P.K. Chu, Recyclable non-enzymatic glucose sensor based on Ni/NiTiO3/TiO2 nanotube arrays. ChemPlusChem 80(3), 576–582 (2015). https://doi.org/10.1002/cplu.201402288
- A. Ranga Rao, V. Dutta, Low-temperature synthesis of TiO2 nanoparticles and preparation of TiO2 thin films by spray deposition. Sol. Energy Mater. Sol. Cells 91(12), 1075–1080 (2007). https://doi.org/10.1016/j.solmat.2007.03.001
- J. Archana, M. Navaneethan, Y. Hayakawa, Solvothermal growth of high surface area mesoporous anatase TiO2 nanospheres and investigation of dye-sensitized solar cell properties. J. Power Sources 242, 803–810 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.126
- H. Li, W. Zhang, B. Li, W. Pan, Diameter-dependent photocatalytic activity of electrospun TiO2 nanofiber. J. Am. Chem. Soc. 93(9), 2503–2506 (2010). https://doi.org/10.1111/j.1551-2916.2010.03841.x
- H.-E. Wang, H. Cheng, C. Liu, X. Chen, Q. Jiang et al., Facile synthesis and electrochemical characterization of porous and dense TiO2 nanospheres for lithium-ion battery applications. J. Power Sources 196(15), 6394–6399 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.085
- I.D. Kim, A. Rothschild, B.H. Lee, D.Y. Kim, S.M. Jo, H.L. Tuller, Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett. 6(9), 2009–2013 (2006). https://doi.org/10.1021/nl061197h
- N. Li, Q. Zhang, J.B. Joo, Z. Lu, M. Dahl, Y. Gan, Y. Yin, Water-assisted crystallization of mesoporous anatase TiO2 nanospheres. Nanoscale 8(17), 9113–9117 (2016). https://doi.org/10.1039/C6NR01892K
- J.B. Joo, M. Dahl, N. Li, F. Zaera, Y. Yin, Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energy Environ. Sci. 6(7), 2082–2092 (2013). https://doi.org/10.1039/c3ee41155a
- Z. Chen, K. Zhou, Surface morphology, phase structure and property evolution of anodized titanium during water vapor exposure. Surf. Coat. Technol. 263, 61–65 (2015). https://doi.org/10.1016/j.surfcoat.2014.12.056
- K. Fischer, M. Grimm, J. Meyers, C. Dietrich, R. Gläser, A. Schulze, Photoactive microfiltration membranes via directed synthesis of TiO2 nanoparticles on the polymer surface for removal of drugs from water. J. Membr. Sci. 478, 49–57 (2015). https://doi.org/10.1016/j.memsci.2015.01.009
- L.L. Lai, W. Wen, J.M. Wu, Room-temperature hydrolysis of potassium titanyl oxalate and water-assisted crystallization for TiO2 with high photocatalytic activity. ChemistrySelect 2(18), 5025–5031 (2017). https://doi.org/10.1002/slct.201700372
- Q. Luo, Y. Chen, D. Wang, J. An, X. Li, R. Yin, L. Shi, A facile method to prepare mesoporous anatase TiO2 materials in water at lower temperatures. Mater. Res. Bull. 67, 140–145 (2015). https://doi.org/10.1016/j.materresbull.2015.03.020
- L.W. Zhu, L.K. Zhou, H.X. Li, H.F. Wang, J.P. Lang, One-pot growth of free-standing CNTs/TiO2 nanofiber membrane for enhanced photocatalysis. Mater. Lett. 95, 13–16 (2013). https://doi.org/10.1016/j.matlet.2013.01.004
- Y. Suzuki, S. Pavasupree, S. Yoshikawa, R. Kawahata, Direct synthesis of an anatase-TiO2 nanofiber/nanoparticle composite powder from natural rutile. Phys. Status Solidi A 204(6), 1757–1761 (2007). https://doi.org/10.1002/pssa.200675312
- L. Yang, W.F. Leung Wallace, Application of a bilayer TiO2 nanofiber photoanode for optimization of dye-sensitized solar cells. Adv. Mater. 23(39), 4559–4562 (2011). https://doi.org/10.1002/adma.201102717
- X. Zhang, S. Xu, G. Han, Fabrication and photocatalytic activity of TiO2 nanofiber membrane. Mater. Lett. 63(21), 1761–1763 (2009). https://doi.org/10.1016/j.matlet.2009.05.038
- K. Mondal, M.A. Ali, V.V. Agrawal, B.D. Malhotra, A. Sharma, Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing. ACS Appl. Mater. Interfaces 6(4), 2516–2527 (2014). https://doi.org/10.1021/am404931f
- X. Jin, K. Yuan, C. Xu, X. Wang, L. Zhu, G. Zhang, D. Xu, Water steam modified crystallization and microstructure of mesoporous TiO2 nanofibers. Ceram. Int. 44(2), 2158–2164 (2018). https://doi.org/10.1016/j.ceramint.2017.10.168
- J. Sun, W. Wen, J.M. Wu, Low-temperature transformation of titania thin films from amorphous nanowires to crystallized nanoflowers for heterogeneous photocatalysis. J. Am. Chem. Soc. 96(7), 2109–2116 (2013). https://doi.org/10.1111/jace.12378
- J.W. Lee, S.J. Park, W.S. Choi, H.C. Shin, Well-defined meso- to macro-porous film of tin oxides formed by an anodization process. Electrochim. Acta 56(17), 5919–5925 (2011). https://doi.org/10.1016/j.electacta.2011.03.144
- M. Wang, Y. Liu, D. Xue, D. Zhang, H. Yang, Preparation of nanoporous tin oxide by electrochemical anodization in alkaline electrolytes. Electrochim. Acta 56(24), 8797–8801 (2011). https://doi.org/10.1016/j.electacta.2011.07.085
- A. Palacios-Padros, M. Altomare, A. Tighineanu, R. Kirchgeorg, N.K. Shrestha, I. Diez-Perez, F. Caballero-Briones, F. Sanz, P. Schmuki, Growth of ordered anodic SnO2 nanochannel layers and their use for H2 gas sensing. J. Mater. Chem. A 2(4), 915–920 (2014). https://doi.org/10.1039/C3TA13704J
- I. Paulowicz, V. Hrkac, S. Kaps, V. Cretu, O. Lupan et al., Three-dimensional SnO2 nanowire networks for multifunctional applications: from high-temperature stretchable ceramics to ultraresponsive sensors. Adv. Electron. Mater. 1(8), 1500081 (2015). https://doi.org/10.1002/aelm.201500081
- H.C. Shin, J. Dong, M. Liu, Porous tin oxides prepared using an anodic oxidation process. Adv. Mater. 16(3), 237–240 (2004). https://doi.org/10.1002/adma.200305660
- H. Bian, R. Dong, Q. Shao, S. Wang, M.F. Yuen et al., Water-enabled crystallization of mesoporous SnO2 as a binder-free electrode for enhanced sodium storage. J. Mater. Chem. A 5(45), 23967–23975 (2017). https://doi.org/10.1039/C7TA08228B
- X. Wang, Y. Liao, H. Zhang, T. Wen, D. Zhang et al., Low temperature-derived 3D hexagonal crystalline Fe3O4 nanoplates for water purification. ACS Appl. Mater. Interfaces 10(4), 3644–3651 (2018). https://doi.org/10.1021/acsami.7b17582
References
K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 13(3), 169–189 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.06.001
S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115(46), 13211–13241 (2011). https://doi.org/10.1021/jp204364a
W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 130(4), 1124–1125 (2008). https://doi.org/10.1021/ja0777741
K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Lett. 7(12), 3739–3746 (2007). https://doi.org/10.1021/nl072145a
B.L. He, B. Dong, H.L. Li, Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium-ion battery. Electrochem. Commun. 9(3), 425–430 (2007). https://doi.org/10.1016/j.elecom.2006.10.008
H. Liu, W. Li, D. Shen, D. Zhao, G. Wang, Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 137(40), 13161–13166 (2015). https://doi.org/10.1021/jacs.5b08743
X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12(3), 1690–1696 (2012). https://doi.org/10.1021/nl300173j
H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, L. Lu, High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 116, 129–136 (2014). https://doi.org/10.1016/j.electacta.2013.10.092
X. Wang, D. Zhang, J. Li, Z. Zhong, L. Jia, T. Wen, H. Zhang, Y. Liao, A novel sol-gel method for preparing favorable TiO2 thin film. Mater. Res. Express 3(1), 016401 (2016). https://doi.org/10.1088/2053-1591/3/1/016401
H. Yu, S. Zhang, H. Zhao, G. Will, P. Liu, An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells. Electrochim. Acta 54(4), 1319–1324 (2009). https://doi.org/10.1016/j.electacta.2008.09.025
G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90(14), 2011–2075 (2006). https://doi.org/10.1016/j.solmat.2006.04.007
B. Karunagaran, P. Uthirakumar, S.J. Chung, S. Velumani, E.K. Suh, TiO2 thin film gas sensor for monitoring ammonia. Mater. Charact. 58(8), 680–684 (2007). https://doi.org/10.1016/j.matchar.2006.11.007
J. Moon, J.A. Park, S.J. Lee, T. Zyung, I.D. Kim, Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens. Actuator B-Chem. 149(1), 301–305 (2010). https://doi.org/10.1016/j.snb.2010.06.033
M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401–425 (2007). https://doi.org/10.1016/j.rser.2005.01.009
B.X. Lei, J.Y. Liao, R. Zhang, J. Wang, C.Y. Su, D.B. Kuang, Ordered crystalline TiO2 nanotube arrays on transparent FTO glass for efficient dye-sensitized solar cells. J. Phys. Chem. C 114(35), 15228–15233 (2010). https://doi.org/10.1021/jp105780v
H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, T. Rajh, Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2(20), 2560–2565 (2011). https://doi.org/10.1021/jz2012066
Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang, P. Wang, Plasmonic Gold nanocrystals coupled with photonic crystal seamlessly on tio2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 13(1), 14–20 (2013). https://doi.org/10.1021/nl3029202
J. Wang, Z. Lin, Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem. Mater. 20(4), 1257–1261 (2008). https://doi.org/10.1021/cm7028917
J. Qiu, Z. Jin, Z. Liu, X. Liu, G. Liu, W. Wu, X. Zhang, X. Gao, Fabrication of TiO2 nanotube film by well-aligned ZnO nanorod array film and sol-gel process. Thin Solid Films 515(5), 2897–2902 (2007). https://doi.org/10.1016/j.tsf.2006.08.023
S. Xu, J. Ng, X. Zhang, H. Bai, D.D. Sun, Adsorption and photocatalytic degradation of Acid Orange 7 over hydrothermally synthesized mesoporous TiO2 nanotube. Colloid Surf. A-Physicochem. Eng. 379(1), 169–175 (2011). https://doi.org/10.1016/j.colsurfa.2010.11.032
M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.A. Grimes, Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J. Phys. Chem. B 110(33), 16179–16184 (2006). https://doi.org/10.1021/jp064020k
N. Liu, X. Chen, J. Zhang, J.W. Schwank, A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications. Catal. Today 225, 34–51 (2014). https://doi.org/10.1016/j.cattod.2013.10.090
D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M. Zakeeruddin, M. Grätzel, Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2(6), 1113–1116 (2008). https://doi.org/10.1021/nn800174y
Z. Liu, M. Misra, Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. ACS Nano 4(4), 2196–2200 (2010). https://doi.org/10.1021/nn9015696
M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai, C.A. Grimes, TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion. J. Phys. Chem. C 111(41), 14992–14997 (2007). https://doi.org/10.1021/jp075258r
D. Regonini, C.R. Bowen, A. Jaroenworaluck, R. Stevens, A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng. R 74(12), 377–406 (2013). https://doi.org/10.1016/j.mser.2013.10.001
C.C. Chen, H.W. Chung, C.H. Chen, H.P. Lu, C.M. Lan, S.F. Chen, L. Luo, C.S. Hung, E.W.G. Diau, Fabrication and characterization of anodic titanium oxide nanotube arrays of controlled length for highly efficient dye-sensitized solar cells. J. Phys. Chem. C 112(48), 19151–19157 (2008). https://doi.org/10.1021/jp806281r
K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7(1), 69–74 (2007). https://doi.org/10.1021/nl062000o
D. Wang, B. Yu, C. Wang, F. Zhou, W. Liu, A novel protocol toward perfect alignment of anodized TiO2 nanotubes. Adv. Mater. 21(19), 1964–1967 (2009). https://doi.org/10.1002/adma.200801996
J. Yu, B. Wang, Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl. Catal. B-Environ. 94(3), 295–302 (2010). https://doi.org/10.1016/j.apcatb.2009.12.003
MathSciNet
S. Sreekantan, R. Hazan, Z. Lockman, Photoactivity of anatase-rutile TiO2 nanotubes formed by anodization method. Thin Solid Films 518(1), 16–21 (2009). https://doi.org/10.1016/j.tsf.2009.06.002
J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3(2), 300–304 (2007). https://doi.org/10.1002/smll.200600426
N.K. Allam, K. Shankar, C.A. Grimes, A general method for the anodic formation of crystalline metal oxide nanotube arrays without the use of thermal annealing. Adv. Mater. 20(20), 3942–3946 (2008). https://doi.org/10.1002/adma.200800815
J.H. Yang, Y.S. Han, J.H. Choy, TiO2 thin-films on polymer substrates and their photocatalytic activity. Thin Solid Films 495(1), 266–271 (2006). https://doi.org/10.1016/j.tsf.2005.08.195
K. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114(19), 9385–9454 (2014). https://doi.org/10.1021/cr500061m
P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50(13), 2904–2939 (2011). https://doi.org/10.1002/anie.201001374
Z. Su, L. Zhang, F. Jiang, M. Hong, Formation of crystalline TiO2 by anodic oxidation of titanium. Prog. Nat. Sci. 23(3), 294–301 (2013). https://doi.org/10.1016/j.pnsc.2013.04.004
S. Ali, S.P. Hannula, Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes. J. Solid State Chem. 249, 189–198 (2017). https://doi.org/10.1016/j.jssc.2017.03.007
Y. Liao, W. Que, P. Zhong, J. Zhang, Y. He, A facile method to crystallize amorphous anodized TiO2 nanotubes at low temperature. ACS Appl. Mater. Interfaces 3(7), 2800–2804 (2011). https://doi.org/10.1021/am200685s
D. Wang, L. Liu, F. Zhang, K. Tao, E. Pippel, K. Domen, Spontaneous phase and morphology transformations of anodized titania nanotubes induced by water at room temperature. Nano Lett. 11(9), 3649–3655 (2011). https://doi.org/10.1021/nl2015262
N. Liu, S.P. Albu, K. Lee, S. So, P. Schmuki, Water annealing and other low temperature treatments of anodic TiO2 nanotubes: a comparison of properties and efficiencies in dye sensitized solar cells and for water splitting. Electrochim. Acta 82, 98–102 (2012). https://doi.org/10.1016/j.electacta.2012.06.006
B.M. Rao, S.C. Roy, Water assisted crystallization, gas sensing and photo-electrochemical properties of electrochemically synthesized TiO2 nanotube arrays. RSC Adv. 4(90), 49108–49114 (2014). https://doi.org/10.1039/C4RA06842D
H. Kaifu, W. Hairong, Z. Xuming, C. Yue, P.K. Chu, Heterostructured TiO2 nanoparticles/nanotube arrays: in situ formation from amorphous TiO2 nanotube arrays in water and enhanced photocatalytic activity. ChemPlusChem 77(4), 323–329 (2012). https://doi.org/10.1002/cplu.201200024
T. Zeng, H. Ni, X. Su, Y. Chen, Y. Jiang, Highly crystalline Titania nanotube arrays realized by hydrothermal vapor route and used as front-illuminated photoanode in dye sensitized solar cells. J. Power Sources 283, 443–451 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.150
S. Kurian, P. Sudhagar, J. Lee, D. Song, W. Cho, S. Lee, Y.S. Kang, H. Jeon, Formation of a crystalline nanotube-nanoparticle hybrid by post water-treatment of a thin amorphous TiO2 layer on a TiO2 nanotube array as an efficient photoanode in dye-sensitized solar cells. J. Mater. Chem. A 1(13), 4370–4375 (2013). https://doi.org/10.1039/c3ta01339a
K. Assaker, C. Carteret, B. Lebeau, C. Marichal, L. Vidal, M.-J. Stébé, J.-L. Blin, Water-catalyzed low-temperature transformation from amorphous to semi-crystalline phase of ordered mesoporous titania framework. ACS Sustain. Chem. Eng. 2(2), 120–125 (2014). https://doi.org/10.1021/sc400323w
J. Lin, X. Liu, M. Guo, W. Lu, G. Zhang, L. Zhou, X. Chen, H. Huang, A facile route to fabricate an anodic TiO2 nanotube-nanoparticle hybrid structure for high efficiency dye-sensitized solar cells. Nanoscale 4(16), 5148–5153 (2012). https://doi.org/10.1039/c2nr31268a
W. Krengvirat, S. Sreekantan, A.F. Mohd Noor, N. Negishi, G. Kawamura, H. Muto, A. Matsuda, Low-temperature crystallization of TiO2 nanotube arrays via hot water treatment and their photocatalytic properties under visible-light irradiation. Mater. Chem. Phys. 137(3), 991–998 (2013). https://doi.org/10.1016/j.matchemphys.2012.11.013
X. Keyu, G. Min, L. Wei, H. Haitao, Aligned TiO2 nanotube/nanoparticle heterostructures with enhanced electrochemical performance as three-dimensional anode for lithium-ion microbatteries. Nanotechnology 25(45), 455401 (2014). https://doi.org/10.1088/0957-4484/25/45/455401
T.C. Hufnagel, Finding order in disorder. Nat. Mater. 3, 666 (2004). https://doi.org/10.1038/nmat1227
M.P. Finnegan, H. Zhang, J.F. Banfield, Phase stability and transformation in titania nanoparticles in aqueous solutions dominated by surface energy. J. Phys. Chem. C 111(5), 1962–1968 (2007). https://doi.org/10.1021/jp063822c
Y. Liao, X. Wang, Y. Ma, J. Li, T. Wen, L. Jia, Z. Zhong, L. Wang, D. Zhang, New mechanistic insight of low temperature crystallization of anodic TiO2 nanotube array in water. Cryst. Growth Des. 16(4), 1786–1791 (2016). https://doi.org/10.1021/acs.cgd.5b01234
H. Fan, H. Zhang, X. Luo, M. Liao, X. Zhu, J. Ma, Y. Song, Hydrothermal solid-gas route to TiO2 nanoparticles/nanotube arrays for high-performance supercapacitors. J. Power Sources 357, 230–240 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.009
J. Liu, Z. Liu, T. Zhang, J. Zhai, L. Jiang, Low-temperature crystallization of anodized TiO2 nanotubes at the solid-gas interface and their photoelectrochemical properties. Nanoscale 5(13), 6139–6144 (2013). https://doi.org/10.1039/c3nr01286g
A. Lamberti, A. Chiodoni, N. Shahzad, S. Bianco, M. Quaglio, C.F. Pirri, Ultrafast room-temperature crystallization of TiO2 nanotubes exploiting water-vapor treatment. Sci. Rep. 5, 7808 (2015). https://doi.org/10.1038/srep07808
J. Su, X. Zou, G.D. Li, Y.M. Jiang, Y. Cao, J. Zhao, J.S. Chen, Room-temperature spontaneous crystallization of porous amorphous titania into a high-surface-area anatase photocatalyst. Chem. Commun. 49(74), 8217–8219 (2013). https://doi.org/10.1039/c3cc43772h
C. Zhao, D. Zhu, S. Cao, Amorphous TiO2 nanotube-derived synthesis of highly ordered anatase TiO2 nanorod arrays. Superlattices Microstruct. 90, 257–264 (2016). https://doi.org/10.1016/j.spmi.2015.12.037
Y. Cai, Y. Ye, S. Wu, J. Liu, C. Liang, Simultaneous Cu doping and growth of TiO2 nanocrystalline array film as a glucose biosensor. RSC Adv. 6(81), 78219–78224 (2016). https://doi.org/10.1039/C6RA15014D
Y. Liao, J. Brame, W. Que, Z. Xiu, H. Xie, Q. Li, M. Fabian, P.J. Alvarez, Photocatalytic generation of multiple ROS types using low-temperature crystallized anodic TiO2 nanotube arrays. J. Hazard. Mater. 260, 434–441 (2013). https://doi.org/10.1016/j.jhazmat.2013.05.047
Z. Li, Y. Chen, J. Shen, X. Cui, Facile synthesis of a heterogeneous Li2TiO3/TiO2 nanocomposite with enhanced photoelectrochemical water splitting. New J. Chem. 41(14), 6305–6314 (2017). https://doi.org/10.1039/C7NJ00198C
K. Huo, X. Zhang, H. Wang, L. Zhao, X. Liu, P.K. Chu, Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials 34(13), 3467–3478 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.071
Y. Xin, J. Jiang, K. Huo, T. Hu, P.K. Chu, Bioactive SrTiO3 nanotube arrays: strontium delivery platform on ti-based osteoporotic bone implants. ACS Nano 3(10), 3228–3234 (2009). https://doi.org/10.1021/nn9007675
H.J. Lin, T.S. Yang, M.C. Wang, C.S. Hsi, Structural and photodegradation behaviors of Fe3+-doping TiO2 thin films prepared by a sol-gel spin coating. J. Alloys Compd. 610, 478–485 (2014). https://doi.org/10.1016/j.jallcom.2014.05.053
X. Li, X. Zou, Z. Qu, Q. Zhao, L. Wang, Photocatalytic degradation of gaseous toluene over Ag-doping TiO2 nanotube powder prepared by anodization coupled with impregnation method. Chemosphere 83(5), 674–679 (2011). https://doi.org/10.1016/j.chemosphere.2011.02.043
Y.F. Tu, S.Y. Huang, J.P. Sang, X.W. Zou, Preparation of Fe-doped TiO2 nanotube arrays and their photocatalytic activities under visible light. Mater. Res. Bull. 45(2), 224–229 (2010). https://doi.org/10.1016/j.materresbull.2009.08.020
H.A. Hamedani, N.K. Allam, H. Garmestani, M.A. El-Sayed, Electrochemical fabrication of strontium-doped TiO2 nanotube array electrodes and investigation of their photoelectrochemical properties. J. Phys. Chem. C 115(27), 13480–13486 (2011). https://doi.org/10.1021/jp201194b
X. Zhang, B. Gao, L. Hu, L. Li, W. Jin, K. Huo, P.K. Chu, Hydrothermal synthesis of perovskite-type MTiO3 (M = Zn Co, Ni)/TiO2 nanotube arrays from an amorphous TiO2 template. CrystEngComm 16(44), 10280–10285 (2014). https://doi.org/10.1039/C4CE00992D
A.L. Castro, M.R. Nunes, A.P. Carvalho, F.M. Costa, M.H. Florêncio, Synthesis of anatase TiO2 nanoparticles with high temperature stability and photocatalytic activity. Solid State Sci. 10(5), 602–606 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.10.012
Z. Wei, S. Fanfei, P. Kai, T. Guohui, J. Baojiang, R. Zhiyu, T. Chungui, F. Honggang, Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance. Adv. Funct. Mater. 21(10), 1922–1930 (2011). https://doi.org/10.1002/adfm.201002535
J. Ye, W. Liu, J. Cai, S. Chen, X. Zhao, H. Zhou, L. Qi, Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J. Am. Chem. Soc. 133(4), 933–940 (2011). https://doi.org/10.1021/ja108205q
C. Zhao, D.C. Zhu, X.Y. Cheng, S.X. Cao, Highly ordered Ag-TiO2 nanocomposited arrays with high visible-light photocatalytic activity. Front. Mater. Sci. 11(3), 241–249 (2017). https://doi.org/10.1007/s11706-017-0386-8
Y.K. Lai, J.Y. Huang, H.F. Zhang, V.P. Subramaniam, Y.X. Tang et al., Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources. J. Hazard. Mater. 184(1), 855–863 (2010). https://doi.org/10.1016/j.jhazmat.2010.08.121
M. Sathish, B. Viswanathan, R.P. Viswanath, C.S. Gopinath, Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem. Mater. 17(25), 6349–6353 (2005). https://doi.org/10.1021/cm052047v
H. Tokudome, M. Miyauchi, N-doped TiO2 nanotube with visible light activity. Chem. Lett. 33(9), 1108–1109 (2004). https://doi.org/10.1246/cl.2004.1108
X. Hou, C.W. Wang, W.D. Zhu, X.Q. Wang, Y. Li et al., Preparation of nitrogen-doped anatase TiO2 nanoworm/nanotube hierarchical structures and its photocatalytic effect. Solid State Sci. 29, 27–33 (2014). https://doi.org/10.1016/j.solidstatesciences.2014.01.007
S. Hoang, S.P. Berglund, N.T. Hahn, A.J. Bard, C.B. Mullins, Enhancing visible light photo-oxidation of water with tio2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. J. Am. Chem. Soc. 134(8), 3659–3662 (2012). https://doi.org/10.1021/ja211369s
R.P. Antony, T. Mathews, K. Panda, B. Sundaravel, S. Dash, A.K. Tyagi, Enhanced field emission properties of electrochemically synthesized self-aligned nitrogen-doped TiO2 nanotube array thin films. J. Phys. Chem. C 116(31), 16740–16746 (2012). https://doi.org/10.1021/jp302578b
C.W. Wang, W.D. Zhu, J.B. Chen, X. Hou, X.Q. Zhang, Y. Li, J. Wang, F. Zhou, Low-temperature ammonia annealed TiO2 nanotube arrays: synergy of morphology improvement and nitrogen doping for enhanced field emission. Thin Solid Films 556, 440–446 (2014). https://doi.org/10.1016/j.tsf.2014.01.066
W. Chenglin, W. Mengye, X. Kunpeng, W. Qi, S. Lan, L. Zhiqun, L. Changjian, Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization. Nanotechnology 22(30), 305607 (2011). https://doi.org/10.1088/0957-4484/22/30/305607
S. Karthik, T. Kong Chhay, K.M. Gopal, A.G. Craig, An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties. J. Phys. D-Appl. Phys. 39(11), 2361 (2006). https://doi.org/10.1088/0022-3727/39/11/008
H. Cui, Y. Chen, S. Lu, S. Zhang, X. Zhu, Y. Song, TiO2 nanotube arrays treated with (NH4)2TiF6 dilute solution for better supercapacitive performances. Electrochim. Acta 253, 455–462 (2017). https://doi.org/10.1016/j.electacta.2017.09.080
John K. Aijo, Manju Thankamoniamma, Joaquim Puigdollers, R. Anuroop, B. Pradeep, Thoudinja Shripathie, Rachel Reena Philip, Rapid room temperature crystallization of TiO2 nanotubes. CrystEngComm 19(12), 1585–1589 (2017). https://doi.org/10.1039/C6CE02526A
C. Cao, J. Yan, Y. Zhang, L. Zhao, Stability of titania nanotube arrays in aqueous environment and the related factors. Sci. Rep. 6, 23065 (2016). https://doi.org/10.1038/srep23065
X. Wang, L. Sun, S. Zhang, X. Wang, K. Huo, J. Fu, H. Wang, D. Zhao, A composite electrode of TiO2 nanotubes and nanoparticles synthesised by hydrothermal treatment for use in dye-sensitized solar cells. RSC Adv. 3(27), 11001–11006 (2013). https://doi.org/10.1039/c3ra23482g
H. Imai, Y. Takei, K. Shimizu, M. Matsuda, H. Hirashima, Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J. Mater. Chem. 9(12), 2971–2972 (1999). https://doi.org/10.1039/a906005g
I.D. Tevis, S.I. Stupp, Patterning of periodic high-aspect-ratio nanopores in anatase titanium dioxide from titanium fluoride hydrolysis. Nanoscale 3(5), 2162–2165 (2011). https://doi.org/10.1039/c0nr01010c
I. Paramasivam, J.M. Macak, P. Schmuki, Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles. Electrochem. Commun. 10(1), 71–75 (2008). https://doi.org/10.1016/j.elecom.2007.11.001
Q. Kang, S. Liu, L. Yang, Q. Cai, C.A. Grimes, Fabrication of PbS nanoparticle-sensitized TiO2 nanotube arrays and their photoelectrochemical properties. ACS Appl. Mater. Interfaces 3(3), 746–749 (2011). https://doi.org/10.1021/am101086t
Y.Y. Song, Z.D. Gao, P. Schmuki, Highly uniform Pt nanoparticle decoration on TiO2 nanotube arrays: a refreshable platform for methanol electrooxidation. Electrochem. Commun. 13(3), 290–293 (2011). https://doi.org/10.1016/j.elecom.2011.01.006
Y. Zhang, Y. Yang, P. Xiao, X. Zhang, L. Lu, L. Li, Preparation of Ni nanoparticle-TiO2 nanotube composite by pulse electrodeposition. Mater. Lett. 63(28), 2429–2431 (2009). https://doi.org/10.1016/j.matlet.2009.08.019
X.Q. Gong, A. Selloni, Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J. Phys. Chem. B 109(42), 19560–19562 (2005). https://doi.org/10.1021/jp055311g
D.J. Yang, H. Park, S.J. Cho, H.G. Kim, W.-Y. Choi, TiO2-nanotube-based dye-sensitized solar cells fabricated by an efficient anodic oxidation for high surface area. J. Phys. Chem. Solids 69(5), 1272–1275 (2008). https://doi.org/10.1016/j.jpcs.2007.10.107
P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2(1), 45–59 (2010). https://doi.org/10.1039/B9NR00131J
D. Kowalski, D. Kim, P. Schmuki, TiO2 nanotubes, nanochannels and mesosponge: self-organized formation and applications. Nano Today 8(3), 235–264 (2013). https://doi.org/10.1016/j.nantod.2013.04.010
J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki, A.B. Walker, Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. J. Am. Chem. Soc. 130(40), 13364–13372 (2008). https://doi.org/10.1021/ja804852z
X. Luan, D. Guan, Y. Wang, Facile synthesis and morphology control of bamboo-type TiO2 nanotube arrays for high-efficiency dye-sensitized solar cells. J. Phys. Chem. C 116(27), 14257–14263 (2012). https://doi.org/10.1021/jp305280q
P. Albu Sergiu, D. Kim, P. Schmuki, Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. Angew. Chem. Int. Ed. 120(10), 1942–1945 (2008). https://doi.org/10.1002/ange.200704144
D. Kim, A. Ghicov, S.P. Albu, P. Schmuki, Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells. J. Am. Chem. Soc. 130(49), 16454–16455 (2008). https://doi.org/10.1021/ja805201v
D.A.H. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation. J. Mater. Sci. 46(4), 855–874 (2011). https://doi.org/10.1007/s10853-010-5113-0
K. Yang, Y. Dai, B. Huang, Study of the nitrogen concentration influence on n-doped TiO2 anatase from first-principles calculations. J. Phys. Chem. C 111(32), 12086–12090 (2007). https://doi.org/10.1021/jp067491f
J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16(38), 20382–20386 (2014). https://doi.org/10.1039/C4CP02201G
W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal. B-Environ. 69(3), 138–144 (2007). https://doi.org/10.1016/j.apcatb.2006.06.015
C. Song, X. Wang, J. Zhang, X. Chen, C. Li, Enhanced performance of direct Z-scheme CuS-WO3 system towards photocatalytic decomposition of organic pollutants under visible light. Appl. Surf. Sci. 425, 788–795 (2017). https://doi.org/10.1016/j.apsusc.2017.07.082
M.A. Mahadik, G.W. An, S. David, S.H. Choi, M. Cho, J.S. Jang, Fabrication of A/R-TiO2 composite for enhanced photoelectrochemical performance: solar hydrogen generation and dye degradation. Appl. Surf. Sci. 426, 833–843 (2017). https://doi.org/10.1016/j.apsusc.2017.07.179
X. Li, W. Zhao, J. Zhao, Visible light-sensitized semiconductor photocatalytic degradation of 2,4-dichlorophenol. Sci. China Ser. B-Chem. 45(4), 421–425 (2002). https://doi.org/10.1360/02yb9054
MathSciNet
Z. Zhang, G. Yuan, Y. Shi, L. Fang, H. Liang, L.Jin Ding, Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation. Environ. Sci. Policy 41(17), 6259–6263 (2007). https://doi.org/10.1021/es070212x
H.C. Liang, X.Z. Li, Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution. J. Hazard. Mater. 162(2), 1415–1422 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.033
Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D.A. Tryk, T. Murakami, A. Fujishima, Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J. Phys. Chem. C 112(1), 253–259 (2008). https://doi.org/10.1021/jp0772732
L. Cheng, Q. Xiang, Y. Liao, H. Zhang, CdS-Based photocatalysts. Energy Environ. Sci. (2018). https://doi.org/10.1039/C7EE03640J
J. Fu, B. Chang, Y. Tian, F. Xi, X. Dong, Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism. J. Mater. Chem. A 1(9), 3083–3090 (2013). https://doi.org/10.1039/c2ta00672c
B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991). https://doi.org/10.1038/353737a0
J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai, H. Yang, TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv. Mater. 21(36), 3663–3667 (2009). https://doi.org/10.1002/adma.200900525
B.E. Hardin, H.J. Snaith, M.D. McGehee, The renaissance of dye-sensitized solar cells. Nat. Photonics 6(6), 162–169 (2012). https://doi.org/10.1038/nphoton.2012.22
W.Y. Cheng, J.R. Deka, Y.C. Chiang, A. Rogeau, S.Y. Lu, One-step, surfactant-free hydrothermal method for syntheses of mesoporous TiO2 nanoparticle aggregates and their applications in high efficiency dye-sensitized solar cells. Chem. Mater. 24(16), 3255–3262 (2012). https://doi.org/10.1021/cm3017616
S.H. Kang, S.H. Choi, M.S. Kang, J.Y. Kim, H.S. Kim, T. Hyeon, Y.E. Sung, Nanorod-based dye-sensitized solar cells with improved charge collection efficiency. Adv. Mater. 20(1), 54–58 (2007). https://doi.org/10.1002/adma.200701819
C.T. Yip, M. Guo, H. Huang, L. Zhou, Y. Wang, C. Huang, Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells. Nanoscale 4(2), 448–450 (2012). https://doi.org/10.1039/C2NR11317A
M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, F. Wang, Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the oriented attachment mechanism. J. Am. Chem. Soc. 126(45), 14943–14949 (2004). https://doi.org/10.1021/ja048068s
Q. Chen, D. Xu, Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. J. Phys. Chem. C 113(15), 6310–6314 (2009). https://doi.org/10.1021/jp900336e
S. Yoriya, C.A. Grimes, Self-assembled TiO2 nanotube arrays by anodization of titanium in diethylene glycol: approach to extended pore widening. Langmuir 26(1), 417–420 (2010). https://doi.org/10.1021/la9020146
T. Stergiopoulos, A. Ghicov, V. Likodimos, D.S. Tsoukleris, J. Kunze, P. Schmuki, P. Falaras, Dye-sensitized solar cells based on thick highly ordered TiO2 nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media. Nanotechnology 19(23), 235602 (2008). https://doi.org/10.1088/0957-4484/19/23/235602
L. Sun, S. Zhang, X. Sun, X. He, Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells. J. Nanosci. Nanotechnol. 10(7), 4551–4561 (2010). https://doi.org/10.1166/jnn.2010.1695
M. Macak Jan, S. Aldabergerova, A. Ghicov, P. Schmuki, Smooth anodic TiO2 nanotubes: annealing and structure. Phys. Status Solidi A 203(10), R67–R69 (2006). https://doi.org/10.1002/pssa.200622214
D. Kim, P. Roy, K. Lee, P. Schmuki, Dye-sensitized solar cells using anodic TiO2 mesosponge: improved efficiency by TiCl4 treatment. Electrochem. Commun. 12(4), 574–578 (2010). https://doi.org/10.1016/j.elecom.2010.02.003
P. Roy, D. Kim, I. Paramasivam, P. Schmuki, Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles. Electrochem. Commun. 11(5), 1001–1004 (2009). https://doi.org/10.1016/j.elecom.2009.02.049
J. Wang, Z. Lin, Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering. Chem. Mater. 22(2), 579–584 (2010). https://doi.org/10.1021/cm903164k
J.E. Boercker, E. Enache-Pommer, E.S. Aydil, Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells. Nanotechnology 19(9), 095604 (2008). https://doi.org/10.1088/0957-4484/19/9/095604
K.E. Lee, M.A. Gomez, S. Elouatik, G.P. Demopoulos, Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal raman imaging. Langmuir 26(12), 9575–9583 (2010). https://doi.org/10.1021/la100137u
H. Zhou, Y. Zhang, Electrochemically self-doped TiO2 nanotube arrays for supercapacitors. J. Phys. Chem. C 118(11), 5626–5636 (2014). https://doi.org/10.1021/jp4082883
W. Hui, X. Chen, X. Jing, L. Linfeng, F. Zhiyong, C. Xiaoyuan, S. Ye, L. Dongdong, Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment. Nanotechnology 24(45), 455401 (2013). https://doi.org/10.1088/0957-4484/24/45/455401
D. Yu, X. Zhu, Z. Xu, X. Zhong, Q. Gui, Y. Song, S. Zhang, X. Chen, D. Li, Facile method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate. ACS Appl. Mater. Interfaces 6(11), 8001–8005 (2014). https://doi.org/10.1021/am5015716
Z. Shao, H. Li, M. Li, C. Li, C. Qu, B. Yang, Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors. Energy 87, 578–585 (2015). https://doi.org/10.1016/j.energy.2015.05.025
Y.Y. Song, F. Schmidt-Stein, S. Bauer, P. Schmuki, Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J. Am. Chem. Soc. 131(12), 4230–4232 (2009). https://doi.org/10.1021/ja810130h
S. Lin, D. Li, J. Wu, X. Li, S.A. Akbar, A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays. Sens. Actuator B 156(2), 505–509 (2011). https://doi.org/10.1016/j.snb.2011.02.046
Y. Lai, L. Lin, F. Pan, J. Huang, R. Song, Y. Huang, C. Lin, H. Fuchs, L. Chi, Bioinspired patterning with extreme wettability contrast on TiO2 nanotube array surface: a versatile platform for biomedical applications. Small 9(17), 2945–2953 (2013). https://doi.org/10.1002/smll.201300187
C. Moseke, F. Hage, E. Vorndran, U. Gbureck, TiO2 nanotube arrays deposited on Ti substrate by anodic oxidation and their potential as a long-term drug delivery system for antimicrobial agents. Appl. Surf. Sci. 258(14), 5399–5404 (2012). https://doi.org/10.1016/j.apsusc.2012.02.022
K. Huo, X. Li, B. Gao, L. Wang, Q. Li, X. Peng, X. Zhang, J. Fu, P.K. Chu, Self-supporting and binder-free anode film composed of beaded stream-like Li4Ti5O12 nanoparticles for high-performance lithium-ion batteries. ChemElectroChem 3(9), 1301–1305 (2016). https://doi.org/10.1002/celc.201600215
K. Huo, Y. Li, R. Chen, B. Gao, C. Peng, W. Zhang, L. Hu, X. Zhang, P.K. Chu, Recyclable non-enzymatic glucose sensor based on Ni/NiTiO3/TiO2 nanotube arrays. ChemPlusChem 80(3), 576–582 (2015). https://doi.org/10.1002/cplu.201402288
A. Ranga Rao, V. Dutta, Low-temperature synthesis of TiO2 nanoparticles and preparation of TiO2 thin films by spray deposition. Sol. Energy Mater. Sol. Cells 91(12), 1075–1080 (2007). https://doi.org/10.1016/j.solmat.2007.03.001
J. Archana, M. Navaneethan, Y. Hayakawa, Solvothermal growth of high surface area mesoporous anatase TiO2 nanospheres and investigation of dye-sensitized solar cell properties. J. Power Sources 242, 803–810 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.126
H. Li, W. Zhang, B. Li, W. Pan, Diameter-dependent photocatalytic activity of electrospun TiO2 nanofiber. J. Am. Chem. Soc. 93(9), 2503–2506 (2010). https://doi.org/10.1111/j.1551-2916.2010.03841.x
H.-E. Wang, H. Cheng, C. Liu, X. Chen, Q. Jiang et al., Facile synthesis and electrochemical characterization of porous and dense TiO2 nanospheres for lithium-ion battery applications. J. Power Sources 196(15), 6394–6399 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.085
I.D. Kim, A. Rothschild, B.H. Lee, D.Y. Kim, S.M. Jo, H.L. Tuller, Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett. 6(9), 2009–2013 (2006). https://doi.org/10.1021/nl061197h
N. Li, Q. Zhang, J.B. Joo, Z. Lu, M. Dahl, Y. Gan, Y. Yin, Water-assisted crystallization of mesoporous anatase TiO2 nanospheres. Nanoscale 8(17), 9113–9117 (2016). https://doi.org/10.1039/C6NR01892K
J.B. Joo, M. Dahl, N. Li, F. Zaera, Y. Yin, Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energy Environ. Sci. 6(7), 2082–2092 (2013). https://doi.org/10.1039/c3ee41155a
Z. Chen, K. Zhou, Surface morphology, phase structure and property evolution of anodized titanium during water vapor exposure. Surf. Coat. Technol. 263, 61–65 (2015). https://doi.org/10.1016/j.surfcoat.2014.12.056
K. Fischer, M. Grimm, J. Meyers, C. Dietrich, R. Gläser, A. Schulze, Photoactive microfiltration membranes via directed synthesis of TiO2 nanoparticles on the polymer surface for removal of drugs from water. J. Membr. Sci. 478, 49–57 (2015). https://doi.org/10.1016/j.memsci.2015.01.009
L.L. Lai, W. Wen, J.M. Wu, Room-temperature hydrolysis of potassium titanyl oxalate and water-assisted crystallization for TiO2 with high photocatalytic activity. ChemistrySelect 2(18), 5025–5031 (2017). https://doi.org/10.1002/slct.201700372
Q. Luo, Y. Chen, D. Wang, J. An, X. Li, R. Yin, L. Shi, A facile method to prepare mesoporous anatase TiO2 materials in water at lower temperatures. Mater. Res. Bull. 67, 140–145 (2015). https://doi.org/10.1016/j.materresbull.2015.03.020
L.W. Zhu, L.K. Zhou, H.X. Li, H.F. Wang, J.P. Lang, One-pot growth of free-standing CNTs/TiO2 nanofiber membrane for enhanced photocatalysis. Mater. Lett. 95, 13–16 (2013). https://doi.org/10.1016/j.matlet.2013.01.004
Y. Suzuki, S. Pavasupree, S. Yoshikawa, R. Kawahata, Direct synthesis of an anatase-TiO2 nanofiber/nanoparticle composite powder from natural rutile. Phys. Status Solidi A 204(6), 1757–1761 (2007). https://doi.org/10.1002/pssa.200675312
L. Yang, W.F. Leung Wallace, Application of a bilayer TiO2 nanofiber photoanode for optimization of dye-sensitized solar cells. Adv. Mater. 23(39), 4559–4562 (2011). https://doi.org/10.1002/adma.201102717
X. Zhang, S. Xu, G. Han, Fabrication and photocatalytic activity of TiO2 nanofiber membrane. Mater. Lett. 63(21), 1761–1763 (2009). https://doi.org/10.1016/j.matlet.2009.05.038
K. Mondal, M.A. Ali, V.V. Agrawal, B.D. Malhotra, A. Sharma, Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing. ACS Appl. Mater. Interfaces 6(4), 2516–2527 (2014). https://doi.org/10.1021/am404931f
X. Jin, K. Yuan, C. Xu, X. Wang, L. Zhu, G. Zhang, D. Xu, Water steam modified crystallization and microstructure of mesoporous TiO2 nanofibers. Ceram. Int. 44(2), 2158–2164 (2018). https://doi.org/10.1016/j.ceramint.2017.10.168
J. Sun, W. Wen, J.M. Wu, Low-temperature transformation of titania thin films from amorphous nanowires to crystallized nanoflowers for heterogeneous photocatalysis. J. Am. Chem. Soc. 96(7), 2109–2116 (2013). https://doi.org/10.1111/jace.12378
J.W. Lee, S.J. Park, W.S. Choi, H.C. Shin, Well-defined meso- to macro-porous film of tin oxides formed by an anodization process. Electrochim. Acta 56(17), 5919–5925 (2011). https://doi.org/10.1016/j.electacta.2011.03.144
M. Wang, Y. Liu, D. Xue, D. Zhang, H. Yang, Preparation of nanoporous tin oxide by electrochemical anodization in alkaline electrolytes. Electrochim. Acta 56(24), 8797–8801 (2011). https://doi.org/10.1016/j.electacta.2011.07.085
A. Palacios-Padros, M. Altomare, A. Tighineanu, R. Kirchgeorg, N.K. Shrestha, I. Diez-Perez, F. Caballero-Briones, F. Sanz, P. Schmuki, Growth of ordered anodic SnO2 nanochannel layers and their use for H2 gas sensing. J. Mater. Chem. A 2(4), 915–920 (2014). https://doi.org/10.1039/C3TA13704J
I. Paulowicz, V. Hrkac, S. Kaps, V. Cretu, O. Lupan et al., Three-dimensional SnO2 nanowire networks for multifunctional applications: from high-temperature stretchable ceramics to ultraresponsive sensors. Adv. Electron. Mater. 1(8), 1500081 (2015). https://doi.org/10.1002/aelm.201500081
H.C. Shin, J. Dong, M. Liu, Porous tin oxides prepared using an anodic oxidation process. Adv. Mater. 16(3), 237–240 (2004). https://doi.org/10.1002/adma.200305660
H. Bian, R. Dong, Q. Shao, S. Wang, M.F. Yuen et al., Water-enabled crystallization of mesoporous SnO2 as a binder-free electrode for enhanced sodium storage. J. Mater. Chem. A 5(45), 23967–23975 (2017). https://doi.org/10.1039/C7TA08228B
X. Wang, Y. Liao, H. Zhang, T. Wen, D. Zhang et al., Low temperature-derived 3D hexagonal crystalline Fe3O4 nanoplates for water purification. ACS Appl. Mater. Interfaces 10(4), 3644–3651 (2018). https://doi.org/10.1021/acsami.7b17582