Bi Nanoparticles Anchored in N-Doped Porous Carbon as Anode of High Energy Density Lithium Ion Battery
Corresponding Author: Weishan Li
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 56
Abstract
A novel bismuth–carbon composite, in which bismuth nanoparticles were anchored in a nitrogen-doped carbon matrix (Bi@NC), is proposed as anode for high volumetric energy density lithium ion batteries (LIBs). Bi@NC composite was synthesized via carbonization of Zn-containing zeolitic imidazolate (ZIF-8) and replacement of Zn with Bi, resulting in the N-doped carbon that was hierarchically porous and anchored with Bi nanoparticles. The matrix provides a highly electronic conductive network that facilitates the lithiation/delithiation of Bi. Additionally, it restrains aggregation of Bi nanoparticles and serves as a buffer layer to alleviate the mechanical strain of Bi nanoparticles upon Li insertion/extraction. With these contributions, Bi@NC exhibits excellent cycling stability and rate capacity compared to bare Bi nanoparticles or their simple composites with carbon. This study provides a new approach for fabricating high volumetric energy density LIBs.
Highlights:
1 The Bi nanoparticles anchored in N-doped porous carbon (Bi@NC) composite was prepared by a facile replacement reaction method, in which ultrasmall Bi nanoparticles were homogeneously encapsulated in the carbon matrix
2 The N-doped carbon matrix enhanced the electric conductivity and alleviated the mechanical strain of Bi nanoparticles on Li insertion/extraction due to the larger void space, and Bi@NC exhibits excellent cyclic stability and rate capability for LIBs
3 The strategy developed in this work solves the cyclic instability issue of bismuth as anode for LIBs and provides a new approach to improve high volumetric energy density for electrochemical energy storage devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.F. Sun, J.K. Hu, P. Wang, X.Y. Cheng, S.B. Lee, Y.H. Wang, Li3PO4 matrix enables a long cycle life and high energy efficiency bismuth-based battery. Nano Lett. 16(9), 5875–5882 (2016). https://doi.org/10.1021/acs.nanolett.6b02720
- P. Xia, H.B. Lin, W.Q. Tu, X.Q. Chen, X. Cai, X.W. Zheng, M.Q. Xu, W.S. Li, A novel fabrication for manganese monoxide/reduced graphene oxide nanocomposite as high performance anode of lithium ion battery. Electrochim. Acta 198, 66–76 (2016). https://doi.org/10.1016/j.electacta.2016.03.077
- H.B. Lin, J.N. Hu, H.B. Rong, Y.M. Zhang, S.W. Mai, L.D. Xing, M.Q. Xu, X.P. Li, W.S. Li, Porous LiMn2O4 cubes architectured with single-crystalline nanoparticles and exhibiting excellent cyclic stability and rate capability as the cathode of a lithium ion battery. J. Mater. Chem. A 2(24), 9272–9279 (2014). https://doi.org/10.1039/c4ta01474j
- H.B. Lin, Y.M. Zhang, H.B. Rong, S.W. Mai, J.N. Hu et al., Crystallographic facet- and size-controllable synthesis of spinel LiNi0.5Mn1.5O4 with excellent cyclic stability as cathode of high voltage lithium ion battery. J. Mater. Chem. A 2(30), 11987–11995 (2014). https://doi.org/10.1039/c4ta01810a
- H.B. Lin, H.B. Rong, W.Z. Huang, Y.H. Liao, L.D. Xing, M.Q. Xu, X.P. Li, W.S. Li, Triple-shelled Mn2O3 hollow nanocubes: force-induced synthesis and excellent performance as the anode in lithium-ion batteries. J. Mater. Chem. A 2(34), 14189–14194 (2014). https://doi.org/10.1039/c4ta02666g
- X. Dong, N. Hu, L. Wei, Y. Su, H. Wei, L. Yao, X. Li, Y. Zhang, A new strategy to prepare N-doped holey graphene for high-volumetric supercapacitors. J. Mater. Chem. A 4(25), 9739–9743 (2016). https://doi.org/10.1039/C6TA01406B
- B. Li, X.P. Li, W.S. Li, Y.Q. Wang, E. Uchaker et al., Mesoporous tungsten trioxide polyaniline nanocomposite as an anode material for high-performance lithium-ion batteries. ChemNanoMat 2(4), 281–289 (2016). https://doi.org/10.1002/cnma.201500208
- X.Q. Chen, Y.M. Zhu, B. Li, P.B. Hong, X.Y. Luo, X.X. Zhong, L.D. Xing, W.S. Li, Porous manganese oxide nanocubes enforced by solid electrolyte interphase as anode of high energy density battery. Electrochim. Acta 224, 251–259 (2017). https://doi.org/10.1016/j.electacta.2016.12.079
- W. Fang, N.Q. Zhang, L.S. Fan, K.N. Sun, Bi2O3 nanoparticles encapsulated by three-dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries. J. Power Sources 333, 30–36 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.155
- X.Q. Chen, H.B. Lin, X.W. Zheng, X. Cai, P. Xia, Y.M. Zhu, X.P. Li, W.S. Li, Fabrication of core–shell porous nanocubic Mn2O3@TiO2 as a high-performance anode for lithium ion batteries. J. Mater. Chem. A 3(35), 18198–18206 (2015). https://doi.org/10.1039/c5ta04238k
- Y.Q. Chen, J.T. Li, G.H. Yue, X.Y. Luo, Novel Ag@nitrogen-doped porous carbon composite with high electrochemical performance as anode materials for lithium-ion batteries. Nano-Micro Lett. 9(3), 32 (2017). https://doi.org/10.1007/s40820-017-0131-y
- C.-H. Yim, E.A. Baranova, F.M. Courtel, Y. Abu-Lebdeh, I.J. Davidson, Synthesis and characterization of macroporous tin oxide composite as an anode material for Li-ion batteries. J. Power Sources 196(22), 9731–9736 (2011). https://doi.org/10.1016/j.jpowsour.2011.07.061
- X.W. Li, Z.B. Yang, Y.J. Fu, L. Qiao, H.W. Yue, D.Y. He, Germanium anode with excellent lithium storage performance in a germanium/lithium–cobalt oxide lithium-ion battery. ACS Nano 9(2), 1858–1867 (2015). https://doi.org/10.1021/nn506760p
- D.W. Su, S.X. Dou, G.X. Wang, Bismuth: a new anode for the Na-ion battery. Nano Energy 12, 88–95 (2015). https://doi.org/10.1016/j.nanoen.2014.12.012
- R. Dai, Y.H. Wang, P.M. Da, H. Wu, M. Xu, G.F. Zheng, Indirect growth of mesoporous Bi@C core–shell nanowires for enhanced lithium-ion storage. Nanoscale 6(21), 13236–13241 (2014). https://doi.org/10.1039/c4nr04378b
- G. Keskar, E. Iyyamperumal, D.A. Hitchcock, J. He, A.M. Rao, L.D. Pfefferle, Significant improvement of thermoelectric performance in nanostructured bismuth networks. Nano Energy 1(5), 706–713 (2012). https://doi.org/10.1016/j.nanoen.2012.06.005
- J.F. Ni, X.X. Bi, Y. Jiang, L. Li, J. Lu, Bismuth chalcogenide compounds Bi2X3 (X = O, S, Se): applications in electrochemical energy storage. Nano Energy 34, 356–366 (2017). https://doi.org/10.1016/j.nanoen.2017.02.041
- H. Liang, J. Ni, L. Li, Bio-inspired engineering of Bi2S3-PPY yolk-shell composite for highly durable lithium and sodium storage. Nano Energy 33, 213–220 (2017). https://doi.org/10.1016/j.nanoen.2017.01.033
- A. Finke, P. Poizot, C. Guéry, L. Dupont, P.-L. Taberna, P. Simon, J.-M. Tarascon, Electrochemical method for direct deposition of nanometric bismuth and its electrochemical properties vs Li. Electrochem. Solid-State Lett. 11(3), E5–E9 (2008). https://doi.org/10.1149/1.2826705
- Y.Y. Shao, M. Gu, X.L. Li, Z.M. Nie, P.J. Zuo et al., Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett. 14(1), 255–260 (2014). https://doi.org/10.1021/nl403874y
- C.-M. Park, S. Yoon, S.-I. Lee, H.-J. Sohn, Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries. J. Power Sources 186(1), 206–210 (2009). https://doi.org/10.1016/j.jpowsour.2008.09.097
- F.H. Yang, F. Yu, Z.A. Zhang, K. Zhang, Y.Q. Lai, J. Li, Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chem. Eur. J. 22(7), 2333–2338 (2016). https://doi.org/10.1002/chem.201503272
- B.Z. Li, Y. Wang, L. Xue, X.P. Li, W.S. Li, Acetylene black-embedded LiMn0.8Fe0.2PO4/C composite as cathode for lithium ion battery. J. Power Sources 232, 12–16 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.019
- Y. Zhao, D.L. Gao, J.F. Ni, L.J. Gao, J. Yang, Y. Li, One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Res. 7(5), 765–773 (2014). https://doi.org/10.1007/s12274-014-0437-8
- D.C. Lin, Y.Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12(3), 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
- J. Tang, S.C. Wu, T. Wang, H. Gong, H.B. Zhang, S.M. Alshehri, T. Ahamad, H.S. Zhou, Y. Yamauchi, Cage-type highly graphitic porous carbon–Co3O4 polyhedron as the cathode of lithium–oxygen batteries. ACS Appl. Mater. Interfaces 8(4), 2796–2804 (2016). https://doi.org/10.1021/acsami.5b11252
- C. Kim, K.S. Yang, M. Kojima, K. Yoshida, Y.J. Kim, Y.A. Kim, M. Endo, Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv. Funct. Mater. 16(18), 2393–2397 (2006). https://doi.org/10.1002/adfm.200500911
- Y. Yu, L. Gu, C. Wang, A. Dhanabalan, P.A. Vanaken, J. Maier, Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew. Chem. Int. Edit. 48(35), 6485–6489 (2009). https://doi.org/10.1002/anie.200901723
- J. Liang, X.Y. Yu, H. Zhou, H.B. Wu, S. Ding, X.W. Lou, Bowl-like SnO2 @carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem. Int. Edit. 53(47), 12803–12807 (2014). https://doi.org/10.1002/anie.201407917
- H.Y. Yue, Q.X. Wang, Z.P. Shi, C. Ma, Y.M. Ding, N.N. Huo, J. Zhang, S.T. Yang, Porous hierarchical nitrogen-doped carbon coated ZnFe2O4 composites as high performance anode materials for lithium ion batteries. Electrochim. Acta 180, 622–628 (2015). https://doi.org/10.1016/j.electacta.2015.08.139
- Y.Z. Han, P.F. Qi, X. Feng, S.W. Li, X.T. Fu et al., In situ growth of MOFs on the surface of Si nanoparticles for highly efficient lithium storage: Si@MOF nanocomposites as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(4), 2178–2182 (2015). https://doi.org/10.1021/am5081937
- Z.X. Sun, C. Cao, W.-Q. Han, A scalable formation of nano-SnO2 anode derived from Tin metal–organic frameworks for lithium-ion battery. RSC Adv. 5(89), 72825–72829 (2015). https://doi.org/10.1039/c5ra12295c
- G. Huang, F.F. Zhang, X.C. Du, Y.L. Qin, D.M. Yin, L.M. Wang, Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9(2), 1592–1599 (2015). https://doi.org/10.1021/nn506252u
- A. Mahmood, W. Guo, H. Tabassum, R. Zou, Metal–organic framework-based nanomaterials for electrocatalysis. Adv. Energy Mater. 6(17), 1600423 (2016). https://doi.org/10.1002/aenm.201600423
- H. Hu, B.Y. Guan, X.W. Lou, Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors. Chem 1(1), 102–113 (2016). https://doi.org/10.1016/j.chempr.2016.06.001
- D.W. Wang, Z.W. Li, J. Zhou, H. Fang, X. He, P. Jena, J.-B. Zeng, W.-N. Wang, Simultaneous detection and removal of formaldehyde at room temperature: Janus Au@ZnO@ZIF-8 nanoparticles. Nano-Micro Lett. 10(1), 4 (2017). https://doi.org/10.1007/s40820-017-0158-0
- X.L. Xu, H. Wang, J.B. Liu, H. Yan, The applications of zeolitic imidazolate framework-8 in electrical energy storage devices: a review. J. Mater. Sci.-Mater. Electron. 28(11), 7532–7543 (2017). https://doi.org/10.1007/s10854-017-6485-6
- S.L. Zhang, B.Y. Guan, H.B. Wu, X.W. Lou, Metal–organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nano-Micro Lett. 10(3), 44 (2018). https://doi.org/10.1007/s40820-018-0197-1
- S.G. Wang, J.W. Qin, T. Meng, M.H. Cao, Metal–organic framework-induced construction of actiniae-like carbon nanotube assembly as advanced multifunctional electrocatalysts for overall water splitting and Zn-air batteries. Nano Energy 39, 626–638 (2017). https://doi.org/10.1016/j.nanoen.2017.07.043
- J.J. Liang, C.C. Yuan, H.H. Li, K. Fan, Z.X. Wei, H.Q. Sun, J.M. Ma, Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nano-Micro Lett. 10(2), 21 (2017). https://doi.org/10.1007/s40820-017-0172-2
- Y.H. Song, L. Zuo, S.H. Chen, J.F. Wu, H.Q. Hou, L. Wang, Porous nano-Si/carbon derived from zeolitic imidazolate frameworks@nano-Si as anode materials for lithium-ion batteries. Electrochim. Acta 173, 588–594 (2015). https://doi.org/10.1016/j.electacta.2015.05.111
- H.B. Zhang, J.W. Nai, L. Yu, X.W. Lou, Metal–organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1(1), 77–107 (2017). https://doi.org/10.1016/j.joule.2017.08.008
- J.T. Zhang, L. Yu, X.W. Lou, Embedding CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks for enhanced lithium storage properties. Nano Res. 10(12), 4298–4304 (2017). https://doi.org/10.1007/s12274-016-1394-1
- Y.Z. Han, P.F. Qi, J.W. Zhou, X. Feng, S.W. Li, X.T. Fu, J.S. Zhao, D.N. Yu, B. Wang, Metal–organic frameworks (Mofs) as sandwich coating cushion for silicon anode in lithium ion batteries. ACS Appl. Mater. Interfaces 7(48), 26608–26613 (2015). https://doi.org/10.1021/acsami.5b08109
- C.P. Su, Z. Lu, H.P. Zhao, H. Yang, R. Chen, Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity. Appl. Surf. Sci. 353, 735–743 (2015). https://doi.org/10.1016/j.apsusc.2015.06.180
- Z. Yi, Q.G. Han, P. Zan, Y.M. Wu, Y. Cheng, L.M. Wang, Sb nanoparticles encapsulated into porous carbon matrixes for high-performance lithium-ion battery anodes. J. Power Sources 331, 16–21 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.027
- S.R. Venn, J.B. Jasinski, M.A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 132(51), 18030–18033 (2010). https://doi.org/10.1021/ja109268m
- H.T. Kwon, H.K. Jeong, In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J. Am. Chem. Soc. 135(29), 10763–10768 (2013). https://doi.org/10.1021/ja403849c
- J.B. James, Y.S. Lin, Kinetics of zif-8 thermal decomposition in inert, oxidizing, and reducing environments. J. Phys. Chem. C 120(26), 14015–14026 (2016). https://doi.org/10.1021/acs.jpcc.6b01208
- X.Y. Li, X.Y. Gao, L.H. Ai, J. Jiang, Mechanistic insight into the interaction and adsorption of Cr (VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution. Chem. Eng. J. 274, 238–246 (2015). https://doi.org/10.1016/j.cej.2015.03.127
- E.L. Bustamante, J.L. Fernandez, J.M. Zamaro, Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. J. Colloid Interface Sci. 424, 37–43 (2014). https://doi.org/10.1016/j.jcis.2014.03.014
- Z. Li, X.X. Huang, C.L. Sun, X.Y. Chen, J.B. Hu, A. Stein, B. Tang, Thin-film electrode based on zeolitic imidazolate frameworks (ZIF-8 and ZIF-67) with ultra-stable performance as a lithium-ion battery anode. J. Mater. Sci. 52(7), 3979–3991 (2016). https://doi.org/10.1007/s10853-016-0660-7
- Y. Hu, H. Kazemian, S. Rohani, Y.N. Huang, Y. Song, In situ high pressure study of Zif-8 by ftir spectroscopy. Chem. Commun. 47(47), 12694–12696 (2011). https://doi.org/10.1039/c1cc15525c
- J. Im, N. Yim, J. Kim, T. Vogt, Y. Lee, High-pressure chemistry of a zeolitic imidazolate framework compound in the presence of different fluids. J. Am. Chem. Soc. 138(36), 11477–11480 (2016). https://doi.org/10.1021/jacs.6b07374
- H.-Y. Cho, J. Kim, S.-N. Kim, W.-S. Ahn, High yield 1-l scale synthesis of zif-8 via a sonochemical route. Microporous Mesoporous Mater. 169, 180–184 (2013). https://doi.org/10.1016/j.micromeso.2012.11.012
- H. Chen, F. Guo, Y.J. Liu, T.Q. Huang, B.N. Zheng, N. Ananth, Z. Xu, W.W. Gao, C. Gao, A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv. Mater. 29(12), 1605958 (2017). https://doi.org/10.1002/adma.201605958
- X.B. Yang, J. Chen, Y.Q. Chen, P.J. Feng, H.X. Lai, J.T. Li, X.T. Luo, Novel Co3O4 nanoparticles/nitrogen-doped carbon composites with extraordinary catalytic activity for oxygen evolution reaction (OER). Nano-Micro Lett. 10(1), 15 (2017). https://doi.org/10.1007/s40820-017-0170-4
- W. Zhang, X.F. Jiang, Y.Y. Zhao, A. Carne-Sanchez, V. Malgras et al., Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. Chem. Sci. 8(5), 3538–3546 (2017). https://doi.org/10.1039/c6sc04903f
- S. Kim, W.J. Dong, S. Gim, W. Sohn, J.Y. Park, C.J. Yoo, H.W. Jang, J.-L. Lee, Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate. Nano Energy 39, 44–52 (2017). https://doi.org/10.1016/j.nanoen.2017.05.065
- X.J. Wang, L.J. Wang, B.K. Chen, J. Yao, H.Y. Zeng, MOFs as reactant: in situ synthesis of Li2ZnTi3O8@C–N nanocomposites as high performance anodes for lithium-ion batteries. J. Electroanal. Chem. 775, 311–319 (2016). https://doi.org/10.1016/j.jelechem.2016.06.024
- J.S. Meng, C.J. Niu, L.H. Xu, J.Y. Li, X. Liu et al., General oriented formation of carbon nanotubes from metal–organic frameworks. J. Am. Chem. Soc. 139(24), 8212–8221 (2017). https://doi.org/10.1021/jacs.7b01942
- M. Jiang, X.P. Cao, D.D. Zhu, Y.X. Duan, J.M. Zhang, Hierarchically porous N-doped carbon derived from ZIF-8 nanocomposites for electrochemical applications. Electrochim. Acta 196, 699–707 (2016). https://doi.org/10.1016/j.electacta.2016.02.094
- S. Li, P. Xue, C. Lai, J.X. Qiu, M. Ling, S.Q. Zhang, Pseudocapacitance of amorphous TiO2@nitrogen doped graphene composite for high rate lithium storage. Electrochim. Acta 180, 112–119 (2015). https://doi.org/10.1016/j.electacta.2015.08.099
- Z.A. Zhang, C.K. Zhou, L. Huang, X.W. Wang, Y.H. Qu, Y.Q. Lai, J. Li, Synthesis of bismuth sulfide/reduced graphene oxide composites and their electrochemical properties for lithium ion batteries. Electrochim. Acta 114, 88–94 (2013). https://doi.org/10.1016/j.electacta.2013.09.174
- X. Zhang, H. Liu, S. Petnikota, S. Ramakrishna, H.J. Fan, Electrospun Fe2O3–carbon composite nanofibers as durable anode materials for lithium ion batteries. J. Mater. Chem. A 2(28), 10835–10841 (2014). https://doi.org/10.1039/c3ta15123a
- Y.L. Li, M.A. Trujillo, E. Fu, B. Patterson, L. Fei, Y. Xu, S.G. Deng, S. Smirnov, H.M. Luo, Bismuth oxide: a new lithium-ion battery anode. J. Mater. Chem. A 1(39), 12123–12127 (2013). https://doi.org/10.1039/C3TA12655B
- Y.B. Zhao, A. Manthiram, High-capacity, high-rate Bi–Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem. Mater. 27(8), 3096–3101 (2015). https://doi.org/10.1021/acs.chemmater.5b00616
- S.Q. Chen, L.F. Shen, P.A. van Aken, J. Maier, Y. Yu, Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv. Mater. 29(21), 1605650 (2017). https://doi.org/10.1002/adma.201605650
- P. Wang, X.B. Lou, C. Li, X.S. Hu, Q. Yang, B.W. Hu, One-pot synthesis of Co-based coordination polymer nanowire for Li-ion batteries with great capacity and stable cycling stability. Nano-Micro Lett. 10(2), 19 (2017). https://doi.org/10.1007/s40820-017-0177-x
- Y.C. Lin, Q.J. Zhang, C.C. Zhao, H.L. Li, C.L. Kong, C. Shen, L. Chen, An exceptionally stable functionalized metal–organic framework for lithium storage. Chem. Commun. 51(4), 697–699 (2015). https://doi.org/10.1039/c4cc07149b
- J. Liu, Y.R. Wen, P.A. van Aken, J. Maier, Y. Yu, Facile synthesis of highly porous Ni–Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. Nano Lett. 14(11), 6387–6392 (2014). https://doi.org/10.1021/nl5028606
- J. Ming, M.L. Li, P. Kumar, A.-Y. Lu, W. Wahyudi, L.-J. Li, Redox species-based electrolytes for advanced rechargeable lithium ion batteries. ACS Energy Lett. 1(3), 529–534 (2016). https://doi.org/10.1021/acsenergylett.6b00274
- X.L. Xu, Z.D. Hao, H. Wang, J.B. Liu, H. Yan, Mesoporous carbon derived from Zif-8 for improving electrochemical performances of commercial LiFePO4. Mater. Lett. 197, 209–212 (2017). https://doi.org/10.1016/j.matlet.2017.02.093
References
C.F. Sun, J.K. Hu, P. Wang, X.Y. Cheng, S.B. Lee, Y.H. Wang, Li3PO4 matrix enables a long cycle life and high energy efficiency bismuth-based battery. Nano Lett. 16(9), 5875–5882 (2016). https://doi.org/10.1021/acs.nanolett.6b02720
P. Xia, H.B. Lin, W.Q. Tu, X.Q. Chen, X. Cai, X.W. Zheng, M.Q. Xu, W.S. Li, A novel fabrication for manganese monoxide/reduced graphene oxide nanocomposite as high performance anode of lithium ion battery. Electrochim. Acta 198, 66–76 (2016). https://doi.org/10.1016/j.electacta.2016.03.077
H.B. Lin, J.N. Hu, H.B. Rong, Y.M. Zhang, S.W. Mai, L.D. Xing, M.Q. Xu, X.P. Li, W.S. Li, Porous LiMn2O4 cubes architectured with single-crystalline nanoparticles and exhibiting excellent cyclic stability and rate capability as the cathode of a lithium ion battery. J. Mater. Chem. A 2(24), 9272–9279 (2014). https://doi.org/10.1039/c4ta01474j
H.B. Lin, Y.M. Zhang, H.B. Rong, S.W. Mai, J.N. Hu et al., Crystallographic facet- and size-controllable synthesis of spinel LiNi0.5Mn1.5O4 with excellent cyclic stability as cathode of high voltage lithium ion battery. J. Mater. Chem. A 2(30), 11987–11995 (2014). https://doi.org/10.1039/c4ta01810a
H.B. Lin, H.B. Rong, W.Z. Huang, Y.H. Liao, L.D. Xing, M.Q. Xu, X.P. Li, W.S. Li, Triple-shelled Mn2O3 hollow nanocubes: force-induced synthesis and excellent performance as the anode in lithium-ion batteries. J. Mater. Chem. A 2(34), 14189–14194 (2014). https://doi.org/10.1039/c4ta02666g
X. Dong, N. Hu, L. Wei, Y. Su, H. Wei, L. Yao, X. Li, Y. Zhang, A new strategy to prepare N-doped holey graphene for high-volumetric supercapacitors. J. Mater. Chem. A 4(25), 9739–9743 (2016). https://doi.org/10.1039/C6TA01406B
B. Li, X.P. Li, W.S. Li, Y.Q. Wang, E. Uchaker et al., Mesoporous tungsten trioxide polyaniline nanocomposite as an anode material for high-performance lithium-ion batteries. ChemNanoMat 2(4), 281–289 (2016). https://doi.org/10.1002/cnma.201500208
X.Q. Chen, Y.M. Zhu, B. Li, P.B. Hong, X.Y. Luo, X.X. Zhong, L.D. Xing, W.S. Li, Porous manganese oxide nanocubes enforced by solid electrolyte interphase as anode of high energy density battery. Electrochim. Acta 224, 251–259 (2017). https://doi.org/10.1016/j.electacta.2016.12.079
W. Fang, N.Q. Zhang, L.S. Fan, K.N. Sun, Bi2O3 nanoparticles encapsulated by three-dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries. J. Power Sources 333, 30–36 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.155
X.Q. Chen, H.B. Lin, X.W. Zheng, X. Cai, P. Xia, Y.M. Zhu, X.P. Li, W.S. Li, Fabrication of core–shell porous nanocubic Mn2O3@TiO2 as a high-performance anode for lithium ion batteries. J. Mater. Chem. A 3(35), 18198–18206 (2015). https://doi.org/10.1039/c5ta04238k
Y.Q. Chen, J.T. Li, G.H. Yue, X.Y. Luo, Novel Ag@nitrogen-doped porous carbon composite with high electrochemical performance as anode materials for lithium-ion batteries. Nano-Micro Lett. 9(3), 32 (2017). https://doi.org/10.1007/s40820-017-0131-y
C.-H. Yim, E.A. Baranova, F.M. Courtel, Y. Abu-Lebdeh, I.J. Davidson, Synthesis and characterization of macroporous tin oxide composite as an anode material for Li-ion batteries. J. Power Sources 196(22), 9731–9736 (2011). https://doi.org/10.1016/j.jpowsour.2011.07.061
X.W. Li, Z.B. Yang, Y.J. Fu, L. Qiao, H.W. Yue, D.Y. He, Germanium anode with excellent lithium storage performance in a germanium/lithium–cobalt oxide lithium-ion battery. ACS Nano 9(2), 1858–1867 (2015). https://doi.org/10.1021/nn506760p
D.W. Su, S.X. Dou, G.X. Wang, Bismuth: a new anode for the Na-ion battery. Nano Energy 12, 88–95 (2015). https://doi.org/10.1016/j.nanoen.2014.12.012
R. Dai, Y.H. Wang, P.M. Da, H. Wu, M. Xu, G.F. Zheng, Indirect growth of mesoporous Bi@C core–shell nanowires for enhanced lithium-ion storage. Nanoscale 6(21), 13236–13241 (2014). https://doi.org/10.1039/c4nr04378b
G. Keskar, E. Iyyamperumal, D.A. Hitchcock, J. He, A.M. Rao, L.D. Pfefferle, Significant improvement of thermoelectric performance in nanostructured bismuth networks. Nano Energy 1(5), 706–713 (2012). https://doi.org/10.1016/j.nanoen.2012.06.005
J.F. Ni, X.X. Bi, Y. Jiang, L. Li, J. Lu, Bismuth chalcogenide compounds Bi2X3 (X = O, S, Se): applications in electrochemical energy storage. Nano Energy 34, 356–366 (2017). https://doi.org/10.1016/j.nanoen.2017.02.041
H. Liang, J. Ni, L. Li, Bio-inspired engineering of Bi2S3-PPY yolk-shell composite for highly durable lithium and sodium storage. Nano Energy 33, 213–220 (2017). https://doi.org/10.1016/j.nanoen.2017.01.033
A. Finke, P. Poizot, C. Guéry, L. Dupont, P.-L. Taberna, P. Simon, J.-M. Tarascon, Electrochemical method for direct deposition of nanometric bismuth and its electrochemical properties vs Li. Electrochem. Solid-State Lett. 11(3), E5–E9 (2008). https://doi.org/10.1149/1.2826705
Y.Y. Shao, M. Gu, X.L. Li, Z.M. Nie, P.J. Zuo et al., Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett. 14(1), 255–260 (2014). https://doi.org/10.1021/nl403874y
C.-M. Park, S. Yoon, S.-I. Lee, H.-J. Sohn, Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries. J. Power Sources 186(1), 206–210 (2009). https://doi.org/10.1016/j.jpowsour.2008.09.097
F.H. Yang, F. Yu, Z.A. Zhang, K. Zhang, Y.Q. Lai, J. Li, Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chem. Eur. J. 22(7), 2333–2338 (2016). https://doi.org/10.1002/chem.201503272
B.Z. Li, Y. Wang, L. Xue, X.P. Li, W.S. Li, Acetylene black-embedded LiMn0.8Fe0.2PO4/C composite as cathode for lithium ion battery. J. Power Sources 232, 12–16 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.019
Y. Zhao, D.L. Gao, J.F. Ni, L.J. Gao, J. Yang, Y. Li, One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Res. 7(5), 765–773 (2014). https://doi.org/10.1007/s12274-014-0437-8
D.C. Lin, Y.Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12(3), 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
J. Tang, S.C. Wu, T. Wang, H. Gong, H.B. Zhang, S.M. Alshehri, T. Ahamad, H.S. Zhou, Y. Yamauchi, Cage-type highly graphitic porous carbon–Co3O4 polyhedron as the cathode of lithium–oxygen batteries. ACS Appl. Mater. Interfaces 8(4), 2796–2804 (2016). https://doi.org/10.1021/acsami.5b11252
C. Kim, K.S. Yang, M. Kojima, K. Yoshida, Y.J. Kim, Y.A. Kim, M. Endo, Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv. Funct. Mater. 16(18), 2393–2397 (2006). https://doi.org/10.1002/adfm.200500911
Y. Yu, L. Gu, C. Wang, A. Dhanabalan, P.A. Vanaken, J. Maier, Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew. Chem. Int. Edit. 48(35), 6485–6489 (2009). https://doi.org/10.1002/anie.200901723
J. Liang, X.Y. Yu, H. Zhou, H.B. Wu, S. Ding, X.W. Lou, Bowl-like SnO2 @carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem. Int. Edit. 53(47), 12803–12807 (2014). https://doi.org/10.1002/anie.201407917
H.Y. Yue, Q.X. Wang, Z.P. Shi, C. Ma, Y.M. Ding, N.N. Huo, J. Zhang, S.T. Yang, Porous hierarchical nitrogen-doped carbon coated ZnFe2O4 composites as high performance anode materials for lithium ion batteries. Electrochim. Acta 180, 622–628 (2015). https://doi.org/10.1016/j.electacta.2015.08.139
Y.Z. Han, P.F. Qi, X. Feng, S.W. Li, X.T. Fu et al., In situ growth of MOFs on the surface of Si nanoparticles for highly efficient lithium storage: Si@MOF nanocomposites as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(4), 2178–2182 (2015). https://doi.org/10.1021/am5081937
Z.X. Sun, C. Cao, W.-Q. Han, A scalable formation of nano-SnO2 anode derived from Tin metal–organic frameworks for lithium-ion battery. RSC Adv. 5(89), 72825–72829 (2015). https://doi.org/10.1039/c5ra12295c
G. Huang, F.F. Zhang, X.C. Du, Y.L. Qin, D.M. Yin, L.M. Wang, Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9(2), 1592–1599 (2015). https://doi.org/10.1021/nn506252u
A. Mahmood, W. Guo, H. Tabassum, R. Zou, Metal–organic framework-based nanomaterials for electrocatalysis. Adv. Energy Mater. 6(17), 1600423 (2016). https://doi.org/10.1002/aenm.201600423
H. Hu, B.Y. Guan, X.W. Lou, Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors. Chem 1(1), 102–113 (2016). https://doi.org/10.1016/j.chempr.2016.06.001
D.W. Wang, Z.W. Li, J. Zhou, H. Fang, X. He, P. Jena, J.-B. Zeng, W.-N. Wang, Simultaneous detection and removal of formaldehyde at room temperature: Janus Au@ZnO@ZIF-8 nanoparticles. Nano-Micro Lett. 10(1), 4 (2017). https://doi.org/10.1007/s40820-017-0158-0
X.L. Xu, H. Wang, J.B. Liu, H. Yan, The applications of zeolitic imidazolate framework-8 in electrical energy storage devices: a review. J. Mater. Sci.-Mater. Electron. 28(11), 7532–7543 (2017). https://doi.org/10.1007/s10854-017-6485-6
S.L. Zhang, B.Y. Guan, H.B. Wu, X.W. Lou, Metal–organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nano-Micro Lett. 10(3), 44 (2018). https://doi.org/10.1007/s40820-018-0197-1
S.G. Wang, J.W. Qin, T. Meng, M.H. Cao, Metal–organic framework-induced construction of actiniae-like carbon nanotube assembly as advanced multifunctional electrocatalysts for overall water splitting and Zn-air batteries. Nano Energy 39, 626–638 (2017). https://doi.org/10.1016/j.nanoen.2017.07.043
J.J. Liang, C.C. Yuan, H.H. Li, K. Fan, Z.X. Wei, H.Q. Sun, J.M. Ma, Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nano-Micro Lett. 10(2), 21 (2017). https://doi.org/10.1007/s40820-017-0172-2
Y.H. Song, L. Zuo, S.H. Chen, J.F. Wu, H.Q. Hou, L. Wang, Porous nano-Si/carbon derived from zeolitic imidazolate frameworks@nano-Si as anode materials for lithium-ion batteries. Electrochim. Acta 173, 588–594 (2015). https://doi.org/10.1016/j.electacta.2015.05.111
H.B. Zhang, J.W. Nai, L. Yu, X.W. Lou, Metal–organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1(1), 77–107 (2017). https://doi.org/10.1016/j.joule.2017.08.008
J.T. Zhang, L. Yu, X.W. Lou, Embedding CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks for enhanced lithium storage properties. Nano Res. 10(12), 4298–4304 (2017). https://doi.org/10.1007/s12274-016-1394-1
Y.Z. Han, P.F. Qi, J.W. Zhou, X. Feng, S.W. Li, X.T. Fu, J.S. Zhao, D.N. Yu, B. Wang, Metal–organic frameworks (Mofs) as sandwich coating cushion for silicon anode in lithium ion batteries. ACS Appl. Mater. Interfaces 7(48), 26608–26613 (2015). https://doi.org/10.1021/acsami.5b08109
C.P. Su, Z. Lu, H.P. Zhao, H. Yang, R. Chen, Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity. Appl. Surf. Sci. 353, 735–743 (2015). https://doi.org/10.1016/j.apsusc.2015.06.180
Z. Yi, Q.G. Han, P. Zan, Y.M. Wu, Y. Cheng, L.M. Wang, Sb nanoparticles encapsulated into porous carbon matrixes for high-performance lithium-ion battery anodes. J. Power Sources 331, 16–21 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.027
S.R. Venn, J.B. Jasinski, M.A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 132(51), 18030–18033 (2010). https://doi.org/10.1021/ja109268m
H.T. Kwon, H.K. Jeong, In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J. Am. Chem. Soc. 135(29), 10763–10768 (2013). https://doi.org/10.1021/ja403849c
J.B. James, Y.S. Lin, Kinetics of zif-8 thermal decomposition in inert, oxidizing, and reducing environments. J. Phys. Chem. C 120(26), 14015–14026 (2016). https://doi.org/10.1021/acs.jpcc.6b01208
X.Y. Li, X.Y. Gao, L.H. Ai, J. Jiang, Mechanistic insight into the interaction and adsorption of Cr (VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution. Chem. Eng. J. 274, 238–246 (2015). https://doi.org/10.1016/j.cej.2015.03.127
E.L. Bustamante, J.L. Fernandez, J.M. Zamaro, Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. J. Colloid Interface Sci. 424, 37–43 (2014). https://doi.org/10.1016/j.jcis.2014.03.014
Z. Li, X.X. Huang, C.L. Sun, X.Y. Chen, J.B. Hu, A. Stein, B. Tang, Thin-film electrode based on zeolitic imidazolate frameworks (ZIF-8 and ZIF-67) with ultra-stable performance as a lithium-ion battery anode. J. Mater. Sci. 52(7), 3979–3991 (2016). https://doi.org/10.1007/s10853-016-0660-7
Y. Hu, H. Kazemian, S. Rohani, Y.N. Huang, Y. Song, In situ high pressure study of Zif-8 by ftir spectroscopy. Chem. Commun. 47(47), 12694–12696 (2011). https://doi.org/10.1039/c1cc15525c
J. Im, N. Yim, J. Kim, T. Vogt, Y. Lee, High-pressure chemistry of a zeolitic imidazolate framework compound in the presence of different fluids. J. Am. Chem. Soc. 138(36), 11477–11480 (2016). https://doi.org/10.1021/jacs.6b07374
H.-Y. Cho, J. Kim, S.-N. Kim, W.-S. Ahn, High yield 1-l scale synthesis of zif-8 via a sonochemical route. Microporous Mesoporous Mater. 169, 180–184 (2013). https://doi.org/10.1016/j.micromeso.2012.11.012
H. Chen, F. Guo, Y.J. Liu, T.Q. Huang, B.N. Zheng, N. Ananth, Z. Xu, W.W. Gao, C. Gao, A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv. Mater. 29(12), 1605958 (2017). https://doi.org/10.1002/adma.201605958
X.B. Yang, J. Chen, Y.Q. Chen, P.J. Feng, H.X. Lai, J.T. Li, X.T. Luo, Novel Co3O4 nanoparticles/nitrogen-doped carbon composites with extraordinary catalytic activity for oxygen evolution reaction (OER). Nano-Micro Lett. 10(1), 15 (2017). https://doi.org/10.1007/s40820-017-0170-4
W. Zhang, X.F. Jiang, Y.Y. Zhao, A. Carne-Sanchez, V. Malgras et al., Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. Chem. Sci. 8(5), 3538–3546 (2017). https://doi.org/10.1039/c6sc04903f
S. Kim, W.J. Dong, S. Gim, W. Sohn, J.Y. Park, C.J. Yoo, H.W. Jang, J.-L. Lee, Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate. Nano Energy 39, 44–52 (2017). https://doi.org/10.1016/j.nanoen.2017.05.065
X.J. Wang, L.J. Wang, B.K. Chen, J. Yao, H.Y. Zeng, MOFs as reactant: in situ synthesis of Li2ZnTi3O8@C–N nanocomposites as high performance anodes for lithium-ion batteries. J. Electroanal. Chem. 775, 311–319 (2016). https://doi.org/10.1016/j.jelechem.2016.06.024
J.S. Meng, C.J. Niu, L.H. Xu, J.Y. Li, X. Liu et al., General oriented formation of carbon nanotubes from metal–organic frameworks. J. Am. Chem. Soc. 139(24), 8212–8221 (2017). https://doi.org/10.1021/jacs.7b01942
M. Jiang, X.P. Cao, D.D. Zhu, Y.X. Duan, J.M. Zhang, Hierarchically porous N-doped carbon derived from ZIF-8 nanocomposites for electrochemical applications. Electrochim. Acta 196, 699–707 (2016). https://doi.org/10.1016/j.electacta.2016.02.094
S. Li, P. Xue, C. Lai, J.X. Qiu, M. Ling, S.Q. Zhang, Pseudocapacitance of amorphous TiO2@nitrogen doped graphene composite for high rate lithium storage. Electrochim. Acta 180, 112–119 (2015). https://doi.org/10.1016/j.electacta.2015.08.099
Z.A. Zhang, C.K. Zhou, L. Huang, X.W. Wang, Y.H. Qu, Y.Q. Lai, J. Li, Synthesis of bismuth sulfide/reduced graphene oxide composites and their electrochemical properties for lithium ion batteries. Electrochim. Acta 114, 88–94 (2013). https://doi.org/10.1016/j.electacta.2013.09.174
X. Zhang, H. Liu, S. Petnikota, S. Ramakrishna, H.J. Fan, Electrospun Fe2O3–carbon composite nanofibers as durable anode materials for lithium ion batteries. J. Mater. Chem. A 2(28), 10835–10841 (2014). https://doi.org/10.1039/c3ta15123a
Y.L. Li, M.A. Trujillo, E. Fu, B. Patterson, L. Fei, Y. Xu, S.G. Deng, S. Smirnov, H.M. Luo, Bismuth oxide: a new lithium-ion battery anode. J. Mater. Chem. A 1(39), 12123–12127 (2013). https://doi.org/10.1039/C3TA12655B
Y.B. Zhao, A. Manthiram, High-capacity, high-rate Bi–Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem. Mater. 27(8), 3096–3101 (2015). https://doi.org/10.1021/acs.chemmater.5b00616
S.Q. Chen, L.F. Shen, P.A. van Aken, J. Maier, Y. Yu, Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv. Mater. 29(21), 1605650 (2017). https://doi.org/10.1002/adma.201605650
P. Wang, X.B. Lou, C. Li, X.S. Hu, Q. Yang, B.W. Hu, One-pot synthesis of Co-based coordination polymer nanowire for Li-ion batteries with great capacity and stable cycling stability. Nano-Micro Lett. 10(2), 19 (2017). https://doi.org/10.1007/s40820-017-0177-x
Y.C. Lin, Q.J. Zhang, C.C. Zhao, H.L. Li, C.L. Kong, C. Shen, L. Chen, An exceptionally stable functionalized metal–organic framework for lithium storage. Chem. Commun. 51(4), 697–699 (2015). https://doi.org/10.1039/c4cc07149b
J. Liu, Y.R. Wen, P.A. van Aken, J. Maier, Y. Yu, Facile synthesis of highly porous Ni–Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. Nano Lett. 14(11), 6387–6392 (2014). https://doi.org/10.1021/nl5028606
J. Ming, M.L. Li, P. Kumar, A.-Y. Lu, W. Wahyudi, L.-J. Li, Redox species-based electrolytes for advanced rechargeable lithium ion batteries. ACS Energy Lett. 1(3), 529–534 (2016). https://doi.org/10.1021/acsenergylett.6b00274
X.L. Xu, Z.D. Hao, H. Wang, J.B. Liu, H. Yan, Mesoporous carbon derived from Zif-8 for improving electrochemical performances of commercial LiFePO4. Mater. Lett. 197, 209–212 (2017). https://doi.org/10.1016/j.matlet.2017.02.093