A Fully Biomimetic Flexible Sensor Inspired by the Natural Layered Structure of Eggshells for Multimodal Human–Computer Interaction
Corresponding Author: Dongzhi Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 244
Abstract
The rapid advancement of naturally microstructure-bioinspired flexible sensors has sparked interest in creating multifunctional systems for human–computer interaction (HCI). However, most existing biomimetic sensors struggle to integrate multiple sensing modes, limiting their practical applications. Herein, this study proposes a design concept for a fully biomimetic sensor. By employing hybrid manufacturing techniques to achieve layer-by-layer biomimicry of the natural layered structure of eggshells, a flexible sensor with multiple sensing modes is developed. The eggshell-inspired multifunctional hybrid flexible sensor (EMHFS) incorporates four functional layers: a triboelectric layer for noncontact sensing, a piezoresistive layer for pressure sensing, and hydrophilic–hydrophobic layers for directional moisture wicking, breathability, and antibacterial properties. The eggshell-inspired structure enables synergistic functionality, allowing seamless switching between contact and noncontact sensing modes. EMHFS demonstrates exceptional performance in multimodal HCI applications, including gesture-controlled robotic hands, wearable unmanned aerial vehicle control systems, and touchless screen password and gesture unlocking, while also exhibiting remarkable sensitivity to weak physiological signals such as breathing and pulse. This fully biomimetic approach offers a novel solution for advanced, flexible, and multifunctional HCI devices.
Highlights:
1 Drawing inspiration from natural layered structure of eggshells, a fully biomimetic flexible sensor achieves seamless contact–noncontact sensing switching.
2 Synergistic integration of triboelectric, piezoresistive, and hydrophilic–hydrophobic layers endows the sensor with exceptional sensitivity, long-term durability, antibacterial activity, and directional moisture management.
3 Pioneering multimodal human–computer interaction applications span gesture-controlled robotic hand, wearable unmanned aerial vehicle manipulation, touchless gesture/password unlocking, and high-fidelity monitoring of weak physiological signals.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14(1), 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
- C. Lv, C. Tian, J. Jiang, Y. Dang, Y. Liu et al., Ultrasensitive linear capacitive pressure sensor with wrinkled microstructures for tactile perception. Adv. Sci. 10(14), 2206807 (2023). https://doi.org/10.1002/advs.202206807
- S. Yu, L. Li, J. Wang, E. Liu, J. Zhao et al., Light-boosting highly sensitive pressure sensors based on bioinspired multiscale surface structures. Adv. Funct. Mater. 30(16), 1907091 (2020). https://doi.org/10.1002/adfm.201907091
- J. Xue, Y. Zou, Y. Deng, Z. Li, Bioinspired sensor system for health care and human-machine interaction. EcoMat 4(5), e12209 (2022). https://doi.org/10.1002/eom2.12209
- S. Chen, Q. Ouyang, X. Meng, Y. Yang, C. Li et al., Starfish-inspired wearable bioelectronic systems for physiological signal monitoring during motion and real-time heart disease diagnosis. Sci. Adv. 11(14), eadv2406 (2025). https://doi.org/10.1126/sciadv.adv2406
- S.W. Kim, J.-H. Lee, H.J. Ko, S. Lee, G.Y. Bae et al., Mechanically robust and linearly sensitive soft piezoresistive pressure sensor for a wearable human-robot interaction system. ACS Nano 18(4), 3151–3160 (2024). https://doi.org/10.1021/acsnano.3c09016
- K. Tao, Z. Chen, J. Yu, H. Zeng, J. Wu et al., Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Adv. Sci. 9(10), 2104168 (2022). https://doi.org/10.1002/advs.202104168
- J. He, S. Wang, R. Han, Y. Liu, W. Gao et al., Wide detection range flexible pressure sensors based on 3D interlocking structure TPU/ZnO NWs. Adv. Funct. Mater. 35(15), 2418791 (2025). https://doi.org/10.1002/adfm.202418791
- W. Hong, X. Guo, X. Li, T. Zhang, X. Zhu et al., Fishbone and nettle fiber inspired stretchable strain sensor with high sensitivity and wide sensing range for wearable electronics. Chem. Eng. J. 492, 152281 (2024). https://doi.org/10.1016/j.cej.2024.152281
- J. Li, Z. Yao, X. Zhang, Z. Wang, L. Liu et al., Bionic multifunctional ultra-linear strain sensor, achieving underwater motion monitoring and weather condition monitoring. Chem. Eng. J. 464, 142539 (2023). https://doi.org/10.1016/j.cej.2023.142539
- G. Li, S. Liu, L. Wang, R. Zhu, Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Robot. 5(49), eabc8134 (2020). https://doi.org/10.1126/scirobotics.abc8134
- X. Meng, C. Zhang, H. Xie, S. Niu, Z. Han et al., A continuous pressure positioning sensor with flexible multilayer structures based on a combinatorial bionic strategy. Adv. Funct. Mater. 34(17), 2314479 (2024). https://doi.org/10.1002/adfm.202314479
- M. Zhong, L. Zhang, X. Liu, Y. Zhou, M. Zhang et al., Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces. Chem. Eng. J. 412, 128649 (2021). https://doi.org/10.1016/j.cej.2021.128649
- X. Hong, Z. Du, L. Li, K. Jiang, D. Chen et al., Biomimetic honeycomb-like Ti3C2Tx MXene/bacterial cellulose aerogel-based flexible pressure sensor for the human–computer interface. ACS Sens. 10(1), 417–426 (2025). https://doi.org/10.1021/acssensors.4c02716
- X. Chen, Y. Luo, Y. Chen, S. Li, S. Deng et al., Biomimetic contact behavior inspired tactile sensing array with programmable microdomes pattern by scalable and consistent fabrication. Adv. Sci. 11(43), 2408082 (2024). https://doi.org/10.1002/advs.202408082
- D. Xie, Z. Chen, D. Qian, J. Shi, W. Zhang et al., Cat-vibrissa-inspired biomass fiber aerogels for flexible and highly sensitive sensors in monitoring human sport. Adv. Funct. Mater. 36(4), e12177 (2026). https://doi.org/10.1002/adfm.202512177
- C. Yan, L. Wang, X. Li, X. Wang, Y. Tang et al., Spider web-inspired flexible pressure sensors with high sensitivity and adjustable sensing range. Adv. Funct. Mater. 36(1), e05555 (2026). https://doi.org/10.1002/adfm.202505555
- Y. Ouyang, X. Wang, X. Liu, M. Hou, M. Zheng et al., Spider-web and ant-tentacle doubly bio-inspired multifunctional self-powered electronic skin with hierarchical nanostructure. Adv. Sci. 8(15), 2004377 (2021). https://doi.org/10.1002/advs.202004377
- X.-M. Wang, L.-Q. Tao, M. Yuan, Z.-P. Wang, J. Yu et al., Sea urchin-like microstructure pressure sensors with an ultra-broad range and high sensitivity. Nat. Commun. 12(1), 1776 (2021). https://doi.org/10.1038/s41467-021-21958-y
- J. He, R. Zhao, Z. Guo, Y. Li, Y. Zhao et al., A high-performance pressure sensor combining the biomimetic structures of shark and crocodile skins. Adv. Funct. Mater. 35(52), e10130 (2025). https://doi.org/10.1002/adfm.202510130
- Y. Li, Y. Li, S. Liu, Y. Tang, B. Mo et al., New zonal structure and transition of the membrane to mammillae in the eggshell of chicken Gallus domesticus. J. Struct. Biol. 203(2), 162–169 (2018). https://doi.org/10.1016/j.jsb.2018.04.006
- Y. Shi, K. Zhou, D. Li, V. Guyonnet, M.T. Hincke et al., Avian eggshell membrane as a novel biomaterial: a review. Foods 10(9), 2178 (2021). https://doi.org/10.3390/foods10092178
- R. Bellairs, A. Boyde, Scanning electron microscopy of the shell membranes of the hen’s egg. Z. Zellforsch. Mikrosk. Anat. 96(2), 237–249 (1969). https://doi.org/10.1007/BF00338771
- Y. Yuan, B. Zhong, X. Qin, H. Xu, Z. Li et al., An epidermal serine sensing system for skin healthcare. Nat. Commun. 16(1), 2681 (2025). https://doi.org/10.1038/s41467-025-58147-0
- X. Qin, B. Zhong, S. Lv, X. Long, H. Xu et al., A zero-voltage-writing artificial nervous system based on biosensor integrated on ferroelectric tunnel junction. Adv. Mater. 36(32), e2404026 (2024). https://doi.org/10.1002/adma.202404026
- L. Li, H. Xu, Z. Li, B. Zhong, Z. Lou et al., 3D heterogeneous sensing system for multimode parrallel signal No-spatiotemporal misalignment recognition. Adv. Mater. 37(6), e2414054 (2025). https://doi.org/10.1002/adma.202414054
- Z. Zhou, H. Wu, J. Fu, G. Zhang, P. Li et al., Fully integrated passive wireless sensor with mechanical-electrical double-gradient for multifunctional healthcare monitoring. Nano Lett. 24(46), 14781–14789 (2024). https://doi.org/10.1021/acs.nanolett.4c04215
- Z. Zhou, Y. Jin, J. Fu, S. Si, M. Liu et al., Smart wireless flexible sensing system for unconstrained monitoring of ballistocardiogram and respiration. NPJ Flex. Electron. 9, 15 (2025). https://doi.org/10.1038/s41528-025-00388-6
- Z. Li, B. Xu, J. Han, J. Huang, H. Fu, A polycation-modified nanofillers tailored polymer electrolytes fiber for versatile biomechanical energy harvesting and full-range personal healthcare sensing. Adv. Funct. Mater. 32(6), 2106731 (2022). https://doi.org/10.1002/adfm.202106731
- Z. Li, Y. Lu, D. Xiao, Y. Sun, Y. Xu et al., Stretchable, self-healing, temperature-tolerant, multiple dynamic interaction-enabled conductive biomass eutectogels for energy harvesting and self-powered sensing. Nano Energy 135, 110630 (2025). https://doi.org/10.1016/j.nanoen.2024.110630
- K.Y. Chung, B. Xu, D. Tan, Q. Yang, Z. Li et al., Naturally crosslinked biocompatible carbonaceous liquid metal aqueous ink printing wearable electronics for multi-sensing and energy harvesting. Nano-Micro Lett. 16(1), 149 (2024). https://doi.org/10.1007/s40820-024-01362-z
- J.-H. Zhang, Z. Li, Z. Liu, M. Li, J. Guo et al., Inorganic dielectric materials coupling micro-/ nanoarchitectures for state-of-the-art biomechanical-to-electrical energy conversion devices. Adv. Mater. 37(28), 2419081 (2025). https://doi.org/10.1002/adma.202419081
- C. Zhao, Z. Wang, Y. Wang, Z. Qian, Z. Tan et al., MXene-composite-enabled ultra-long-distance detection and highly sensitive self-powered noncontact triboelectric sensors and their applications in intelligent vehicle perception. Adv. Funct. Mater. 33(52), 2306381 (2023). https://doi.org/10.1002/adfm.202306381
- Y. Tang, H. Zhou, X. Sun, N. Diao, J. Wang et al., Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 30(5), 1907893 (2020). https://doi.org/10.1002/adfm.201907893
- C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Letters 15(1), 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
- Y. Si, S. Shi, Z. Dong, H. Wu, F. Sun et al., Bioinspired stable single-layer Janus fabric with directional water/moisture transport property for integrated personal cooling management. Adv. Fiber Mater. 5(1), 138–153 (2023). https://doi.org/10.1007/s42765-022-00200-4
- G. Wang, J. Duan, G. Sun, P. Wang, C. Meng et al., Biomimetic breathable nanofiber electronic skins with temperature-controlled self-adhesive and directional moisture-wicking properties for bifunctional pressure and non-contact sensing. Nano Energy 128, 109779 (2024). https://doi.org/10.1016/j.nanoen.2024.109779
- B. Ekram, E. Tolba, A.F. El-Sayed, W.E.G. Müller, H.C. Schröder et al., Cell migration, DNA fragmentation and antibacterial properties of novel silver doped calcium polyphosphate nanops. Sci. Rep. 14, 565 (2024). https://doi.org/10.1038/s41598-023-50849-z
- Y. Zhao, R. Wu, Y. Hao, Y. Zhao, X. Zhang et al., Eco-friendly multifunctional hydrogel sensors enabled sustainable and accurate human-machine interaction system. Adv. Mater. 37(32), 2507127 (2025). https://doi.org/10.1002/adma.202507127
- T. Yang, W. Deng, X. Chu, X. Wang, Y. Hu et al., Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano 15(7), 11555–11563 (2021). https://doi.org/10.1021/acsnano.1c01606
- J.-H. Zhang, Z. Li, J. Xu, J. Li, K. Yan et al., Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 13(1), 5839 (2022). https://doi.org/10.1038/s41467-022-33454-y
- J. Yang, S. Luo, X. Zhou, J. Li, J. Fu et al., Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl. Mater. Interfaces 11(16), 14997–15006 (2019). https://doi.org/10.1021/acsami.9b02049
References
Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14(1), 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
C. Lv, C. Tian, J. Jiang, Y. Dang, Y. Liu et al., Ultrasensitive linear capacitive pressure sensor with wrinkled microstructures for tactile perception. Adv. Sci. 10(14), 2206807 (2023). https://doi.org/10.1002/advs.202206807
S. Yu, L. Li, J. Wang, E. Liu, J. Zhao et al., Light-boosting highly sensitive pressure sensors based on bioinspired multiscale surface structures. Adv. Funct. Mater. 30(16), 1907091 (2020). https://doi.org/10.1002/adfm.201907091
J. Xue, Y. Zou, Y. Deng, Z. Li, Bioinspired sensor system for health care and human-machine interaction. EcoMat 4(5), e12209 (2022). https://doi.org/10.1002/eom2.12209
S. Chen, Q. Ouyang, X. Meng, Y. Yang, C. Li et al., Starfish-inspired wearable bioelectronic systems for physiological signal monitoring during motion and real-time heart disease diagnosis. Sci. Adv. 11(14), eadv2406 (2025). https://doi.org/10.1126/sciadv.adv2406
S.W. Kim, J.-H. Lee, H.J. Ko, S. Lee, G.Y. Bae et al., Mechanically robust and linearly sensitive soft piezoresistive pressure sensor for a wearable human-robot interaction system. ACS Nano 18(4), 3151–3160 (2024). https://doi.org/10.1021/acsnano.3c09016
K. Tao, Z. Chen, J. Yu, H. Zeng, J. Wu et al., Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Adv. Sci. 9(10), 2104168 (2022). https://doi.org/10.1002/advs.202104168
J. He, S. Wang, R. Han, Y. Liu, W. Gao et al., Wide detection range flexible pressure sensors based on 3D interlocking structure TPU/ZnO NWs. Adv. Funct. Mater. 35(15), 2418791 (2025). https://doi.org/10.1002/adfm.202418791
W. Hong, X. Guo, X. Li, T. Zhang, X. Zhu et al., Fishbone and nettle fiber inspired stretchable strain sensor with high sensitivity and wide sensing range for wearable electronics. Chem. Eng. J. 492, 152281 (2024). https://doi.org/10.1016/j.cej.2024.152281
J. Li, Z. Yao, X. Zhang, Z. Wang, L. Liu et al., Bionic multifunctional ultra-linear strain sensor, achieving underwater motion monitoring and weather condition monitoring. Chem. Eng. J. 464, 142539 (2023). https://doi.org/10.1016/j.cej.2023.142539
G. Li, S. Liu, L. Wang, R. Zhu, Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Robot. 5(49), eabc8134 (2020). https://doi.org/10.1126/scirobotics.abc8134
X. Meng, C. Zhang, H. Xie, S. Niu, Z. Han et al., A continuous pressure positioning sensor with flexible multilayer structures based on a combinatorial bionic strategy. Adv. Funct. Mater. 34(17), 2314479 (2024). https://doi.org/10.1002/adfm.202314479
M. Zhong, L. Zhang, X. Liu, Y. Zhou, M. Zhang et al., Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces. Chem. Eng. J. 412, 128649 (2021). https://doi.org/10.1016/j.cej.2021.128649
X. Hong, Z. Du, L. Li, K. Jiang, D. Chen et al., Biomimetic honeycomb-like Ti3C2Tx MXene/bacterial cellulose aerogel-based flexible pressure sensor for the human–computer interface. ACS Sens. 10(1), 417–426 (2025). https://doi.org/10.1021/acssensors.4c02716
X. Chen, Y. Luo, Y. Chen, S. Li, S. Deng et al., Biomimetic contact behavior inspired tactile sensing array with programmable microdomes pattern by scalable and consistent fabrication. Adv. Sci. 11(43), 2408082 (2024). https://doi.org/10.1002/advs.202408082
D. Xie, Z. Chen, D. Qian, J. Shi, W. Zhang et al., Cat-vibrissa-inspired biomass fiber aerogels for flexible and highly sensitive sensors in monitoring human sport. Adv. Funct. Mater. 36(4), e12177 (2026). https://doi.org/10.1002/adfm.202512177
C. Yan, L. Wang, X. Li, X. Wang, Y. Tang et al., Spider web-inspired flexible pressure sensors with high sensitivity and adjustable sensing range. Adv. Funct. Mater. 36(1), e05555 (2026). https://doi.org/10.1002/adfm.202505555
Y. Ouyang, X. Wang, X. Liu, M. Hou, M. Zheng et al., Spider-web and ant-tentacle doubly bio-inspired multifunctional self-powered electronic skin with hierarchical nanostructure. Adv. Sci. 8(15), 2004377 (2021). https://doi.org/10.1002/advs.202004377
X.-M. Wang, L.-Q. Tao, M. Yuan, Z.-P. Wang, J. Yu et al., Sea urchin-like microstructure pressure sensors with an ultra-broad range and high sensitivity. Nat. Commun. 12(1), 1776 (2021). https://doi.org/10.1038/s41467-021-21958-y
J. He, R. Zhao, Z. Guo, Y. Li, Y. Zhao et al., A high-performance pressure sensor combining the biomimetic structures of shark and crocodile skins. Adv. Funct. Mater. 35(52), e10130 (2025). https://doi.org/10.1002/adfm.202510130
Y. Li, Y. Li, S. Liu, Y. Tang, B. Mo et al., New zonal structure and transition of the membrane to mammillae in the eggshell of chicken Gallus domesticus. J. Struct. Biol. 203(2), 162–169 (2018). https://doi.org/10.1016/j.jsb.2018.04.006
Y. Shi, K. Zhou, D. Li, V. Guyonnet, M.T. Hincke et al., Avian eggshell membrane as a novel biomaterial: a review. Foods 10(9), 2178 (2021). https://doi.org/10.3390/foods10092178
R. Bellairs, A. Boyde, Scanning electron microscopy of the shell membranes of the hen’s egg. Z. Zellforsch. Mikrosk. Anat. 96(2), 237–249 (1969). https://doi.org/10.1007/BF00338771
Y. Yuan, B. Zhong, X. Qin, H. Xu, Z. Li et al., An epidermal serine sensing system for skin healthcare. Nat. Commun. 16(1), 2681 (2025). https://doi.org/10.1038/s41467-025-58147-0
X. Qin, B. Zhong, S. Lv, X. Long, H. Xu et al., A zero-voltage-writing artificial nervous system based on biosensor integrated on ferroelectric tunnel junction. Adv. Mater. 36(32), e2404026 (2024). https://doi.org/10.1002/adma.202404026
L. Li, H. Xu, Z. Li, B. Zhong, Z. Lou et al., 3D heterogeneous sensing system for multimode parrallel signal No-spatiotemporal misalignment recognition. Adv. Mater. 37(6), e2414054 (2025). https://doi.org/10.1002/adma.202414054
Z. Zhou, H. Wu, J. Fu, G. Zhang, P. Li et al., Fully integrated passive wireless sensor with mechanical-electrical double-gradient for multifunctional healthcare monitoring. Nano Lett. 24(46), 14781–14789 (2024). https://doi.org/10.1021/acs.nanolett.4c04215
Z. Zhou, Y. Jin, J. Fu, S. Si, M. Liu et al., Smart wireless flexible sensing system for unconstrained monitoring of ballistocardiogram and respiration. NPJ Flex. Electron. 9, 15 (2025). https://doi.org/10.1038/s41528-025-00388-6
Z. Li, B. Xu, J. Han, J. Huang, H. Fu, A polycation-modified nanofillers tailored polymer electrolytes fiber for versatile biomechanical energy harvesting and full-range personal healthcare sensing. Adv. Funct. Mater. 32(6), 2106731 (2022). https://doi.org/10.1002/adfm.202106731
Z. Li, Y. Lu, D. Xiao, Y. Sun, Y. Xu et al., Stretchable, self-healing, temperature-tolerant, multiple dynamic interaction-enabled conductive biomass eutectogels for energy harvesting and self-powered sensing. Nano Energy 135, 110630 (2025). https://doi.org/10.1016/j.nanoen.2024.110630
K.Y. Chung, B. Xu, D. Tan, Q. Yang, Z. Li et al., Naturally crosslinked biocompatible carbonaceous liquid metal aqueous ink printing wearable electronics for multi-sensing and energy harvesting. Nano-Micro Lett. 16(1), 149 (2024). https://doi.org/10.1007/s40820-024-01362-z
J.-H. Zhang, Z. Li, Z. Liu, M. Li, J. Guo et al., Inorganic dielectric materials coupling micro-/ nanoarchitectures for state-of-the-art biomechanical-to-electrical energy conversion devices. Adv. Mater. 37(28), 2419081 (2025). https://doi.org/10.1002/adma.202419081
C. Zhao, Z. Wang, Y. Wang, Z. Qian, Z. Tan et al., MXene-composite-enabled ultra-long-distance detection and highly sensitive self-powered noncontact triboelectric sensors and their applications in intelligent vehicle perception. Adv. Funct. Mater. 33(52), 2306381 (2023). https://doi.org/10.1002/adfm.202306381
Y. Tang, H. Zhou, X. Sun, N. Diao, J. Wang et al., Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 30(5), 1907893 (2020). https://doi.org/10.1002/adfm.201907893
C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Letters 15(1), 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
Y. Si, S. Shi, Z. Dong, H. Wu, F. Sun et al., Bioinspired stable single-layer Janus fabric with directional water/moisture transport property for integrated personal cooling management. Adv. Fiber Mater. 5(1), 138–153 (2023). https://doi.org/10.1007/s42765-022-00200-4
G. Wang, J. Duan, G. Sun, P. Wang, C. Meng et al., Biomimetic breathable nanofiber electronic skins with temperature-controlled self-adhesive and directional moisture-wicking properties for bifunctional pressure and non-contact sensing. Nano Energy 128, 109779 (2024). https://doi.org/10.1016/j.nanoen.2024.109779
B. Ekram, E. Tolba, A.F. El-Sayed, W.E.G. Müller, H.C. Schröder et al., Cell migration, DNA fragmentation and antibacterial properties of novel silver doped calcium polyphosphate nanops. Sci. Rep. 14, 565 (2024). https://doi.org/10.1038/s41598-023-50849-z
Y. Zhao, R. Wu, Y. Hao, Y. Zhao, X. Zhang et al., Eco-friendly multifunctional hydrogel sensors enabled sustainable and accurate human-machine interaction system. Adv. Mater. 37(32), 2507127 (2025). https://doi.org/10.1002/adma.202507127
T. Yang, W. Deng, X. Chu, X. Wang, Y. Hu et al., Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano 15(7), 11555–11563 (2021). https://doi.org/10.1021/acsnano.1c01606
J.-H. Zhang, Z. Li, J. Xu, J. Li, K. Yan et al., Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 13(1), 5839 (2022). https://doi.org/10.1038/s41467-022-33454-y
J. Yang, S. Luo, X. Zhou, J. Li, J. Fu et al., Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl. Mater. Interfaces 11(16), 14997–15006 (2019). https://doi.org/10.1021/acsami.9b02049