An Artificial Intelligence-Assisted Flexible and Wearable Mechanoluminescent Strain Sensor System
Corresponding Author: Dongzhi Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 62
Abstract
The complex wiring, bulky data collection devices, and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices. To tackle these challenges, this work develops an artificial intelligence-assisted, wireless, flexible, and wearable mechanoluminescent strain sensor system (AIFWMLS) by integration of deep learning neural network-based color data processing system (CDPS) with a sandwich-structured flexible mechanoluminescent sensor (SFLC) film. The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication. The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature, which significantly improves the accuracy of the predicted strain. A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition. Moreover, the versatile SFLC film can also serve as a encryption device. The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the “color to strain value” bottleneck that hinders the practical application of flexible colorimetric strain sensors, which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets.
Highlights:
1 The sandwich-structured flexible mechanoluminescent sensor (SFLC) film shows great application potential as wireless wearable strain sensor and encryption device.
2 System-level integration of SFLC film with deep learning-based artificial intelligence enables fast and accurate interpretation of color data to strain values with automatic correction of errors caused by varying color temperatures.
3 The smart glove wearable sensor based on the SFLC film combined with deep learning neural network enables fast and accurate hand gesture recognition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Lee, S.J. Ihle, G.S. Pellegrino, H. Kim, J. Yea et al., Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4, 291–301 (2021). https://doi.org/10.1038/s41928-021-00557-1
- X. Chen, Z. Hou, G. Li, W. Yu, Y. Xue et al., A laser-scribed wearable strain sensing system powered by an integrated rechargeable thin-film zinc-air battery for a long-time continuous healthcare monitoring. Nano Energy 101, 107606 (2022). https://doi.org/10.1016/j.nanoen.2022.107606
- X. Xu, Y. Chen, P. He, S. Wang, K. Ling et al., Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 14, 2875–2883 (2021). https://doi.org/10.1007/s12274-021-3536-3
- C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11, 3530 (2020). https://doi.org/10.1038/s41467-020-17301-6
- Z. Yang, Y. Pang, X.-L. Han, Y. Yang, J. Ling et al., Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12, 9134–9141 (2018). https://doi.org/10.1021/acsnano.8b03391
- G. Bae, M. Seo, S. Lee, D. Bae, M. Lee, Colorimetric detection of mechanical deformation in metals using thin-film mechanochromic sensor. Adv. Mater. Technol. 6, 2170061 (2021). https://doi.org/10.1002/admt.202170061
- H. Zhang, D. Zhang, J. Guan, D. Wang, M. Tang et al., A flexible wearable strain sensor for human-motion detection and a human–machine interface. J. Mater. Chem. C 10, 15554–15564 (2022). https://doi.org/10.1039/d2tc03147g
- R. Yin, D. Wang, S. Zhao, Z. Lou, G. Shen, Wearable sensors-enabled human–machine interaction systems: from design to application. Adv. Funct. Mater. 31, 2008936 (2021). https://doi.org/10.1002/adfm.202008936
- B. Hou, L. Yi, C. Li, H. Zhao, R. Zhang et al., An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation. Nat. Electron. 5, 682–693 (2022). https://doi.org/10.1038/s41928-022-00841-8
- H. Liu, H. Chu, H. Yuan, D. Li, W. Deng et al., Bioinspired multifunctional self-sensing actuated gradient hydrogel for soft-hard robot remote interaction. Nano-Micro Lett. 16, 69 (2024). https://doi.org/10.1007/s40820-023-01287-z
- M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016). https://doi.org/10.1002/adfm.201504755
- C. Hegde, J. Su, J.M.R. Tan, K. He, X. Chen et al., Sensing in soft robotics. ACS Nano 17, 15277–15307 (2023). https://doi.org/10.1021/acsnano.3c04089
- C.-Z. Hang, X.-F. Zhao, S.-Y. Xi, Y.-H. Shang, K.-P. Yuan et al., Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano Energy 76, 105064 (2020). https://doi.org/10.1016/j.nanoen.2020.105064
- N. Qaiser, F. Al-Modaf, S.M. Khan, S.F. Shaikh, N. El-Atab et al., A robust wearable point-of-care CNT-based strain sensor for wirelessly monitoring throat-related illnesses. Adv. Funct. Mater. 31, 2103375 (2021). https://doi.org/10.1002/adfm.202103375
- H. Yang, X. Xiao, Z. Li, K. Li, N. Cheng et al., Wireless Ti3C2Tx MXene strain sensor with ultrahigh sensitivity and designated working windows for soft exoskeletons. ACS Nano 14, 11860–11875 (2020). https://doi.org/10.1021/acsnano.0c04730
- S. Olenik, H.S. Lee, F. Güder, The future of near-field communication-based wireless sensing. Nat. Rev. Mater. 6, 286–288 (2021). https://doi.org/10.1038/s41578-021-00299-8
- C. Wu, S. Zeng, Z. Wang, F. Wang, H. Zhou et al., Efficient mechanoluminescent elastomers for dual-responsive anticounterfeiting device and stretching/strain sensor with multimode sensibility. Adv. Funct. Mater. 28, 1803168 (2018). https://doi.org/10.1002/adfm.201803168
- P.P. Pancham, W.-H. Chiu, A. Mukherjee, C.-Y. Lo, Strain visualization in flexible sensors with functional materials: a review. Adv. Mater. Interfaces 10, 2300029 (2023). https://doi.org/10.1002/admi.202300029
- M. Raisch, D. Genovese, N. Zaccheroni, S.B. Schmidt, M.L. Focarete et al., Highly sensitive, anisotropic, and reversible stress/strain-sensors from mechanochromic nanofiber composites. Adv. Mater. 30, e1802813 (2018). https://doi.org/10.1002/adma.201802813
- Y. Zhuang, R.-J. Xie, Mechanoluminescence rebrightening the prospects of stress sensing: a review. Adv. Mater. 33, e2005925 (2021). https://doi.org/10.1002/adma.202005925
- H. Yang, Y. Wei, H. Ju, X. Huang, J. Li et al., Microstrain-stimulated elastico-mechanoluminescence with dual-mode stress sensing. Adv. Mater. 36, e2401296 (2024). https://doi.org/10.1002/adma.202401296
- Z. Xie, X. Zhang, Y. Xiao, H. Wang, M. Shen et al., Realizing photoswitchable mechanoluminescence in organic crystals based on photochromism. Adv. Mater. 35, e2212273 (2023). https://doi.org/10.1002/adma.202212273
- H. Liu, Y. Zheng, S. Liu, J. Zhao, Z. Song et al., Realizing red mechanoluminescence of ZnS: Mn2+ through ferromagnetic coupling. Adv. Funct. Mater. 34, 2314422 (2024). https://doi.org/10.1002/adfm.202314422
- B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15, 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
- T. Sun, B. Feng, J. Huo, Y. Xiao, W. Wang et al., Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro Lett. 16, 14 (2023). https://doi.org/10.1007/s40820-023-01235-x
- Y. Wang, M.L. Adam, Y. Zhao, W. Zheng, L. Gao et al., Machine learning-enhanced flexible mechanical sensing. Nano-Micro Lett. 15, 55 (2023). https://doi.org/10.1007/s40820-023-01013-9
- E.P. Chan, J.J. Walish, A.M. Urbas, E.L. Thomas, Mechanochromic photonic gels. Adv. Mater. 25, 3934–3947 (2013). https://doi.org/10.1002/adma.201300692
- Y. Cho, S.Y. Lee, L. Ellerthorpe, G. Feng, G. Lin et al., Elastoplastic inverse opals as power-free mechanochromic sensors for force recording. Adv. Funct. Mater. 25, 6041–6049 (2015). https://doi.org/10.1002/adfm.201502774
- Y. Wang, W. Niu, C.-Y. Lo, Y. Zhao, X. He et al., Interactively full-color changeable electronic fiber sensor with high stretchability and rapid response. Adv. Funct. Mater. 30, 2000356 (2020). https://doi.org/10.1002/adfm.202000356
- R. Zhang, Q. Wang, X. Zheng, Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties. J. Mater. Chem. C 6, 3182–3199 (2018). https://doi.org/10.1039/C8TC00202A
- K. Zhao, X. Cao, Y. Alsaid, J. Cheng, Y. Wang et al., Interactively mechanochromic electronic textile sensor with rapid and durable electrical/optical response for visualized stretchable electronics. Chem. Eng. J. 426, 130870 (2021). https://doi.org/10.1016/j.cej.2021.130870
- H. Zhang, H. Chen, J.-H. Lee, E. Kim, K.-Y. Chan et al., Mechanochromic optical/electrical skin for ultrasensitive dual-signal sensing. ACS Nano 17, 5921–5934 (2023). https://doi.org/10.1021/acsnano.3c00015
- Y. Zhang, B. Ren, F. Yang, Y. Cai, H. Chen et al., Micellar-incorporated hydrogels with highly tough, mechanoresponsive, and self-recovery properties for strain-induced color sensors. J. Mater. Chem. C 6, 11536–11551 (2018). https://doi.org/10.1039/C8TC03914C
- J. Park, Y. Lee, M.H. Barbee, S. Cho, S. Cho et al., A hierarchical nanop-in-micropore architecture for enhanced mechanosensitivity and stretchability in mechanochromic electronic skins. Adv. Mater. 31, e1808148 (2019). https://doi.org/10.1002/adma.201808148
- Y. Geng, R. Kizhakidathazhath, J.P.F. Lagerwall, Robust cholesteric liquid crystal elastomer fibres for mechanochromic textiles. Nat. Mater. 21, 1441–1447 (2022). https://doi.org/10.1038/s41563-022-01355-6
- J. Choi, Y. Choi, J.-H. Lee, M.C. Kim, S. Park et al., Direct-ink-written cholesteric liquid crystal elastomer with programmable mechanochromic response. Adv. Funct. Mater. 34, 2310658 (2024). https://doi.org/10.1002/adfm.202310658
- W. Wang, Y. Wang, L. Xiang, L. Chen, L. Yu et al., A biomimetic nociceptor using centrosymmetric crystals for machine intelligence. Adv. Mater. 36, e2310555 (2024). https://doi.org/10.1002/adma.202310555
- Z. Huang, B. Chen, B. Ren, D. Tu, Z. Wang et al., Smart mechanoluminescent phosphors: a review of strontium-aluminate-based materials, properties, and their advanced application technologies. Adv. Sci. 10, e2204925 (2023). https://doi.org/10.1002/advs.202204925
- X. Pan, Y. Zhuang, W. He, C. Lin, L. Mei et al., Quantifying the interfacial triboelectricity in inorganic-organic composite mechanoluminescent materials. Nat. Commun. 15, 2673 (2024). https://doi.org/10.1038/s41467-024-46900-w
- H. Liang, Y. He, M. Chen, L. Jiang, Z. Zhang et al., Self-powered stretchable mechanoluminescent optical fiber strain sensor. Adv. Intell. Syst. 3, 2100035 (2021). https://doi.org/10.1002/aisy.202100035
- H. Zhou, X. Wang, Y. He, H. Liang, M. Chen et al., Distributed strain sensor based on self-powered, stretchable mechanoluminescent optical fiber. Adv. Intell. Syst. 5, 2300113 (2023). https://doi.org/10.1002/aisy.202300113
- S. Chang, Y. Deng, N. Li, L. Wang, C.-X. Shan et al., Continuous synthesis of ultra-fine fiber for wearable mechanoluminescent textile. Nano Res. 16, 9379–9386 (2023). https://doi.org/10.1007/s12274-023-5587-0
- Q. Guo, B. Huang, C. Lu, T. Zhou, G. Su et al., A cephalopod-inspired mechanoluminescence material with skin-like self-healing and sensing properties. Mater. Horiz. 6, 996–1004 (2019). https://doi.org/10.1039/C8MH01624K
- N. Sun, Q. Ke, Y. Fang, Y. Chu, Z. Liu, A wearable dual-mode strain sensing yarn: based on the conductive carbon composites and mechanoluminescent layer with core-sheath structures. Mater. Res. Bull. 164, 112259 (2023). https://doi.org/10.1016/j.materresbull.2023.112259
- G. Lin, M. Si, L. Wang, S. Wei, W. Lu et al., Dual-channel flexible strain sensors based on mechanofluorescent and conductive hydrogel laminates. Adv. Optical Mater. 10, 2102306 (2022). https://doi.org/10.1002/adom.202102306
- K. Zhao, Y. Zhao, R. Qian, C. Ye, Y. Song, Recent advances in interactive mechanosensory electronics with luminescence/coloration outputs for wearable applications. ACS Mater. Lett. 5, 3093–3116 (2023). https://doi.org/10.1021/acsmaterialslett.3c00800
- Z. Wang, Y. Dong, X. Sui, X. Shao, K. Li et al., An artificial intelligence-assisted microfluidic colorimetric wearable sensor system for monitoring of key tear biomarkers. npj Flex. Electron. 8, 35 (2024). https://doi.org/10.1038/s41528-024-00321-3
References
J. Lee, S.J. Ihle, G.S. Pellegrino, H. Kim, J. Yea et al., Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4, 291–301 (2021). https://doi.org/10.1038/s41928-021-00557-1
X. Chen, Z. Hou, G. Li, W. Yu, Y. Xue et al., A laser-scribed wearable strain sensing system powered by an integrated rechargeable thin-film zinc-air battery for a long-time continuous healthcare monitoring. Nano Energy 101, 107606 (2022). https://doi.org/10.1016/j.nanoen.2022.107606
X. Xu, Y. Chen, P. He, S. Wang, K. Ling et al., Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 14, 2875–2883 (2021). https://doi.org/10.1007/s12274-021-3536-3
C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11, 3530 (2020). https://doi.org/10.1038/s41467-020-17301-6
Z. Yang, Y. Pang, X.-L. Han, Y. Yang, J. Ling et al., Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12, 9134–9141 (2018). https://doi.org/10.1021/acsnano.8b03391
G. Bae, M. Seo, S. Lee, D. Bae, M. Lee, Colorimetric detection of mechanical deformation in metals using thin-film mechanochromic sensor. Adv. Mater. Technol. 6, 2170061 (2021). https://doi.org/10.1002/admt.202170061
H. Zhang, D. Zhang, J. Guan, D. Wang, M. Tang et al., A flexible wearable strain sensor for human-motion detection and a human–machine interface. J. Mater. Chem. C 10, 15554–15564 (2022). https://doi.org/10.1039/d2tc03147g
R. Yin, D. Wang, S. Zhao, Z. Lou, G. Shen, Wearable sensors-enabled human–machine interaction systems: from design to application. Adv. Funct. Mater. 31, 2008936 (2021). https://doi.org/10.1002/adfm.202008936
B. Hou, L. Yi, C. Li, H. Zhao, R. Zhang et al., An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation. Nat. Electron. 5, 682–693 (2022). https://doi.org/10.1038/s41928-022-00841-8
H. Liu, H. Chu, H. Yuan, D. Li, W. Deng et al., Bioinspired multifunctional self-sensing actuated gradient hydrogel for soft-hard robot remote interaction. Nano-Micro Lett. 16, 69 (2024). https://doi.org/10.1007/s40820-023-01287-z
M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016). https://doi.org/10.1002/adfm.201504755
C. Hegde, J. Su, J.M.R. Tan, K. He, X. Chen et al., Sensing in soft robotics. ACS Nano 17, 15277–15307 (2023). https://doi.org/10.1021/acsnano.3c04089
C.-Z. Hang, X.-F. Zhao, S.-Y. Xi, Y.-H. Shang, K.-P. Yuan et al., Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano Energy 76, 105064 (2020). https://doi.org/10.1016/j.nanoen.2020.105064
N. Qaiser, F. Al-Modaf, S.M. Khan, S.F. Shaikh, N. El-Atab et al., A robust wearable point-of-care CNT-based strain sensor for wirelessly monitoring throat-related illnesses. Adv. Funct. Mater. 31, 2103375 (2021). https://doi.org/10.1002/adfm.202103375
H. Yang, X. Xiao, Z. Li, K. Li, N. Cheng et al., Wireless Ti3C2Tx MXene strain sensor with ultrahigh sensitivity and designated working windows for soft exoskeletons. ACS Nano 14, 11860–11875 (2020). https://doi.org/10.1021/acsnano.0c04730
S. Olenik, H.S. Lee, F. Güder, The future of near-field communication-based wireless sensing. Nat. Rev. Mater. 6, 286–288 (2021). https://doi.org/10.1038/s41578-021-00299-8
C. Wu, S. Zeng, Z. Wang, F. Wang, H. Zhou et al., Efficient mechanoluminescent elastomers for dual-responsive anticounterfeiting device and stretching/strain sensor with multimode sensibility. Adv. Funct. Mater. 28, 1803168 (2018). https://doi.org/10.1002/adfm.201803168
P.P. Pancham, W.-H. Chiu, A. Mukherjee, C.-Y. Lo, Strain visualization in flexible sensors with functional materials: a review. Adv. Mater. Interfaces 10, 2300029 (2023). https://doi.org/10.1002/admi.202300029
M. Raisch, D. Genovese, N. Zaccheroni, S.B. Schmidt, M.L. Focarete et al., Highly sensitive, anisotropic, and reversible stress/strain-sensors from mechanochromic nanofiber composites. Adv. Mater. 30, e1802813 (2018). https://doi.org/10.1002/adma.201802813
Y. Zhuang, R.-J. Xie, Mechanoluminescence rebrightening the prospects of stress sensing: a review. Adv. Mater. 33, e2005925 (2021). https://doi.org/10.1002/adma.202005925
H. Yang, Y. Wei, H. Ju, X. Huang, J. Li et al., Microstrain-stimulated elastico-mechanoluminescence with dual-mode stress sensing. Adv. Mater. 36, e2401296 (2024). https://doi.org/10.1002/adma.202401296
Z. Xie, X. Zhang, Y. Xiao, H. Wang, M. Shen et al., Realizing photoswitchable mechanoluminescence in organic crystals based on photochromism. Adv. Mater. 35, e2212273 (2023). https://doi.org/10.1002/adma.202212273
H. Liu, Y. Zheng, S. Liu, J. Zhao, Z. Song et al., Realizing red mechanoluminescence of ZnS: Mn2+ through ferromagnetic coupling. Adv. Funct. Mater. 34, 2314422 (2024). https://doi.org/10.1002/adfm.202314422
B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15, 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
T. Sun, B. Feng, J. Huo, Y. Xiao, W. Wang et al., Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro Lett. 16, 14 (2023). https://doi.org/10.1007/s40820-023-01235-x
Y. Wang, M.L. Adam, Y. Zhao, W. Zheng, L. Gao et al., Machine learning-enhanced flexible mechanical sensing. Nano-Micro Lett. 15, 55 (2023). https://doi.org/10.1007/s40820-023-01013-9
E.P. Chan, J.J. Walish, A.M. Urbas, E.L. Thomas, Mechanochromic photonic gels. Adv. Mater. 25, 3934–3947 (2013). https://doi.org/10.1002/adma.201300692
Y. Cho, S.Y. Lee, L. Ellerthorpe, G. Feng, G. Lin et al., Elastoplastic inverse opals as power-free mechanochromic sensors for force recording. Adv. Funct. Mater. 25, 6041–6049 (2015). https://doi.org/10.1002/adfm.201502774
Y. Wang, W. Niu, C.-Y. Lo, Y. Zhao, X. He et al., Interactively full-color changeable electronic fiber sensor with high stretchability and rapid response. Adv. Funct. Mater. 30, 2000356 (2020). https://doi.org/10.1002/adfm.202000356
R. Zhang, Q. Wang, X. Zheng, Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties. J. Mater. Chem. C 6, 3182–3199 (2018). https://doi.org/10.1039/C8TC00202A
K. Zhao, X. Cao, Y. Alsaid, J. Cheng, Y. Wang et al., Interactively mechanochromic electronic textile sensor with rapid and durable electrical/optical response for visualized stretchable electronics. Chem. Eng. J. 426, 130870 (2021). https://doi.org/10.1016/j.cej.2021.130870
H. Zhang, H. Chen, J.-H. Lee, E. Kim, K.-Y. Chan et al., Mechanochromic optical/electrical skin for ultrasensitive dual-signal sensing. ACS Nano 17, 5921–5934 (2023). https://doi.org/10.1021/acsnano.3c00015
Y. Zhang, B. Ren, F. Yang, Y. Cai, H. Chen et al., Micellar-incorporated hydrogels with highly tough, mechanoresponsive, and self-recovery properties for strain-induced color sensors. J. Mater. Chem. C 6, 11536–11551 (2018). https://doi.org/10.1039/C8TC03914C
J. Park, Y. Lee, M.H. Barbee, S. Cho, S. Cho et al., A hierarchical nanop-in-micropore architecture for enhanced mechanosensitivity and stretchability in mechanochromic electronic skins. Adv. Mater. 31, e1808148 (2019). https://doi.org/10.1002/adma.201808148
Y. Geng, R. Kizhakidathazhath, J.P.F. Lagerwall, Robust cholesteric liquid crystal elastomer fibres for mechanochromic textiles. Nat. Mater. 21, 1441–1447 (2022). https://doi.org/10.1038/s41563-022-01355-6
J. Choi, Y. Choi, J.-H. Lee, M.C. Kim, S. Park et al., Direct-ink-written cholesteric liquid crystal elastomer with programmable mechanochromic response. Adv. Funct. Mater. 34, 2310658 (2024). https://doi.org/10.1002/adfm.202310658
W. Wang, Y. Wang, L. Xiang, L. Chen, L. Yu et al., A biomimetic nociceptor using centrosymmetric crystals for machine intelligence. Adv. Mater. 36, e2310555 (2024). https://doi.org/10.1002/adma.202310555
Z. Huang, B. Chen, B. Ren, D. Tu, Z. Wang et al., Smart mechanoluminescent phosphors: a review of strontium-aluminate-based materials, properties, and their advanced application technologies. Adv. Sci. 10, e2204925 (2023). https://doi.org/10.1002/advs.202204925
X. Pan, Y. Zhuang, W. He, C. Lin, L. Mei et al., Quantifying the interfacial triboelectricity in inorganic-organic composite mechanoluminescent materials. Nat. Commun. 15, 2673 (2024). https://doi.org/10.1038/s41467-024-46900-w
H. Liang, Y. He, M. Chen, L. Jiang, Z. Zhang et al., Self-powered stretchable mechanoluminescent optical fiber strain sensor. Adv. Intell. Syst. 3, 2100035 (2021). https://doi.org/10.1002/aisy.202100035
H. Zhou, X. Wang, Y. He, H. Liang, M. Chen et al., Distributed strain sensor based on self-powered, stretchable mechanoluminescent optical fiber. Adv. Intell. Syst. 5, 2300113 (2023). https://doi.org/10.1002/aisy.202300113
S. Chang, Y. Deng, N. Li, L. Wang, C.-X. Shan et al., Continuous synthesis of ultra-fine fiber for wearable mechanoluminescent textile. Nano Res. 16, 9379–9386 (2023). https://doi.org/10.1007/s12274-023-5587-0
Q. Guo, B. Huang, C. Lu, T. Zhou, G. Su et al., A cephalopod-inspired mechanoluminescence material with skin-like self-healing and sensing properties. Mater. Horiz. 6, 996–1004 (2019). https://doi.org/10.1039/C8MH01624K
N. Sun, Q. Ke, Y. Fang, Y. Chu, Z. Liu, A wearable dual-mode strain sensing yarn: based on the conductive carbon composites and mechanoluminescent layer with core-sheath structures. Mater. Res. Bull. 164, 112259 (2023). https://doi.org/10.1016/j.materresbull.2023.112259
G. Lin, M. Si, L. Wang, S. Wei, W. Lu et al., Dual-channel flexible strain sensors based on mechanofluorescent and conductive hydrogel laminates. Adv. Optical Mater. 10, 2102306 (2022). https://doi.org/10.1002/adom.202102306
K. Zhao, Y. Zhao, R. Qian, C. Ye, Y. Song, Recent advances in interactive mechanosensory electronics with luminescence/coloration outputs for wearable applications. ACS Mater. Lett. 5, 3093–3116 (2023). https://doi.org/10.1021/acsmaterialslett.3c00800
Z. Wang, Y. Dong, X. Sui, X. Shao, K. Li et al., An artificial intelligence-assisted microfluidic colorimetric wearable sensor system for monitoring of key tear biomarkers. npj Flex. Electron. 8, 35 (2024). https://doi.org/10.1038/s41528-024-00321-3