Quantum-Scale Friction at Solid–Liquid Interface: Simulation, Detection Techniques, Mechanisms, and Emerging Applications
Corresponding Author: Dameng Liu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 230
Abstract
Solid–liquid interfaces are ubiquitous in nature and engineering, and their frictional behavior remains a key factor limiting performance gains in surface engineering. However, conventional tribology has largely focused on the effect of macroscopic variables such as surface topography, which do not account for the microscopic essence of ultra-low-friction phenomena at the nanoscale. Recently, the role of quantum-scale excitations, such as electrons and phonons, in micro-/nanoscale solid–liquid friction has been increasingly emphasized. By using in situ detection techniques such as terahertz time-domain spectroscopy and non-contact atomic force microscopy, the quantum-scale friction has been observed. Its essence stems from the energy and momentum transfer induced by fluctuations in liquid charge density or electron or phonon excitations within solids. However, limited capabilities in simultaneously probing multiple physical quantities at sub-nanometer and femtosecond resolutions hinder a comprehensive understanding of the quantum origins and applications of solid–liquid interfacial friction. This review synthesizes the cutting-edge theories and experimental advances in quantum-scale solid–liquid friction and proposes a potential breakthrough path based on deep integration of simulation and experiment to address core gaps, including incomplete theoretical frameworks and constrained detection capabilities. Despite multidimensional challenges, quantum-scale friction research demonstrates substantial potential for transformative technologies, such as low-power nanofluidic devices, high-efficiency energy storage, intelligent drug delivery, and super-lubrication materials, underscoring its significance for the convergence of interfacial science, quantum mechanics, and micro/nanofluidics.
Highlights:
1 Reveals the quantum origin of solid liquid friction, governed by electron transfer, electron excitation, and electron-phonon coupling at interfaces.
2 Summarizes emerging characterization techniques and multiscale simulations that uncover quantum scale friction mechanisms beyond classical tribology.
3 Demonstrates the potential transformative applications of quantum scale interfacial friction in nano fluidics, energy harvesting, smart biomedical systems, and super lubrication.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Liu, L. Ma, Drag reduction methods at solid-liquid interfaces. Friction 10(4), 491–515 (2022). https://doi.org/10.1007/s40544-021-0502-8
- S. Sindagi, R. Vijayakumar, Succinct review of MBDR/BDR technique in reducing ship’s drag. Ships Offshore Struct. 16(9), 968–979 (2021). https://doi.org/10.1080/17445302.2020.1790296
- T. Lee, E. Charrault, C. Neto, Interfacial slip on rough, patterned and soft surfaces: a review of experiments and simulations. Adv. Colloid Interface Sci. 210, 21–38 (2014). https://doi.org/10.1016/j.cis.2014.02.015
- Y. Kurotani, H. Tanaka, A novel physical mechanism of liquid flow slippage on a solid surface. Sci. Adv. 6(13), eaaz0504 (2020). https://doi.org/10.1126/sciadv.aaz0504
- R. Wang, J. Chai, B. Luo, X. Liu, J. Zhang et al., A review on slip boundary conditions at the nanoscale: recent development and applications. Beilstein J. Nanotechnol. 12, 1237–1251 (2021). https://doi.org/10.3762/bjnano.12.91
- C. Vega-Sánchez, S. Peppou-Chapman, L. Zhu, C. Neto, Nanobubbles explain the large slip observed on lubricant-infused surfaces. Nat. Commun. 13(1), 351 (2022). https://doi.org/10.1038/s41467-022-28016-1
- Y. Wang, Y. Zhang, C. Tang, J. Yu, H. He et al., Solid/liquid interfacial friction and slip behaviors on roughness surface under applied voltage. Tribol. Int. 144, 106128 (2020). https://doi.org/10.1016/j.triboint.2019.106128
- D. Schäffel, K. Koynov, D. Vollmer, H.-J. Butt, C. Schönecker, Local flow field and slip length of superhydrophobic surfaces. Phys. Rev. Lett. 116(13), 134501 (2016). https://doi.org/10.1103/physrevlett.116.134501
- D. Jing, B. Bhushan, The coupling of surface charge and boundary slip at the solid–liquid interface and their combined effect on fluid drag: a review. J. Colloid Interface Sci. 454, 152–179 (2015). https://doi.org/10.1016/j.jcis.2015.05.015
- F.J. Peaudecerf, J.R. Landel, R.E. Goldstein, P. Luzzatto-Fegiz, Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces. Proc. Natl. Acad. Sci. U. S. A. 114(28), 7254–7259 (2017). https://doi.org/10.1073/pnas.1702469114
- D.S. Gluzdov, E.Y. Gatapova, A slip length analysis of microchannel flow with smooth and structured surfaces. Phys. Fluids 36(12), 122024 (2024). https://doi.org/10.1063/5.0243494
- L. Zhang, X. Wan, X. Zhou, Y. Cao, H. Duan et al., Pyramid-shaped superhydrophobic surfaces for underwater drag reduction. ACS Appl. Mater. Interfaces 16(33), 44319–44327 (2024). https://doi.org/10.1021/acsami.4c09631
- A.A. Shuvo, L.E. Paniagua-Guerra, J. Choi, S.H. Kim, B. Ramos-Alvarado, Hydrodynamic slip in nanoconfined flows: a review of experimental, computational, and theoretical progress. Nanoscale 17(2), 635–660 (2025). https://doi.org/10.1039/D4NR03697B
- J.-X. Xiang, Z. Liu, Observation of enhanced nanoscale creep flow of crystalline metals enabled by controlling surface wettability. Nat. Commun. 13, 7943 (2022). https://doi.org/10.1038/s41467-022-35703-6
- A.F. Payam, B. Kim, D. Lee, N. Bhalla, Unraveling the liquid gliding on vibrating solid liquid interfaces with dynamic nanoslip enactment. Nat. Commun. 13(1), 6608 (2022). https://doi.org/10.1038/s41467-022-34319-0
- A. Govind Rajan, M.S. Strano, D. Blankschtein, Liquids with lower wettability can exhibit higher friction on hexagonal boron nitride: the intriguing role of solid–liquid electrostatic interactions. Nano Lett. 19(3), 1539–1551 (2019). https://doi.org/10.1021/acs.nanolett.8b04335
- Y. Qi, W. Peng, W. Zhang, Y. Jing, L. Hu, Integrating electric double layer time-varying and dual interface slip for predicting migration behavior of moisture and ions. J. Mol. Liq. 390, 122977 (2023). https://doi.org/10.1016/j.molliq.2023.122977
- L. Zhang, D. Wang, Triboiontronics based on dynamic electric double layer regulation. Matter 6(11), 3698–3699 (2023). https://doi.org/10.1016/j.matt.2023.10.008
- G. Greenwood, J.M. Kim, Q. Zheng, S.M. Nahid, S. Nam et al., Effects of layering and supporting substrate on liquid slip at the single-layer graphene interface. ACS Nano 15(6), 10095–10106 (2021). https://doi.org/10.1021/acsnano.1c01884
- B. Fu, Y. Diao, R.M. Espinosa-Marzal, Nanoscale insight into the relation between pressure solution of calcite and interfacial friction. J. Colloid Interface Sci. 601, 254–264 (2021). https://doi.org/10.1016/j.jcis.2021.04.145
- X. Wen, T. Foller, X. Jin, T. Musso, P. Kumar et al., Understanding water transport through graphene-based nanochannels via experimental control of slip length. Nat. Commun. 13(1), 5690 (2022). https://doi.org/10.1038/s41467-022-33456-w
- M. Han, R.M. Espinosa-Marzal, Influence of water on structure, dynamics, and electrostatics of hydrophilic and hydrophobic ionic liquids in charged and hydrophilic confinement between Mica surfaces. ACS Appl. Mater. Interfaces 11(36), 33465–33477 (2019). https://doi.org/10.1021/acsami.9b10923
- C. Cottin-Bizonne, A. Steinberger, B. Cross, O. Raccurt, E. Charlaix, Nanohydrodynamics: the intrinsic flow boundary condition on smooth surfaces. Langmuir 24(4), 1165–1172 (2008). https://doi.org/10.1021/la7024044
- J. Krim, Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films. Adv. Phys. 61(3), 155–323 (2012). https://doi.org/10.1080/00018732.2012.706401
- L. Joly, C. Ybert, E. Trizac, L. Bocquet, Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics. J. Chem. Phys. 125(20), 204716 (2006). https://doi.org/10.1063/1.2397677
- J.A. de la Torre, D. Duque-Zumajo, D. Camargo, P. Español, Microscopic slip boundary conditions in unsteady fluid flows. Phys. Rev. Lett. 123(26), 264501 (2019). https://doi.org/10.1103/PhysRevLett.123.264501
- H. Li, Z. Xu, M. Ma, Temperature-dependent slip length for water and electrolyte solution. J. Colloid Interface Sci. 636, 512–517 (2023). https://doi.org/10.1016/j.jcis.2023.01.040
- F.-C. Wang, Y.-P. Zhao, Slip boundary conditions based on molecular kinetic theory: the critical shear stress and the energy dissipation at the liquid–solid interface. Soft Matter 7(18), 8628–8634 (2011). https://doi.org/10.1039/C1SM05543G
- T. Gao, J. Li, W. Wang, J. Luo, Extremely low friction on gold surface with surfactant molecules induced by surface potential. Friction 11(4), 513–523 (2023). https://doi.org/10.1007/s40544-022-0608-7
- Z. Liu, Y. Feng, L. Wang, Q. Liu, G. Liu, Electrokinetic energy conversion in the nanochannel coupled with surface charge and slip effects. Int. J. Heat Mass Transf. 204, 123874 (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2023.123874
- Y. Xie, L. Fu, T. Niehaus, L. Joly, Liquid-solid slip on charged walls: the dramatic impact of charge distribution. Phys. Rev. Lett. 125(1), 014501 (2020). https://doi.org/10.1103/PhysRevLett.125.014501
- F.L. Thiemann, C. Schran, P. Rowe, E.A. Müller, A. Michaelides, Water flow in single-wall nanotubes: oxygen makes it slip, hydrogen makes it stick. ACS Nano 16(7), 10775–10782 (2022). https://doi.org/10.1021/acsnano.2c02784
- M. Bilichenko, M. Iannuzzi, G. Tocci, Slip opacity and fast osmotic transport of hydrophobes at aqueous interfaces with two-dimensional materials. ACS Nano 18(35), 24118–24127 (2024). https://doi.org/10.1021/acsnano.4c05118
- J. Al Hossain, B. Kim, Unveiling unique ion transport mechanisms in nanopores beyond the continuum framework. Desalination 614, 119162 (2025). https://doi.org/10.1016/j.desal.2025.119162
- J. Al Hossain, B. Kim, The validity of the continuum modeling limit in a single pore flows to the molecular scale. Phys. Chem. Chem. Phys. 25(36), 24919–24929 (2023). https://doi.org/10.1039/d3cp02488a
- J. Al Hossain, B. Kim, Scale effect on simple liquid transport through a nanoporous graphene membrane. Langmuir 37(21), 6498–6509 (2021). https://doi.org/10.1021/acs.langmuir.1c00643
- S. Faucher, N. Aluru, M.Z. Bazant, D. Blankschtein, A.H. Brozena et al., Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective. J. Phys. Chem. C 123(35), 21309–21326 (2019). https://doi.org/10.1021/acs.jpcc.9b02178
- S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991). https://doi.org/10.1038/354056a0
- B. Corry, Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112(5), 1427–1434 (2008). https://doi.org/10.1021/jp709845u
- J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin et al., Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776), 1034–1037 (2006). https://doi.org/10.1126/science.1126298
- S. Cetindag, S.J. Park, S.F. Buchsbaum, Y. Zheng, M. Liu et al., Ion and hydrodynamic translucency in 1D van der Waals heterostructured boron-nitride single-walled carbon nanotubes. ACS Nano 18(1), 355–363 (2024). https://doi.org/10.1021/acsnano.3c07282
- K. Falk, F. Sedlmeier, L. Joly, R.R. Netz, L. Bocquet, Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10(10), 4067–4073 (2010). https://doi.org/10.1021/nl1021046
- M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Enhanced flow in carbon nanotubes. Nature 438(7064), 44 (2005). https://doi.org/10.1038/438044a
- E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria et al., Massive radius-dependent flow slippage in carbon nanotubes. Nature 537(7619), 210–213 (2016). https://doi.org/10.1038/nature19315
- A.L. Gorkina, A.P. Tsapenko, E.P. Gilshteyn, T.S. Koltsova, T.V. Larionova et al., Transparent and conductive hybrid graphene/carbon nanotube films. Carbon 100, 501–507 (2016). https://doi.org/10.1016/j.carbon.2016.01.035
- T. Knobloch, Y.Y. Illarionov, F. Ducry, C. Schleich, S. Wachter et al., The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4(2), 98–108 (2021). https://doi.org/10.1038/s41928-020-00529-x
- G. Tocci, L. Joly, A. Michaelides, Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 14(12), 6872–6877 (2014). https://doi.org/10.1021/nl502837d
- A. Keerthi, S. Goutham, Y. You, P. Iamprasertkun, R.A.W. Dryfe et al., Water friction in nanofluidic channels made from two-dimensional crystals. Nat. Commun. 12(1), 3092 (2021). https://doi.org/10.1038/s41467-021-23325-3
- N. Kavokine, M.-L. Bocquet, L. Bocquet, Fluctuation-induced quantum friction in nanoscale water flows. Nature 602(7895), 84–90 (2022). https://doi.org/10.1038/s41586-021-04284-7
- S. Lin, M. Zheng, J. Luo, Z.L. Wang, Effects of surface functional groups on electron transfer at liquid-solid interfacial contact electrification. ACS Nano 14(8), 10733–10741 (2020). https://doi.org/10.1021/acsnano.0c06075
- Z.L. Wang, A.C. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
- M. Zheng, S. Lin, L. Zhu, Z. Tang, Z.L. Wang, Effects of temperature on the tribovoltaic effect at liquid-solid interfaces. Adv. Mater. Interfaces 9(3), 2101757 (2022). https://doi.org/10.1002/admi.202101757
- M. Lizée, B. Coquinot, G. Mariette, A. Siria, L. Bocquet, Anomalous friction of supercooled glycerol on Mica. Nat. Commun. 15(1), 6129 (2024). https://doi.org/10.1038/s41467-024-50232-0
- L. Xie, L. Yin, Y. Liu, H. Liu, B. Lu et al., Interface engineering for efficient raindrop solar cell. ACS Nano 16(4), 5292–5302 (2022). https://doi.org/10.1021/acsnano.1c10211
- H. Zhang, K. Wang, J. Li, J. Li, R. Zhang et al., Liquid-based nanogenerator fabricated by a self-assembled fluoroalkyl monolayer with high charge density for energy harvesting. Matter 5(5), 1466–1480 (2022). https://doi.org/10.1016/j.matt.2022.02.013
- Y. Yan, T. Sun, H. Zhang, X. Ji, Y. Sun et al., Euryale ferox seed-inspired superlubricated nanops for treatment of osteoarthritis. Adv. Funct. Mater. 29(4), 1807559 (2019). https://doi.org/10.1002/adfm.201807559
- K. Zhou, Z. Xu, Nanoconfinement-enforced ion correlation and nanofluidic ion machinery. Nano Lett. 20(11), 8392–8398 (2020). https://doi.org/10.1021/acs.nanolett.0c03643
- F. Li, N. Li, S. Wang, L. Qiao, L. Yu et al., Self-repairing and damage-tolerant hydrogels for efficient solar-powered water purification and desalination. Adv. Funct. Mater. 31(40), 2104464 (2021). https://doi.org/10.1002/adfm.202104464
- Y. Sun, Y. Zheng, R. Wang, T. Lei, J. Liu et al., 3D micro-nanostructure based waterproof triboelectric nanogenerator as an outdoor adventure power source. Nano Energy 100, 107506 (2022). https://doi.org/10.1016/j.nanoen.2022.107506
- N. Kavokine, P. Robin, L. Bocquet, Interaction confinement and electronic screening in two-dimensional nanofluidic channels. J. Chem. Phys. 157(11), 114703 (2022). https://doi.org/10.1063/5.0102002
- K.D. Fong, B. Sumić, N. O’Neill, C. Schran, C.P. Grey et al., The interplay of solvation and polarization effects on ion pairing in nanoconfined electrolytes. Nano Lett. 24(16), 5024–5030 (2024). https://doi.org/10.1021/acs.nanolett.4c00890
- A.T. Bui, F.L. Thiemann, A. Michaelides, S.J. Cox, Classical quantum friction at water–carbon interfaces. Nano Lett. 23(2), 580–587 (2023). https://doi.org/10.1021/acs.nanolett.2c04187
- B. Coquinot, M. Becker, R.R. Netz, L. Bocquet, N. Kavokine, Collective modes and quantum effects in two-dimensional nanofluidic channels. Faraday Discuss. 249, 162–180 (2024). https://doi.org/10.1039/d3fd00115f
- J. Sun, X. Zhang, S. Du, J. Pu, Y. Wang et al., Charge density evolution governing interfacial friction. J. Am. Chem. Soc. 145(9), 5536–5544 (2023). https://doi.org/10.1021/jacs.3c00335
- Z. Sun, P. Ge, S. Chen, S. Huang, H. Xu et al., Friction tuning of interlayer exciton recombination in van der Waals heterostructures. Adv. Mater. 37(29), e2502986 (2025). https://doi.org/10.1002/adma.202502986
- K.J. Cho, S. Gim, H.-K. Lim, C. Kim, H. Kim, Water slippage on graphitic and metallic surfaces: impact of the surface packing structure and electron density tail. J. Phys. Chem. C 124(21), 11392–11400 (2020). https://doi.org/10.1021/acs.jpcc.0c00854
- M. Masuduzzaman, C. Bakli, M. Barisik, B. Kim, Anomalous water flow in sub-nanometer carbon nanoconfinement. Small (2025). https://doi.org/10.1002/smll.202508637
- M. Masuduzzaman, C. Bakli, M. Barisik, B. Kim, Redefining flow regimes in sub-nanometer carbon channels under life-scale confinement. Phys. Fluids 37(9), 092014 (2025). https://doi.org/10.1063/5.0284134
- S.W. Lee, B. Jeon, H. Lee, J.Y. Park, Hot electron phenomena at solid–liquid interfaces. J. Phys. Chem. Lett. 13(40), 9435–9448 (2022). https://doi.org/10.1021/acs.jpclett.2c02319
- B. Coquinot, N. Kavokine, Hydrodynamics beyond the wall. Nat. Mater. 23(8), 1021–1022 (2024). https://doi.org/10.1038/s41563-024-01954-5
- P. Ball, ‘Quantum plumbing’ at the nanoscale. Phys. World 37(5), 30–34 (2024). https://doi.org/10.1088/2058-7058/37/05/30
- T. Sato, R. Buchner, Dielectric relaxation processes in ethanol/water mixtures. J. Phys. Chem. A 108(23), 5007–5015 (2004). https://doi.org/10.1021/jp035255o
- M. Koeberg, C.-C. Wu, D. Kim, M. Bonn, THz dielectric relaxation of ionic liquid: water mixtures. Chem. Phys. Lett. 439(1–3), 60–64 (2007). https://doi.org/10.1016/j.cplett.2007.03.075
- N. Kavokine, R.R. Netz, L. Bocquet, Fluids at the nanoscale: from continuum to subcontinuum transport. Annu. Rev. Fluid Mech. 53, 377–410 (2021). https://doi.org/10.1146/annurev-fluid-071320-095958
- M. Koch, D.M. Mittleman, J. Ornik, E. Castro-Camus, Terahertz time-domain spectroscopy. Nature Rev. Methods Primers 3, 48 (2023). https://doi.org/10.1038/s43586-023-00232-z
- A.K. Singh, L.C. Doan, D. Lou, C. Wen, N.Q. Vinh, Interfacial layers between ion and water detected by terahertz spectroscopy. J. Chem. Phys. 157(5), 054501 (2022). https://doi.org/10.1063/5.0095932
- S. Pezzotti, A. Serva, F. Sebastiani, F.S. Brigiano, D.R. Galimberti et al., Molecular fingerprints of hydrophobicity at aqueous interfaces from theory and vibrational spectroscopies. J. Phys. Chem. Lett. 12(15), 3827–3836 (2021). https://doi.org/10.1021/acs.jpclett.1c00257
- K. Sääskilahti, J. Oksanen, J. Tulkki, S. Volz, Spectral mapping of heat transfer mechanisms at liquid-solid interfaces. Phys. Rev. E 93(5), 052141 (2016). https://doi.org/10.1103/PhysRevE.93.052141
- X. Yu, A. Principi, K.-J. Tielrooij, M. Bonn, N. Kavokine, Electron cooling in graphene enhanced by plasmon-hydron resonance. Nat. Nanotechnol. 18(8), 898–904 (2023). https://doi.org/10.1038/s41565-023-01421-3
- J. Peng, D. Cao, Z. He, J. Guo, P. Hapala et al., The effect of hydration number on the interfacial transport of sodium ions. Nature 557(7707), 701–705 (2018). https://doi.org/10.1038/s41586-018-0122-2
- J. Guo, Y. Jiang, Submolecular insights into interfacial water by hydrogen-sensitive scanning probe microscopy. Acc. Chem. Res. 55(12), 1680–1692 (2022). https://doi.org/10.1021/acs.accounts.2c00111
- D. Wu, Z. Zhao, B. Lin, Y. Song, J. Qi et al., Probing structural superlubricity of two-dimensional water transport with atomic resolution. Science 384(6701), 1254–1259 (2024). https://doi.org/10.1126/science.ado1544
- C. Wang, H. Liu, J. Wang, Y. Han, Z. Sun et al., Non-contact friction energy dissipation via hysteretic behavior on a graphite surface. Nanoscale Adv. 4(22), 4782–4788 (2022). https://doi.org/10.1039/d2na00459c
- C. Wang, R. Han, Y. Wang, S. Chen, H. Xu et al., Friction-induced ultrafast charge transfer in van der Waals heterostructures. Nano Res. 18(3), 94907247 (2025). https://doi.org/10.26599/nr.2025.94907247
- M. Lizée, A. Marcotte, B. Coquinot, N. Kavokine, K. Sobnath et al., Strong electronic winds blowing under liquid flows on carbon surfaces. Phys. Rev. X 13, 011020 (2023). https://doi.org/10.1103/physrevx.13.011020
- J. Yin, X. Li, J. Yu, Z. Zhang, J. Zhou et al., Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 9(5), 378–383 (2014). https://doi.org/10.1038/nnano.2014.56
- K. Ienaga, T. Iimori, K. Yaji, T. Miyamachi, S. Nakashima et al., Modulation of electron-phonon coupling in one-dimensionally nanorippled graphene on a macrofacet of 6H-SiC. Nano Lett. 17(6), 3527–3532 (2017). https://doi.org/10.1021/acs.nanolett.7b00606
- F. Schrodi, A. Aperis, P.M. Oppeneer, Cascade of replica bands in flat-band systems: predictions for twisted bilayer graphene. Phys. Rev. B 103(14), 144505 (2021). https://doi.org/10.1103/physrevb.103.144505
- J. Zhong, M.A. Alibakhshi, Q. Xie, J. Riordon, Y. Xu et al., Exploring anomalous fluid behavior at the nanoscale: direct visualization and quantification via nanofluidic devices. Acc. Chem. Res. 53(2), 347–357 (2020). https://doi.org/10.1021/acs.accounts.9b00411
- S. Lin, X. Chen, Z.L. Wang, The tribovoltaic effect and electron transfer at a liquid-semiconductor interface. Nano Energy 76, 105070 (2020). https://doi.org/10.1016/j.nanoen.2020.105070
- E. Secchi, A. Niguès, L. Jubin, A. Siria, L. Bocquet, Scaling behavior for ionic transport and its fluctuations in individual carbon nanotubes. Phys. Rev. Lett. 116(15), 154501 (2016). https://doi.org/10.1103/PhysRevLett.116.154501
- M.L. Jue, S.F. Buchsbaum, C. Chen, S.J. Park, E.R. Meshot et al., Ultra-permeable single-walled carbon nanotube membranes with exceptional performance at scale. Adv. Sci. 7(24), 2001670 (2020). https://doi.org/10.1002/advs.202001670
- Q. Xie, M.A. Alibakhshi, S. Jiao, Z. Xu, M. Hempel et al., Fast water transport in graphene nanofluidic channels. Nat. Nanotechnol. 13(3), 238–245 (2018). https://doi.org/10.1038/s41565-017-0031-9
- K. Gopinadhan, S. Hu, A. Esfandiar, M. Lozada-Hidalgo, F.C. Wang et al., Complete steric exclusion of ions and proton transport through confined monolayer water. Science 363(6423), 145–148 (2019). https://doi.org/10.1126/science.aau6771
- T. Mouterde, A. Keerthi, A.R. Poggioli, S.A. Dar, A. Siria et al., Molecular streaming and its voltage control in ångström-scale channels. Nature 567(7746), 87–90 (2019). https://doi.org/10.1038/s41586-019-0961-5
- H. Takeda, N. Iwamoto, M. Honda, M. Tanemura, I. Yamashita et al., Investigating the correlation between flow dynamics and flow-induced voltage generation. Appl. Phys. Lett. 125(18), 184101 (2024). https://doi.org/10.1063/5.0230115
- C. Yang, T. Su, Y. Hua, L. Zhang, Electrochemical scanning probe microscopies for artificial photosynthesis. Nano Res. 16(3), 4013–4028 (2023). https://doi.org/10.1007/s12274-022-5326-y
- S. Lin, L. Xu, A. Chi Wang, Z.L. Wang, Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nat. Commun. 11(1), 399 (2020). https://doi.org/10.1038/s41467-019-14278-9
- L. Collins, J.I. Kilpatrick, S.V. Kalinin, B.J. Rodriguez, Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: a review. Rep. Prog. Phys. 81(8), 086101 (2018). https://doi.org/10.1088/1361-6633/aab560
- J. Zhang, S. Lin, Z.L. Wang, Triboelectric nanogenerator array as a probe for in situ dynamic mapping of interface charge transfer at a liquid–solid contacting. ACS Nano 17(2), 1646–1652 (2023). https://doi.org/10.1021/acsnano.2c11633
- X. Zhou, Y. Ji, Z. Ni, J.G. Lopez, K. Peneva et al., Spontaneous charging from sliding water drops determines the interfacial deposition of charged solutes. Adv. Mater. 37(16), 2420263 (2025). https://doi.org/10.1002/adma.202420263
- X. Li, Z. Ni, X. Zhou, L.S. Bauer, D. Diaz et al., Surfactants screen slide electrification. Angew. Chem. Int. Ed. 64(31), e202423474 (2025). https://doi.org/10.1002/anie.202423474
- Y. Wang, T. Seki, X. Yu, C.-C. Yu, K.-Y. Chiang et al., Chemistry governs water organization at a graphene electrode. Nature 615(7950), E1–E2 (2023). https://doi.org/10.1038/s41586-022-05669-y
- G. Cui, Z. Xu, H. Li, S. Zhang, L. Xu et al., Enhanced osmotic transport in individual double-walled carbon nanotube. Nat. Commun. 14(1), 2295 (2023). https://doi.org/10.1038/s41467-023-37970-3
- B. Coquinot, L. Bocquet, N. Kavokine, Hydroelectric energy conversion of waste flows through hydroelectronic drag. Proc. Natl. Acad. Sci. U. S. A. 121(43), e2411613121 (2024). https://doi.org/10.1073/pnas.2411613121
- F. Yang, M. Wang, D. Zhang, J. Yang, M. Zheng et al., Chirality pure carbon nanotubes: growth, sorting, and characterization. Chem. Rev. 120(5), 2693–2758 (2020). https://doi.org/10.1021/acs.chemrev.9b00835
- H. Wang, B. Wang, X.-Y. Quek, L. Wei, J. Zhao et al., Selective synthesis of (9, 8) single walled carbon nanotubes on cobalt incorporated TUD-1 catalysts. J. Am. Chem. Soc. 132(47), 16747–16749 (2010). https://doi.org/10.1021/ja106937y
- H. Liu, B. Yang, C. Wang, Y. Han, D. Liu, The mechanisms and applications of friction energy dissipation. Friction 11(6), 839–864 (2023). https://doi.org/10.1007/s40544-022-0639-0
- J. Luo, Investigation on the origin of friction and superlubricity. Chin. Sci. Bull. 65(27), 2966–2978 (2020). https://doi.org/10.1360/tb-2020-0505
- H. Liu, C. Wang, Z. Zuo, D. Liu, J. Luo, Direct visualization of exciton transport in defective few-layer WS2 by ultrafast microscopy. Adv. Mater. 32(2), 1906540 (2020). https://doi.org/10.1002/adma.201906540
- F. Lapointe, M. Wolf, R.K. Campen, Y. Tong, Probing the birth and ultrafast dynamics of hydrated electrons at the gold/liquid water interface via an optoelectronic approach. J. Am. Chem. Soc. 142(43), 18619–18627 (2020). https://doi.org/10.1021/jacs.0c08289
- F. Buchner, T. Kirschbaum, A. Venerosy, H. Girard, J.-C. Arnault et al., Early dynamics of the emission of solvated electrons from nanodiamonds in water. Nanoscale 14(46), 17188–17195 (2022). https://doi.org/10.1039/D2NR03919B
- A. Al-Zubeidi, B. Ostovar, C.C. Carlin, B.C. Li, S.A. Lee et al., Mechanism for plasmon-generated solvated electrons. Proc. Natl. Acad. Sci. U. S. A. 120(3), e2217035120 (2023). https://doi.org/10.1073/pnas.2217035120
- Y. Wang, T. Seki, X. Liu, X. Yu, C.-C. Yu et al., Direct probe of electrochemical pseudocapacitive pH jump at a graphene electrode. Angew. Chem. Int. Ed. 62(10), e202216604 (2023). https://doi.org/10.1002/anie.202216604
- Y. Luo, A.-P. Pang, X. Lu, Liquid–solid interfaces under dynamic shear flow: recent insights into the interfacial slip. Langmuir 38(15), 4473–4482 (2022). https://doi.org/10.1021/acs.langmuir.2c00037
- S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith et al., Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10(5), 459–464 (2015). https://doi.org/10.1038/nnano.2015.37
- K.E. Karim, B. Kim, First law of thermodynamics on the boundary for flow through a carbon nanotube. Phys. Rev. E 103(5–1), 053115 (2021). https://doi.org/10.1103/PhysRevE.103.053115
- M. Masuduzzaman, B. Kim, Revealing molecular insights into surface charge and local viscosity in electroosmotic flows. Phys. Fluids 36(6), 062003 (2024). https://doi.org/10.1063/5.0205421
- A. Sam, R.P. Misra, S. Luo, T. Frömbgen, Beyond pairwise interactions: how interfacial polarization modulates water flow in graphene nanochannels. ACS Appl. Mater. Interfaces 17(34), 48919–48931 (2025). https://doi.org/10.1021/acsami.5c10054
- H. Li, W. Guo, Y. Guo, Impart of heterogeneous charge polarization and distribution on friction at water-graphene interfaces: a density-functional-theory based machine learning study. J. Phys. Chem. Lett. 15(25), 6585–6591 (2024). https://doi.org/10.1021/acs.jpclett.4c01274
- J. Lee, M. Atmeh, D. Berman, Effect of trapped water on the frictional behavior of graphene oxide layers sliding in water environment. Carbon 120, 11–16 (2017). https://doi.org/10.1016/j.carbon.2017.05.008
- L. An, G. Luo, J. Yang, J. Zhu, D. Wang, Charge distribution modulation of hollow flower-like tungsten doped nickel nitride for alkaline hydrogen oxidation. Chem. Eng. J. 486, 150272 (2024). https://doi.org/10.1016/j.cej.2024.150272
- S. Fang, H. Lu, W. Chu, W. Guo, Mechanism of water-evaporation-induced electricity beyond streaming potential. Nano Res. Energy 3(2), e9120108 (2024). https://doi.org/10.26599/nre.2024.9120108
- K. Wang, W. Xu, W. Zhang, X. Wang, X. Yang et al., Bio-inspired water-driven electricity generators: from fundamental mechanisms to practical applications. Nano Res. Energy 2, e9120042 (2023). https://doi.org/10.26599/nre.2023.9120042
- K. Dong, Y. Zhang, X. Fan, L.N.Y. Cao, X. Peng, Microfiber-based triboelectric acoustic sensors enable self-powered ultrasonic localization and tracking underwater. ACS Sens. 10(2), 1366–1377 (2025). https://doi.org/10.1021/acssensors.4c03283
- T. Liu, C. Xi, C. Dong, C. Cheng, J. Qin et al., Improving interfacial electron transfer via tuning work function of electrodes for electrocatalysis: from theory to experiment. J. Phys. Chem. C 123(46), 28319–28326 (2019). https://doi.org/10.1021/acs.jpcc.9b09875
- K. Xiao, W. Wang, K. Wang, H. Zhang, S. Dong et al., Improving triboelectric nanogenerators performance via interface tribological optimization: a review. Adv. Funct. Mater. 34(39), 2404744 (2024). https://doi.org/10.1002/adfm.202404744
- M. Sun, Q. Lu, Z.L. Wang, B. Huang, Understanding contact electrification at liquid-solid interfaces from surface electronic structure. Nat. Commun. 12(1), 1752 (2021). https://doi.org/10.1038/s41467-021-22005-6
- J. Lowell, A.C. Rose-Innes, Contact electrification. Adv. Phys. 29(6), 947–1023 (1980). https://doi.org/10.1080/00018738000101466
- S. Lin, C. Xu, L. Xu, Z.L. Wang, The overlapped electron-cloud model for electron transfer in contact electrification. Adv. Funct. Mater. 30(11), 1909724 (2020). https://doi.org/10.1002/adfm.201909724
- J. Meng, C. Pan, L. Li, Z.H. Guo, F. Xu et al., Durable flexible direct current generation through the tribovoltaic effect in contact-separation mode. Energy Environ. Sci. 15(12), 5159–5167 (2022). https://doi.org/10.1039/d2ee02762c
- S. Li, Z. Zhang, P. Peng, X. Li, Z.L. Wang et al., A green approach to induce and steer chemical reactions using inert solid dielectrics. Nano Energy 122, 109286 (2024). https://doi.org/10.1016/j.nanoen.2024.109286
- Y. Han, D. Liu, In situ probing of electron transfer at the dynamic MoS2/graphene–water interface for modulating boundary slip. Nano Res. 17(8), 7513–7521 (2024). https://doi.org/10.1007/s12274-024-6698-y
- Y. Xie, Q. You, W. Bo, T. Jiang, M. Zheng et al., Tribovoltaic effect at liquid–MoS2 interfaces and spectral analysis of interfacial charge transfer. Adv. Mater. 37(37), 2506186 (2025). https://doi.org/10.1002/adma.202506186
- W. Zhang, K. Matsuda, Y. Miyauchi, pH-dependent photoluminescence properties of monolayer transition-metal dichalcogenides immersed in an aqueous solution. J. Phys. Chem. C 122(24), 13175–13181 (2018). https://doi.org/10.1021/acs.jpcc.8b03427
- X. Zhang, Z. Shao, X. Zhang, Y. He, J. Jie, Surface charge transfer doping of low-dimensional nanostructures toward high-performance nanodevices. Adv. Mater. 28(47), 10409–10442 (2016). https://doi.org/10.1002/adma.201601966
- D. Kimura, S. Yotsuya, T. Yoshimura, N. Fujimura, D. Kiriya, Strong photoluminescence enhancement in molybdenum disulfide in aqueous media. Langmuir 38(43), 13048–13054 (2022). https://doi.org/10.1021/acs.langmuir.2c01601
- A. Tanoh, J. Alexander-Webber, J. Xiao, G. Delport, C.A. Williams et al., Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands. Nano Lett. 19(9), 6299–6307 (2019). https://doi.org/10.1021/acs.nanolett.9b02431
- D. Berman, A. Erdemir, A.V. Sumant, Approaches for achieving superlubricity in two-dimensional materials. ACS Nano 12(3), 2122–2137 (2018). https://doi.org/10.1021/acsnano.7b09046
- H. Liu, J. Wang, Y. Liu, Y. Wang, L. Xu et al., Visualizing ultrafast defect-controlled interlayer electron–phonon coupling in van der Waals heterostructures. Adv. Mater. 34(33), 2106955 (2022). https://doi.org/10.1002/adma.202106955
- M. Zheng, S. Lin, Z. Tang, Y. Feng, Z.L. Wang, Photovoltaic effect and tribovoltaic effect at liquid-semiconductor interface. Nano Energy 83, 105810 (2021). https://doi.org/10.1016/j.nanoen.2021.105810
- L. Woo, H. Kim, P. Young, How hot electron generation at the solid–liquid interface is different from the solid–gas interface. Nano Lett. 23(11), 5373–5380 (2023). https://doi.org/10.1021/acs.nanolett.3c00173
- B. Coquinot, A.T. Bui, D. Toquer, A. Michaelides, N. Kavokine et al., Momentum tunnelling between nanoscale liquid flows. Nat. Nanotechnol. 20(3), 397–403 (2025). https://doi.org/10.1038/s41565-024-01842-8
- G. Gonella, E.H.G. Backus, Y. Nagata, D.J. Bonthuis, P. Loche et al., Water at charged interfaces. Nat. Rev. Chem. 5(7), 466–485 (2021). https://doi.org/10.1038/s41570-021-00293-2
- L.S. Levitov, Van der Waals’ friction. Europhys. Lett. 8(6), 499–504 (1989). https://doi.org/10.1209/0295-5075/8/6/002
- B. Coquinot, L. Bocquet, N. Kavokine, Quantum feedback at the solid-liquid interface: flow-induced electronic current and its negative contribution to friction. Phys. Rev. X 13, 011019 (2023). https://doi.org/10.1103/physrevx.13.011019
- S. Succi, M. Lauricella, A. Montessori, Keldysh lattice Boltzmann approach to quantum nanofluidics. AIAA J. 63(4), 1330–1337 (2025). https://doi.org/10.2514/1.J064211
- M. Lee, R.L.C. Vink, C.A. Volkert, M. Krüger, Noncontact friction: role of phonon damping and its nonuniversality. Phys. Rev. B 104(17), 174309 (2021). https://doi.org/10.1103/physrevb.104.174309
- M.V.D. Prasad, B. Bhattacharya, Phononic origins of friction in carbon nanotube oscillators. Nano Lett. 17(4), 2131–2137 (2017). https://doi.org/10.1021/acs.nanolett.6b04310
- S. Huang, Y. Song, A. Hinaut, G. Navarro-Marín, Y. Chen et al., Moiré energy dissipation driven by nonlinear dynamics. ACS Nano 19(18), 17365–17373 (2025). https://doi.org/10.1021/acsnano.4c16817
- S. Huang, Z. Wei, Z. Duan, C. Sun, Y. Wang et al., Reexamination of damping in sliding friction. Phys. Rev. Lett. 132(5), 056203 (2024). https://doi.org/10.1103/PhysRevLett.132.056203
- C. Wang, R. Han, Y. Wang, S. Chen, H. Xu et al., Controlling friction energy dissipation by ultrafast interlayer electron-phonon coupling in WS2/graphene heterostructures. Nano Energy 132, 110371 (2024). https://doi.org/10.1016/j.nanoen.2024.110371
- P. Robin, L. Bocquet, Nanofluidics at the crossroads. J. Chem. Phys. 158(16), 160901 (2023). https://doi.org/10.1063/5.0143222
- T. Emmerich, N. Ronceray, K.V. Agrawal, S. Garaj, M. Kumar et al., Nanofluidics. Nat. Rev. Methods Primers 4, 69 (2024). https://doi.org/10.1038/s43586-024-00344-0
- M. Azimzadeh Sani, N.G. Pavlopoulos, S. Pezzotti, A. Serva, P. Cignoni et al., Unexpectedly high capacitance of the metal nanop/water interface: molecular-level insights into the electrical double layer. Angew. Chem. Int. Ed. 61(5), e202112679 (2022). https://doi.org/10.1002/anie.202112679
- N.R. Aluru, F. Aydin, M.Z. Bazant, D. Blankschtein, A.H. Brozena et al., Fluids and electrolytes under confinement in single-digit nanopores. Chem. Rev. 123(6), 2737–2831 (2023). https://doi.org/10.1021/acs.chemrev.2c00155
- L.M. Stancanelli, E. Secchi, M. Holzner, Magnetic fluid film enables almost complete drag reduction across laminar and turbulent flow regimes. Commun. Phys. 7, 30 (2024). https://doi.org/10.1038/s42005-023-01509-1
- N. Wang, Y. Liu, E. Ye, Z. Li, D. Wang, Contact electrification behaviors of solid–liquid interface: regulation, mechanisms, and applications. Adv. Energy Sustain. Res. 4(4), 2200186 (2023). https://doi.org/10.1002/aesr.202200186
- M. Ma, F. Grey, L. Shen, M. Urbakh, S. Wu et al., Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Nat. Nanotechnol. 10(8), 692–695 (2015). https://doi.org/10.1038/nnano.2015.134
- Z. Jiang, D. Stein, Charge regulation in nanopore ionic field-effect transistors. Phys. Rev. E 83(3), 031203 (2011). https://doi.org/10.1103/physreve.83.031203
- N. Kavokine, S. Marbach, A. Siria, L. Bocquet, Ionic Coulomb blockade as a fractional Wien effect. Nat. Nanotechnol. 14(6), 573–578 (2019). https://doi.org/10.1038/s41565-019-0425-y
- J. Feng, K. Liu, M. Graf, D. Dumcenco, A. Kis et al., Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 15(8), 850–855 (2016). https://doi.org/10.1038/nmat4607
- L. Liu, C. Yang, K. Zhao, J. Li, H.-C. Wu, Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nat. Commun. 4, 2989 (2013). https://doi.org/10.1038/ncomms3989
- A. Marcotte, T. Mouterde, A. Niguès, A. Siria, L. Bocquet, Mechanically activated ionic transport across single-digit carbon nanotubes. Nat. Mater. 19(10), 1057–1061 (2020). https://doi.org/10.1038/s41563-020-0726-4
- P. Robin, T. Emmerich, A. Ismail, A. Niguès, Y. You et al., Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379(6628), 161–167 (2023). https://doi.org/10.1126/science.adc9931
- J. Park, S. Song, Y. Yang, S.-H. Kwon, E. Sim et al., Identification of droplet-flow-induced electric energy on electrolyte–insulator–semiconductor structure. J. Am. Chem. Soc. 139(32), 10968–10971 (2017). https://doi.org/10.1021/jacs.7b05030
- L. Zhang, C. Liu, H. Cao, A.J. Erwin, D.D. Fong et al., Redox gating for colossal carrier modulation and unique phase control. Adv. Mater. 36(16), e2308871 (2024). https://doi.org/10.1002/adma.202308871
- X. Liang, S. Liu, S. Lin, H. Yang, T. Jiang et al., Liquid–solid triboelectric nanogenerator arrays based on dynamic electric-double-layer for harvesting water wave energy. Adv. Energy Mater. 13(24), 2300571 (2023). https://doi.org/10.1002/aenm.202300571
- S. Chakraborty, C. Bakli, D. Roy, A. Chaudhuri, A. Guha et al., Electrokinetic energy harvesting over nanometer and sub-nanometer scales. Appl. Phys. Rev. 12, 011305 (2025). https://doi.org/10.1063/5.0241150
- X. Li, Y. Zhou, Z. Li, H. Guo, Y. Gong et al., Vortex-induced vibration triboelectric nanogenerator for energy harvesting from low-frequency water flow. Energy Convers. Manage. 292, 117383 (2023). https://doi.org/10.1016/j.enconman.2023.117383
- Y. Zeng, Y. Luo, Y. Lu, X. Cao, Self-powered rain droplet sensor based on a liquid-solid triboelectric nanogenerator. Nano Energy 98, 107316 (2022). https://doi.org/10.1016/j.nanoen.2022.107316
- H. Qin, L. Xu, S. Lin, F. Zhan, K. Dong et al., Underwater energy harvesting and sensing by sweeping out the charges in an electric double layer using an oil droplet. Adv. Funct. Mater. 32(18), 2111662 (2022). https://doi.org/10.1002/adfm.202111662
- Y. Zheng, T. Liu, J. Wu, T. Xu, X. Wang et al., Energy conversion analysis of multilayered triboelectric nanogenerators for synergistic rain and solar energy harvesting. Adv. Mater. 34(28), 2202238 (2022). https://doi.org/10.1002/adma.202202238
- X. Li, G. Feng, Y. Chen, J. Li, J. Yin et al., Hybrid hydrovoltaic electricity generation driven by water evaporation. Nano Res. Energy 3(2), e9120110 (2024). https://doi.org/10.26599/nre.2024.9120110
- M. Lizée, A. Esfandiar, E. Panoni, A. Mischenko, P.-L. Taberna et al., Disentangling conduction pathways at the ionic–electronic interface in EMI-TFSI-covered graphene transistors. Proc. Natl. Acad. Sci. U. S. A. 122(17), e2426506122 (2025). https://doi.org/10.1073/pnas.2426506122
- Y. Dong, N. Wang, D. Yang, J. Wang, W. Lu et al., Robust solid-liquid triboelectric nanogenerators: mechanisms, strategies and applications. Adv. Funct. Mater. 33(22), 2300764 (2023). https://doi.org/10.1002/adfm.202300764
- Z. Song, X. Zhang, Z. Wang, T. Ren, W. Long et al., Nonintrusion monitoring of droplet motion state via liquid-solid contact electrification. ACS Nano 15(11), 18557–18565 (2021). https://doi.org/10.1021/acsnano.1c08691
- S. Hu, Z. Shi, R. Zheng, W. Ye, X. Gao et al., Superhydrophobic liquid–solid contact triboelectric nanogenerator as a droplet sensor for biomedical applications. ACS Appl. Mater. Interfaces 12(36), 40021–40030 (2020). https://doi.org/10.1021/acsami.0c10097
- W. Ma, J. Li, X. Qu, S.-E. Sun, Y. Zhou et al., Liquid-solid triboelectric nanogenerator-based DNA barcode detection biosensor for species identification. Adv. Sci. 12(4), 2408718 (2025). https://doi.org/10.1002/advs.202408718
- Y. Wang, Y. Guo, W. Guo, Ion-induced friction reduction in water nanoflow over graphene. Acta Mech. Solida Sin. 36(2), 214–220 (2023). https://doi.org/10.1007/s10338-022-00373-w
- Z. Zheng, Z. Guo, W. Liu, J. Luo, Low friction of superslippery and superlubricity: a review. Friction 11(7), 1121–1137 (2023). https://doi.org/10.1007/s40544-022-0659-9
- S. Luo, R.P. Misra, D. Blankschtein, Water electric field induced modulation of the wetting of hexagonal boron nitride: insights from multiscale modeling of many-body polarization. ACS Nano 18(2), 1629–1646 (2024). https://doi.org/10.1021/acsnano.3c09811
- A. Michaelides, Slippery when narrow. Nature 537(7619), 171–172 (2016). https://doi.org/10.1038/537171a
- J. Xing, H. Zhang, G. Wei, L. Du, S. Chen et al., Improving the performance of the lamellar reduced graphene oxide/molybdenum sulfide nanofiltration membrane through accelerated water-transport channels and capacitively enhanced charge density. Environ. Sci. Technol. 57(1), 615–625 (2023). https://doi.org/10.1021/acs.est.2c06697
- P.J. Ong, A. Priyadarshini, S.W. Tay, L. Hong, Affinity filtration by a coating of pyrolyzed fish scale colloids on microfibres for removing phenol/quinone compounds from alcohols. J. Environ. Chem. Eng. 9(5), 106097 (2021). https://doi.org/10.1016/j.jece.2021.106097
- T. Hu, W. Zhang, M. Wu, W. Tang, X. Chen et al., Ultralow friction of PEEK composites under seawater lubrication. J. Mater. Res. Technol. 30, 983–991 (2024). https://doi.org/10.1016/j.jmrt.2024.03.102
- D.U. Lee, D.W. Kim, S.Y. Lee, D.Y. Choi, S.Y. Choi et al., Amino acid-mediated negatively charged surface improve antifouling and tribological characteristics for medical applications. Colloids Surf. B Biointerfaces 211, 112314 (2022). https://doi.org/10.1016/j.colsurfb.2021.112314
References
M. Liu, L. Ma, Drag reduction methods at solid-liquid interfaces. Friction 10(4), 491–515 (2022). https://doi.org/10.1007/s40544-021-0502-8
S. Sindagi, R. Vijayakumar, Succinct review of MBDR/BDR technique in reducing ship’s drag. Ships Offshore Struct. 16(9), 968–979 (2021). https://doi.org/10.1080/17445302.2020.1790296
T. Lee, E. Charrault, C. Neto, Interfacial slip on rough, patterned and soft surfaces: a review of experiments and simulations. Adv. Colloid Interface Sci. 210, 21–38 (2014). https://doi.org/10.1016/j.cis.2014.02.015
Y. Kurotani, H. Tanaka, A novel physical mechanism of liquid flow slippage on a solid surface. Sci. Adv. 6(13), eaaz0504 (2020). https://doi.org/10.1126/sciadv.aaz0504
R. Wang, J. Chai, B. Luo, X. Liu, J. Zhang et al., A review on slip boundary conditions at the nanoscale: recent development and applications. Beilstein J. Nanotechnol. 12, 1237–1251 (2021). https://doi.org/10.3762/bjnano.12.91
C. Vega-Sánchez, S. Peppou-Chapman, L. Zhu, C. Neto, Nanobubbles explain the large slip observed on lubricant-infused surfaces. Nat. Commun. 13(1), 351 (2022). https://doi.org/10.1038/s41467-022-28016-1
Y. Wang, Y. Zhang, C. Tang, J. Yu, H. He et al., Solid/liquid interfacial friction and slip behaviors on roughness surface under applied voltage. Tribol. Int. 144, 106128 (2020). https://doi.org/10.1016/j.triboint.2019.106128
D. Schäffel, K. Koynov, D. Vollmer, H.-J. Butt, C. Schönecker, Local flow field and slip length of superhydrophobic surfaces. Phys. Rev. Lett. 116(13), 134501 (2016). https://doi.org/10.1103/physrevlett.116.134501
D. Jing, B. Bhushan, The coupling of surface charge and boundary slip at the solid–liquid interface and their combined effect on fluid drag: a review. J. Colloid Interface Sci. 454, 152–179 (2015). https://doi.org/10.1016/j.jcis.2015.05.015
F.J. Peaudecerf, J.R. Landel, R.E. Goldstein, P. Luzzatto-Fegiz, Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces. Proc. Natl. Acad. Sci. U. S. A. 114(28), 7254–7259 (2017). https://doi.org/10.1073/pnas.1702469114
D.S. Gluzdov, E.Y. Gatapova, A slip length analysis of microchannel flow with smooth and structured surfaces. Phys. Fluids 36(12), 122024 (2024). https://doi.org/10.1063/5.0243494
L. Zhang, X. Wan, X. Zhou, Y. Cao, H. Duan et al., Pyramid-shaped superhydrophobic surfaces for underwater drag reduction. ACS Appl. Mater. Interfaces 16(33), 44319–44327 (2024). https://doi.org/10.1021/acsami.4c09631
A.A. Shuvo, L.E. Paniagua-Guerra, J. Choi, S.H. Kim, B. Ramos-Alvarado, Hydrodynamic slip in nanoconfined flows: a review of experimental, computational, and theoretical progress. Nanoscale 17(2), 635–660 (2025). https://doi.org/10.1039/D4NR03697B
J.-X. Xiang, Z. Liu, Observation of enhanced nanoscale creep flow of crystalline metals enabled by controlling surface wettability. Nat. Commun. 13, 7943 (2022). https://doi.org/10.1038/s41467-022-35703-6
A.F. Payam, B. Kim, D. Lee, N. Bhalla, Unraveling the liquid gliding on vibrating solid liquid interfaces with dynamic nanoslip enactment. Nat. Commun. 13(1), 6608 (2022). https://doi.org/10.1038/s41467-022-34319-0
A. Govind Rajan, M.S. Strano, D. Blankschtein, Liquids with lower wettability can exhibit higher friction on hexagonal boron nitride: the intriguing role of solid–liquid electrostatic interactions. Nano Lett. 19(3), 1539–1551 (2019). https://doi.org/10.1021/acs.nanolett.8b04335
Y. Qi, W. Peng, W. Zhang, Y. Jing, L. Hu, Integrating electric double layer time-varying and dual interface slip for predicting migration behavior of moisture and ions. J. Mol. Liq. 390, 122977 (2023). https://doi.org/10.1016/j.molliq.2023.122977
L. Zhang, D. Wang, Triboiontronics based on dynamic electric double layer regulation. Matter 6(11), 3698–3699 (2023). https://doi.org/10.1016/j.matt.2023.10.008
G. Greenwood, J.M. Kim, Q. Zheng, S.M. Nahid, S. Nam et al., Effects of layering and supporting substrate on liquid slip at the single-layer graphene interface. ACS Nano 15(6), 10095–10106 (2021). https://doi.org/10.1021/acsnano.1c01884
B. Fu, Y. Diao, R.M. Espinosa-Marzal, Nanoscale insight into the relation between pressure solution of calcite and interfacial friction. J. Colloid Interface Sci. 601, 254–264 (2021). https://doi.org/10.1016/j.jcis.2021.04.145
X. Wen, T. Foller, X. Jin, T. Musso, P. Kumar et al., Understanding water transport through graphene-based nanochannels via experimental control of slip length. Nat. Commun. 13(1), 5690 (2022). https://doi.org/10.1038/s41467-022-33456-w
M. Han, R.M. Espinosa-Marzal, Influence of water on structure, dynamics, and electrostatics of hydrophilic and hydrophobic ionic liquids in charged and hydrophilic confinement between Mica surfaces. ACS Appl. Mater. Interfaces 11(36), 33465–33477 (2019). https://doi.org/10.1021/acsami.9b10923
C. Cottin-Bizonne, A. Steinberger, B. Cross, O. Raccurt, E. Charlaix, Nanohydrodynamics: the intrinsic flow boundary condition on smooth surfaces. Langmuir 24(4), 1165–1172 (2008). https://doi.org/10.1021/la7024044
J. Krim, Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films. Adv. Phys. 61(3), 155–323 (2012). https://doi.org/10.1080/00018732.2012.706401
L. Joly, C. Ybert, E. Trizac, L. Bocquet, Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics. J. Chem. Phys. 125(20), 204716 (2006). https://doi.org/10.1063/1.2397677
J.A. de la Torre, D. Duque-Zumajo, D. Camargo, P. Español, Microscopic slip boundary conditions in unsteady fluid flows. Phys. Rev. Lett. 123(26), 264501 (2019). https://doi.org/10.1103/PhysRevLett.123.264501
H. Li, Z. Xu, M. Ma, Temperature-dependent slip length for water and electrolyte solution. J. Colloid Interface Sci. 636, 512–517 (2023). https://doi.org/10.1016/j.jcis.2023.01.040
F.-C. Wang, Y.-P. Zhao, Slip boundary conditions based on molecular kinetic theory: the critical shear stress and the energy dissipation at the liquid–solid interface. Soft Matter 7(18), 8628–8634 (2011). https://doi.org/10.1039/C1SM05543G
T. Gao, J. Li, W. Wang, J. Luo, Extremely low friction on gold surface with surfactant molecules induced by surface potential. Friction 11(4), 513–523 (2023). https://doi.org/10.1007/s40544-022-0608-7
Z. Liu, Y. Feng, L. Wang, Q. Liu, G. Liu, Electrokinetic energy conversion in the nanochannel coupled with surface charge and slip effects. Int. J. Heat Mass Transf. 204, 123874 (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2023.123874
Y. Xie, L. Fu, T. Niehaus, L. Joly, Liquid-solid slip on charged walls: the dramatic impact of charge distribution. Phys. Rev. Lett. 125(1), 014501 (2020). https://doi.org/10.1103/PhysRevLett.125.014501
F.L. Thiemann, C. Schran, P. Rowe, E.A. Müller, A. Michaelides, Water flow in single-wall nanotubes: oxygen makes it slip, hydrogen makes it stick. ACS Nano 16(7), 10775–10782 (2022). https://doi.org/10.1021/acsnano.2c02784
M. Bilichenko, M. Iannuzzi, G. Tocci, Slip opacity and fast osmotic transport of hydrophobes at aqueous interfaces with two-dimensional materials. ACS Nano 18(35), 24118–24127 (2024). https://doi.org/10.1021/acsnano.4c05118
J. Al Hossain, B. Kim, Unveiling unique ion transport mechanisms in nanopores beyond the continuum framework. Desalination 614, 119162 (2025). https://doi.org/10.1016/j.desal.2025.119162
J. Al Hossain, B. Kim, The validity of the continuum modeling limit in a single pore flows to the molecular scale. Phys. Chem. Chem. Phys. 25(36), 24919–24929 (2023). https://doi.org/10.1039/d3cp02488a
J. Al Hossain, B. Kim, Scale effect on simple liquid transport through a nanoporous graphene membrane. Langmuir 37(21), 6498–6509 (2021). https://doi.org/10.1021/acs.langmuir.1c00643
S. Faucher, N. Aluru, M.Z. Bazant, D. Blankschtein, A.H. Brozena et al., Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective. J. Phys. Chem. C 123(35), 21309–21326 (2019). https://doi.org/10.1021/acs.jpcc.9b02178
S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991). https://doi.org/10.1038/354056a0
B. Corry, Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112(5), 1427–1434 (2008). https://doi.org/10.1021/jp709845u
J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin et al., Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776), 1034–1037 (2006). https://doi.org/10.1126/science.1126298
S. Cetindag, S.J. Park, S.F. Buchsbaum, Y. Zheng, M. Liu et al., Ion and hydrodynamic translucency in 1D van der Waals heterostructured boron-nitride single-walled carbon nanotubes. ACS Nano 18(1), 355–363 (2024). https://doi.org/10.1021/acsnano.3c07282
K. Falk, F. Sedlmeier, L. Joly, R.R. Netz, L. Bocquet, Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10(10), 4067–4073 (2010). https://doi.org/10.1021/nl1021046
M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Enhanced flow in carbon nanotubes. Nature 438(7064), 44 (2005). https://doi.org/10.1038/438044a
E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria et al., Massive radius-dependent flow slippage in carbon nanotubes. Nature 537(7619), 210–213 (2016). https://doi.org/10.1038/nature19315
A.L. Gorkina, A.P. Tsapenko, E.P. Gilshteyn, T.S. Koltsova, T.V. Larionova et al., Transparent and conductive hybrid graphene/carbon nanotube films. Carbon 100, 501–507 (2016). https://doi.org/10.1016/j.carbon.2016.01.035
T. Knobloch, Y.Y. Illarionov, F. Ducry, C. Schleich, S. Wachter et al., The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4(2), 98–108 (2021). https://doi.org/10.1038/s41928-020-00529-x
G. Tocci, L. Joly, A. Michaelides, Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 14(12), 6872–6877 (2014). https://doi.org/10.1021/nl502837d
A. Keerthi, S. Goutham, Y. You, P. Iamprasertkun, R.A.W. Dryfe et al., Water friction in nanofluidic channels made from two-dimensional crystals. Nat. Commun. 12(1), 3092 (2021). https://doi.org/10.1038/s41467-021-23325-3
N. Kavokine, M.-L. Bocquet, L. Bocquet, Fluctuation-induced quantum friction in nanoscale water flows. Nature 602(7895), 84–90 (2022). https://doi.org/10.1038/s41586-021-04284-7
S. Lin, M. Zheng, J. Luo, Z.L. Wang, Effects of surface functional groups on electron transfer at liquid-solid interfacial contact electrification. ACS Nano 14(8), 10733–10741 (2020). https://doi.org/10.1021/acsnano.0c06075
Z.L. Wang, A.C. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
M. Zheng, S. Lin, L. Zhu, Z. Tang, Z.L. Wang, Effects of temperature on the tribovoltaic effect at liquid-solid interfaces. Adv. Mater. Interfaces 9(3), 2101757 (2022). https://doi.org/10.1002/admi.202101757
M. Lizée, B. Coquinot, G. Mariette, A. Siria, L. Bocquet, Anomalous friction of supercooled glycerol on Mica. Nat. Commun. 15(1), 6129 (2024). https://doi.org/10.1038/s41467-024-50232-0
L. Xie, L. Yin, Y. Liu, H. Liu, B. Lu et al., Interface engineering for efficient raindrop solar cell. ACS Nano 16(4), 5292–5302 (2022). https://doi.org/10.1021/acsnano.1c10211
H. Zhang, K. Wang, J. Li, J. Li, R. Zhang et al., Liquid-based nanogenerator fabricated by a self-assembled fluoroalkyl monolayer with high charge density for energy harvesting. Matter 5(5), 1466–1480 (2022). https://doi.org/10.1016/j.matt.2022.02.013
Y. Yan, T. Sun, H. Zhang, X. Ji, Y. Sun et al., Euryale ferox seed-inspired superlubricated nanops for treatment of osteoarthritis. Adv. Funct. Mater. 29(4), 1807559 (2019). https://doi.org/10.1002/adfm.201807559
K. Zhou, Z. Xu, Nanoconfinement-enforced ion correlation and nanofluidic ion machinery. Nano Lett. 20(11), 8392–8398 (2020). https://doi.org/10.1021/acs.nanolett.0c03643
F. Li, N. Li, S. Wang, L. Qiao, L. Yu et al., Self-repairing and damage-tolerant hydrogels for efficient solar-powered water purification and desalination. Adv. Funct. Mater. 31(40), 2104464 (2021). https://doi.org/10.1002/adfm.202104464
Y. Sun, Y. Zheng, R. Wang, T. Lei, J. Liu et al., 3D micro-nanostructure based waterproof triboelectric nanogenerator as an outdoor adventure power source. Nano Energy 100, 107506 (2022). https://doi.org/10.1016/j.nanoen.2022.107506
N. Kavokine, P. Robin, L. Bocquet, Interaction confinement and electronic screening in two-dimensional nanofluidic channels. J. Chem. Phys. 157(11), 114703 (2022). https://doi.org/10.1063/5.0102002
K.D. Fong, B. Sumić, N. O’Neill, C. Schran, C.P. Grey et al., The interplay of solvation and polarization effects on ion pairing in nanoconfined electrolytes. Nano Lett. 24(16), 5024–5030 (2024). https://doi.org/10.1021/acs.nanolett.4c00890
A.T. Bui, F.L. Thiemann, A. Michaelides, S.J. Cox, Classical quantum friction at water–carbon interfaces. Nano Lett. 23(2), 580–587 (2023). https://doi.org/10.1021/acs.nanolett.2c04187
B. Coquinot, M. Becker, R.R. Netz, L. Bocquet, N. Kavokine, Collective modes and quantum effects in two-dimensional nanofluidic channels. Faraday Discuss. 249, 162–180 (2024). https://doi.org/10.1039/d3fd00115f
J. Sun, X. Zhang, S. Du, J. Pu, Y. Wang et al., Charge density evolution governing interfacial friction. J. Am. Chem. Soc. 145(9), 5536–5544 (2023). https://doi.org/10.1021/jacs.3c00335
Z. Sun, P. Ge, S. Chen, S. Huang, H. Xu et al., Friction tuning of interlayer exciton recombination in van der Waals heterostructures. Adv. Mater. 37(29), e2502986 (2025). https://doi.org/10.1002/adma.202502986
K.J. Cho, S. Gim, H.-K. Lim, C. Kim, H. Kim, Water slippage on graphitic and metallic surfaces: impact of the surface packing structure and electron density tail. J. Phys. Chem. C 124(21), 11392–11400 (2020). https://doi.org/10.1021/acs.jpcc.0c00854
M. Masuduzzaman, C. Bakli, M. Barisik, B. Kim, Anomalous water flow in sub-nanometer carbon nanoconfinement. Small (2025). https://doi.org/10.1002/smll.202508637
M. Masuduzzaman, C. Bakli, M. Barisik, B. Kim, Redefining flow regimes in sub-nanometer carbon channels under life-scale confinement. Phys. Fluids 37(9), 092014 (2025). https://doi.org/10.1063/5.0284134
S.W. Lee, B. Jeon, H. Lee, J.Y. Park, Hot electron phenomena at solid–liquid interfaces. J. Phys. Chem. Lett. 13(40), 9435–9448 (2022). https://doi.org/10.1021/acs.jpclett.2c02319
B. Coquinot, N. Kavokine, Hydrodynamics beyond the wall. Nat. Mater. 23(8), 1021–1022 (2024). https://doi.org/10.1038/s41563-024-01954-5
P. Ball, ‘Quantum plumbing’ at the nanoscale. Phys. World 37(5), 30–34 (2024). https://doi.org/10.1088/2058-7058/37/05/30
T. Sato, R. Buchner, Dielectric relaxation processes in ethanol/water mixtures. J. Phys. Chem. A 108(23), 5007–5015 (2004). https://doi.org/10.1021/jp035255o
M. Koeberg, C.-C. Wu, D. Kim, M. Bonn, THz dielectric relaxation of ionic liquid: water mixtures. Chem. Phys. Lett. 439(1–3), 60–64 (2007). https://doi.org/10.1016/j.cplett.2007.03.075
N. Kavokine, R.R. Netz, L. Bocquet, Fluids at the nanoscale: from continuum to subcontinuum transport. Annu. Rev. Fluid Mech. 53, 377–410 (2021). https://doi.org/10.1146/annurev-fluid-071320-095958
M. Koch, D.M. Mittleman, J. Ornik, E. Castro-Camus, Terahertz time-domain spectroscopy. Nature Rev. Methods Primers 3, 48 (2023). https://doi.org/10.1038/s43586-023-00232-z
A.K. Singh, L.C. Doan, D. Lou, C. Wen, N.Q. Vinh, Interfacial layers between ion and water detected by terahertz spectroscopy. J. Chem. Phys. 157(5), 054501 (2022). https://doi.org/10.1063/5.0095932
S. Pezzotti, A. Serva, F. Sebastiani, F.S. Brigiano, D.R. Galimberti et al., Molecular fingerprints of hydrophobicity at aqueous interfaces from theory and vibrational spectroscopies. J. Phys. Chem. Lett. 12(15), 3827–3836 (2021). https://doi.org/10.1021/acs.jpclett.1c00257
K. Sääskilahti, J. Oksanen, J. Tulkki, S. Volz, Spectral mapping of heat transfer mechanisms at liquid-solid interfaces. Phys. Rev. E 93(5), 052141 (2016). https://doi.org/10.1103/PhysRevE.93.052141
X. Yu, A. Principi, K.-J. Tielrooij, M. Bonn, N. Kavokine, Electron cooling in graphene enhanced by plasmon-hydron resonance. Nat. Nanotechnol. 18(8), 898–904 (2023). https://doi.org/10.1038/s41565-023-01421-3
J. Peng, D. Cao, Z. He, J. Guo, P. Hapala et al., The effect of hydration number on the interfacial transport of sodium ions. Nature 557(7707), 701–705 (2018). https://doi.org/10.1038/s41586-018-0122-2
J. Guo, Y. Jiang, Submolecular insights into interfacial water by hydrogen-sensitive scanning probe microscopy. Acc. Chem. Res. 55(12), 1680–1692 (2022). https://doi.org/10.1021/acs.accounts.2c00111
D. Wu, Z. Zhao, B. Lin, Y. Song, J. Qi et al., Probing structural superlubricity of two-dimensional water transport with atomic resolution. Science 384(6701), 1254–1259 (2024). https://doi.org/10.1126/science.ado1544
C. Wang, H. Liu, J. Wang, Y. Han, Z. Sun et al., Non-contact friction energy dissipation via hysteretic behavior on a graphite surface. Nanoscale Adv. 4(22), 4782–4788 (2022). https://doi.org/10.1039/d2na00459c
C. Wang, R. Han, Y. Wang, S. Chen, H. Xu et al., Friction-induced ultrafast charge transfer in van der Waals heterostructures. Nano Res. 18(3), 94907247 (2025). https://doi.org/10.26599/nr.2025.94907247
M. Lizée, A. Marcotte, B. Coquinot, N. Kavokine, K. Sobnath et al., Strong electronic winds blowing under liquid flows on carbon surfaces. Phys. Rev. X 13, 011020 (2023). https://doi.org/10.1103/physrevx.13.011020
J. Yin, X. Li, J. Yu, Z. Zhang, J. Zhou et al., Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 9(5), 378–383 (2014). https://doi.org/10.1038/nnano.2014.56
K. Ienaga, T. Iimori, K. Yaji, T. Miyamachi, S. Nakashima et al., Modulation of electron-phonon coupling in one-dimensionally nanorippled graphene on a macrofacet of 6H-SiC. Nano Lett. 17(6), 3527–3532 (2017). https://doi.org/10.1021/acs.nanolett.7b00606
F. Schrodi, A. Aperis, P.M. Oppeneer, Cascade of replica bands in flat-band systems: predictions for twisted bilayer graphene. Phys. Rev. B 103(14), 144505 (2021). https://doi.org/10.1103/physrevb.103.144505
J. Zhong, M.A. Alibakhshi, Q. Xie, J. Riordon, Y. Xu et al., Exploring anomalous fluid behavior at the nanoscale: direct visualization and quantification via nanofluidic devices. Acc. Chem. Res. 53(2), 347–357 (2020). https://doi.org/10.1021/acs.accounts.9b00411
S. Lin, X. Chen, Z.L. Wang, The tribovoltaic effect and electron transfer at a liquid-semiconductor interface. Nano Energy 76, 105070 (2020). https://doi.org/10.1016/j.nanoen.2020.105070
E. Secchi, A. Niguès, L. Jubin, A. Siria, L. Bocquet, Scaling behavior for ionic transport and its fluctuations in individual carbon nanotubes. Phys. Rev. Lett. 116(15), 154501 (2016). https://doi.org/10.1103/PhysRevLett.116.154501
M.L. Jue, S.F. Buchsbaum, C. Chen, S.J. Park, E.R. Meshot et al., Ultra-permeable single-walled carbon nanotube membranes with exceptional performance at scale. Adv. Sci. 7(24), 2001670 (2020). https://doi.org/10.1002/advs.202001670
Q. Xie, M.A. Alibakhshi, S. Jiao, Z. Xu, M. Hempel et al., Fast water transport in graphene nanofluidic channels. Nat. Nanotechnol. 13(3), 238–245 (2018). https://doi.org/10.1038/s41565-017-0031-9
K. Gopinadhan, S. Hu, A. Esfandiar, M. Lozada-Hidalgo, F.C. Wang et al., Complete steric exclusion of ions and proton transport through confined monolayer water. Science 363(6423), 145–148 (2019). https://doi.org/10.1126/science.aau6771
T. Mouterde, A. Keerthi, A.R. Poggioli, S.A. Dar, A. Siria et al., Molecular streaming and its voltage control in ångström-scale channels. Nature 567(7746), 87–90 (2019). https://doi.org/10.1038/s41586-019-0961-5
H. Takeda, N. Iwamoto, M. Honda, M. Tanemura, I. Yamashita et al., Investigating the correlation between flow dynamics and flow-induced voltage generation. Appl. Phys. Lett. 125(18), 184101 (2024). https://doi.org/10.1063/5.0230115
C. Yang, T. Su, Y. Hua, L. Zhang, Electrochemical scanning probe microscopies for artificial photosynthesis. Nano Res. 16(3), 4013–4028 (2023). https://doi.org/10.1007/s12274-022-5326-y
S. Lin, L. Xu, A. Chi Wang, Z.L. Wang, Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nat. Commun. 11(1), 399 (2020). https://doi.org/10.1038/s41467-019-14278-9
L. Collins, J.I. Kilpatrick, S.V. Kalinin, B.J. Rodriguez, Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: a review. Rep. Prog. Phys. 81(8), 086101 (2018). https://doi.org/10.1088/1361-6633/aab560
J. Zhang, S. Lin, Z.L. Wang, Triboelectric nanogenerator array as a probe for in situ dynamic mapping of interface charge transfer at a liquid–solid contacting. ACS Nano 17(2), 1646–1652 (2023). https://doi.org/10.1021/acsnano.2c11633
X. Zhou, Y. Ji, Z. Ni, J.G. Lopez, K. Peneva et al., Spontaneous charging from sliding water drops determines the interfacial deposition of charged solutes. Adv. Mater. 37(16), 2420263 (2025). https://doi.org/10.1002/adma.202420263
X. Li, Z. Ni, X. Zhou, L.S. Bauer, D. Diaz et al., Surfactants screen slide electrification. Angew. Chem. Int. Ed. 64(31), e202423474 (2025). https://doi.org/10.1002/anie.202423474
Y. Wang, T. Seki, X. Yu, C.-C. Yu, K.-Y. Chiang et al., Chemistry governs water organization at a graphene electrode. Nature 615(7950), E1–E2 (2023). https://doi.org/10.1038/s41586-022-05669-y
G. Cui, Z. Xu, H. Li, S. Zhang, L. Xu et al., Enhanced osmotic transport in individual double-walled carbon nanotube. Nat. Commun. 14(1), 2295 (2023). https://doi.org/10.1038/s41467-023-37970-3
B. Coquinot, L. Bocquet, N. Kavokine, Hydroelectric energy conversion of waste flows through hydroelectronic drag. Proc. Natl. Acad. Sci. U. S. A. 121(43), e2411613121 (2024). https://doi.org/10.1073/pnas.2411613121
F. Yang, M. Wang, D. Zhang, J. Yang, M. Zheng et al., Chirality pure carbon nanotubes: growth, sorting, and characterization. Chem. Rev. 120(5), 2693–2758 (2020). https://doi.org/10.1021/acs.chemrev.9b00835
H. Wang, B. Wang, X.-Y. Quek, L. Wei, J. Zhao et al., Selective synthesis of (9, 8) single walled carbon nanotubes on cobalt incorporated TUD-1 catalysts. J. Am. Chem. Soc. 132(47), 16747–16749 (2010). https://doi.org/10.1021/ja106937y
H. Liu, B. Yang, C. Wang, Y. Han, D. Liu, The mechanisms and applications of friction energy dissipation. Friction 11(6), 839–864 (2023). https://doi.org/10.1007/s40544-022-0639-0
J. Luo, Investigation on the origin of friction and superlubricity. Chin. Sci. Bull. 65(27), 2966–2978 (2020). https://doi.org/10.1360/tb-2020-0505
H. Liu, C. Wang, Z. Zuo, D. Liu, J. Luo, Direct visualization of exciton transport in defective few-layer WS2 by ultrafast microscopy. Adv. Mater. 32(2), 1906540 (2020). https://doi.org/10.1002/adma.201906540
F. Lapointe, M. Wolf, R.K. Campen, Y. Tong, Probing the birth and ultrafast dynamics of hydrated electrons at the gold/liquid water interface via an optoelectronic approach. J. Am. Chem. Soc. 142(43), 18619–18627 (2020). https://doi.org/10.1021/jacs.0c08289
F. Buchner, T. Kirschbaum, A. Venerosy, H. Girard, J.-C. Arnault et al., Early dynamics of the emission of solvated electrons from nanodiamonds in water. Nanoscale 14(46), 17188–17195 (2022). https://doi.org/10.1039/D2NR03919B
A. Al-Zubeidi, B. Ostovar, C.C. Carlin, B.C. Li, S.A. Lee et al., Mechanism for plasmon-generated solvated electrons. Proc. Natl. Acad. Sci. U. S. A. 120(3), e2217035120 (2023). https://doi.org/10.1073/pnas.2217035120
Y. Wang, T. Seki, X. Liu, X. Yu, C.-C. Yu et al., Direct probe of electrochemical pseudocapacitive pH jump at a graphene electrode. Angew. Chem. Int. Ed. 62(10), e202216604 (2023). https://doi.org/10.1002/anie.202216604
Y. Luo, A.-P. Pang, X. Lu, Liquid–solid interfaces under dynamic shear flow: recent insights into the interfacial slip. Langmuir 38(15), 4473–4482 (2022). https://doi.org/10.1021/acs.langmuir.2c00037
S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith et al., Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10(5), 459–464 (2015). https://doi.org/10.1038/nnano.2015.37
K.E. Karim, B. Kim, First law of thermodynamics on the boundary for flow through a carbon nanotube. Phys. Rev. E 103(5–1), 053115 (2021). https://doi.org/10.1103/PhysRevE.103.053115
M. Masuduzzaman, B. Kim, Revealing molecular insights into surface charge and local viscosity in electroosmotic flows. Phys. Fluids 36(6), 062003 (2024). https://doi.org/10.1063/5.0205421
A. Sam, R.P. Misra, S. Luo, T. Frömbgen, Beyond pairwise interactions: how interfacial polarization modulates water flow in graphene nanochannels. ACS Appl. Mater. Interfaces 17(34), 48919–48931 (2025). https://doi.org/10.1021/acsami.5c10054
H. Li, W. Guo, Y. Guo, Impart of heterogeneous charge polarization and distribution on friction at water-graphene interfaces: a density-functional-theory based machine learning study. J. Phys. Chem. Lett. 15(25), 6585–6591 (2024). https://doi.org/10.1021/acs.jpclett.4c01274
J. Lee, M. Atmeh, D. Berman, Effect of trapped water on the frictional behavior of graphene oxide layers sliding in water environment. Carbon 120, 11–16 (2017). https://doi.org/10.1016/j.carbon.2017.05.008
L. An, G. Luo, J. Yang, J. Zhu, D. Wang, Charge distribution modulation of hollow flower-like tungsten doped nickel nitride for alkaline hydrogen oxidation. Chem. Eng. J. 486, 150272 (2024). https://doi.org/10.1016/j.cej.2024.150272
S. Fang, H. Lu, W. Chu, W. Guo, Mechanism of water-evaporation-induced electricity beyond streaming potential. Nano Res. Energy 3(2), e9120108 (2024). https://doi.org/10.26599/nre.2024.9120108
K. Wang, W. Xu, W. Zhang, X. Wang, X. Yang et al., Bio-inspired water-driven electricity generators: from fundamental mechanisms to practical applications. Nano Res. Energy 2, e9120042 (2023). https://doi.org/10.26599/nre.2023.9120042
K. Dong, Y. Zhang, X. Fan, L.N.Y. Cao, X. Peng, Microfiber-based triboelectric acoustic sensors enable self-powered ultrasonic localization and tracking underwater. ACS Sens. 10(2), 1366–1377 (2025). https://doi.org/10.1021/acssensors.4c03283
T. Liu, C. Xi, C. Dong, C. Cheng, J. Qin et al., Improving interfacial electron transfer via tuning work function of electrodes for electrocatalysis: from theory to experiment. J. Phys. Chem. C 123(46), 28319–28326 (2019). https://doi.org/10.1021/acs.jpcc.9b09875
K. Xiao, W. Wang, K. Wang, H. Zhang, S. Dong et al., Improving triboelectric nanogenerators performance via interface tribological optimization: a review. Adv. Funct. Mater. 34(39), 2404744 (2024). https://doi.org/10.1002/adfm.202404744
M. Sun, Q. Lu, Z.L. Wang, B. Huang, Understanding contact electrification at liquid-solid interfaces from surface electronic structure. Nat. Commun. 12(1), 1752 (2021). https://doi.org/10.1038/s41467-021-22005-6
J. Lowell, A.C. Rose-Innes, Contact electrification. Adv. Phys. 29(6), 947–1023 (1980). https://doi.org/10.1080/00018738000101466
S. Lin, C. Xu, L. Xu, Z.L. Wang, The overlapped electron-cloud model for electron transfer in contact electrification. Adv. Funct. Mater. 30(11), 1909724 (2020). https://doi.org/10.1002/adfm.201909724
J. Meng, C. Pan, L. Li, Z.H. Guo, F. Xu et al., Durable flexible direct current generation through the tribovoltaic effect in contact-separation mode. Energy Environ. Sci. 15(12), 5159–5167 (2022). https://doi.org/10.1039/d2ee02762c
S. Li, Z. Zhang, P. Peng, X. Li, Z.L. Wang et al., A green approach to induce and steer chemical reactions using inert solid dielectrics. Nano Energy 122, 109286 (2024). https://doi.org/10.1016/j.nanoen.2024.109286
Y. Han, D. Liu, In situ probing of electron transfer at the dynamic MoS2/graphene–water interface for modulating boundary slip. Nano Res. 17(8), 7513–7521 (2024). https://doi.org/10.1007/s12274-024-6698-y
Y. Xie, Q. You, W. Bo, T. Jiang, M. Zheng et al., Tribovoltaic effect at liquid–MoS2 interfaces and spectral analysis of interfacial charge transfer. Adv. Mater. 37(37), 2506186 (2025). https://doi.org/10.1002/adma.202506186
W. Zhang, K. Matsuda, Y. Miyauchi, pH-dependent photoluminescence properties of monolayer transition-metal dichalcogenides immersed in an aqueous solution. J. Phys. Chem. C 122(24), 13175–13181 (2018). https://doi.org/10.1021/acs.jpcc.8b03427
X. Zhang, Z. Shao, X. Zhang, Y. He, J. Jie, Surface charge transfer doping of low-dimensional nanostructures toward high-performance nanodevices. Adv. Mater. 28(47), 10409–10442 (2016). https://doi.org/10.1002/adma.201601966
D. Kimura, S. Yotsuya, T. Yoshimura, N. Fujimura, D. Kiriya, Strong photoluminescence enhancement in molybdenum disulfide in aqueous media. Langmuir 38(43), 13048–13054 (2022). https://doi.org/10.1021/acs.langmuir.2c01601
A. Tanoh, J. Alexander-Webber, J. Xiao, G. Delport, C.A. Williams et al., Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands. Nano Lett. 19(9), 6299–6307 (2019). https://doi.org/10.1021/acs.nanolett.9b02431
D. Berman, A. Erdemir, A.V. Sumant, Approaches for achieving superlubricity in two-dimensional materials. ACS Nano 12(3), 2122–2137 (2018). https://doi.org/10.1021/acsnano.7b09046
H. Liu, J. Wang, Y. Liu, Y. Wang, L. Xu et al., Visualizing ultrafast defect-controlled interlayer electron–phonon coupling in van der Waals heterostructures. Adv. Mater. 34(33), 2106955 (2022). https://doi.org/10.1002/adma.202106955
M. Zheng, S. Lin, Z. Tang, Y. Feng, Z.L. Wang, Photovoltaic effect and tribovoltaic effect at liquid-semiconductor interface. Nano Energy 83, 105810 (2021). https://doi.org/10.1016/j.nanoen.2021.105810
L. Woo, H. Kim, P. Young, How hot electron generation at the solid–liquid interface is different from the solid–gas interface. Nano Lett. 23(11), 5373–5380 (2023). https://doi.org/10.1021/acs.nanolett.3c00173
B. Coquinot, A.T. Bui, D. Toquer, A. Michaelides, N. Kavokine et al., Momentum tunnelling between nanoscale liquid flows. Nat. Nanotechnol. 20(3), 397–403 (2025). https://doi.org/10.1038/s41565-024-01842-8
G. Gonella, E.H.G. Backus, Y. Nagata, D.J. Bonthuis, P. Loche et al., Water at charged interfaces. Nat. Rev. Chem. 5(7), 466–485 (2021). https://doi.org/10.1038/s41570-021-00293-2
L.S. Levitov, Van der Waals’ friction. Europhys. Lett. 8(6), 499–504 (1989). https://doi.org/10.1209/0295-5075/8/6/002
B. Coquinot, L. Bocquet, N. Kavokine, Quantum feedback at the solid-liquid interface: flow-induced electronic current and its negative contribution to friction. Phys. Rev. X 13, 011019 (2023). https://doi.org/10.1103/physrevx.13.011019
S. Succi, M. Lauricella, A. Montessori, Keldysh lattice Boltzmann approach to quantum nanofluidics. AIAA J. 63(4), 1330–1337 (2025). https://doi.org/10.2514/1.J064211
M. Lee, R.L.C. Vink, C.A. Volkert, M. Krüger, Noncontact friction: role of phonon damping and its nonuniversality. Phys. Rev. B 104(17), 174309 (2021). https://doi.org/10.1103/physrevb.104.174309
M.V.D. Prasad, B. Bhattacharya, Phononic origins of friction in carbon nanotube oscillators. Nano Lett. 17(4), 2131–2137 (2017). https://doi.org/10.1021/acs.nanolett.6b04310
S. Huang, Y. Song, A. Hinaut, G. Navarro-Marín, Y. Chen et al., Moiré energy dissipation driven by nonlinear dynamics. ACS Nano 19(18), 17365–17373 (2025). https://doi.org/10.1021/acsnano.4c16817
S. Huang, Z. Wei, Z. Duan, C. Sun, Y. Wang et al., Reexamination of damping in sliding friction. Phys. Rev. Lett. 132(5), 056203 (2024). https://doi.org/10.1103/PhysRevLett.132.056203
C. Wang, R. Han, Y. Wang, S. Chen, H. Xu et al., Controlling friction energy dissipation by ultrafast interlayer electron-phonon coupling in WS2/graphene heterostructures. Nano Energy 132, 110371 (2024). https://doi.org/10.1016/j.nanoen.2024.110371
P. Robin, L. Bocquet, Nanofluidics at the crossroads. J. Chem. Phys. 158(16), 160901 (2023). https://doi.org/10.1063/5.0143222
T. Emmerich, N. Ronceray, K.V. Agrawal, S. Garaj, M. Kumar et al., Nanofluidics. Nat. Rev. Methods Primers 4, 69 (2024). https://doi.org/10.1038/s43586-024-00344-0
M. Azimzadeh Sani, N.G. Pavlopoulos, S. Pezzotti, A. Serva, P. Cignoni et al., Unexpectedly high capacitance of the metal nanop/water interface: molecular-level insights into the electrical double layer. Angew. Chem. Int. Ed. 61(5), e202112679 (2022). https://doi.org/10.1002/anie.202112679
N.R. Aluru, F. Aydin, M.Z. Bazant, D. Blankschtein, A.H. Brozena et al., Fluids and electrolytes under confinement in single-digit nanopores. Chem. Rev. 123(6), 2737–2831 (2023). https://doi.org/10.1021/acs.chemrev.2c00155
L.M. Stancanelli, E. Secchi, M. Holzner, Magnetic fluid film enables almost complete drag reduction across laminar and turbulent flow regimes. Commun. Phys. 7, 30 (2024). https://doi.org/10.1038/s42005-023-01509-1
N. Wang, Y. Liu, E. Ye, Z. Li, D. Wang, Contact electrification behaviors of solid–liquid interface: regulation, mechanisms, and applications. Adv. Energy Sustain. Res. 4(4), 2200186 (2023). https://doi.org/10.1002/aesr.202200186
M. Ma, F. Grey, L. Shen, M. Urbakh, S. Wu et al., Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Nat. Nanotechnol. 10(8), 692–695 (2015). https://doi.org/10.1038/nnano.2015.134
Z. Jiang, D. Stein, Charge regulation in nanopore ionic field-effect transistors. Phys. Rev. E 83(3), 031203 (2011). https://doi.org/10.1103/physreve.83.031203
N. Kavokine, S. Marbach, A. Siria, L. Bocquet, Ionic Coulomb blockade as a fractional Wien effect. Nat. Nanotechnol. 14(6), 573–578 (2019). https://doi.org/10.1038/s41565-019-0425-y
J. Feng, K. Liu, M. Graf, D. Dumcenco, A. Kis et al., Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 15(8), 850–855 (2016). https://doi.org/10.1038/nmat4607
L. Liu, C. Yang, K. Zhao, J. Li, H.-C. Wu, Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nat. Commun. 4, 2989 (2013). https://doi.org/10.1038/ncomms3989
A. Marcotte, T. Mouterde, A. Niguès, A. Siria, L. Bocquet, Mechanically activated ionic transport across single-digit carbon nanotubes. Nat. Mater. 19(10), 1057–1061 (2020). https://doi.org/10.1038/s41563-020-0726-4
P. Robin, T. Emmerich, A. Ismail, A. Niguès, Y. You et al., Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379(6628), 161–167 (2023). https://doi.org/10.1126/science.adc9931
J. Park, S. Song, Y. Yang, S.-H. Kwon, E. Sim et al., Identification of droplet-flow-induced electric energy on electrolyte–insulator–semiconductor structure. J. Am. Chem. Soc. 139(32), 10968–10971 (2017). https://doi.org/10.1021/jacs.7b05030
L. Zhang, C. Liu, H. Cao, A.J. Erwin, D.D. Fong et al., Redox gating for colossal carrier modulation and unique phase control. Adv. Mater. 36(16), e2308871 (2024). https://doi.org/10.1002/adma.202308871
X. Liang, S. Liu, S. Lin, H. Yang, T. Jiang et al., Liquid–solid triboelectric nanogenerator arrays based on dynamic electric-double-layer for harvesting water wave energy. Adv. Energy Mater. 13(24), 2300571 (2023). https://doi.org/10.1002/aenm.202300571
S. Chakraborty, C. Bakli, D. Roy, A. Chaudhuri, A. Guha et al., Electrokinetic energy harvesting over nanometer and sub-nanometer scales. Appl. Phys. Rev. 12, 011305 (2025). https://doi.org/10.1063/5.0241150
X. Li, Y. Zhou, Z. Li, H. Guo, Y. Gong et al., Vortex-induced vibration triboelectric nanogenerator for energy harvesting from low-frequency water flow. Energy Convers. Manage. 292, 117383 (2023). https://doi.org/10.1016/j.enconman.2023.117383
Y. Zeng, Y. Luo, Y. Lu, X. Cao, Self-powered rain droplet sensor based on a liquid-solid triboelectric nanogenerator. Nano Energy 98, 107316 (2022). https://doi.org/10.1016/j.nanoen.2022.107316
H. Qin, L. Xu, S. Lin, F. Zhan, K. Dong et al., Underwater energy harvesting and sensing by sweeping out the charges in an electric double layer using an oil droplet. Adv. Funct. Mater. 32(18), 2111662 (2022). https://doi.org/10.1002/adfm.202111662
Y. Zheng, T. Liu, J. Wu, T. Xu, X. Wang et al., Energy conversion analysis of multilayered triboelectric nanogenerators for synergistic rain and solar energy harvesting. Adv. Mater. 34(28), 2202238 (2022). https://doi.org/10.1002/adma.202202238
X. Li, G. Feng, Y. Chen, J. Li, J. Yin et al., Hybrid hydrovoltaic electricity generation driven by water evaporation. Nano Res. Energy 3(2), e9120110 (2024). https://doi.org/10.26599/nre.2024.9120110
M. Lizée, A. Esfandiar, E. Panoni, A. Mischenko, P.-L. Taberna et al., Disentangling conduction pathways at the ionic–electronic interface in EMI-TFSI-covered graphene transistors. Proc. Natl. Acad. Sci. U. S. A. 122(17), e2426506122 (2025). https://doi.org/10.1073/pnas.2426506122
Y. Dong, N. Wang, D. Yang, J. Wang, W. Lu et al., Robust solid-liquid triboelectric nanogenerators: mechanisms, strategies and applications. Adv. Funct. Mater. 33(22), 2300764 (2023). https://doi.org/10.1002/adfm.202300764
Z. Song, X. Zhang, Z. Wang, T. Ren, W. Long et al., Nonintrusion monitoring of droplet motion state via liquid-solid contact electrification. ACS Nano 15(11), 18557–18565 (2021). https://doi.org/10.1021/acsnano.1c08691
S. Hu, Z. Shi, R. Zheng, W. Ye, X. Gao et al., Superhydrophobic liquid–solid contact triboelectric nanogenerator as a droplet sensor for biomedical applications. ACS Appl. Mater. Interfaces 12(36), 40021–40030 (2020). https://doi.org/10.1021/acsami.0c10097
W. Ma, J. Li, X. Qu, S.-E. Sun, Y. Zhou et al., Liquid-solid triboelectric nanogenerator-based DNA barcode detection biosensor for species identification. Adv. Sci. 12(4), 2408718 (2025). https://doi.org/10.1002/advs.202408718
Y. Wang, Y. Guo, W. Guo, Ion-induced friction reduction in water nanoflow over graphene. Acta Mech. Solida Sin. 36(2), 214–220 (2023). https://doi.org/10.1007/s10338-022-00373-w
Z. Zheng, Z. Guo, W. Liu, J. Luo, Low friction of superslippery and superlubricity: a review. Friction 11(7), 1121–1137 (2023). https://doi.org/10.1007/s40544-022-0659-9
S. Luo, R.P. Misra, D. Blankschtein, Water electric field induced modulation of the wetting of hexagonal boron nitride: insights from multiscale modeling of many-body polarization. ACS Nano 18(2), 1629–1646 (2024). https://doi.org/10.1021/acsnano.3c09811
A. Michaelides, Slippery when narrow. Nature 537(7619), 171–172 (2016). https://doi.org/10.1038/537171a
J. Xing, H. Zhang, G. Wei, L. Du, S. Chen et al., Improving the performance of the lamellar reduced graphene oxide/molybdenum sulfide nanofiltration membrane through accelerated water-transport channels and capacitively enhanced charge density. Environ. Sci. Technol. 57(1), 615–625 (2023). https://doi.org/10.1021/acs.est.2c06697
P.J. Ong, A. Priyadarshini, S.W. Tay, L. Hong, Affinity filtration by a coating of pyrolyzed fish scale colloids on microfibres for removing phenol/quinone compounds from alcohols. J. Environ. Chem. Eng. 9(5), 106097 (2021). https://doi.org/10.1016/j.jece.2021.106097
T. Hu, W. Zhang, M. Wu, W. Tang, X. Chen et al., Ultralow friction of PEEK composites under seawater lubrication. J. Mater. Res. Technol. 30, 983–991 (2024). https://doi.org/10.1016/j.jmrt.2024.03.102
D.U. Lee, D.W. Kim, S.Y. Lee, D.Y. Choi, S.Y. Choi et al., Amino acid-mediated negatively charged surface improve antifouling and tribological characteristics for medical applications. Colloids Surf. B Biointerfaces 211, 112314 (2022). https://doi.org/10.1016/j.colsurfb.2021.112314